ADRF6655ACPZ-R7 [ADI]

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO; 宽带上/下变频混频器,集成小数N分频PLL和VCO
ADRF6655ACPZ-R7
型号: ADRF6655ACPZ-R7
厂家: ADI    ADI
描述:

Broadband Up/Downconverting Mixer with Integrated Fractional-N PLL and VCO
宽带上/下变频混频器,集成小数N分频PLL和VCO

信号电路 锁相环或频率合成电路 信息通信管理
文件: 总44页 (文件大小:1267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Broadband Up/Downconverting Mixer with  
Integrated Fractional-N PLL and VCO  
ADRF6655  
The programmable divider is controlled by an Σ-Δ modulator  
(SDM). The modulus of the SDM can be programmed between  
FEATURES  
Broadband active mixer with integrated fractional-N PLL  
RF input frequency range: 100 MHz to 2500 MHz  
Internal LO frequency range: 1050 MHz to 2300 MHz  
Flexible IF output interface  
1 and 2047.  
The broadband, active mixer employs a bias adjustment to allow  
for enhanced IP3 performance at the expense of increased supply  
current. The mixer provides an input IP3 exceeding 25 dBm  
with 12 dB single sideband NF under typical conditions. The IIP3  
can be boosted to ~29 dBm with roughly 20 mA of additional  
supplied current. The mixer provides a typical voltage conversion  
gain of 6 dB with a 200 Ω differential IF output impedance. The  
IF output can be externally matched to support upconversion over  
a limited frequency range.  
Input P1dB: 12 dBm  
Input IP3: 29 dBm  
Noise figure (SSB): 12 dB  
Voltage conversion gain: 6 dB  
Matched 200 Ω output impedance  
SPI serial interface for PLL programming  
40-lead 6 mm × 6 mm LFCSP  
The ADRF6655 is fabricated using an advanced silicon-germanium  
BiCMOS process. It is packaged in a 40-lead, exposed-paddle,  
Pb-free, 6 mm × 6 mm LFCSP. Performance is specified over a  
−40°C to +85°C temperature range.  
GENERAL DESCRIPTION  
The ADRF6655 is a high dynamic range active mixer with  
integrated PLL and VCO. The synthesizer uses a programmable  
integer-N/fractional-N PLL to generate a local oscillator input  
to the mixer. The PLL reference input is nominally 20 MHz. The  
reference input can be divided by or multiplied by and then  
applied to the PLL phase detector. The PLL can support input  
reference frequencies from 10 MHz to 160 MHz. The phase  
detector output controls a charge pump whose output is integrated  
in an off-chip loop filter. The loop filter output is then applied to an  
integrated VCO. The VCO output at 2 × fLO is then applied to a local  
oscillator (LO) divider as well as to a programmable PLL divider.  
FUNCTIONAL BLOCK DIAGRAM  
GND GND VCCLO  
NC  
33  
NC GND  
32 31  
36  
35  
34  
30  
29  
28  
27  
GND  
LOSEL  
LON 37  
IP3SET  
GND  
ADRF6655  
BUFFER  
BUFFER  
38  
LOP  
VCCMIX  
INTEGER  
REG  
26  
25  
FRACTION  
INP  
INN  
DIVIDER  
÷2 OR ÷3  
MODULUS  
MUX  
11  
GND  
DATA  
CLK  
LE  
REG  
12  
13  
14  
15  
LOSEL  
SPI  
THIRD-ORDER  
FRACTIONAL  
INTERPOLATOR  
INTERFACE  
VCO  
CORE  
N COUNTER  
21 TO 123  
GND  
24  
23  
22  
21  
PRESCALER  
GND  
×2  
GND  
6
7
REFIN  
GND  
+
PHASE  
FREQUENCY  
DETECTOR  
MUX  
÷2  
CHARGE PUMP  
250µA,  
500µA (DEFAULT),  
750µA,  
VCCV2I  
GND  
TEMP  
SENSOR  
÷4  
3.3V LDO  
2.5V LDO  
10  
VCO LDO  
40 16  
1000µA  
8
MUXOUT  
1
2
3
4
5
9
39  
17  
18  
19  
20  
VCC1  
DECL1  
CP GND RSET DECL2 VCC2 VTUNE DECL3 NC VCCLO OUTN OUTP GND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
ADRF6655  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Matching and Biasing................................................... 19  
Input Matching ........................................................................... 20  
IP3SET Linearization Feature................................................... 21  
CDAC Linearization Feature .................................................... 21  
External LO Interface ................................................................ 21  
Using an External VCO............................................................. 22  
ADRF6655 Control Software........................................................ 23  
PLL Loop Filter Design ............................................................. 23  
Register Structure........................................................................... 24  
Device Programming................................................................. 25  
Initialization Sequence .............................................................. 25  
Register 0—Integer Divide Control......................................... 26  
Register 1—Modulus Divide Control...................................... 27  
Register 2—Fractional Divide Control.................................... 27  
Register 3—Σ-Δ Modulator Dither Control........................... 28  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Despcriptions .......................... 7  
Typical Performance Characteristics ............................................. 9  
Downconversion........................................................................... 9  
Upconversion.............................................................................. 11  
PLL Characteristic...................................................................... 12  
Complimentary Cumulative Distribution Function (CCDF):  
Downconversion, LO = 1100 MHz, RF = 900 MHz.............. 14  
Complimentary Cumulative Distribution Function (CCDF):  
Downconversion, LO = 1700 MHz, RF = 1900 MHz............ 15  
Register 4—Charge Pump, PFD, and Reference  
Path Control................................................................................ 29  
Complimentary Cumulative Distribution Function (CCDF):  
Upconversion Distribution ....................................................... 16  
Register 5—LO Path and Mixer Control................................. 31  
Register 6—VCO Control and PLL Enables........................... 32  
Register 7—External VCO Control ......................................... 33  
Characterization Setups................................................................. 34  
Evaluation Board Layout and Thermal Grounding................... 38  
Outline Dimensions....................................................................... 41  
Ordering Guide .......................................................................... 41  
Circuit Description......................................................................... 17  
PLL and VCO Block................................................................... 17  
RF Mixer Block........................................................................... 17  
Digital Interfaces ........................................................................ 18  
Analog Interfaces............................................................................ 19  
Supply Connections ................................................................... 19  
Synthesizer Connections ........................................................... 19  
REVISION HISTORY  
2/10—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
 
ADRF6655  
SPECIFICATIONS  
VCC = 5 V; ambient temperature (TA) = 25°C; REFIN = 20 MHz, phase frequency detector (PFD) frequency = 20 MHz, IF output loaded  
into 4-to-1 transformer matched to a 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
2500 MHz  
2200 MHz  
RF INPUT FREQUENCY RANGE  
IF OUTPUT FREQUENCY RANGE  
100  
Can be matched externally for improved return loss at higher LF  
frequencies (see the Output Matching and Biasing section)  
INTERNAL LO FREQUENCY RANGE  
Divide-by-3 mode1  
Divide-by-2 mode1  
Divide-by-2 mode2  
1050  
1530  
500  
1530 MHz  
2300 MHz  
2300 MHz  
EXTERNAL LO FREQUENCY RANGE  
MIXER  
Input Return Loss  
INP, INN; relative to 50 Ω, from 350 MHz to 2200 MHz using  
TC1-1-13M+ balun3  
OUTP, OUTN; relative to 50 Ω out to 200 MHz using TC4-1W  
output transformer option3  
12  
12  
dB  
dB  
Output Return Loss  
IF Output Impedance  
Output Common Mode  
Voltage Conversion Gain  
Output Swing  
LO-to-IF Output Leakage  
DYNAMIC PERFORMANCE  
Upconversion  
OUTP, OUTN  
200  
VPOS  
6
2
−40  
Ω
V
dB  
V p-p  
dBm  
OUTP, OUTN; external pull-up balun or inductors required  
IF output loaded into 200 Ω differential load  
Can be improved using external filtering  
IP3Set = 3.2 V  
340 MHz RF input, 1200 MHz IF output using 1540 MHz  
LO (see Figure 56 for output matching network)  
Gain Flatness  
Over 50 MHz bandwidth for 1200 MHz output center  
frequency  
0.25  
dB p-p  
Gain Temperature Coefficient  
Output P1dB  
Average values from −40°C to +85°C  
−10  
11  
mdB/°C  
dBm  
Second-Order Output Intercept (IIP2) −5 dBm each tone  
Third-Order Output Intercept (IIP3) −5 dBm each tone, IP3SET = 3.2 V  
−5 dBm each tone, IP3SET = open  
60  
31  
28  
dBm  
dBm  
dBm  
Output Noise Spectral Density  
IP3SET = 3.2 V, RF input terminated with 50 Ω  
IP3SET = 3.2 V, RF input = −5 dBm, fLO = 1315 MHz with  
fRF = 380 MHz applied, measured noise at fIF = 915 MHz  
−160  
−155  
dBm/Hz  
dBm/Hz  
Downconversion  
Gain Flatness  
1880 MHz RF input, 140 MHz IF output using 1740 MHz LO  
Over 50 MHz bandwidth for 1880 MHz input center  
frequency  
0.25  
dB p-p  
Gain Temperature Coefficient  
Input P1dB  
Average values from −40°C to +85°C  
IP3SET = 3.2 V  
IP3SET = open  
−10  
14  
12  
50  
27  
26  
14  
12  
mdB/°C  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
−5 dBm each tone  
−5 dBm each tone, IP3SET = 3.2 V  
−5 dBm each tone, IP3SET = open  
IP3SET = 3.2 V  
SSB Noise Figure (NF)  
IP3SET = open  
dB  
SSB Noise Figure Under Blocking  
Conditions  
−5 dBm RF input blocker applied at 995 MHz, fLO = 1200 MHz,  
noise measured at 5 MHz offset from IF output blocker  
IP3SET = 3.2 V  
IP3SET = open  
−5 dBm RF input power  
LOP, LON  
20.75  
20.25  
−65  
dB  
dB  
dBc  
IF/2 Spurious  
LO OUTPUT  
Output Level  
1 × LO into a 50 Ω load, LO buffer enabled  
−7  
dBm  
Rev. 0 | Page 3 of 44  
 
ADRF6655  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
MHz/V  
SYNTHESIZER SPECIFICATIONS  
Fundamental VCO Sensitivity  
Spurs  
Synthesizer specifications referenced to 1 × LO4  
VCO tuning sensitivity before divide-by-2 or divide-by-3  
Measured at LO output  
75  
Reference/PFD Spurs  
fPFD/2  
fPFD  
2 × fPFD  
4 × fPFD  
−95  
−83  
−85  
−88  
dBc  
dBc  
dBc  
dBc  
Phase Noise  
PFD frequency = 20 MHz4  
LO Frequency = 1330 MHz  
@ 10 kHz offset  
@ 100 kHz offset  
@ 1 MHz offset  
@ 10 MHz offset  
−85  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−114  
−138  
−154  
0.3  
Integrated Phase Noise  
LO Frequency = 1840 MHz  
10 kHz to 40 MHz integration bandwidth  
@ 10 kHz offset  
@ 100 kHz offset  
@ 1 MHz offset  
@ 10 MHz offset  
−83  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−111  
−136  
−152  
0.4  
Integrated Phase Noise  
PFD Frequency  
10 kHz to 40 MHz integration bandwidth  
19.33 20  
40  
MHz  
REFERENCE CHARACTERISTICS  
REFIN Input Frequency  
REFIN Input Capacitance  
REFIN Input Current  
REFIN Input Sensitivity  
MUXOUT Output Levels  
REFIN, MUXOUT  
10  
20  
4
100  
160  
MHz  
pF  
μA  
V p-p  
V
AC-coupled  
0.25  
2.7  
1
3.3  
0.25  
VOL (lock detect output selected)  
VOH (lock detect output selected)  
CP  
Charge pump current adjustable using Register 4 and/or  
RSET (see Pin 5 description)  
V
CHARGE PUMP  
Pump Current  
500  
μA  
V
Output Compliance Range  
LOGIC INPUTS  
1
2.8  
CLK, DATA, LE  
VINH, Input High Voltage  
VINL, Input Low Voltage  
IINH/IINL, Input Current  
CIN, Input Capacitance  
POWER SUPPLIES  
1.4  
0
3.3  
0.7  
V
V
μA  
pF  
1
3
VCC1, VCC2, VCCLO  
Voltage Range  
4.75  
5
5.25  
V
Supply Current  
LO output buffer disabled  
PLL only  
115  
310  
270  
285  
245  
15  
mA  
mA  
mA  
mA  
mA  
mA  
Normal TX mode, IP3SET = 3.2 V, fLO ≤1530 MHz (divide-by-3)  
Normal TX mode, IP3SET = 3.2 V, fLO > 1530 MHz (divide-by-2)  
Normal RX mode, IP3SET = open, fLO ≤ 1530 MHz (divide-by-3)  
Normal RX mode, IP3SET = open, fLO > 1530 MHz (divide-by-2)  
Power-down mode  
1 Internal LO path divider programmed via serial interface. See the LO Signal Chain section for additional information.  
2 See the External LO Interface section.  
3 Improved return loss can be achieved using external matching. See the Circuit Description section for more details.  
4 Measured on standard evaluation board with 1.5 kHz loop filter (C13 = 47 nF, C14 = 0.1 μF, C15 = 4.7 μF, R9 = 270 Ω, R10 = 68 Ω).  
Rev. 0 | Page 4 of 44  
 
 
 
 
ADRF6655  
TIMING CHARACTERISTICS  
Table 2. Serial Interface Timing, VCC = 5 V 5%  
Parameter  
Limit  
Unit  
Test Conditions/Comments  
LE setup time  
DATA to CLK setup time  
DATA to CLK hold time  
CLK high duration  
CLK low duration  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
20  
10  
10  
25  
25  
10  
20  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
ns minimum  
CLK to LE setup time  
LE pulse width  
t4  
t5  
CLK  
t2  
t3  
DB2  
(CONTROL BIT C3)  
DB1  
DB0 (LSB)  
(CONTROL BIT C1)  
DB23 (MSB)  
DB22  
DATA  
LE  
(CONTROL BIT C2)  
t6  
t7  
t1  
Figure 2. Timing Diagram  
Rev. 0 | Page 5 of 44  
 
 
ADRF6655  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage, VCC  
5.5 V  
Digital I/O CLK, DATA, LE  
OUTP, OUTN  
−0.3 V to +3.6 V  
VCC  
LOP, LON  
16 dBm  
INN, INP  
20 dBm  
DECL3 Using External Bias Option  
θJA (Exposed Paddle Soldered Down)1  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
3.5 V  
35°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
1 Per JDEC standard JESD 51-2. For information on optimizing thermal  
impedance, see the Evaluation Board Layout and Thermal Grounding  
section.  
Rev. 0 | Page 6 of 44  
 
 
ADRF6655  
PIN CONFIGURATION AND FUNCTION DESPCRIPTIONS  
VCO  
LDO  
VCC1  
DECL1  
CP  
1
2
3
4
5
6
7
8
9
30 GND  
ADRF6655  
WIDEBAND  
UP/DOWN  
3.3V  
LDO  
29 IP3SET  
28 GND  
27 VCCMIX  
26 INP  
CONVERTER  
PD +  
CHARGE  
PUMP  
PFD  
GND  
6
6
VCO  
BAND  
RSET  
VCO  
CORE  
MUX  
÷2 OR ÷3  
AND  
CURRENT  
CAL/SET  
REFIN  
GND  
25 INN  
×2  
MUX  
PROGRAMMABLE  
DIVIDER  
÷2 OR ÷4  
PRESCALER  
24 GND  
23 GND  
22 VCCV2I  
21 GND  
ENABLE  
MUXOUT  
DECL2  
2.5V  
LDO  
THIRD-ORDER  
SDM  
VCC2 10  
FRACTION  
MODULUS  
SERIAL  
INTEGER  
PORT  
NC = NO CONNECT  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VCC1  
Power Supply for Internal 3.3 V LDO. The power supply voltage range is 4.75 V to 5.25 V. Supply pin should  
be decoupled with 100 pF and 0.1 μF capacitors located close to the pin.  
2
DECL1  
Decoupling Node for 3.3 V LDO. Pin should be decoupled with 100 pF, 0.1 μF, and 10 μF capacitors  
located close to the pin.  
3
CP  
GND  
Charge Pump Output Pin. Connect this pin to VTUNE through the loop filter.  
Ground. Connect these pins to a low impedance ground plane.  
4, 7, 11, 15,  
20, 21, 23,  
24, 28, 30,  
31, 35, 36  
Rev. 0 | Page 7 of 44  
 
ADRF6655  
Pin No.  
Mnemonic  
Description  
5
RSET  
Charge Pump Current. The nominal charge pump current can be set to either 250 μA, 500 μA, 750 μA,  
or 1 mA using DB10 and DB11 of Register 4 and by setting DB18 to 0 (internal reference current).  
In this mode, no external RSET is required. If DB18 is set to 1, the four nominal charge pump currents  
(INOMINAL) can be externally tweaked according to  
217 .4 × I  
CP ,BASE  
RSET  
[
Ω
]
=
37 .8  
250  
where ICP, BASE is the base charge pump current in μA.  
For further details on the charge pump current,see the Register 4—Charge Pump, PFD, and Reference  
Path Control section.  
6
8
REFIN  
Reference Input. Nominal input level is 1 V p-p. Input range is 10 MHz to 160 MHz. This pin must be  
ac-coupled.  
Multiplexer Output. This output allows either a digital lock detect, a voltage proportional to temperature,  
or a buffered, frequency-scaled reference signal to be accessed externally. The output is selected by  
programming the appropriate bits in Register 4.  
MUXOUT  
9
DECL2  
VCC2  
Decoupling Node for 2.5 V LDO. Pin should be decoupled with 100 pF, 0.1 μF, and 10 μF capacitors  
located close to the pin.  
Power Supply for Internal 2.5 V LDO. The power supply voltage range is 4.75 V to 5.25 V. Supply pin  
should be decoupled with 100 pF and 0.1 μF capacitors located close to the pin.  
10  
12  
13  
DATA  
CLK  
Serial Data Input. The serial data input is loaded MSB first with the three LSBs being the control bits.  
Serial Clock Input. This serial clock input is used to clock in the serial data to the registers. The data  
is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz.  
14  
LE  
Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one  
of the six registers, the relevant latch being selected by the first three control bits of the 24-bit word.  
16, 32, 33  
17, 34  
NC  
VCCLO  
No Connection.  
Power Supply for LO Path. The power supply voltage range is 4.75 V to 5.25 V. Supply pin should be  
decoupled with 100 pF and 0.1 μF capacitors located close to the pin.  
18,19  
22  
OUTN, OUTP  
VCCV2I  
Mixer IF Outputs. These pins should be pulled to VCC with RF chokes.  
Power Supply for Voltage to Current Input Stage. The power supply voltage range is 4.75 V to 5.25 V.  
Supply pin should be decoupled with 100 pF and 0.1 μF capacitors located close to the pin.  
25, 26  
27  
INN, INP  
VCCMIX  
Mixer RF Inputs. Differential RF Inputs. Internally matched to 50 Ω. This pin must be ac-coupled.  
Power Supply for Mixer. The power supply voltage range is 4.75 V to 5.25 V. Supply pin should be  
decoupled with 100 pF and 0.1 μF capacitors located close to the pin.  
29  
IP3SET  
Connect Resistor to VCC to Adjust IP3.  
37, 38  
LON, LOP  
Local Oscillator Input/Output. The internally generated 1 × fLO is available on these pins. When internal  
LO generation is disabled, an external 2 × fLO or 3 × fLO (depending on divider selection) can be applied  
to these pins. This pin must be ac-coupled.  
39  
40  
VTUNE  
VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage  
range on this pin is 1 V to 2.8 V.  
Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 μF capacitor between this pin  
and ground.  
DECL3  
EPAD (EP)  
The exposed paddle should be soldered to a low impedance ground plane.  
Rev. 0 | Page 8 of 44  
ADRF6655  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, PFD = 20 MHz, REFIN = 20 MHz, IP3SET = 3.2 V, unless otherwise noted.  
DOWNCONVERSION  
Measured using typical downconversion circuit schematic with high-side LO and 140 MHz IF output, unless otherwise noted.  
5
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
+25°C  
–40°C  
+85°C  
LOW-SIDE LO  
HIGH-SIDE LO  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
900  
1100  
1300  
1500  
1700  
1900  
2100  
900  
1100 1300 1500 1700 1900 2100 2300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 4. Conversion Gain vs. Input Frequency  
Figure 7. Input IP3 vs. Input Frequency  
100  
20  
18  
16  
14  
12  
10  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
LOW-SIDE LO  
HIGH-SIDE LO  
IP3SET = 3.2V  
IP3SET = OPEN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
900  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
900  
1100  
1300  
1500  
1700  
1900  
2100  
INPUT FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 8. Input IP2 vs. Input Frequency  
Figure 5. SSB Noise Figure vs. RF Frequency  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
IP3SET = 3.2V  
IP3SET = OPEN  
0
900  
1100  
1300  
1500  
1700  
1900  
2100  
–50 –45 –40 –35 –30 –25 –20 –15 –10  
–5  
0
INPUT FREQUENCY (MHz)  
CW BLOCKER LEVEL (dBm)  
Figure 9. Input P1dB vs. Input Frequency  
Figure 6. SSB Noise Figure vs. CW Blocker Level  
Rev. 0 | Page 9 of 44  
 
ADRF6655  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
60  
40  
20  
0
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
1050  
1250  
1450  
1650  
1850  
2050  
2250  
0
500  
1000  
1500  
2000  
2500  
3000  
LO FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. Supply Current vs. LO Frequency  
Figure 10. RF Port Input Return Loss (S11) vs.  
Frequency Measured through TC1-1-13M+  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
300  
270  
240  
210  
180  
150  
120  
90  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+25°C  
–40°C  
+85°C  
–9  
–10  
–11  
–12  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
60  
30  
0
1050  
1250  
1450  
1650  
1850  
2050  
2250  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 11. IF Port Output Impedance vs. Frequency  
Figure 14. LO Port Output Power vs. LO Frequency  
–40  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
1050  
1250  
1450  
1650  
1850  
2050  
2250  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 12. LO-to-RF Input Port Leakage vs. LO Frequency  
Figure 15. LO-to-IF Output Port Leakage vs. LO Frequency  
Rev. 0 | Page 10 of 44  
ADRF6655  
UPCONVERSION  
Measured using typical upconversion circuit schematic with high-side LO and 340 MHz RF input, unless otherwise noted.  
5
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
710  
810  
910 1010 1110 1210 1310 1410 1510 1610  
OUTPUT FREQUENCY (MHz)  
710  
810  
910 1010 1110 1210 1310 1410 1510 1610  
OUTPUT FREQUENCY (MHz)  
Figure 16. Conversion Gain vs. Output Frequency  
Figure 19. Output IP3 vs. Output Frequency  
0
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1
0
–100  
710 810  
910 1010 1110 1210 1310 1410 1510 1610  
OUTPUT FREQUENCY (MHz)  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
Figure 20. Output P1dB vs. Output Frequency  
Figure 17. fLO − 2 × fRF Spurious Response vs.  
LO Frequency (Relative to IF Output Power)  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+25°C  
–40°C  
+85°C  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
710  
810  
910 1010 1110 1210 1310 1410 1510 1610  
OUTPUT FREQUENCY (MHz)  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050  
LO FREQUENCY (MHz)  
Figure 21. Output Noise Spectral Density vs. Output Frequency  
Figure 18. LO-to-IF Output Leakage vs. Frequency  
Rev. 0 | Page 11 of 44  
 
ADRF6655  
PLL CHARACTERISTIC  
Measured using typical downconversion circuit schematic with high-side LO and 140 MHz IF output, loop filter = 1.5 kHz, unless  
otherwise noted.  
0
–10  
0
+25°C  
–10°C  
–40°C  
+70°C  
+85°C  
+25°C  
–40°C  
+85°C  
1 × PFD OFFSET  
–10 2 × PFD OFFSET  
4 × PFD OFFSET  
–20  
–30  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
LO = 2275MHz  
–70  
–80  
–90  
LO = 1100MHz  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
1050  
–170  
1k  
10k  
100k  
1M  
10M  
100M  
1250  
1450  
1650  
1850  
2050  
2250  
OFFSET FREQUENCY (kHz)  
LO FREQUENCY (MHz)  
Figure 22. Typical Fractional-N Phase Noise Plot  
Figure 25. LO Reference/PFD Spurs vs. LO Frequency  
1.0  
3.0  
+25°C  
+25°C  
–40°C  
+85°C  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
HIGH-SIDE LO  
LOW-SIDE LO  
–10°C  
–40°C  
+70°C  
+85°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 23.10 kHz to 40 MHz Integrated Phase Noise vs. LO Frequency  
Figure 26. Tuning Voltage vs. LO Frequency  
2500  
1.9  
1: 10ms 2.289999883GHz  
LO = 1100MHz, IP3SET = 3.2V  
2000  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1500  
1000  
500  
1
2.290G  
–500  
–1000  
–1500  
–2000  
LO = 2300MHz, IP3SET = 3.2V  
LO =2300MHz, IP3SET = OPEN  
–2500  
10  
0
25  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
TIME (ms)  
Figure 24. Lock Time for 10 MHz Step with 1.5 kHz Loop Filter  
Figure 27. VPTAT MUXOUT Voltage vs. Temperature  
Rev. 0 | Page 12 of 44  
 
ADRF6655  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
AVERAGE  
AVERAGE + 3 × ST DEV  
AVERAGE  
AVERAGE + 3 × ST DEV  
10kHz OFFSET  
10kHz OFFSET  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
100kHz OFFSET  
100kHz OFFSET  
1MHz OFFSET  
1MHz OFFSET  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 28. −40°C Spot Phase Noise vs. LO Frequency  
Figure 31. 70°C Spot Phase Noise vs. LO Frequency  
–60  
–60  
AVERAGE  
AVERAGE + 3 × ST DEV  
AVERAGE  
AVERAGE + 3 × ST DEV  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
10kHz OFFSET  
10kHz OFFSET  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
100kHz OFFSET  
100kHz OFFSET  
1MHz OFFSET  
1MHz OFFSET  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 32. 85°C Spot Phase Noise vs. LO Frequency  
Figure 29. −10°C Spot Phase Noise vs. LO Frequency  
–60  
AVERAGE  
AVERAGE + 3 × ST DEV  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
10kHz OFFSET  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
–150  
100kHz OFFSET  
1MHz OFFSET  
1050 1150 1250 1350 1450 1550 1650 1750 1850 1950 2050 2150 2250  
LO FREQUENCY (MHz)  
Figure 30. 25°C Spot Phase Noise vs. LO Frequency  
Rev. 0 | Page 13 of 44  
ADRF6655  
COMPLIMENTARY CUMULATIVE DISTRIBUTION FUNCTION (CCDF): DOWNCONVERSION, LO = 1100 MHz,  
RF = 900 MHz  
VS = 5 V, TA = 25°C, PFD = 20 MHz, REFIN = 20 MHz, IP3SET = open, as measured using typical downconversion circuit schematic with  
high-side LO and 200 MHz IF output, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IP3SET = 3.2V  
IP3SET = OPEN  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
GAIN  
INPUT P1dB  
0
0
–10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
GAIN (dB), INPUT P1dB (dBm)  
NOISE FIGURE (dB)  
Figure 33. Gain and Input P1dB CCDF  
Figure 36. Noise Figure CCDF  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IP3SET = 3.2V  
IP3SET = OPEN  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
0
0
12 14 16 18 20 22 24 26 28 30 32 34 36 38 40  
INPUT IP3 (dBm)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VPTAT (V)  
Figure 34. Rx Input IP3 CCDF  
Figure 37. VPTAT MUXOUT Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+25°C  
–40°C  
+85°C  
0
–100 –95 –90 –85 –80 –75 –70 –65 –60 –55 –50  
LO-TO-RF LEAKAGE (dBm)  
Figure 35. Rx LO-to-RF Leakage CCDF  
Rev. 0 | Page 14 of 44  
 
ADRF6655  
COMPLIMENTARY CUMULATIVE DISTRIBUTION FUNCTION (CCDF): DOWNCONVERSION, LO = 1700 MHz,  
RF = 1900 MHz  
VS = 5 V, TA = 25°C, PFD = 20 MHz, REFIN = 20 MHz, IP3SET = open, as measured using typical downconversion circuit schematic with  
high-side LO and 200 MHz IF output, unless otherwise noted.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
IP3SET = 3.2V  
IP3SET = OPEN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
GAIN  
INPUT P1dB  
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
GAIN, INPUT P1dB (dB, dBm)  
NOISE FIGURE (dB)  
Figure 38. Gain and Input P1dB  
Figure 41. Rx Noise Figure CCDF  
100  
100  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
IP3SET = 3.2V  
IP3SET = OPEN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0.5  
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
INPUT IP3 (dBm)  
VPTAT (V)  
Figure 39. Rx Input IP3  
Figure 42. VPTAT MUXOUT Voltage  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
0
–100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
LO-TO-RF LEAKAGE (dBm)  
Figure 40. Rx LO-to-RF Leakage  
Rev. 0 | Page 15 of 44  
 
ADRF6655  
COMPLIMENTARY CUMULATIVE DISTRIBUTION FUNCTION (CCDF): UPCONVERSION DISTRIBUTION  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
GAIN  
OUTPUT P1dB  
OUTPUT P1dB  
GAIN  
IP3SET = 3.2V  
IP3SET = OPEN  
0
–10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20  
–10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14 16 18 20  
GAIN (dB), OUTPUT P1dB (dBm)  
GAIN (dB), OUTPUT P1dB (dBm)  
Figure 43. Gain and Output P1dB CCDF, LO = 1220 MHz, RF = 340 MHz  
Figure 46. Gain and Output P1dB CCDF, LO = 1840 MHz, RF = 340 MHz  
100  
100  
+25°C  
–40°C  
+85°C  
IP3SET = 3.2V  
IP3SET = OPEN  
IP3SET = 3.2V  
IP3SET = OPEN  
+25°C  
–40°C  
+85°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
OUTPUT IP3 (dBm)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
OUTPUT IP3 (dBm)  
Figure 44. Output IP3 CCDF, LO = 1220 MHz, RF = 340 MHz  
Figure 47. Output IP3 CCDF, LO = 1840 MHz, RF = 340 MHz  
100  
100  
IP3SET = 3.2V  
IP3SET = OPEN  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
IP3SET = 3.2V  
IP3SET = OPEN  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
+85°C  
0
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
LO-TO-IF OUTPUT LEAKAGE (dBm)  
LO-TO-IF PORT LEAKAGE (dBm)  
Figure 45. LO-to-IF Output Leakage CCDF, LO = 1220 MHz, RF = 340 MHz  
Figure 48. LO-to-IF Output Leakage CCDF, LO = 1840 MHz, RF = 340 MHz  
Rev. 0 | Page 16 of 44  
 
ADRF6655  
CIRCUIT DESCRIPTION  
The ADRF6655 can be subdivided into a PLL and VCO block  
and a mixer block. A detailed circuit description for each block  
follows.  
The VCO operates at twice the LO frequency for improved  
isolation. The nominal value of Kv is 75 MHz/V at the VCO  
output. As the VCO band is changed from 0 to 63, the size of the  
varactor is also changed, thus maintaining a roughly constant  
Kv across the entire operating range.  
PLL AND VCO BLOCK  
The PLL and VCO block, shown in Figure 49, is made up of a  
reference input block, a phase and frequency detector (PFD), a  
charge pump, a VCO, and a divide-by-N modulus block. An  
off-chip loop filter completes the loop.  
RF MIXER BLOCK  
LO  
VCC  
133  
133Ω  
LOOP  
FILTER  
OUTN  
OUTP  
CP  
CP  
VTUNE  
÷2 OR ÷3  
SIF  
IP3SET  
RFIN  
VCO  
BAND  
SELECT  
×2  
V2I  
CDAC  
REFIN  
PFD  
÷2  
÷4  
TO MIXER  
BLOCk  
ADRF6655 MIXER BLOCK  
Figure 51. Mixer Block  
FRAC  
MOD  
INT  
The mixer portion of the ADRF6655, shown in Figure 51, consists  
of an LO signal chain, an RF voltage-to-current (V-to-I) converter,  
and a mixer core. The LO chain receives a signal from either the  
internal VCO or an external LO source. This LO signal then passes  
through a frequency divider, which can be set to divide-by-2  
or divide-by-3, depending on the desired LO frequency. The  
differential RF inputs are converted into currents by the V-to-I  
converter and fed into the mixer core. A pair of 133 Ω pull-up  
resistors are used to present a ~250 Ω source impedance at the  
IF output.  
THIRD-ORDER  
INTERPOLATOR  
PROGRAMMABLE  
DIVIDER  
PRESCALER  
ADRF6655 PLL BLOCK DIAGRAM  
Figure 49. PLL and VCO Block  
The VCO is implemented with a single core that consists of 64  
overlapping bands, as shown in Figure 50. The correct band is  
selected automatically by the VCO band calibration circuit when  
Register R0, Register R1, or Register R2 is programmed. The  
VCO band selection takes roughly 4000 PFD cycles. During  
calibration, an internal mux is used to disconnect the VCO input  
voltage from the VTUNE pin and apply an internal reference  
voltage for calibration. When calibration is complete, the VCO  
input voltage is reconnected to the VTUNE pin and normal  
PLL operation resumes.  
LO Signal Chain  
The LO chain consists of a mux that selects between the internal  
VCO and an external LO source. The LO signal can then be  
divided by 2 or divided by 3, providing a wide range of LO  
frequencies from 1050 MHz to 2300 MHz. A buffer then drives  
this divided down signal to the mixer core. The LO signal can  
also be observed via the LO I/O port when the internal VCO  
is selected. When the external LO buffer is enabled, the supply  
current and die temperature increase, resulting in a slight  
degradation of RF performance. In normal operation mode,  
the external LO buffer should be disabled to help minimize  
power consumption and provide optimal RF performance.  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
0.5  
1.0  
1.5  
2.0  
2.5  
V
(V)  
TUNE  
Figure 50. fVCO/2 vs. Tuning Voltage for All 64 Bands  
Rev. 0 | Page 17 of 44  
 
 
 
 
 
ADRF6655  
V-to-I Converter  
DIGITAL INTERFACES  
The differential RF input signal is applied to a pair of resistively  
degenerated common-emitter stages, which converts the  
differential input voltage to output currents. The input stage also  
provides 50 Ω termination to the RF input port. The linearity  
of this V-to-I stage can be optimized for a given frequency with  
Pin IP3SET at the expense of power dissipation and noise figure.  
An additional way of improving linearity without affecting  
power dissipation or noise figure is provided by the CDAC  
signal controlled by serial port interface (SPI).  
The ADRF6655 provides access to the many programmable  
features available within the IC using a 3-wire SPI control  
interface. The minimum delays and hold times are presented  
in the timing diagram in Figure 2. The SPI interface provides  
digital control of the internal PLL/VCO as well as several other  
features related to the mixer core, on-chip referencing, and available  
system monitoring functions. The MUXOUT pin provides access  
to several output signals that can be selected via the SPI interface.  
The available outputs are buffered, frequency-scaled versions of  
the reference, a PLL lock-detect signal, and an internal voltage  
that is proportional to the IC junction temperature. Details  
regarding the register settings and initialization sequence are  
included in the Register Structure section.  
Mixer Core  
The mixer core, based on the Gilbert cell design of four cross-  
connected transistors, takes the currents from the V-to-I stage  
and mixes them with the LO signal. This mixer core can be used  
as a downconvert mixer as is or as an upconvert mixer with an  
off-chip matching network for a given frequency range.  
+5V  
CHARGE PUMP  
LOOP FILTER  
VCC1  
30  
+5V  
1
2
GND  
V
SET  
DECL1  
CP  
29  
28  
27  
IP3SET  
GND  
+5V  
3
GND  
4
VCCMIX  
INP  
RSET  
REFIN  
GND  
5
26  
25  
24  
23  
22  
21  
RF INPUT  
MATCHING  
BALUN  
RSET  
ADRF6655  
RF INPUT  
EXTERNAL  
REFERENCE  
6
INN  
7
GND  
MONITOR  
OUTPUT  
8
MUXOUT  
DECL2  
VCC2  
GND  
9
VCCV2I  
GND  
+5V  
10  
+5V  
SPI  
CONTROL  
IF OUTPUT  
MATCHING  
BALUN AND BIAS  
IF OUTPUT  
+5V  
NC = NO CONNECT  
Figure 52. Basic Circuit Connections  
Rev. 0 | Page 18 of 44  
 
 
 
ADRF6655  
ANALOG INTERFACES  
The basic circuit connections for a typical ADRF6655 application  
are presented in Figure 52.  
ADRF6655  
850MHz OUTPUT INTERFACE  
SUPPLY CONNECTIONS  
18 19 20  
The ADRF6655 has several supply connections and on-board  
regulated reference voltages that should be bypassed to ground  
using low inductance bypass capacitors located in close proximity  
to the supply and reference pins of the ADRF6655. Specifically  
Pin 1, Pin 2, Pin 9, Pin 10, Pin 17, Pin 22, Pin 27, and Pin 40  
should be bypassed to ground using individual bypass capacitors.  
Pin 9 is the supply used for the on-board VCO, and for best  
phase noise performance, several bypass capacitors ranging  
from 100 pF to 10 μF may help to improve phase noise  
12nH  
0302CS  
1nF  
TC4-14G2+  
IF OUT  
2.7pF  
GJM  
1.5pF  
GJM  
15nH  
+VCC  
0302CS  
12nH  
0302CS  
T3  
Figure 53. 850 MHz Output Matching Network Using the Center-Tap of the  
TC4-14T+ Transformer for Biasing the Open Collector Outputs (Output  
return loss measured to be better than 12 dB from 800 MHz to 925 MHz.)  
ADRF6655  
900MHz OUTPUT INTERFACE  
performance. For additional details on bypassing the supply  
nodes, refer to the evaluation board schematic in Figure 82.  
47nH  
150pF  
18 19 20  
0603CS  
SYNTHESIZER CONNECTIONS  
+VCC  
5.1nH  
0402CS  
The ADRF6655 includes an on-board VCO and PLL for LO  
synthesis. An external reference must be applied for the PLL to  
operate. The external reference should be ac-coupled and provide a  
~1 V p-p nominal input level at Pin 6. The reference is compared  
to an internally divided version of the VCO output frequency to  
create a charge pump error current to control and lock the VCO. The  
charge pump output current is filtered and converted to a VTUNE  
control voltage through the external loop filter. ADIsimPLL™  
can be a helpful tool when designing the external charge pump  
loop filter. The typical Kv of the VCO, the charge pump output  
current magnitude, and PFD frequency should all be considered  
when designing the loop filter. The charge pump current magnitude  
can be set internally or with an external RSET resistor connected  
to Pin 5 and ground, along with the internal digital settings  
applied to the PLL (see the Register 4—Charge Pump, PFD, and  
Reference Path Control section for more details).  
1nF  
1nF  
TC1-1-13M+  
T3  
IF OUT  
1pF  
68nH  
GJM  
0402CS  
5.1nH  
0402CS  
+VCC  
47nH  
0603CS  
150pF  
Figure 54. 900 MHz Output Matching Network Using the TC1-1-13M+ 1:1  
Impedance Ratio Balun and External Pull-Up Choke Inductors (Output return  
loss measured to be better than 12 dB from 815 MHz to 1075 MHz.)  
ADRF6655  
1200MHz OUTPUT INTERFACE  
47nH  
0603CS  
150pF  
+VCC  
TC1-1-13M+  
18 19 20  
2.1nH  
0302CS  
1nF  
1nF  
IF OUT  
1.8pF  
GJM  
17nH  
0302CS  
T3  
OUTPUT MATCHING AND BIASING  
2.1nH  
The ADRF6655 output stage consists of collector connected  
output transistors with on-board pull-up resistors. The output  
transistors and pull-up network presents a 200 Ω differential  
output impedance in parallel with a small amount of shunt  
capacitance. The measured RC equivalent impedance of Pin 18  
and Pin 19 is ~250 Ω//1.5 pF. This impedance needs to be taken  
into consideration when designing the external output matching  
network. In addition to matching the presented output source  
impedance to the intended load impedance, it is important to  
provide pull-up choke connections to the supply pins to allow  
for dc current to directly supply the mixer output transistors.  
The reactance of the pull-up chokes may need to be considered  
when designing the output matching network. For convenience,  
several output matching/bias networks are presented in Figure 53  
through Figure 58 for reference.  
+VCC  
47nH  
150pF  
0603CS  
Figure 55. 1200 MHz Output Matching Network (Output return loss  
measured to be better than 12 dB from 950 MHz to 1500 MHz.)  
ADRF6655  
1300MHz OUTPUT INTERFACE  
47nH  
0603CS  
150pF  
+VCC  
TC1-1-13M+  
18 19 20  
2.7nH  
0402CS  
1nF  
1nF  
IF OUT  
1.2pF  
GJM  
10nH  
0302CS  
T3  
2.7nH  
0402CS  
+VCC  
47nH  
0603CS  
150pF  
Figure 56. 1300 MHz Output Matching Network (Output return loss  
measured to be better than 12 dB from 1075 MHz to 1525 MHz.)  
Rev. 0 | Page 19 of 44  
 
 
 
 
 
 
ADRF6655  
ADRF6655  
18 19 20  
2
1
1600MHz OUTPUT INTERFACE  
150pF  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
36nH  
VCC  
1nF  
1nF  
0  
IF OUT  
15nH  
1.5pF  
0Ω  
T6  
1nF  
VCC  
ANAREN  
BD1722J50200A00  
36nH  
150pF  
900MHz MATCH  
1200MHz MATCH  
1600MHz MATCH  
Figure 57. 1600 MHz Output Matching Network (Output return loss  
measured to be better than 12 dB from 1400 MHz to 1680 MHz.)  
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
OUTPUT FREQUENCY (GHz)  
ADRF6655  
Figure 60. Measured Conversion Gain for 900 MHz, 1200 MHz, and 1600 MHz  
Matching Networks (See Figure 54, Figure 55, and Figure 57 for Implementation)  
2100MHz OUTPUT INTERFACE  
INPUT MATCHING  
18 19 20  
150pF  
The ADRF6655 uses a balanced 50 Ω input impedance to help  
simplify external connections. For low loss interfacing, the driving  
source should be transformed to present a balanced 50 Ω source  
impedance. An appropriate 1:1 impedance ratio input balun should  
be used when attempting to interface to an unbalanced 50 Ω  
source. For input frequencies below ~1.5 GHz, the TC1-1-13M+  
from Mini-Circuits or similar baluns should provide good return  
loss and maximum power gain. For higher frequencies, baluns,  
such as the TC1-1-43A+, are recommended for lowest insertion  
loss. The ac coupling capacitors can be optimized with the balun to  
provide optimum input match. A few examples are provided in  
Figure 61 for a range of different IF output frequencies.  
VCC  
27nH  
3pF  
3pF  
1nF  
TC1-1-13M+  
T3  
0603CS  
IF OUT  
1nF  
VCC  
150pF  
27nH  
0603CS  
Figure 58. 2100 MHz Output Matching Network (Output return loss  
measured to be better than 12 dB from 2000 MHz to 2200 MHz.)  
35  
OUTPUT IP3  
30  
0
25  
TC1-1-43A+ WITH 10pF AC COUPLING  
TC1-1-43A+ WITH 3pF AC COUPLING  
TC1-1-43A+ WITH 1.8pF AC COUPLING  
–5  
20  
900MHz MATCH  
1200MHz MATCH  
1600MHz MATCH  
–10  
–15  
–20  
–25  
–30  
–35  
15  
10  
5
OUTPUT P1dB  
0
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
OUTPUT FREQUENCY (GHz)  
Figure 59. Measured Output Linearity for 900 MHz, 1200 MHz, and 1600 MHz  
Matching Networks (See Figure 54, Figure 55, and Figure 57 for Implementation)  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
FREQUENCY (GHz)  
Figure 61. Measured RF Input Return Loss Using the TC1-1-43A+ 1:1 Balun  
(Plotted for Several AC Coupling Capacitor Values)  
It is also possible to use lumped element LC lattice networks to  
transform an unbalanced source into a balanced source at the  
mixer input pins. In either case, the mixer input pins should be  
dc blocked using adequately sized series capacitors.  
Rev. 0 | Page 20 of 44  
 
 
 
 
 
ADRF6655  
IP3SET LINEARIZATION FEATURE  
CDAC LINEARIZATION FEATURE  
The IP3SET pin (Pin 29) controls the overall current consumption  
of the mixer core depending on the applied voltage. If left open,  
the voltage on the IP3SET pin is ~2.3 V, and a typical input IP3 of  
~25 dBm or higher can be expected across the operating frequency  
range. As the IP3SET voltage is increased, the overall supply  
current increases and the input IP3 can be improved from ~3 dB to  
6 dB. For upconversion applications, an IP3SET voltage of ~3.2 V to  
3.3 V results in very high output IP3 performance in excess of  
30 dBm. Using an external resistor divider network connected  
between VCC and GND, the IP3SET voltage can be derived.  
Alternatively, the on-board 3.3 V LDO output (Pin 2) can be  
used to derive the applied IP3SET voltage. However, it is  
advisable to use good bypassing and a series inductor or ferrite  
choke to ensure good high frequency isolation between Pin 1 and  
Pin 29. If an auxiliary control DAC is available, the IP3SET pin can  
be driven dynamically in applications where power levels are  
changing over time, and it is desirable to conserve power at  
lower input signal levels. Figure 62 and Figure 63 illustrate the  
output linearity dependency on the IP3SET voltage. Note that  
gain is independent of the IP3SET voltage.  
In addition to the IP3SET broadband linearization solution, the  
ADRF6655 also includes a special linearizer designed to provide  
enhanced IP3 performance at higher input frequencies. At low  
input frequencies, the CDAC setting offers very little influence  
on input IP3, and a CDAC setting of 15 is usually recommended.  
At high input frequencies, the CDAC setting can boost input  
IP3 as much as 5 dB with essentially no increase in supplied  
power. At a given input frequency, the ADRF6655 offers an  
optimum CDAC setting to provide high input IP3 performance.  
The recommended optimum CDAC setting vs. RF input frequency  
is shown in Figure 64.  
15  
BEST CDAC AT 25°C  
14  
INTERCEPT  
BEST CDAC AT 85°C  
13  
12  
11  
10  
9
8
7
6
5
4
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
3
2
1
0
1840  
1940  
2040  
2140  
2240  
2340  
2440  
RF FREQUENCY (MHz)  
Figure 64. Optimum CDAC Setting for Downconversion vs. RF Input Frequency  
EXTERNAL LO INTERFACE  
The ADRF6655 provides the option to use an external signal  
source for the LO into the mixer. It is important to note that the  
applied LO signal is divided by 2 or divided by 3 prior to the  
actual mixer core within the ADRF6655. The divider is determined  
by the register settings in LO path and mixer control register,  
(see the Register 5—LO Path and Mixer Control section). The  
LO input pins (Pin 37 and Pin 38) present a broadband balanced  
50 Ω input interface similar to the input pins (Pin 25 and Pin 26).  
The LOP and LON input pins should be dc blocked and driven  
from a balanced 50 Ω source. When not in use, the LOP and  
LON pins may be left unconnected.  
OUTPUT FREQUENCY = 1210MHz  
OUTPUT FREQUENCY = 1500MHz  
21  
20  
2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7  
IP3SET (V)  
Figure 62. Output IP3 vs. IP3SET Voltage for Output Frequency  
20  
18  
16  
OUTPUT P1dB  
14  
12  
10  
8
6
4
GAIN  
2
0
–2  
–4  
–6  
OUTPUT FREQUENCY = 1210 MHz  
–8  
OUTPUT FREQUENCY = 1500 MHz  
–10  
2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7  
OUTPUT FREQUENCY (MHz)  
Figure 63. Output P1dB and Gain vs. IP3SET Voltage  
Rev. 0 | Page 21 of 44  
 
 
 
 
 
 
ADRF6655  
+5V  
USING AN EXTERNAL VCO  
EXTERNAL VCO  
VTUNE LINE  
The ADRF6655 has the necessary provisions for interfacing an  
external VCO. A high performance discrete VCO may be desirable  
in applications that call for the very best phase noise performance.  
The basic circuit connections for interfacing an external VCO  
are included in Figure 65. It is important to select a VCO with a  
frequency tuning voltage range that covers the available charge  
pump output compliance range of 1 V to 2.8 V. The external VCO  
waveform needs to pass through the on-chip divide-by-2/divide-  
by-3 programmable dividers before reaching the mixer. As a result,  
the VCO center frequency should be selected to be roughly 2×  
or 3× the desired LO signal frequency. The available output power  
for the selected VCO should be greater than −10 dBm to ensure  
adequate signal levels into the mixer core. The charge pump loop  
filter components should be designed to provide adequate phase  
margin for the given KVCO tuning sensitivity of the selected VCO.  
It is important to properly configure the digital registers for  
external VCO operation. When using an external VCO, the  
internal VCO should be disabled using DB17 in Register 6.  
Other register programmable LDOs, including the VCO LDO  
(DB18 in Register 6), should be enabled. For more information  
on programming the ADRF6655, see the ADRF6655 Control  
Software section.  
CHARGE PUMP  
LOOP FILTER  
NC  
VCC1  
DECL1  
CP  
1
2
3
4
+5V  
ADRF6655  
GND  
RSET  
5
RSET  
REFIN  
GND  
EXTERNAL  
REFERENCE  
6
7
Figure 65. External VCO Connections  
Rev. 0 | Page 22 of 44  
 
 
 
ADRF6655  
ADRF6655 CONTROL SOFTWARE  
The ADRF6655 can be controlled from most PCs that include  
a parallel port output interface. A USB adapter board is also  
available from Analog Devices, Inc., to allow for control from  
PCs that do not have an accessible parallel port. The USB adapter  
evaluation documentation and ordering information can be found  
at www.analog.com by searching for EVAL-ADF4XXXZ-USB. The  
basic user interfaces are depicted in Figure 66 and Figure 67.  
After launching the software, the user is prompted to select a device  
from the ADRF product family. Upon selecting the ADRF6655,  
the main control interface should appear as shown in Figure 66.  
The main control interface allows the user to configure the device  
for various modes of operation. The internal synthesizer is  
controlled by clicking on any of the numeric values listed in the  
RF Section. Attempting to program the REF Input Frequency,  
the PFD Frequency, the VCO Frequency [2×LO], or other  
values in the RF section launches the Synthesizer Settings—  
ADRF6655 Broadband Mixer control module depicted in  
Figure 67. From the Synthesizer Settings control interface, the  
user can enter the desired Local Oscillator Frequency (MHz),  
Channel Step Resolution (kHz), and External Reference  
Frequency (MHz). The user can also enable the LO output buffer  
and divider options from this menu. After setting the desired  
values, it is important to click Upload All Registers and  
Windows for the new settings to take effect.  
Figure 67. ADRF6655 Synthesizer Settings User Interface  
PLL LOOP FILTER DESIGN  
Designing the external loop filter, which connects between the  
charge pump output and VCO tuning control pin, is easy with  
the help of ADIsimPLL. ADIsimPLL is a free software application  
available from Analog Devices for designing PLL loop filters.  
Several passive filter topologies are support in ADIsimPLL  
along with the necessary component placements on the  
evaluation board.  
When designing a PLL loop filter, it is important to consider  
settling time and phase noise requirements. Figure 68 provides  
measured phase noise performance for a typical fast and slow  
loop filter design. Note that the wider loop filter offers better  
close-in phase noise but degraded phase noise at greater offset  
frequencies. The narrow 1.5 kHz loop filter design provides the  
best phase noise at 100 kHz and 1 MHz carrier offsets but with  
the penalty of decreased frequency settling time and poorer  
close-in performance.  
0
–20  
–40  
ADRF6655 1.5kHz LOOP FILTER  
LO = 2275MHz  
LO = 1100Hz  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
67kHz LOOP FILTER  
Figure 66. ADRF6655 Software Control Interface  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (Hz)  
Figure 68. Phase Noise with Different Loop Filters  
Rev. 0 | Page 23 of 44  
 
 
 
 
 
ADRF6655  
REGISTER STRUCTURE  
INTEGER DIVIDE CONTROL REGISTER (R0)  
DIVIDE  
MODE  
RESERVED  
INTEGER DIVIDE RATIO  
CONTROL BITS  
DB1 DB0  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10  
DM  
DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
0
0
0
0
0
0
0
0
0
0
0
0
0
ID6 ID5  
ID4 ID3  
ID2  
ID1  
ID0 C3(0) C2(0) C1(0)  
MODULUS DIVIDE CONTROL REGISTER (R1)  
RESERVED  
MODULUS DIVIDE VALUE  
CONTROL BITS  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0 C3(0) C2(0) C1(1)  
FRACTIONAL DIVIDE CONTROL REGISTER (R2)  
RESERVED  
FRACTIONAL DIVIDE VALUE  
CONTROL BITS  
DB1 DB0  
PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 C3(0) C2(1) C1(0)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
0
0
0
0
0
0
0
0
0
0
PD10 PD9  
PD8  
Σ-Δ MODULATOR DITHER CONTROL REGISTER (R3)  
DITHER  
DITHER  
CONTROL BITS  
DITHER RESTART VALUE  
MAGNITUDE ENABLE  
DB23 DB22 DB21  
DITH1 DITH0  
DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1 DB0  
0
DEN  
C3(0) C2(1) C1(1)  
CONTROL BITS  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0  
CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL REGISTER (R4)  
PDF  
INPUT REF  
PATH  
SOURCE  
CP  
CP  
CHARGE  
PUMP  
CONTROL  
PFD ANTI-  
BACKLASH  
DELAY  
PHASE  
OFFSET  
OUPUT MUX  
SOURCE  
CP  
REF  
PFD PHASE OFFSET  
MULTIPLIER VALUE  
PFD EDGE  
SENSITIVITY  
CURRENT CNTL  
MULTIPLIER SRC  
POLARITY  
DB23 DB22 DB21 DB20 DB19 DB18  
DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
RMS2 RMS1 RMS0 RS1 RS0  
CPM  
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1  
PE0 PAB1 PAB0 C3(1) C2(0) C1(0)  
LO PATH AND MIXER CONTROL REGISTER (R5)  
MIXER  
BIAS  
LO  
LO OUTPUT  
DRIVER  
CDAC DISTORTION  
COMPENSATION  
SETTING  
PLL  
LO  
IN/OUT  
CNTRL  
CONTROL BITS  
DB2  
DB1 DB0  
RESERVED  
ENABLE DIV 2/3  
ENABLE  
ENABLE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7  
DB6  
DB5  
DB4  
LXL  
DB3  
0
0
0
0
0
0
0
0
0
0
0
0
CDAC3 CDAC2 CDAC1 CDAC0 MBE  
PLEN  
LDIV  
LDRV  
C3(1) C2(0) C1(1)  
VCO CONTROL AND PLL ENABLES REGISTER (R6)  
CHARGE  
PUMP  
LDO  
3.3V  
VCO  
LDO  
VCO  
SWITCH  
CONTROL  
VCO  
BS  
SRC  
VCO  
ENABLE  
VCO BAND SELECT  
CONTROL BITS  
RESERVED  
VCO AMPLITUDE SETTING  
ENABLE ENABLE ENABLE  
DB23 DB22 DB21 DB20  
DB19  
L3EN  
DB18  
DB17  
DB16  
DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
CPEN  
LVEN VCOEN VCOSW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0  
C3(1) C2(1) C1(0)  
EXTERNAL VCO CONTROL REGISTER (R7)  
EXTERNAL  
VCO  
ENABLE  
RES  
RESERVED  
CONTROL BITS  
DB23  
0
DB22  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
DB1  
DB0  
XVCO  
0
0
C3(1) C2(1) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 69. Register Maps for ADRF6655 (The three control bits determine which register is programmed.)  
Rev. 0 | Page 24 of 44  
 
 
ADRF6655  
DEVICE PROGRAMMING  
INITIALIZATION SEQUENCE  
The device is programmed through a 3-pin SPI port. The timing  
requirements for the SPI port are described in Figure 2. There  
are eight programmable registers, each with 24 bits, controlling  
the operation of the device. The register functions can be broken  
down as follows:  
To ensure proper power-up of the ADRF6655, it is important to  
reset the PLL circuitry after the supply rail (VCC1, VCC2, VCCLO,  
VCCV2I, and VCCMIX) has settled to 5 V 0.25 V. Resetting  
the PLL ensures that the internal bias cells are properly configured  
even under poor supply start-up conditions. To ensure that the  
PLL is reset after power-up, the PLEN data bit (DB6) in Register  
5 should be programmed to disable the PLL (PLEN = 0). After a  
delay of >100 ms, Register 5 should be programmed to enable  
the PLL (PLEN = 1). After this procedure, the registers should  
be programmed as follows:  
Register 0—integer divide control  
Register 1—modulus divide control  
Register 2—fractional divide control  
Register 3—Σ-Δ modulator dither control  
Register 4—charge pump, PFD, and reference path control  
Register 5—LO path and mixer control  
Register 6—VCO controls and PLL enables  
Register 7—external VCO control  
1. Register 7  
2. Register 6  
3. Register 4  
4. Register 3  
5. Register 2  
6. Register 1  
7. Delay >1 ms  
8. Register 0  
Note that the PLL has internal calibration that must run  
whenever the device is programmed with a given frequency.  
This calibration is automatically run whenever Register 0,  
Register 1, or Register 2 is programmed. Software is available  
from Analog Devices that allows easy programming from an  
external PC. See the ADRF6655 Control Software section for  
additional details.  
When programming the frequency of the ADRF6655, normally  
only Register 2, Register 1, and Register 0 are programmed. When  
programming these registers, a short delay of >500 μs should be  
placed before programming the last register in the sequence  
(Register 0). This ensures that the VCO band calibration initiated  
by the first two register writes has sufficient time to complete  
before the final band calibration (for Register 0) is initiated.  
Rev. 0 | Page 25 of 44  
 
ADRF6655  
Divide Mode  
REGISTER 0—INTEGER DIVIDE CONTROL  
Divide mode determines whether fractional mode or integer  
mode is used. In integer mode, the RF VCO output frequency  
(fVCO) is calculated by  
With R0[2:0] set to 000, the on-chip integer divide control register  
is programmed as shown in Figure 70.  
Integer Divide Ratio  
f
VCO = 2 × fPFD × (INT)  
(2)  
The integer divide ratio is used to set the INT value in Equation 1.  
The INT, FRAC, and MOD values make it possible to generate  
output frequencies that are spaced by fractions of the PFD  
frequency. The VCO frequency (FVCO) equation is  
where INT is the integer divide ratio value (21 to 123 in integer  
mode).  
f
VCO = 2 × fPFD × (INT + (FRAC/MOD))  
where:  
VCO is the output frequency of the internal VCO.  
PFD is the frequency of operation of the phase-frequency  
(1)  
f
f
detector.  
INT is the preset integer divide ratio value (24 to 119 in  
fractional mode).  
MOD is the preset fractional modulus (1 to 2047).  
FRAC is the preset fractional divider ratio value (0 to MOD − 1).  
DIVIDE  
RESERVED  
INTEGER DIVIDE RATIO  
CONTROL BITS  
DB1 DB0  
MODE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2  
0
0
0
0
0
0
0
0
0
0
0
0
0
DM  
ID6 ID5  
ID4 ID3  
ID2  
ID1  
ID0 C3(0) C2(0) C1(0)  
DM  
DIVIDE MODE  
0
1
FRACTIONAL  
INTEGER  
INTEGER DIVIDE RATIO  
ID6  
0
ID5  
ID4  
1
ID3  
ID2  
1
ID1  
ID0  
21 (INTEGER MODE ONLY)  
0
0
0
0
0
1
1
0
22 (INTEGER MODE ONLY)  
0
1
1
23 (INTEGER MODE ONLY)  
0
0
1
0
1
1
1
24  
0
0
1
1
0
0
0
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
56  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
1
...  
119  
120 (INTEGER MODE ONLY)  
121 (INTEGER MODE ONLY)  
122 (INTEGER MODE ONLY)  
123 (INTEGER MODE ONLY)  
1
1
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
0
1
0
1
1
1
1
0
1
1
Figure 70. Integer Divide Control Register (R0)  
Rev. 0 | Page 26 of 44  
 
 
ADRF6655  
REGISTER 2—FRACTIONAL DIVIDE CONTROL  
REGISTER 1—MODULUS DIVIDE CONTROL  
With R2[2:0] set to 010, the on-chip fractional divide control  
register is programmed as shown in Figure 72.  
With R1[2:0] set to 001, the on-chip modulus divide control  
register is programmed as shown in Figure 71.  
The FRAC value is the preset fractional modulus ranging from  
0 to MOD − 1.  
The MOD value is the preset fractional modulus ranging from  
1 to 2047.  
RESERVED  
MODULUS DIVIDE RATIO  
CONTROL BITS  
DB2 DB1 DB0  
MD0 C3(0) C2(0) C1(1)  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
MD10 MD9 MD8 MD7 MD6  
DB8  
MD5  
DB7  
MD4  
DB6  
DB5  
DB4  
DB3  
0
0
0
0
0
0
0
0
0
0
MD3 MD2 MD1  
MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0  
MODULUS VALUE  
1
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
1
0
...  
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
1536  
...  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
2047  
Figure 71. Modulus Divide Control Register (R1)  
CONTROL BITS  
RESERVED  
FRACTIONAL DIVIDE VALUE  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB8  
FD5  
DB7  
FD4  
DB6  
FD3  
DB5  
FD2  
DB4  
FD1  
DB3  
FD0  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
FD10 FD9  
FD8  
FD7  
FD6  
C3(0) C2(1) C1(0)  
FD10  
0
FD9  
0
FD8  
FD7  
FD6  
FD5  
FD4  
FD3  
FD2  
FD1  
FD0  
FRACTIONAL VALUE  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
...  
...  
...  
0
...  
...  
1
...  
...  
1
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
...  
0
...  
768  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
FRACTIONAL VALUE MUST BE LESS THAN MODULUS  
<MDR  
Figure 72. Fractional Divide Control Register (R2)  
Rev. 0 | Page 27 of 44  
 
 
 
ADRF6655  
REGISTER 3—Σ-Δ MODULATOR DITHER CONTROL  
With R3[2:0] set to 011, the on-chip, Σ-Δ modulator, dither  
control register is programmed as shown in Figure 73.  
The dither restart value can be programmed from 0 to 217 − 1,  
though a value of 1 is typically recommended.  
DITHER  
MAGNITUDE  
DITHER  
ENABLE  
DITHER RESTART VALUE  
CONTROL BITS  
DB23 DB22  
DITH1  
DB21  
DITH0  
DB20  
DEN  
DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0 C3(0) C2(1) C1(1)  
0
DITH1  
DITH0 DITHER MAGNITUDE  
0
0
0
1
15  
7
1
1
0
1
3
1 (RECOMMENDED)  
DEN DITHER ENABLE  
0
1
DISABLE (RECOMMENDED)  
ENABLE  
DITHER RESTART  
VALUE  
DV16 DV15 DV14 DV13 DV12 DV11 DV10 DV9 DV8 DV7 DV6 DV5 DV4 DV3 DV2 DV1 DV0  
0x00001  
...  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
...  
0x1FFFF  
Figure 73. Σ-Δ Modulator Dither Control Register (R3)  
Rev. 0 | Page 28 of 44  
 
 
ADRF6655  
The PFD phase offset multiplier (θPFD, OFS), which is set by Bit DB16  
to Bit DB12 of Register 4, causes the PLL to lock with a nominally  
fixed phase offset between the PFD reference signal and the  
divided-down VCO signal. This phase offset is used to linearize  
the PFD-to-CP transfer function and can improve fractional  
spurs. The magnitude of the phase offset is determined by  
REGISTER 4—CHARGE PUMP, PFD, AND  
REFERENCE PATH CONTROL  
With R4[2:0] set to 100, the on-chip charge pump, PFD, and  
reference path control register is programmed as shown in  
Figure 74.  
The charge pump current is controlled by the base charge  
pump current (ICP, BASE) and the value of the charge pump  
current multiplier (ICP, MULT).  
θPFD , OFS  
ΔΦ [deg] = 22 .5  
ICP , MULT  
The base charge pump current can be set using an internal or  
external resistor (according to DB18 of Register 4). When using an  
external resistor, the value of ICP, BASE can be varied according to  
Finally, the phase offset can be either positive or negative  
depending on the value of DB17 in Register 4.  
The reference frequency applied to the PFD can be manipulated  
using the internal reference path source. The external reference  
frequency applied can be internally scaled in frequency by 2×, 1×,  
0.5×, or 0.25×. This allows a broader range of reference frequency  
selections while keeping the reference frequency applied to the  
PFD within an acceptable range.  
217 .4 × I  
CP , BASE  
(3)  
RSET  
[Ω  
]
=
37 .8  
250  
When using the internal resistor, the base charge pump current  
is 250 μA. The actual charge pump current can be programmed  
to be a multiple (1, 2, 3, or 4) of the charge pump base current.  
The multiplying value (ICP, MULT) is equal to 1 plus the value of  
Bit DB11 and Bit DB10 in Register 4.  
The ADRF6655 also provides a MUXOUT pin that can be  
programmed to output a selection of several internal signals.  
The default mode is to provide a lock-detect output to allow the  
user to verify when the PLL has locked to the target frequency.  
In addition, several other internal signals may be passed to the  
MUXOUT pin, as described in Figure 74.  
Rev. 0 | Page 29 of 44  
 
 
ADRF6655  
PDF  
INPUT REF  
PATH  
SOURCE  
CP  
CP  
CHARGE  
PUMP  
CONTROL  
PFD ANTI-  
BACKLASH  
DELAY  
PHASE  
OUPUT MUX  
SOURCE  
CP  
REF  
PFD PHASE OFFSET  
MULTIPLIER VALUE  
PFD EDGE  
SENSITIVITY  
CURRENT CNTL  
MULTIPLIER SRC  
CONTROL BITS  
OFFSET  
POLARITY  
DB23 DB22 DB21 DB20 DB19  
RMS2 RMS1 RMS0 RS1 RS0  
DB18  
CPM  
DB17  
DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
CPBD CPB4 CPB3 CPB2 CPB1 CPB0 CPP1 CPP0 CPS CPC1 CPC0 PE1  
PE0 PAB1 PAB0 C3(1) C2(0) C1(0)  
PFD ANTI-BACKLASH  
PAB1 PAB0  
DELAY  
0
0
1
1
0
1
0
1
0ns  
0.5ns  
0.75ns  
0.9ns  
REFERENCE PATH EDGE  
SENSITIVITY  
PE0  
0
1
FALLING EDGE  
RISING EDGE  
DIVIDER PATH EDGE  
SENSITIVITY  
PE1  
0
1
FALLING EDGE (RECOMMENDED)  
RISING EDGE  
CHARGE PUMP  
CONTROL  
CPC1 CPC0  
BOTH ON  
PUMP DOWN  
PUMP UP  
0
0
1
1
0
1
0
1
TRISTATE  
CPS CHARGE PUMP CONTROL SOURCE  
0
1
CONTROL BASED ON STATE OF DB7/DB8 (CP CONTROL)  
CONTROL FROM PFD  
CHARGE PUMP  
CURRENT MULTIPLIER  
CPP1 CPP0  
1
2
3
4
0
0
1
1
0
1
0
1
PFD PHASE OFFSET MULTIPLIER  
CPB4 CPB3 CPB2 CPB1 CPB0  
0 × 22.5°/I  
CP, MULT  
0
0
...  
0
0
...  
0
0
...  
0
0
...  
0
1
...  
1 × 22.5°/I  
CP, MULT  
...  
4 × 22.5°/I  
...  
10 × 22.5°/I  
...  
(RECOMMENDED)  
0
...  
0
...  
1
0
...  
1
...  
1
1
...  
0
...  
1
0
...  
1
...  
1
0
...  
0
...  
1
CP, MULT  
CP, MULT  
31 × 22.5°/I  
CP, MULT  
CPBD PFD PHASE OFFSET POLARITY  
0
1
NEGATIVE  
POSITIVE  
CHARGE PUMP CURRENT  
REFERENCE SOURCE  
CPM  
INTERNAL  
EXTERNAL  
0
1
INPUT REFERENCE  
PATH SOURCE  
RS1 RS0  
2 × REFIN  
REFIN  
0.5 × REFIN  
0.25 × REFIN  
0
0
1
1
0
1
0
1
RMS2 RMS1 RMS0 OUTPUT MUX SELECT  
LOCK DETECT  
VPTAT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
REFIN (BUFFERED)  
0.5 × REFIN (BUFFERED)  
2 × REFIN (BUFFERED)  
TRISTATE  
RESERVED (DO NOT USE)  
RESERVED (DO NOT USE)  
Figure 74. Charge Pump, PFD, and Reference Path Control Register (R4)  
Rev. 0 | Page 30 of 44  
 
ADRF6655  
When using an external frequency, stable local oscillator signal  
to commutate the mixer core, it is possible to shut down the PLL  
circuitry through the PLL enable address (DB6) of Register 5.  
REGISTER 5—LO PATH AND MIXER CONTROL  
With R5[2:0] set to 101, the LO path and mixer control register  
is programmed as shown in Figure 75.  
The internal mixer can be disabled using the mixer bias enable  
address (DB7) of Register 5.  
The LO output driver can be enabled to allow the user to review  
the performance of the internally applied LO through the LOP  
and LON local oscillator input/output pins. The LO input/output  
control allows the user to disconnect the internal LO signal and  
apply an external LO signal to the LOP and LON local oscillator  
input/output pins. A divide-by-2 or divide-by-3 prescaler can be  
selected to divide the frequency of the externally or internally  
applied oscillator signal before the mixer.  
Register 5 also provides access to the CDAC Distortion  
Compensation Setting (DB11:DB8). CDAC control can allow  
the user to optimize the internal linearization circuitry to enhance  
IP3 performance for high frequency RF input signals.  
MIXER  
BIAS  
ENABLE  
LO  
IN/OUT  
CNTRL  
LO OUTPUT  
DRIVER  
ENABLE  
CDAC DISTORTION  
COMPENSATION  
SETTING  
PLL  
LO  
CONTROL BITS  
RESERVED  
ENABLE DIV 2/3  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8  
CDAC3 CDAC2 CDAC1 CDAC0  
DB7  
DB6  
DB5  
DB4  
LXL  
DB3  
DB2 DB1 DB0  
C3(1) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
MBE  
PLEN  
LDIV  
LDRV  
CDAC DISTORTION  
MBE  
MIXER BIAS ENABLE  
CDAC3 CDAC2 CDAC1 CDAC0 COMPENSATION  
SETTLING  
DISABLE  
ENABLE  
0
1
MINIMUM  
0
0
0
0
...  
0
0
0
1
...  
...  
PLEN PLL ENABLE  
...  
...  
1
...  
...  
1
...  
...  
1
...  
...  
1
DISABLE  
ENABLE  
0
1
MAXIMUM  
LDIV DIVIDE-BY-2 OR DIVIDE-BY-3  
DIVIDE BY 3  
DIVIDE BY 2  
0
1
LXL LO IN/OUT CONTROL  
LO OUTPUT  
LO INPUT  
0
1
LO OUTPUT DRIVER  
ENABLE  
LDRV  
DRIVER OFF (RECOMMENDED)  
DRIVER ON  
0
1
Figure 75. LO Path and Mixer Control Register (R5)  
Rev. 0 | Page 31 of 44  
 
 
 
ADRF6655  
The VCO amplitude can be controlled through Register 6. The  
VCO amplitude setting can be controlled between 0 and 63.  
REGISTER 6—VCO CONTROL AND PLL ENABLES  
With R6[2:0] set to 110, the VCO control and PLL enables  
register is programmed as shown in Figure 76.  
The internal VCO can be disabled using Register 6. The internal  
VCO LDO can be disabled if an external clean 2.9 V supply is  
available to be applied to Pin 40. Additionally, the 3.3 V on-board  
LDO can be disabled through Register 6 and an external 3.3 V  
supply can be applied to Pin 2.  
The VCO tuning band is normally selected automatically by the  
band calibration algorithm, although the user can directly select  
the VCO band using Register 6.  
The VCO BS SRC bit (DB9) determines whether the result of  
the calibration algorithm is used to select the VCO band, or if  
the band selected is based on the value in VCO band select  
(DB8 to DB3).  
The internal charge pump can be disabled through Register 6.  
Normally, the charge pump is enabled.  
CHARGE  
PUMP  
LDO  
3.3V  
VCO  
LDO  
VCO  
VCO  
VCO  
CONTROL BITS  
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
VCO BAND SELECT  
SWITCH  
CONTROL  
BS  
RESERVED  
VCO AMPLITUDE SETTING  
ENABLE  
ENABLE ENABLE ENABLE  
SRC  
DB23 DB22 DB21 DB20  
DB19  
L3EN  
DB18  
DB17  
DB16  
DB15 DB14 DB13 DB12 DB11 DB10  
DB9  
0
0
0
CPEN  
LVEN VCOEN VCOSW VC5 VC4 VC3 VC2 VC1 VC0 VBSRC VBS5 VBS4 VBS3 VBS2 VBS1 VBS0 C3(1) C2(1) C1(0)  
CHARGE PUMP ENABLE  
CPEN  
VCO BAND  
SELECT  
VBS5 VBS4 VBS3 VBS2 VBS1 VBS0  
DISABLE  
ENABLE  
0
1
FROM SPI  
0
0
0
0
0
0
0
...  
...  
...  
...  
...  
...  
...  
L3EN LDO 3.3V ENABLE  
32  
...  
1
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
1
DISABLE  
ENABLE  
63  
1
1
1
1
1
1
VCO BAND CALIBRATION  
AND SW SOURCE CONTROL  
LVEN VCO LDO ENABLE  
VBSRC  
0
1
DISABLE  
ENABLE  
0
1
BAND CALIBRATION  
SPI  
VCOEN  
VCO ENABLE  
VCO AMPLITUDE  
VC5  
VC4  
VC3  
VC2  
VC1  
VC0  
SETTING  
0
1
DISABLE  
ENABLE  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
0
...  
24  
...  
0
...  
1
...  
1
...  
0
...  
0
...  
0
...  
VCOSW VCO SWITCH CONTROL FROM SPI  
REGULAR  
BAND CALIBRATION  
0
1
47 (RECOMMENDED)  
...  
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
63  
1
0
1
1
1
1
Figure 76. VCO Control and Enables Register (R6)  
Rev. 0 | Page 32 of 44  
 
 
ADRF6655  
than desired. By setting the external VCO enable bit (DB22) to 1,  
and setting Bit DB15 to Bit DB10 of Register 6 to 0, the internal  
VCO is disabled and the output of an external VCO can be fed into  
the part differentially on Pin 38 and Pin 37 (LOP and LON).  
Because the loop filter is already external, the output of the loop  
filter simply needs to be connected to the external, tuning voltage  
pin of the VCO. See the Using an External VCO section for more  
information.  
REGISTER 7—EXTERNAL VCO CONTROL  
With R6[2:0] set to 111, the external VCO control register is  
programmed as shown in Figure 77.  
The external VCO enable bit allows the use of an external VCO in  
the PLL instead of the internal VCO. This can be advantageous in  
cases where the internal VCO is not capable of providing the desired  
frequency, or where the internal phase noise of the VCO is higher  
EXTERNAL  
VCO  
RESERVED  
DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3(1) C2(1) C1(1)  
CONTROL BITS  
RES  
ENABLE  
DB23  
0
DB22  
XVCO  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
EXTERNAL VCO ENABLE  
XVCO  
INTERNAL VCO  
EXTERNAL VCO  
0
1
Figure 77. External VCO Control Register (R7)  
Rev. 0 | Page 33 of 44  
 
 
ADRF6655  
CHARACTERIZATION SETUPS  
Figure 78 to Figure 80 show the general characterization bench  
setups used extensively for the ADRF6655. The setup shown in  
Figure 78 was used to do the bulk of the testing. An automated  
Agilent VEE program was used to control the equipment over the  
IEEE bus. This setup was used to measure gain, IP1dB, OP1dB,  
IIP2, IIP3, OIP2, OIP3, LO-to-IF and LO-to-RF leakage, LO  
amplitude, and supply current. The ADRF6655 was characterized  
on an upconversion and downconversion evaluation board  
configured for each conversion as described in the Input Matching  
section and the Output Matching and Biasing section. For all  
measurements of the ADRF6655, the loss of the RF input balun  
was de-embedded.  
Figure 80 shows the setup used to make the noise figure  
measurements with no blocker present, and Figure 81 shows  
the setup for making the noise figure measurements under  
blocking conditions. Note that attention must be given to the  
measurement setup. The RF blocker signal must be filtered  
through a band-pass filter to prevent noise (which increases  
when output power is increased) from contributing at the desired  
RF frequency. At least 30 dB attenuation is needed at the desired  
RF and image frequencies. For example, to generate a blocker  
signal at the IF output of 205 MHz, the blocker signal generator  
is set at 995 MHz, and the part is programmed to generate a LO  
frequency of 1200 MHz that results in an output signal of 205 MHz.  
This signal must be filtered out through a band reject filter on  
the output so that the noise figure can be measured at 200 MHz,  
which corresponds to the output frequency for LO = 1200 MHz  
and RF input = 1000 MHz.  
To do phase noise and reference spurs measurements, see the  
phase noise setup used in Figure 79. Phase noise measurements  
were done on a downconversion board looking at the output at  
different offsets.  
Rev. 0 | Page 34 of 44  
 
ADRF6655  
IEEE  
AGILENT PSG-A SIGNAL GENERATOR  
IEEE  
3dB  
3dB  
RF  
RHODE & SCHWARTZ SMT03  
SIGNAL GENERATOR  
MINI-CIRCUITS ZHL-42W  
AMPLIFIER  
(SUPPLIED WITH +15V DC FOR  
OPERATION)  
AGILENT 11636A  
POWER DIVIDER  
(USED AS  
3dB  
COMBINER)  
IEEE  
RF  
2dB  
RF  
REF, LO  
AGILENT E4437 SIGNAL GENERATOR  
RF SWITCH  
MARTIX  
IEEE  
IF  
LO, REF  
6dB  
RF  
IF  
RHODE & SCHWARTZ FSEA30  
6dB  
10dB  
AGILENT  
IEEE  
ADRF6655  
EVALUATION BOARD  
34980A MULTIFUNCTION  
SWITCH  
(WITH 34950 AND  
2× 34921 MODULES)  
10-PIN  
AGILENT E3631A  
POWER SUPPLY  
CONNECTION  
(+5V VPOS,  
DC MEASURE)  
IEEE  
9-PIN D-SUB CONNECTION  
(VCO AND PLL PROGRAMMING)  
AGILENT 34401A DMM  
(DC I MODE, USED  
FOR SUPPLY CURRENT  
MEASUREMENT)  
IEEE  
Figure 78. General Characterization Setup  
Rev. 0 | Page 35 of 44  
 
ADRF6655  
IEEE  
IEEE  
RHODE & SCHWARTZ  
SMA100 SIGNAL  
GENERATOR  
RHODE & SCHWARTZ  
SMA100 SIGNAL  
GENERATOR  
IEEE  
RF  
REF  
AGILENT E4440A  
SPECTRUM ANALYZER  
RF SWITCH  
MATRIX  
IEEE  
IF  
IF  
LO, REF  
RF  
AGILENT E5052 SIGNAL  
SOURCE ANALYZER  
AGILENT  
IEEE  
ADRF6655  
EVALUATION BOARD  
34980A MULTIFUNCTION  
SWITCH  
(WITH 34950 AND  
2× 34921 MODULES)  
10-PIN  
AGILENT E3631A  
POWER SUPPLY  
CONNECTION  
(+5V VPOS,  
DC MEASURE)  
IEEE  
9-PIN D-SUB CONNECTION  
(VCO AND PLL PROGRAMMING)  
AGILENT 34401A DMM  
(DC I MODE, USED  
FOR SUPPLY CURRENT  
MEASUREMENT)  
IEEE  
Figure 79. Phase Noise Setup  
Rev. 0 | Page 36 of 44  
 
ADRF6655  
IEEE  
IEEE  
AGILENT 34980A  
MULTIFUNCTION SWITCH  
(WITH 34950 AND 34921 MODULES)  
REF IN  
RF IN  
6dB  
AGILENT 8665B LOW  
NOISE SIGNAL  
GENERATOR  
ADRF6655  
EVALUATION BOARD  
IF OUT  
6dB  
AGILENT N8974A NOISE  
FIGURE ANALYZER  
IEEE  
AGILENT E3631A POWER  
SUPPLY  
AGILENT 34401A DMM  
(IN DC I MODE FOR SUPPLY  
CURRENT MEASUREMENT)  
AGILENT 346B NOISE  
SOURCE  
Figure 80. Noise Figure Setup  
AGILENT N8974A  
NOISE FIGURE  
ANALYZER  
AGILENT 8665B LOW  
NOISE SIGNAL  
GENERATOR  
IF OUT  
AGILENT 346B NOISE  
SOURCE  
ADRF6655  
RHODE & SCHWARTZ  
RF IN  
REF IN  
COMBINER  
EVALUATION BOARD  
SMA100  
SIGNAL GENERATOR  
Figure 81. Noise Figure with Presence of Blocker Signal  
Rev. 0 | Page 37 of 44  
 
 
ADRF6655  
EVALUATION BOARD LAYOUT AND THERMAL GROUNDING  
An evaluation board is available for testing the ADRF6655. The standard evaluation is configured for downconversion applications. Table 5  
provides the component values and suggestions for modifying component values for various modes of operation.  
VCC_RF  
VCC_LO  
VCC_BB  
VTUNE  
R29  
0  
R31  
R32  
0Ω  
LO  
R63  
0  
0Ω  
R38  
0Ω  
R9  
270Ω  
R65  
0Ω  
VCC  
C28  
10µF  
CP  
R10  
L3  
OPEN  
68Ω  
R6  
0Ω  
C14  
0.1µF  
C13  
47nF  
C40  
OPEN  
C15  
4.7µF  
T7, T8  
VCC  
R37  
0Ω  
R62  
0Ω  
C7  
0.1µF  
C8  
100pF  
R5  
OPEN  
C6 C5  
1nF 1nF  
R13  
0Ω  
R1  
0Ω  
IP3SET  
C1  
100pF  
C2  
10µF  
R72  
0Ω  
R27  
OPEN  
VCC  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
R60  
OPEN  
R12  
OPEN  
VCO_LDO  
C3  
0.1µF  
C27  
0.1µF  
R7  
0Ω  
GND  
30  
VCC  
1
2
3
4
5
6
7
8
9
VCC1  
R8  
R26  
0Ω  
3P3V_LDO  
VCC_RF  
C10  
100pF  
0Ω  
C9  
0.1µF  
DECL1  
CP  
IP3SET 29  
GND 28  
C12  
C41  
10µF  
C11  
C24  
100pF  
C25  
0.1µF  
100pF  
0.1µF  
VCCMIX  
INP  
GND  
27  
26  
R2  
OPEN  
C37  
100pF  
T4, T5  
C31  
1nF  
RSET  
REFIN  
GND  
RF  
C38  
100pF  
ADRF6655  
INN 25  
REFIN  
R61  
49.9Ω  
GND  
GND  
24  
23  
MUXOUT  
DECL2  
R16  
0Ω  
R25  
0Ω  
VCC_BB  
REFOUT  
VCCV2I 22  
21  
C22  
100pF  
C23  
0.1µF  
10 VCC2  
GND  
IFP  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
C43  
2.5V  
C35  
OPEN  
L1  
OPEN  
R18  
0Ω  
150pF  
C16  
C39  
10µF  
C17  
0.1µF  
R47  
0Ω  
100pF  
VCC  
R43  
0Ω  
T3, T6  
DATA  
LE  
OUT  
R17  
0Ω  
R44  
OPEN  
R58  
VCC  
R48  
OPEN  
R51  
1kΩ  
R52  
1kΩ  
0Ω  
VCC2  
C33  
330pF  
C34  
330pF  
R73, R74  
VCC  
C19  
0.1µF  
VCC_LO  
R3  
10kΩ  
C18  
100pF  
0Ω  
C36  
OPEN  
CLK  
R24  
0Ω  
L2  
OPEN  
C42  
150pF  
R30  
100Ω  
C21  
R57  
C20  
0.1µF  
100pF  
100Ω  
IFN  
VCC  
C32  
330pF  
R50  
1kΩ  
R59  
0Ω  
C29  
0.1µF  
R35  
100Ω  
3
5
1
2
4
6
7
8
9
VTUNE  
R36  
0Ω  
Figure 82. Evaluation Board Schematic  
Rev. 0 | Page 38 of 44  
 
 
 
ADRF6655  
The package for the ADRF6655 features an exposed paddle  
on the underside that should be well soldered to a low thermal  
and electrical impedance ground plane. This paddle is typically  
soldered to an exposed opening in the solder mask on the  
evaluation board. Figure 83 illustrates the dimensions used  
in the layout of the ADRF6655 footprint on the ADRF6655  
evaluation board (1 mil. = 0.0254 mm).  
Notice the use of nine via holes on the exposed paddle. These  
ground vias should be connected to all other ground layers on the  
evaluation board to maximize heat dissipation from the device  
package. Under these conditions, the thermal impedance of the  
ADRF6655 was measured to be approximately 29°C/W in still air.  
.012  
.035  
.050  
Figure 84. Evaluation Board Top Layer  
.168  
.025  
.020  
.177  
.232  
Figure 83. Evaluation Board Layout Dimensions for the ADRF6655 Package  
Figure 85. Evaluation Board Bottom Layer  
Rev. 0 | Page 39 of 44  
 
ADRF6655  
Table 5. Evaluation Board Configuration Options  
Component  
Function  
Default Condition  
VCC, GND, IP3SET, CP, Power supply, ground, and other test points.  
Not applicable  
VCO_LDO, VCC_LO,  
VCC_RF, VCC_BB, LE,  
CLK, DATA  
R1, R6, R7, R8, R17,  
R18, R24, R25, R26,  
R29, R31, R32, R36  
Power supply decoupling. Shorts or power supply decoupling resistors.  
R1, R6, R7, R8 = 0 Ω (0402),  
R17, R18 = 0 Ω (0402),  
R24, R25, R26 = 0 Ω (0402),  
R29, R31, R32 = 0 Ω (0402),  
R36 = 0 Ω (0402)  
C1, C2, C7, C8, C9,  
C10, C11, C12, C16,  
C17, C18, C19, C20,  
C21, C22, C23, C24,  
C25, C27, C28, C29,  
C39, C41, C42, C43  
The capacitors provide the required decoupling of the supply-related pins. C1, C8, C10 = 100 pF (0402),  
C2, C39, C41 = 10 μF (0603),  
C7, C9, C11 = 0.1 μF (0402),  
C12, C16, C18 = 100 pF (0402),  
C21, C22, C24 = 100 pF (0402),  
C17, C19, C20 = 0.1 μF (0402),  
C23, C25, C27 = 0.1 μF (0402),  
C28 = 10 μF (3216),  
C29 = 0.1 μF (0402),  
C42, C43 = 150 pF (0402)  
C5, C6, T7, T8  
R61, C31, R16  
External LO path. T7 and T8 provide different footprints for different LO  
path transformer selections. C5 and C6 provide the necessary ac coupling.  
C5, C6 = 1 nF (0402),  
T7 = open (generic footprint),  
T8 = TC1-1-13M+ (Mini-Circuits)  
REFIN input path. R61 provides a broadband 50 Ω termination followed  
by C31, an ac coupling capacitor. R16 provides an external connectivity  
to the MUXOUT feature described in Register 4.  
R61 = 49.9 Ω (0402),  
C31 = 1 nF (0402), R16 = 0 Ω (0402)  
R2, R5, R9, R10, R13,  
R37, R38, R62, R63,  
R65, R72, C13, C14,  
C15, C40  
Loop Filter Component Options. A variety of loop filter topologies are  
supported using component placements R9, R10, R13, R37, C13, C14,  
C15, R65, and C40. R2 provides resistor programmability of the charge  
pump current (see Register 4 description). R5, R38, R62, R63, and R72  
provide connectivity options to numerous test points for engineering  
evaluation purposes.  
R2 = R5 = open, R9 = 270 Ω (0402),  
R10 = 68 Ω (0402), R13 = 0 Ω (0402)  
C13 = 47nF, C14 = 0.1μF,  
C15 = 4.7μF (0805),  
C40 = open (0402),  
R37, R38, R62, R63, R65, R72 = 0 Ω (0402)  
L1, L2, R43, R44,  
R47, R48, R58, R59,  
R73, R74, T3, T6,  
C35, C36  
IF output path. This is the default configuration of the evaluation board  
for downconversion applications. R73 and R74 are populated for  
appropriate balun interface. The default values support a TC4-1W+ 4-to-1  
impedance ratio transformer with center tap bias connection through  
R59. A differential IF output interface can be configured by populating C35  
and C36 and omitting R47 and R48. When configuring for differential output  
operation or when using an ac-coupled transformer, it is important to use L1  
and L2 to provide dc bias to the IF output pins. For additional information,  
see the Output Matching and Biasing section.  
L1, L2 = open, R44, R58, = open,  
R43, R47, R48 = 0 Ω (0402),  
R59, R73, R74 = 0 Ω (0402),  
T3 = TC4-1W+ (Mini-Circuits),  
T6 = open, C35, C36 = open  
C37, C38, T4, T5  
RF input interface. T4 and T5 provide different footprints for different  
RF path transformer selections. C37 and C38 provide the necessary ac  
coupling. See the Input Matching section for additional information.  
C37, C38 = 100 pF (0402),  
T4 = TC1-1-13M+ (Mini-Circuits),  
T5 = open  
P1, R3, R30, R35,  
R50, R51, R52,  
R57, C32, C33, C34  
Serial port interface. A 9-pin D-sub connector is provided for connecting to a  
host PC or control hardware. RC filter networks are provided on CLK, DATA, R3 = 10 kΩ (0402),  
and LE lines to help clean up PC control signal wave shape. Test points are  
provided for control interface debug. R3 provides a connection to the  
MUXOUT for sensing lock detect through the P1 connector. See the Digital  
Interfaces section for additional information.  
P1 = 9-pin D-sub male,  
R30, R35, R57 = 100 Ω (0402),  
R50, R51, R52 = 1 kΩ (0402),  
C32, C33, C34 = 330 pF (0402)  
C3, R12, R27, R60, L3 IP3SET linearization feature. R27 and R60 provision for a resistive divider  
network for providing nominal IP3SET voltage. Alternatively, the IP3SET  
pin can be externally driven via the test point or directly connected to  
the 3.3 V LDO (Pin 2, DECL1) using a 0 Ω resistor for R12 and a ferrite chip  
inductor for L3. For additional information regarding this feature, see the  
IP3SET Linearization Feature section.  
C3 = 0.1 μF (0402), R12 = open,  
R27, R60 = open, L3 = open  
Rev. 0 | Page 40 of 44  
 
ADRF6655  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 86. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm Body, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature  
Package Description  
Package Option  
Quantity  
ADRF6655ACPZ-R7  
ADRF6655-EVALZ  
−40°C to +85°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-40-1  
750  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 41 of 44  
 
ADRF6655  
NOTES  
Rev. 0 | Page 42 of 44  
ADRF6655  
NOTES  
Rev. 0 | Page 43 of 44  
ADRF6655  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08817-0-2/10(0)  
Rev. 0 | Page 44 of 44  

相关型号:

ADRF6658

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ-RL7

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6701

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6701-EVALZ

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6701ACPZ

RF/Microwave Modulator/Demodulator, 750 MHz - 1160 MHz RF/MICROWAVE I/Q MODULATOR, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP_VQ, CP-40-1, 40 PIN
ADI

ADRF6701ACPZ-R7

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6702

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6702-EVALZ

1200 MHz to 2400 MHz Quadrature Modulator
ADI

ADRF6702ACPZ

1200 MHz to 2400 MHz Quadrature Modulator with 1550 MHz to 2150 MHz Frac-N PL
ADI

ADRF6702ACPZ-R7

1200 MHz to 2400 MHz Quadrature Modulator
ADI

ADRF6703

2050 MHz to 3000 MHz Quadrature Modulator
ADI