ADR290ER-RELL [ADI]

Low Noise Micropower Precision Voltage References; 低噪声微功率高精度电压基准
ADR290ER-RELL
型号: ADR290ER-RELL
厂家: ADI    ADI
描述:

Low Noise Micropower Precision Voltage References
低噪声微功率高精度电压基准

文件: 总15页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise Micropower  
2.048 V, 2.5 V, and 4.096 V  
Precision Voltage References  
a
ADR290/ADR291/ADR292  
PIN CONFIGURATIONS  
FEATURES  
Supply Range  
8-Lead Narrow Body SO (SO Suffix)  
2.35 V to 15 V, ADR290  
2.8 V to 15 V, ADR291  
4.4 V to 15 V, ADR292  
Supply Current 12 A Max  
Low-Noise 6 V, 8 V, 12 V p-p (0.1 Hz–10 Hz)  
High Output Current 5 mA  
Temperature Range 40C to 125C  
Pin Compatible with REF02/REF19x  
NC  
1
2
3
4
8
7
6
5
NC  
NC  
V
ADR29x  
TOPVIEW  
V
IN  
(Not to Scale)  
NC  
OUT  
NC  
GND  
NC = NO CONNECT  
8-Lead TSSOP (RU Suffix)  
APPLICATIONS  
Portable Instrumentation  
NC  
1
2
3
4
8
7
6
5
NC  
NC  
V
Precision Reference for 3 V and 5 V Systems  
A/D and D/A Converter Reference  
Solar-Powered Applications  
Loop-Current-Powered Instruments  
ADR29x  
TOPVIEW  
(Not to Scale)  
V
IN  
NC  
OUT  
NC  
GND  
NC = NO CONNECT  
GENERAL DESCRIPTION  
The ADR290, ADR291 and ADR292 are low noise, micro-  
power precision voltage references that use an XFET reference  
circuit. The new XFET architecture offers significant perfor-  
mance improvements over traditional bandgap and Buried  
Zener-based references. Improvements include: one quarter the  
voltage noise output of bandgap references operating at the  
same current, very low and ultralinear temperature drift, low  
thermal hysteresis and excellent long-term stability.  
current is only 12 µA, making these devices ideal for battery-  
powered instrumentation. Three electrical grades are available  
offering initial output accuracies of 2 mV, 3 mV and 6 mV  
max for the ADR290 and ADR291, and 3 mV, 4 mV and  
6 mV max for the ADR292. Temperature coefficients for the  
three grades are 8 ppm/°C, 15 ppm/°C, and 25 ppm/°C max,  
respectively. Line regulation and load regulation are typically  
30 ppm/V and 30 ppm/mA, maintaining the reference’s overall  
high performance. For a device with 5.0 V output, refer to the  
ADR293 data sheet.  
®
The ADR29x family are series voltage references providing stable  
and accurate output voltages from supplies as low as 2.35 V for the  
ADR290. Output voltage options are 2.048 V, 2.5 V, and 4.096 V  
for the ADR290, ADR291, and ADR292 respectively. Quiescent  
The ADR290, ADR291, and ADR292 references are specified  
over the extended industrial temperature range of –40°C to  
+125°C. Devices are available in the 8-lead SOIC and 8-lead  
TSSOP packages.  
ADR29x Product  
Output Voltage  
(V)  
Initial Accuracy  
(%)  
Temperature Coefficient  
(ppm/C) Max  
Part Number  
ADR290  
ADR291  
ADR292  
ADR293  
2.048  
2.500  
4.096  
5.000  
0.10, 0.15, 0.29  
0.08, 0.12, 0.24  
0.07, 0.10, 0.15  
8, 15, 25  
8, 15, 25  
8, 15, 25  
(See ADR293 Data Sheet)  
XFET is a registered trademark of Analog Devices, Inc.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2001  
ADR290/ADR291/ADR292  
ADR290–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
(VS = 2.7 V, TA = +25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
E GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.046 2.048 2.050  
V
mV  
%
–2  
+2  
–0.10  
+0.10  
F GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.045 2.048 2.051  
V
mV  
%
–3  
+3  
–0.15  
+0.15  
G GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.042 2.048 2.054  
V
mV  
%
–6  
+6  
–0.29  
+0.29  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
2.7 V to 15 V, IOUT = 0 mA  
30  
40  
100  
125  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
30  
40  
100  
125  
ppm/mA  
ppm/mA  
LONG-TERM STABILITY  
NOISE VOLTAGE  
VO  
eN  
eN  
After 1000 hrs of Operation @ 125°C  
50  
6
ppm  
0.1 Hz to 10 Hz  
@ 1 kHz  
µV p-p  
nV/Hz  
WIDEBAND NOISE DENSITY  
420  
(V = 2.7 V, T = –25C T +85C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
S
A
A
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
8
15  
25  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
6
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
2.7 V to 15 V, IOUT = 0 mA  
35  
50  
125  
150  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
125  
150  
ppm/mA  
ppm/mA  
ELECTRICAL SPECIFICATIONS  
(VS = 2.7 V, TA = 40C TA +125C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
5
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
2.7 V to 15 V, IOUT = 0 mA  
40  
70  
200  
250  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
200  
300  
ppm/mA  
ppm/mA  
SUPPLY CURRENT  
IS  
TA = +25°C  
–40°C TA +125°C  
8
12  
12  
15  
µA  
µA  
THERMAL HYSTERESIS  
VO–HYS  
SO-8, TSSOP-8  
50  
ppm  
Specifications subject to change without notice.  
–2–  
REV. B  
ADR290/ADR291/ADR292  
ADR291–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (VS = 3.0 V, TA = +25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
E GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.498 2.500 2.502  
V
mV  
%
–2  
+2  
–0.08  
+0.08  
F GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.497 2.500 2.503  
V
mV  
%
–3  
+3  
–0.12  
+0.12  
G GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
2.494 2.500 2.506  
V
mV  
%
–6  
+6  
–0.24  
+0.24  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
3.0 V to 15 V, IOUT = 0 mA  
30  
40  
100  
125  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F“ Grades  
“G“ Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
30  
40  
100  
125  
ppm/mA  
ppm/mA  
LONG-TERM STABILITY  
NOISE VOLTAGE  
VO  
eN  
eN  
After 1000 hrs of Operation @ 125°C  
50  
8
ppm  
0.1 Hz to 10 Hz  
@ 1 kHz  
µV p-p  
nV/Hz  
WIDEBAND NOISE DENSITY  
480  
(VS = 3.0 V, TA = –25C TA +85C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
8
15  
25  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
5
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
3.0 V to 15 V, IOUT = 0 mA  
35  
50  
125  
150  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
125  
150  
ppm/mA  
ppm/mA  
(V = 3.0 V, T = –40C T +125C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
S
A
A
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
5
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
3.0 V to 15 V, IOUT = 0 mA  
40  
70  
200  
250  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
200  
300  
ppm/mA  
ppm/mA  
SUPPLY CURRENT  
IS  
TA = +25°C  
–40°C TA +125°C  
9
12  
12  
15  
µA  
µA  
THERMAL HYSTERESIS  
VO–HYS  
SO-8, TSSOP-8  
50  
ppm  
Specifications subject to change without notice.  
–3–  
REV. B  
ADR290/ADR291/ADR292  
ADR292–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (VS = 5 V, TA = +25C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
E GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
4.093 4.096 4.099  
V
mV  
%
–3  
+3  
–0.07  
+0.07  
F GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
4.092 4.096 4.1  
V
mV  
%
–4  
+4  
–0.10  
+0.10  
G GRADE  
Output Voltage  
Initial Accuracy  
VO  
VOERR  
IOUT = 0 mA  
4.090 4.096 4.102  
V
mV  
%
–6  
+6  
–0.15  
+0.15  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
4.5 V to 15 V, IOUT = 0 mA  
30  
40  
100  
125  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
30  
40  
100  
125  
ppm/mA  
ppm/mA  
LONG-TERM STABILITY  
NOISE VOLTAGE  
VO  
After 1000 hrs of Operation @ 125°C  
50  
12  
ppm  
eN  
0.1 Hz to 10 Hz  
µV p-p  
WIDEBAND NOISE DENSITY  
eN  
@ 1 kHz  
640  
nV/Hz  
(VS = 5 V, T = –25C T +85C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
A
A
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
8
15  
25  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
5
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
4.5 V to 15 V, IOUT = 0 mA  
35  
50  
125  
150  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
125  
150  
ppm/mA  
ppm/mA  
ELECTRICAL SPECIFICATIONS (VS = 5 V, TA = –40C TA +125C unless otherwise noted)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
TEMPERATURE COEFFICIENT  
“E” Grade  
TCVO  
IOUT = 0 mA  
3
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
“F” Grade  
5
“G” Grade  
10  
LINE REGULATION  
“E/F” Grades  
“G” Grade  
VO/VIN  
4.5 V to 15 V, IOUT = 0 mA  
40  
70  
200  
250  
ppm/V  
ppm/V  
LOAD REGULATION  
“E/F” Grades  
“G” Grade  
VO/ILOAD VS = 5.0 V, 0 mA to 5 mA  
20  
30  
200  
300  
ppm/mA  
ppm/mA  
SUPPLY CURRENT  
IS  
TA = +25°C  
–40°C TA +125°C  
10  
12  
15  
18  
µA  
µA  
THERMAL HYSTERESIS  
VO–HYS  
SO-8, TSSOP-8  
50  
ppm  
Specifications subject to change without notice.  
–4–  
REV. B  
ADR290/ADR291/ADR292  
ABSOLUTE MAXIMUM RATINGS  
Package Type  
JA*  
JC  
Unit  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
Output Short-Circuit Duration to GND . . . . . . . . . . Indefinite  
Storage Temperature Range  
8-Lead SOIC (SO)  
8-Lead TSSOP (RU)  
158  
240  
43  
43  
°C/W  
°C/W  
SO, RU Package . . . . . . . . . . . . . . . . . . . Ϫ65°C to 150°C  
Operating Temperature Range  
*θJA is specified for worst-case conditions, i.e., θJA is specified for device in socket  
testing. In practice, θJA is specified for a device soldered in the circuit board.  
ADR290/ADR291/ADR292. . . . . . . . . . . Ϫ40°C to 125°C  
Junction Temperature Range  
SO, RU Package . . . . . . . . . . . . . . . . . . . Ϫ65°C to 125°C  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . . 300°C  
NOTES  
1. Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. This is a stress rating only; functional  
operation at or above this specification is not implied. Exposure to the  
above maximum rating conditions for extended periods may affect device  
reliability.  
2. Remove power before inserting or removing units from their sockets.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the ADR290/ADR291/ADR292 features proprietary ESD protection circuitry, perma-  
nent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
ORDERING GUIDE  
Temperature  
Number of  
Parts per  
Package  
Output  
Voltage  
Initial  
Coefficient  
Package  
Description  
Package  
Option  
Model  
Accuracy (%)  
Max (ppm/C)  
ADR290  
ER, ER-REEL7, ER-REEL  
FR, FR-REEL7, FR-REEL  
GR, GR-REEL7, GR-REEL  
GRU-REEL7, GRU-REEL  
2.048  
2.048  
2.048  
2.048  
0.10  
0.15  
0.29  
0.29  
8
SOIC  
SOIC  
SOIC  
TSSOP  
SO-8  
SO-8  
SO-8  
RU-8  
98, 1000, 2500  
98, 1000, 2500  
98, 1000, 2500  
1000, 2500  
15  
25  
25  
ADR291  
ER, ER-REEL7, ER-REEL  
FR, FR-REEL7, FR-REEL  
GR, GR-REEL7, GR-REEL  
GRU-REEL7, GRU-REEL  
2.50  
2.50  
2.50  
2.50  
0.08  
0.12  
0.24  
0.24  
8
SOIC  
SOIC  
SOIC  
TSSOP  
SO-8  
SO-8  
SO-8  
RU-8  
98, 1000, 2500  
98, 1000, 2500  
98, 1000, 2500  
1000, 2500  
15  
25  
25  
ADR292  
ER, ER-REEL7, ER-REEL  
FR, FR-REEL7, FR-REEL  
GR, GR-REEL7, GR-REEL  
GRU-REEL7, GRU-REEL  
4.096  
4.096  
4.096  
4.096  
0.07  
0.10  
0.15  
0.15  
8
SOIC  
SOIC  
SOIC  
TSSOP  
SO-8  
SO-8  
SO-8  
RU-8  
98, 1000, 2500  
98, 1000, 2500  
98, 1000, 2500  
1000, 2500  
15  
25  
25  
See ADR293 data sheet for ordering guide.  
OTHER XFET PRODUCTS  
Part  
Number  
Nominal Output  
Voltage (V)  
Package  
Type  
ADR420  
ADR421  
2.048  
2.50  
8-Lead_µSOIC/SOIC  
8-Lead_µSOIC/SOIC  
–5–  
REV. B  
ADR290/ADR291/ADR292  
PARAMETER DEFINITION  
Thermal Hysteresis  
Thermal hysteresis is defined as the change of output voltage af-  
ter the device is cycled through temperature from +25°C to  
40°C to +85°C and back to +25°C. This is a typical value from  
a sample of parts put through such a cycle.  
Line Regulation  
The change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in either percent-per-volt, parts-per-million-per-  
volt, or microvolts-per-volt change in input voltage.  
VOHYS =VO (25°C) VO _TC  
VO (25°C) VO _TC  
Load Regulation  
V
OHYS[ppm] =  
×106  
The change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load regulation  
is expressed in either microvolts-per-milliampere, parts-per-  
million-per-milliampere, or ohms of dc output resistance.  
VO (25°C)  
Where  
VO (25°C) = VO at 25°C  
Long-Term Stability  
VO–TC = VO at 25°C after temperature cycle at +25°C to  
40°C to +85°C and back to +25°C  
Typical shift of output voltage at 25°C on a sample of parts  
subjected to high-temperature operating life test of 1000  
hours at 125°C.  
VO =VO(t0) VO(t1)  
VO(t0) VO(t1)  
VO[ppm]=  
×106  
VO(t0)  
Where  
VO (t0) = VO at 25°C at time 0  
VO (t1) = VO at 25°C after 1000 hours operation at 125°C  
Temperature Coefficient  
The change of output voltage over the operating temperature  
change and normalized by the output voltage at 25°C, expressed  
in ppm/°C. The equation follows:  
VO(T2 ) VO(T )  
VO(25°C)×(T2 T )  
1
TCVO[ppm/°C] =  
×106  
1
Where  
VO (25°C) = VO at 25°C  
VO(T1) = VO at Temperature 1  
VO(T2) = VO at Temperature 2  
NC = No Connect  
(There are in fact internal connections at NC pins which are  
reserved for manufacturing purposes. Users should not connect  
anything at NC pins.)  
–6–  
REV. B  
Typical Performance CharacteristicADR290/ADR291/ADR292  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
2.042  
14  
V
= 5V  
3 TYPICAL PARTS  
S
12  
T
T
= +125C  
A
10  
8
= +25  
C
C
A
T
= 40  
A
6
4
2
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
INPUT VOLTAGE V  
TEMPERATURE –  
C  
TPC 1. ADR290 VOUT vs. Temperature  
TPC 4. ADR290 Quiescent Current vs. Input Voltage  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
14  
12  
V
= 5V  
3 TYPICAL PARTS  
S
T
T
= +125C  
A
10  
8
= +25  
C
C
A
T
= 40  
A
6
4
2
0
50  
25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
INPUT VOLTAGE V  
TEMPERATURE –  
C  
TPC 2. ADR291 VOUT vs. Temperature  
TPC 5. ADR291 Quiescent Current vs. Input Voltage  
4.102  
4.100  
4.098  
4.096  
4.094  
4.092  
4.090  
16  
14  
V
= 5V  
3 TYPICAL PARTS  
S
T
= +125C  
A
12  
10  
T
T
= +25  
C
C
A
= 40  
A
8
6
4
2
0
50  
25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
12  
14  
16  
INPUT VOLTAGE V  
TEMPERATURE –  
C  
TPC 3. ADR292 VOUT vs. Temperature  
TPC 6. ADR292 Quiescent Current vs. Input Voltage  
–7–  
REV. B  
ADR290/ADR291/ADR292  
14  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
12  
10  
8
ADR291  
ADR292  
T
= 40C  
A
T
= +125C  
A
ADR290  
T
= +25C  
A
6
4
50  
25  
0
25  
50  
75  
100  
125  
0
0.5  
1.0  
1.5 2.0  
2.5  
3.0 3.5  
4.0  
4.5  
5.0  
LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 10. ADR290 Minimum Input-Output Voltage  
Differential vs. Load Current  
TPC 7. ADR290/ADR291/ADR292 Supply Current vs.  
Temperature  
100  
0.7  
0.6  
ADR290: V = 2.7V TO 15V  
S
I
= 0mA  
ADR291: V = 3.0V TO 15V  
OUT  
S
ADR292: V = 4.5V TO 15V  
S
T
= +125C  
80  
60  
40  
20  
0
A
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= +25C  
A
ADR292  
T
= 40C  
A
ADR290  
75  
ADR291  
100  
50  
25  
0
25  
50  
125  
0
0.5  
1.0  
1.5 2.0  
2.5  
3.0 3.5  
4.0  
4.5  
5.0  
LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 8. ADR290/ADR291/ADR292 Line Regulation vs.  
Temperature  
TPC 11. ADR291 Minimum Input-Output Voltage  
Differential vs. Load Current  
100  
0.7  
0.6  
ADR290: V = 2.7V TO 7.0V  
S
I
= 0mA  
ADR291: V = 3.0V TO 7.0V  
OUT  
S
ADR292: V = 4.5V TO 9.0V  
S
T
= +125C  
A
80  
60  
40  
20  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
= +25C  
A
ADR290  
ADR291  
T
= 40C  
A
ADR292  
50  
25  
0
25  
50  
75  
100  
125  
0
0.5  
1.0  
1.5 2.0  
2.5  
3.0 3.5  
4.0  
4.5  
5.0  
LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 12. ADR292 Minimum Input-Output Voltage  
Differential vs. Load Current  
TPC 9. ADR290/ADR291/ADR292 Line Regulation vs.  
Temperature  
–8–  
REV. B  
ADR290/ADR291/ADR292  
200  
160  
120  
80  
500  
250  
0
V
= 5V  
S
T
= +25C  
A
I
I
= 1mA  
OUT  
250  
500  
T
= +125C  
A
T
= 40C  
40  
A
750  
= 5mA  
100  
OUT  
0
1000  
50  
25  
0
25  
50  
75  
125  
0.1  
1
10  
SOURCING LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 13. ADR290 Line Regulation vs. Temperature  
TPC 16. ADR290 VOUT from Nominal vs. Load Current  
200  
0
V
= 5V  
S
250  
T
= +25C  
160  
120  
80  
A
500  
750  
I
= 1mA  
OUT  
T
= 40C  
A
T
= +125C  
A
1000  
1250  
1500  
1750  
2000  
I
= 5mA  
OUT  
40  
0
50  
25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
SOURCING LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 14. ADR291 Load Regulation vs. Temperature  
TPC 17. ADR291 VOUT from Nominal vs. Load Current  
200  
0
500  
V
= 5V  
S
160  
120  
80  
1000  
T
= +25C  
A
T
= 40C  
A
1500  
2000  
2500  
3000  
3500  
4000  
I
= 1mA  
T
= +125C  
OUT  
A
I
= 5mA  
OUT  
40  
0
50  
25  
0
25  
50  
75  
100  
125  
0.1  
1
10  
SOURCING LOAD CURRENT mA  
TEMPERATURE –  
C  
TPC 15. ADR292 Load Regulation vs. Temperature  
TPC 18. ADR292 VOUT from Nominal vs. Load Current  
–9–  
REV. B  
ADR290/ADR291/ADR292  
1000  
50  
40  
30  
20  
10  
0
V
= 5V  
S
V
= 15V  
IN  
= 25C  
ADR292  
900  
I
= 0 mA  
L
T
A
800  
700  
ADR291  
600  
500  
400  
300  
200  
100  
0
ADR290  
10  
100  
FREQUENCY Hz  
1000  
0
10  
100  
1k  
10k  
FREQUENCY Hz  
TPC 19. Voltage Noise Density vs. Frequency  
TPC 22. ADR290 Output Impedance vs. Frequency  
50  
120  
V
= 5V  
= 0 mA  
S
V
= 5V  
S
I
L
100  
80  
60  
40  
20  
0
40  
30  
20  
10  
0
10  
100  
1000  
0
10  
100  
1k  
10k  
FREQUENCY Hz  
FREQUENCY Hz  
TPC 20. ADR290/ADR291/ADR292 Ripple Rejection vs.  
Frequency  
TPC 23. ADR291 Output Impedance vs. Frequency  
50  
V
= 5V  
= 0 mA  
S
1s  
I
L
40  
30  
20  
10  
0
100  
90  
2V p-p  
10  
0%  
0
10  
100  
1k  
10k  
FREQUENCY Hz  
TPC 21. ADR290 0.1 Hz to 10 Hz Noise  
TPC 24. ADR292 Output Impedance vs. Frequency  
–10–  
REV. B  
ADR290/ADR291/ADR292  
I
= 5mA  
1ms  
I
= 5mA  
500s  
L
L
OFF  
ON  
100  
90  
100  
90  
10  
10  
0%  
0%  
1V  
1V  
TPC 25. ADR291 Load Transient  
TPC 28. ADR291 Turn-On Time  
I
C
= 5mA  
L
1ms  
I
= 0mA  
10ms  
L
= 1nF  
L
100  
90  
100  
90  
OFF  
ON  
10  
10  
0%  
0%  
1V  
1V  
TPC 26. ADR291 Load Transient  
TPC 29. ADR291 Turn-Off Time  
18  
TEMPERATURE  
+25C 40C  
85C +25C  
I
C
= 5mA  
L
5ms  
16  
14  
12  
= 100nF  
L
100  
90  
OFF  
ON  
10  
8
6
10  
4
0%  
2
1V  
0
V
DEVIATION ppm  
OUT  
TPC 27. ADR291 Load Transient  
TPC 30. Typical Hysteresis for the ADR291 Product  
–11–  
REV. B  
ADR290/ADR291/ADR292  
THEORY OF OPERATION  
Device Power Dissipation Considerations  
The ADR29x series of references uses a new reference generation  
technique known as XFET (eXtra implanted junction FET). This  
technique yields a reference with low noise, low supply current  
and very low thermal hysteresis.  
The ADR29x family of references is guaranteed to deliver load  
currents to 5 mA with an input voltage that ranges from 2.7 V  
to 15 V (minimum supply voltage depends on output voltage  
option). When these devices are used in applications with large  
input voltages, care should be exercised to avoid exceeding the  
published specifications for maximum power dissipation or junc-  
tion temperature that could result in premature device failure.  
The following formula should be used to calculate a devices maxi-  
mum junction temperature or dissipation:  
The core of the XFET reference consists of two junction field-  
effect transistors, one of which has an extra channel implant to  
raise its pinch-off voltage. By running the two JFETs at the  
same drain current, the difference in pinch-off voltage can be  
amplified and used to form a highly stable voltage reference.  
The intrinsic reference voltage is around 0.5 V with a negative  
temperature coefficient of about 120 ppm/K. This slope is  
essentially locked to the dielectric constant of silicon and can be  
closely compensated by adding a correction term generated in  
the same fashion as the proportional-to-temperature (PTAT)  
term used to compensate bandgap references. The big advantage  
over a bandgap reference is that the intrinsic temperature coeffi-  
cient is some thirty times lower (therefore less correction is  
needed) and this results in much lower noise since most of the  
noise of a bandgap reference comes from the temperature com-  
pensation circuitry.  
TJ TA  
PD =  
θJA  
In this equation, TJ and TA are the junction and ambient tem-  
peratures, respectively, PD is the device power dissipation, and  
θ
JA is the device package thermal resistance.  
Basic Voltage Reference Connections  
References, in general, require a bypass capacitor connected  
from the VOUT pin to the GND pin. The circuit in Figure 2  
illustrates the basic configuration for the ADR29x family of ref-  
erences. Note that the decoupling capacitors are not required for  
circuit stability.  
The simplified schematic below shows the basic topology of the  
ADR29x series. The temperature correction term is provided by  
a current source with value designed to be proportional to abso-  
lute temperature. The general equation is:  
NC  
1
2
3
4
8
7
6
5
NC  
ADR29x  
NC  
OUTPUT  
R1+ R2 + R3  
R1  
NC  
VOUT = ∆VP  
+ IPTAT R3  
(
)(  
)
+
0.1F  
0.1F  
10F  
NC  
where VP is the difference in pinch-off voltage between the two  
FETs, and IPTAT is the positive temperature coefficient correc-  
tion current. The various versions of the ADR29x family are  
created by on-chip adjustment of R1 and R3 to achieve 2.048 V,  
2.500 V or 4.096 V at the reference output.  
NC = NO CONNECT  
Figure 2. Basic Voltage Reference Configuration  
Noise Performance  
The noise generated by the ADR29x family of references is typi-  
cally less than 12 µV p-p over the 0.1 Hz to 10 Hz band. TPC  
21 shows the 0.1 Hz to 10 Hz noise of the ADR290 which is only  
6 µV p-p. The noise measurement is made with a bandpass filter  
made of a 2-pole high-pass filter with a corner frequency at 0.1 Hz  
and a 2-pole low-pass filter with a corner frequency at 10 Hz.  
The process used for the XFET reference also features vertical  
NPN and PNP transistors, the latter of which are used as output  
devices to provide a very low drop-out voltage.  
V
IN  
I
I
1
1
Turn-On Time  
Upon application of power (cold start), the time required for the  
output voltage to reach its final value within a specified error band  
is defined as the turn-on settling time. Two components nor-  
mally associated with this are the time for the active circuits to  
settle, and the time for the thermal gradients on the chip to sta-  
bilize. TPC 28 shows the turn-on settling time for the ADR291.  
*
V
OUT  
V  
R1  
R2  
R3  
P
I
PTAT  
GND  
* EXTRA CHANNEL IMPLANT  
R1 + R2 + R3  
V
=
ꢇ ꢅV + I  
PTAT  
R3  
OUT  
P
R1  
Figure 1. ADR290/ADR291/ADR292 Simplified Schematic  
–12–  
REV. B  
ADR290/ADR291/ADR292  
V
IN  
APPLICATIONS SECTION  
A Negative Precision Reference without Precision Resistors  
In many current-output CMOS DAC applications, where the  
output signal voltage must be of the same polarity as the reference  
voltage, it is often required to reconfigure a current-switching  
DAC into a voltage-switching DAC through the use of a 1.25 V  
reference, an op amp and a pair of resistors. Using a current-  
switching DAC directly requires the need for an additional  
operational amplifier at the output to reinvert the signal. A  
negative voltage reference is then desirable from the point that  
an additional operational amplifier is not required for either  
reinversion (current-switching mode) or amplification (voltage-  
switching mode) of the DAC output voltage. In general, any  
positive voltage reference can be converted into a negative volt-  
age reference through the use of an operational amplifier and a  
pair of matched resistors in an inverting configuration. The dis-  
advantage to that approach is that the largest single source of  
error in the circuit is the relative matching of the resistors used.  
ADR29x  
V
OUT  
R1  
P1  
GND  
1F  
R
SET  
I
SY  
ADJUST  
I
OUT  
R
L
Figure 4. A Precision Current Source  
High Voltage Floating Current Source  
The circuit illustrated in Figure 3 avoids the need for tightly  
matched resistors with the use of an active integrator circuit. In  
this circuit, the output of the voltage reference provides the  
input drive for the integrator. The integrator, to maintain circuit  
equilibrium adjusts its output to establish the proper relationship  
between the references VOUT and GND. Thus, any negative  
output voltage desired can be chosen by simply substituting for  
the appropriate reference IC. One caveat with this approach  
should be mentioned: although rail-to-rail output amplifiers  
work best in the application, these operational amplifiers require  
a finite amount (mV) of headroom when required to provide  
any load current. The choice for the circuits negative supply  
should take this issue into account.  
The circuit of Figure 5 can be used to generate a floating  
current source with minimal self heating. This particular con-  
figuration can operate on high supply voltages determined by  
the breakdown voltage of the N-channel JFET.  
+V  
S
E231  
SILICONIX  
V
IN  
ADR29  
X
2N3904  
OP90  
V
IN  
GND  
2.10kꢆ  
ADR29x  
V  
S
1F  
1kꢆ  
1F  
V
OUT  
Figure 5. High Voltage Floating Current Source  
Kelvin Connections  
+5V  
GND  
100ꢆ  
In many portable instrumentation applications, where PC board  
cost and area go hand-in-hand, circuit interconnects are very often  
of dimensionally minimum width. These narrow lines can cause  
large voltage drops if the voltage reference is required to provide  
load currents to various functions. In fact, a circuits interconnects  
can exhibit a typical line resistance of 0.45 m/square (1 oz. Cu,  
for example). Force and sense connections also referred to as  
Kelvin connections, offer a convenient method of eliminating the  
effects of voltage drops in circuit wires. Load currents flowing  
through wiring resistance produce an error (VERROR = R ϫ IL ) at  
the load. However, the Kelvin connection of Figure 6, overcomes  
the problem by including the wiring resistance within the forcing  
loop of the op amp. Since the op amp senses the load voltage, op  
amp loop control forces the output to compensate for the wiring  
error and to produce the correct voltage at the load.  
V  
100kꢆ  
A1  
REF  
5V  
A1 = 1/2 OP291,  
1/2 OP295  
Figure 3. A Negative Precision Voltage Reference Uses No  
Precision Resistors  
A Precision Current Source  
Many times in low power applications, the need arises for a pre-  
cision current source that can operate on low supply voltages.  
As shown in Figure 4, any one of the devices in the ADR29x  
family of references can be configured as a precision current  
source. The circuit configuration illustrated is a floating current  
source with a grounded load. The references output voltage is  
bootstrapped across RSET, which sets the output current into the  
load. With this configuration, circuit precision is maintained for  
load currents in the range from the references supply current,  
typically 12 µA to approximately 5 mA.  
–13–  
REV. B  
ADR290/ADR291/ADR292  
V
IN  
Voltage Regulator For Portable Equipment  
R
The ADR29x family of references is ideal for providing a stable,  
low cost and low power reference voltage in portable equipment  
power supplies. Figure 8 shows how the ADR290/ADR291/  
ADR292 can be used in a voltage regulator that not only has  
low output noise (as compared to switch mode design) and  
low power, but also a very fast recovery after current surges.  
Some precautions should be taken in the selection of the out-  
put capacitors. Too high an ESR (Effective Series Resistance)  
could endanger the stability of the circuit. A solid tantalum  
capacitor, 16 V or higher, and an aluminum electrolytic capacitor,  
10 V or higher, are recommended for C1 and C2, respectively.  
Also, the path from the ground side of C1 and C2 to the ground  
side of R1 should be kept as short as possible.  
LW  
+V  
OUT  
SENSE  
V
IN  
ADR29x  
R
LW  
+V  
OUT  
FORCE  
A1  
V
OUT  
R
L
1F  
100kꢆ  
GND  
A1 = 1/2 OP295  
Figure 6. Advantage of Kelvin Connection  
Low Power, Low Voltage Reference For Data Converters  
The ADR29x family has a number of features that makes it  
ideally suited for use with A/D and D/A converters. The low  
supply voltage required makes it possible to use the ADR290  
and ADR291 with todays converters that run on 3 V supplies  
without having to add a higher supply voltage for the reference.  
The low quiescent current (12 µA max) and low noise, tight  
temperature coefficient, combined with the high accuracy of  
the ADR29x makes it ideal for low power applications such  
as hand-held, battery operated equipment.  
CHARGER  
INPUT  
0.1F  
R3  
510kꢆ  
V
IN  
ADR29x  
V
6V  
OUT  
+
LEAD-ACID  
BATTERY  
OP20  
TEMP  
GND  
IRF9530  
One such ADC for which the ADR291 is well suited is the  
AD7701. Figure 7 shows the ADR291 used as the reference for  
this converter. The AD7701 is a 16-bit A/D converter with on-  
chip digital filtering intended for the measurement of wide  
dynamic range, low frequency signals such as those representing  
chemical, physical or biological processes. It contains a charge  
balancing (sigma-delta) ADC, calibration microcontroller with  
on-chip static RAM, a clock oscillator and a serial communica-  
tions port.  
5V, 100mA  
+
+
C2  
1000F  
ELECT  
C1  
R2  
R1  
68F  
402kꢆ  
402kꢆ  
TANT  
1%  
1%  
Figure 8. Voltage Regulator for Portable Equipment  
This entire circuit runs on 5 V supplies. The power dissipation  
of the AD7701 is typically 25 mW and, when combined with  
the power dissipation of the ADR291 (60 µW), the entire circuit  
still consumes about 25 mW.  
+5V  
ANALOG  
SUPPLY  
0.1F  
10F  
AV  
V
DD  
DV  
V
DD  
IN  
0.1F  
V
REF  
OUT  
SLEEP  
0.1F  
ADR291  
MODE  
GND  
DRDY  
CS  
DATA READY  
AD7701  
READ (TRANSMIT)  
SERIAL CLOCK  
SERIAL CLOCK  
SCLK  
SDATA  
RANGES  
SELECT  
BP/UP  
CAL  
CALIBRATE  
CLKIN  
ANALOG  
INPUT  
A
IN  
CLKOUT  
SC1  
ANALOG  
GROUND  
AGND  
SC2  
0.1F  
DGND  
0.1F  
AV  
SS  
DV  
SS  
5V  
ANALOG  
SUPPLY  
0.1F  
10F  
Figure 7. Low Power, Low Voltage Supply Reference for  
the AD7701  
–14–  
REV. B  
ADR290/ADR291/ADR292  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Narrow Body SO (SO Suffix)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
45ꢂ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
SEATING  
PLANE  
8ꢂ  
0ꢂ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
8-Lead TSSOP (RU Suffix)  
0.122 (3.10)  
0.114 (2.90)  
8
5
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
4
PIN 1  
0.0256 (0.65)  
BSC  
0.0433  
(1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
SEATING  
PLANE  
8ꢂ  
0ꢂ  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
0.0079 (0.20)  
0.0035 (0.090)  
–15–  
REV. B  

相关型号:

ADR290FR

Low Noise Micropower Precision Voltage References
ADI

ADR290FR-REEL

Low Noise Micropower Precision Voltage References
ADI

ADR290FR-REEL7

Low Noise Micropower Precision Voltage References
ADI

ADR290FR-RELL

Low Noise Micropower Precision Voltage References
ADI

ADR290GBC

Low Noise Micropower Precision Voltage References
ADI

ADR290GR

Low Noise Micropower Precision Voltage References
ADI

ADR290GR-REEL

Low Noise Micropower Precision Voltage References
ADI

ADR290GR-REEL7

Low Noise Micropower Precision Voltage References
ADI

ADR290GR-RELL

Low Noise Micropower Precision Voltage References
ADI

ADR290GRU-REEL

Low Noise Micropower Precision Voltage References
ADI

ADR290GRU-REEL7

Low Noise Micropower Precision Voltage References
ADI

ADR290GRU-RELL

Low Noise Micropower Precision Voltage References
ADI