ADUM2250ARIZ-RL [ADI]

Hot-Swappable, Dual I2C Isolators, 5 kV; 支持热插拔,双I2C隔离器, 5 kV的
ADUM2250ARIZ-RL
型号: ADUM2250ARIZ-RL
厂家: ADI    ADI
描述:

Hot-Swappable, Dual I2C Isolators, 5 kV
支持热插拔,双I2C隔离器, 5 kV的

文件: 总16页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hot-Swappable, Dual I2C Isolators, 5 kV  
Data Sheet  
ADuM2250/ADuM2251  
FEATURES  
Bidirectional I2C communication  
Open-drain interfaces  
GENERAL DESCRIPTION  
The ADuM2250/ADuM22511 are hot-swappable digital  
isolators with nonlatching bidirectional communication  
channels that are compatible with I2C® interfaces. This  
eliminates the need for splitting I2C signals into separate  
transmit and receive signals for use with standalone  
optocouplers.  
Suitable for hot-swap applications  
30 mA current sink capability  
1000 kHz operation  
3.0 V to 5.5 V supply/logic levels  
16-lead SOIC wide body package version (RW-16)  
16-lead SOIC wide body enhanced creepage version (RI-16)  
High temperature operation: 105°C  
Safety and regulatory approvals (RI-16 package)  
UL recognition: 5000 V rms for 1 minute per  
UL 1577  
CSA Component Acceptance Notice #5A  
IEC 60601-1: 250 V rms (reinforced)  
IEC 60950-1: 400 V rms (reinforced)  
VDE Certificate of Conformity  
The ADuM2250 provides two bidirectional channels support-  
ing a complete isolated I2C interface. The ADuM2251 provides  
one bidirectional channel and one unidirectional channel for  
those applications where a bidirectional clock is not required.  
The ADuM2250/ADuM2251 contain hot-swap circuitry to  
prevent data glitches when an unpowered card is inserted  
onto an active bus.  
These isolators are based on iCoupler® chip-scale transformer  
technology from Analog Devices, Inc. iCoupler is a magnetic  
isolation technology with performance, size, power consump-  
tion, and functional advantages compared to optocouplers.  
The ADuM2250/ADuM2251 integrate iCoupler channels  
with semiconductor circuitry to enable a complete, isolated  
I2C interface in a small form-factor package.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 846 V peak  
APPLICATIONS  
Isolated I2C, SMBus, or PMBus Interfaces  
Multilevel I2C interfaces  
Power supplies  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329; other patents  
pending.  
Networking  
Power-over-Ethernet  
FUNCTIONAL BLOCK DIAGRAMS  
1
16  
15  
14  
13  
12  
1
16  
15  
14  
13  
12  
GND  
GND  
NC  
V
GND  
GND  
NC  
V
1
2
1
2
ADuM2250  
ADuM2251  
2
3
4
5
2
NC  
NC  
3
V
V
DD1  
NC  
DD2  
DD1  
DD2  
4
5
ENCODE  
DECODE  
ENCODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
NC  
NC  
DECODE  
ENCODE  
DECODE  
ENCODE  
NC  
SDA  
SCL  
GND  
SDA  
SDA  
SDA  
1
1
1
2
1
1
1
2
SCL  
SCL  
SCL  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
2
2
GND  
NC  
GND  
NC  
GND  
NC  
NC  
2
2
NC = NO CONNECT  
NC = NO CONNECT  
Figure 1. ADuM2250 Functional Block Diagram  
Figure 2. ADuM2251 Functional Block Diagram  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADuM2250/ADuM2251  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ...............................................................................7  
Recommended Operating Conditions .......................................7  
Absolute Maximum Ratings ............................................................8  
ESD Caution...................................................................................8  
Pin Configuration and Function Descriptions..............................9  
Applications Information .............................................................. 10  
Functional Description.............................................................. 10  
Startup.......................................................................................... 11  
Magnetic Field Immunity............................................................. 11  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Test Conditions............................................................................. 5  
Package Characteristics ............................................................... 6  
Regulatory Information............................................................... 6  
Insulation and Safety-Related Specifications............................ 6  
REVISION HISTORY  
9/11—Rev. 0 to Rev. A  
Added 16-Lead SOIC.........................................................Universal  
Changes to Features Section and Endnote 1................................. 1  
Changes to Table 4 and Table 5....................................................... 6  
Changes to Endnote 1 in Table 7 .................................................... 7  
Changes to Functional Description Section and Figure 7 ........ 10  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 13  
4/07—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
Data Sheet  
ADuM2250/ADuM2251  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
DC Specifications  
All voltages are relative to their respective ground. All minimum/maximum specifications apply over the entire recommended operating  
range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = 5 V, and V DD2 = 5 V, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
ADuM2250  
Input Supply Current, Side 1, 5 V  
Input Supply Current, Side 2, 5 V  
Input Supply Current, Side 1, 3.3 V  
Input Supply Current, Side 2, 3.3 V  
ADuM2251  
IDD1  
IDD2  
IDD1  
IDD2  
2.8  
2.7  
1.9  
1.7  
5.0  
5.0  
3.0  
3.0  
mA  
mA  
mA  
mA  
VDD1 = 5 V  
VDD2 = 5 V  
VDD1 = 3.3 V  
VDD2 = 3.3 V  
Input Supply Current, Side 1, 5 V  
Input Supply Current, Side 2, 5 V  
Input Supply Current, Side 1, 3.3 V  
Input Supply Current, Side 2, 3.3 V  
LEAKAGE CURRENTS  
IDD1  
IDD2  
IDD1  
IDD2  
2.8  
2.5  
1.8  
1.6  
0.01  
6.0  
4.7  
3.0  
2.8  
10  
mA  
mA  
mA  
mA  
µA  
VDD1 = 5 V  
VDD2 = 5 V  
VDD1 = 3.3 V  
VDD2 = 3.3 V  
IISDA1, IISDA2, IISCL1, IISCL2  
VSDA1 = VDD1, VSDA2 = VDD2  
VSCL1 = VDD1, VSCL2 = VDD2  
,
SIDE 1 LOGIC LEVELS  
Logic Input Threshold1  
Logic Low Output Voltages  
VSDA1IL, VSCL1IL  
VSDA1OL, VSCL1OL  
500  
600  
600  
50  
700  
900  
850  
mV  
mV  
mV  
mV  
ISDA1 = ISCL1 = 3.0 mA  
ISDA1 = ISCL1 = 0.5 mA  
Input/Output Logic Low Level Difference2  
SIDE 2 LOGIC LEVELS  
ΔVSDA1, ΔVSCL1  
Logic Low Input Voltage  
Logic High Input Voltage  
Logic Low Output Voltage  
VSDA2IL, VSCL2IL  
VSDA2IH, VSCL2IH  
VSDA2OL, VSCL2OL  
0.3 × VDD2  
400  
V
V
mV  
0.7 × VDD2  
ISDA2 = ISCL2 = 30 mA  
1 VIL < 0.5 V, VIH > 0.7 V.  
2 ΔVS1L = VS1OL – VS1IL. This is the minimum difference between the output logic low level and the input logic low threshold within a given component. This ensures that  
there is no possibility of the part latching up the bus to which it is connected.  
Rev. A | Page 3 of 16  
 
 
 
 
ADuM2250/ADuM2251  
Data Sheet  
AC Specifications  
All voltages are relative to their respective ground. All minimum/maximum specifications apply over the entire recommended operating  
range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = 5 V, and V DD2 = 5 V, unless otherwise noted. See Figure 3  
for a timing test diagram.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
MAXIMUM FREQUENCY  
OUTPUT FALL TIME  
5 V Operation  
1000  
kHz  
4.5 V ≤ VDD1, VDD2 ≤ 5.5 V, CL1 = 40 pF,  
R1 = 1.6 kΩ, CL2 = 400 pF, R2 = 180 Ω  
Side 1 Output (0.9 VDD1 to 0.9 V)  
Side 2 Output (0.9 VDD2 to 0.1 VDD2  
tf1  
tf2  
13  
32  
26  
52  
120  
120  
ns  
ns  
)
3 V Operation  
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = 40 pF,  
R1 = 1.0 kΩ, CL2 = 400 pF, R2 = 120 Ω  
Side 1 Output (0.9 VDD1 to 0.9 V)  
Side 2 Output (0.9 VDD2 to 0.1 VDD2  
PROPAGATION DELAY  
tf1  
tf2  
13  
32  
32  
61  
120  
120  
ns  
ns  
)
5 V Operation  
4.5 V ≤ VDD1, VDD2 ≤ 5.5 V, CL1 = CL2 = 0 pF,  
R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1 to Side 2, Rising Edge1  
Side 1 to Side 2, Falling Edge2  
Side 2 to Side 1, Rising Edge3  
Side 2 to Side 1, Falling Edge4  
3 V Operation  
tPLH12  
tPHL12  
tPLH21  
tPHL21  
95  
162  
31  
130  
275  
70  
ns  
ns  
ns  
ns  
85  
155  
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1 to Side 2, Rising Edge1  
Side 1 to Side 2, Falling Edge2  
Side 2 to Side 1, Rising Edge3  
Side 2 to Side 1, Falling Edge4  
PULSE-WIDTH DISTORTION  
5 V Operation  
tPLH12  
tPHL12  
tPLH21  
tPHL21  
82  
196  
32  
125  
340  
75  
ns  
ns  
ns  
ns  
110  
210  
4.5 V ≤ VDD1, VDD2 ≤ 5.5 V, CL1 = CL2 = 0 pF,  
R1 = 1.6 kΩ, R2 = 180 Ω  
Side 1 -to Side 2, |tPLH12 − tPHL12  
|
PWD12  
PWD21  
67  
54  
145  
85  
ns  
ns  
Side 2 to Side 1, |tPLH21 − tPHL21  
3 V Operation  
|
3.0 V ≤ VDD1, VDD2 ≤ 3.6 V, CL1 = CL2 = 0 pF,  
R1 = 1.0 kΩ, R2 = 120 Ω  
Side 1 to Side 2, |tPLH12 − tPHL12  
Side 2 to Side 1, |tPLH21 − tPHL21  
|
|
PWD12  
PWD21  
114  
77  
215  
135  
ns  
ns  
COMMON-MODE TRANSIENT IMMUNITY5  
|CMH|, |CML|  
25  
35  
kV/µs  
1 tPLH12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.7 VDD2  
2 tPHL12 propagation delay is measured from the Side 1 input logic threshold to an output value of 0.4 V.  
3 tPLH21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.7 VDD1  
4 tPHL21 propagation delay is measured from the Side 2 input logic threshold to an output value of 0.9 V.  
.
.
5 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
Rev. A | Page 4 of 16  
 
 
 
 
 
Data Sheet  
ADuM2250/ADuM2251  
TEST CONDITIONS  
GND  
GND  
1
2
1
2
3
4
5
16  
15  
14  
13  
12  
ADuM2250  
NC  
V
NC  
DD1  
NC  
V
DD2  
NC  
ENCODE  
DECODE  
ENCODE  
DECODE  
R
R
DECODE  
ENCODE  
DECODE  
ENCODE  
R
R
2
1
1
2
SDA  
SDA  
SCL  
GND  
2
1
1
1
SCL  
2
6
7
8
11  
10  
9
C
C
L1  
L1  
NC  
GND  
C
C
L2  
L2  
NC  
2
NC = NO CONNECT  
Figure 3. Timing Test Diagram  
Rev. A | Page 5 of 16  
 
 
ADuM2250/ADuM2251  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 3.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJA  
Min  
Typ  
1012  
2.2  
4.0  
45  
Max  
Unit  
Ω
pF  
pF  
°C/W  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance  
f = 1 MHz  
IC Junction-to-Ambient Thermal Resistance  
Thermocouple located at center of  
package underside  
1 The device is considered a 2-terminal device; Pin 1 to Pin 8 are shorted together, and Pin 9 to Pin 16 are shorted together.  
REGULATORY INFORMATION  
The ADuM2250/ADuM2251 is approved by the following organizations.  
Table 4.  
UL  
CSA  
VDE  
Recognized under 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10): 2006-122  
Single Protection  
Basic insulation per CSA 60950-1-07 and IEC 60950-1, 600 V  
Reinforced insulation, 846 V peak  
5000 V rms Isolation Voltage rms (848 V peak) maximum working voltage  
RW-16 package.  
Reinforced insulation per CSA 60950-1-07 and IEC 60950-1,  
380 V rms (537 V peak) maximum working voltage; reinforced  
insulation per IEC 60601-1 125 V rms (176 V peak) maximum  
working voltage  
RI-16 package  
Reinforced insulation per CSA 60950-1-07 and IEC 60950-1,  
400 V rms (565 V peak) maximum working voltage; reinforced  
insulation per IEC 60601-1 250 V rms (353 V peak) maximum  
working voltage.  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL1577, each ADuM225x is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM225x is proof tested by applying an insulation test voltage ≥1590 V peak for 1 sec (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol Value  
Unit  
Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap  
5000  
8.0 min  
V rms 1-minute duration  
L(I01)  
mm  
Distance measured from input terminals to output  
terminals, shortest distance through air along the  
PCB mounting plane, as an aid to PC board layout  
Minimum External Tracking (Creepage) RW-16 Package L(I02)  
7.7 min  
8.3 min  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body  
Measured from input terminals to output  
terminals, shortest distance path along body  
Minimum External Tracking (Creepage) RI-16 Package  
L(I02)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. A | Page 6 of 16  
 
 
 
 
 
Data Sheet  
ADuM2250/ADuM2251  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
Note that the * marking on the package denotes DIN V VDE V 0884-10 approval for a 848 V peak working voltage. This isolator is  
suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.  
Table 6.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 450 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to II  
I to II  
40/105/21  
2
846  
VIORM  
VPR  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
1590  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VPR  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
1375  
1018  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure;  
see Figure 4  
VTR  
6000  
V peak  
Case Temperature  
Supply Current  
Insulation Resistance at TS  
TS  
IS  
RS  
150  
555  
>109  
°C  
mA  
Ω
IDD1 + IDD2  
VIO = 500 V  
600  
500  
RECOMMENDED OPERATING CONDITIONS  
Table 7.  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Min Max Unit  
400  
300  
200  
100  
0
Operating Temperature  
Supply Voltages1  
Input/Output Signal Voltage  
−40 +105 °C  
3.0  
5.5  
5.5  
V
V
VSDA1, VSCL1  
,
V
CL1  
CL2  
SDA2, VSCL2  
Capacitive Load, Side 1  
Capacitive Load, Side 2  
40  
400  
3
pF  
pF  
mA  
mA  
Static Output Loading, Side 1 ISDA1, ISCL1  
Static Output Loading, Side 2 ISDA2, ISCL2  
0.5  
0.5  
30  
0
50  
100  
150  
200  
1 All voltages are relative to their respective ground.  
AMBIENT TEMPEARTURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values on  
Case Temperature, per DIN V VDE V 0884-10  
Rev. A | Page 7 of 16  
 
 
 
 
ADuM2250/ADuM2251  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 8.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Symbol  
Min  
−65  
−40  
Max  
+150  
+105  
Unit  
°C  
°C  
Storage Temperature  
TST  
TA  
Ambient Operating  
Temperature  
Supply Voltages1  
Input/Output Voltage,1  
Side 1  
Input/Output Voltage,1  
Side 2  
Average Output Current,  
per Pin2  
Average Output Current,  
per Pin2  
VDD1, VDD2  
VSDA1, VSCL1  
−0.5  
−0.5  
+7.0  
VDD1 + 0.5  
V
V
ESD CAUTION  
VSDA2, VSCL2  
−0.5  
−18  
VDD2 + 0.5  
+18  
V
IO1  
IO2  
mA  
mA  
kV/µs  
−100  
−100  
+100  
Common-Mode  
Transients3  
+100  
1 All voltages are relative to their respective ground.  
2 See Figure 4 for maximum rated current values for various temperatures.  
3 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum rating may cause latch-  
up or permanent damage.  
Rev. A | Page 8 of 16  
 
 
 
Data Sheet  
ADuM2250/ADuM2251  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND *  
1
1
2
3
4
5
6
7
8
16 GND *  
2
NC  
15 NC  
V
14 V  
DD2  
DD1  
ADuM2250/  
NC  
ADuM2251 13 NC  
TOP VIEW  
(Not to Scale)  
SDA  
SCL  
12 SDA  
1
1
2
2
11 SCL  
10 NC  
GND *  
1
NC  
9 GND *  
2
NC = NO CONNECT  
*PIN 1 AND PIN 7 ARE INTERNALLY CONNECTED. CONNECTING BOTH TO  
GND IS RECOMMENDED. PIN 9 AND PIN 16 ARE INTERNALLY CONNECTED.  
1
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. Pin Configuration  
Table 9. ADuM2250 Pin Function Descriptions  
Pin No.  
Mnemonic  
GND1  
NC  
Description  
1
2
Ground 1. Ground reference for Isolator Side 1.  
No Connect.  
3
4
VDD1  
NC  
Supply Voltage, 3.0 V to 5.5 V.  
No Connect.  
5
6
7
8
SDA1  
SCL1  
GND1  
NC  
Data Input/Output, Side 1.  
Clock Input/Output, Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
No Connect.  
9
GND2  
NC  
SCL2  
SDA2  
NC  
VDD2  
NC  
GND2  
Ground 2. Isolated ground reference for Isolator Side 2.  
No Connect.  
Clock Input/Output, Side 2.  
Data Input/Output, Side 2.  
No Connect.  
Supply Voltage, 3.0 V to 5.5 V.  
No Connect.  
Ground 2. Isolated ground reference for Isolator Side 2.  
10  
11  
12  
13  
14  
15  
16  
Table 10. ADuM2251 Pin Function Descriptions  
Pin No.  
Mnemonic  
GND1  
NC  
Description  
1
2
Ground 1. Ground reference for Isolator Side 1.  
No Connect.  
3
4
VDD1  
NC  
Supply Voltage, 3.0 V to 5.5 V.  
No Connect.  
5
6
7
8
SDA1  
SCL1  
GND1  
NC  
Data Input/Output, Side 1.  
Clock Input, Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
No Connect.  
9
GND2  
NC  
SCL2  
SDA2  
NC  
VDD2  
NC  
GND2  
Ground 2. Isolated ground reference for Isolator Side 2.  
No Connect.  
Clock Output, Side 2.  
Data Input/Output, Side 2.  
No Connect.  
Supply Voltage, 3.0 V to 5.5 V.  
No Connect.  
10  
11  
12  
13  
14  
15  
16  
Ground 2. Isolated ground reference for Isolator Side 2.  
Rev. A | Page 9 of 16  
 
ADuM2250/ADuM2251  
Data Sheet  
APPLICATIONS INFORMATION  
other portions of the bus by galvanic isolation, bus extenders, or  
level shifting buffers. Table 11 shows how multiple ADuM2250/  
ADuM2251 components can coexist on a bus as long as two  
Side 1 buffers are not connected to the same bus segment.  
FUNCTIONAL DESCRIPTION  
The ADuM2250/ADuM2251 interface on each side to I2C sig-  
nals. Internally, the bidirectional I2C signals are split into two  
unidirectional channels communicating in opposite directions  
via dedicated iCoupler isolation channels. One channel of each  
pair (the Side 1 input of each I/O pin in Figure 6) implements  
a special input buffer and output driver that can differentiate  
between externally generated inputs and its own output signals.  
It only transfers externally generated input signals to the  
corresponding Side 2 data or clock pin.  
Both the Side 1 and the Side 2 I2C pins are designed to interface  
to an I2C bus operating in the 3.0 V to 5.5 V range. A logic low  
on either side causes the corresponding I/O pin across the  
coupler to be pulled low enough to comply with the logic low  
threshold requirements of other I2C devices on the bus. Bus  
contention and latch-up is avoided by guaranteeing that the  
input low threshold at SDA1 or SCL1 is at least 50 mV less than  
the output low signal at the same pin. This prevents an output  
logic low at Side 1 being transmitted back to Side 2 and pulling  
down the I2C bus by latching the state.  
Table 11. ADuM225x Buffer Compatibility  
Side 1  
Side 2  
No  
Yes  
Side 1  
Side 2  
Yes  
Yes  
The output logic low levels are independent of the VDD1 and  
DD2 voltages. The input logic low threshold at Side 1 is also  
V
independent of VDD1. However, the input logic low threshold at  
Side 2 is designed to be at 0.3 VDD2, consistent with I2C require-  
ments. The Side 1 and Side 2 I/O pins have open-collector  
outputs whose high levels are set via pull-up resistors to their  
respective supply voltages.  
GND  
GND  
1
2
1
2
3
4
5
16  
15  
14  
13  
12  
ADuM2250  
NC  
V
NC  
DD1  
NC  
V
DD2  
Because the Side 2 logic levels/thresholds and drive capabilities  
comply fully with standard I2C values, multiple ADuM2250/  
ADuM2251 devices connected to a bus by their Side 2 pins  
can communicate with each other and with other devices  
having I2C compatibility as shown in Figure 7. Note the  
distinction between I2C compatibility and I2C compliance.  
I2C compatibility refers to situations in which the logic levels  
or drive capability of a component do not necessarily meet the  
requirements of the I2C specification but still allow the com-  
ponent to communicate with an I2C-compliant device. I2C  
compliance refers to situations in which the logic levels and  
drive capability of a component fully meet the requirements  
of the I2C specification.  
NC  
ENCODE  
DECODE  
ENCODE  
DECODE  
DECODE  
ENCODE  
DECODE  
ENCODE  
SDA  
SDA  
SCL  
GND  
2
1
1
1
SCL  
2
6
7
8
11  
10  
9
NC  
GND  
NC  
2
SYMBOL INDICATES A DUAL THRESHOLD INPUT BUFFER.  
NC = NO CONNECT  
Figure 6. ADuM2250 Block Diagram  
Figure 7 shows a typical application circuit including the pull-up  
resistors required for both Side 1 and Side 2 busses. Bypass capacitors  
of between 0.1 pF and 0.01 pF are required between VDD1 to  
GND1 and VDD2 to GND2. The 200 Ω resistor shown in Figure 7  
is required for latch-up immunity if the ambient temperature  
can be between 105°C and 125°C.  
Because the Side 1 pin has a modified output level/input thresh-  
old, Side 1 of the ADuM2250/ADuM2251 can only communicate  
with devices fully compliant with the I2C standard. In other  
words, Side 2 of the ADuM2250/ADuM2251 is I2C-compliant  
while Side 1 is only I2C-compatible.  
The Side 1 I/O pins must not be connected to other I2C  
buffers that implement a similar scheme of dual I/O threshold  
detection. This latch-up prevention scheme is implemented in  
several popular I2C level shifting and bus extension products  
currently available from Analog Devices and other manufac-  
turers. Care should be taken to review the data sheet of  
potential I2C bus buffering products to ensure that only one  
buffer on a bus segment implements a dual threshold scheme.  
A bus segment is a portion of the I2C bus that is isolated from  
2
I C BUS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OPTIONAL  
ADuM2250  
200  
µCPU  
OR  
SECONDARY  
BUS  
V
V
DD1  
DD2  
SDA  
SCK  
SDA  
SCK  
2
2
1
1
SEGMENT  
GND  
1
GND  
2
Figure 7. Typical Isolated I2C Interface Using ADuM2250  
Rev. A | Page 10 of 16  
 
 
 
 
 
Data Sheet  
ADuM2250/ADuM2251  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
therefore establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
STARTUP  
Both the VDD1 and VDD2 supplies have an under voltage lockout  
feature that prevents the signal channels from operating unless  
certain criteria is met. This feature is to avoid the possibility of  
input logic low signals from pulling down the I2C bus inadver-  
tently during power-up/power-down.  
V (dβ / dt) r2 ; n 1, 2, ... N  
n
Criteria that must be met for the signal channels to be enabled  
are as follows:  
where:  
β is the magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
Both supplies must be at least 2.5 V.  
At least 40 μs must elapse after both supplies exceed the  
internal start-up threshold of 2.0 V.  
Given the geometry of the receiving coil in the ADuM2250/  
ADuM2251 and an imposed requirement that the induced  
voltage be at most 50% of the 0.5 V margin at the decoder, a  
maximum allowable magnetic field is calculated, as shown in  
Figure 10.  
Until both of these criteria are met for both supplies, the  
ADuM2250/ADuM2251 outputs are pulled high thereby  
ensuring a startup that avoids any disturbances on the bus.  
Figure 8 and Figure 9 illustrate the supply conditions for fast  
and slow input supply slew rates.  
100  
10  
1
MINIMUM RECOMMENDED  
OPERATING SUPPLY, 3.0V  
SUPPLY VALID  
MINIMUM VALID SUPPLY, 2.5V  
0.1  
INTERNAL STARTUP  
THRESHOLD, 2.0V  
0.01  
40µs  
Figure 8. Start-Up Condition, Supply Slew Rate < 12.5 V/ms  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 10. Maximum Allowable External Magnetic Flux Density  
MINIMUM RECOMMENDED  
OPERATING SUPPLY, 3.0V  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and had the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V (still well above the 0.5 V  
sensing threshold of the decoder).  
SUPPLY VALID  
MINIMUM VALID SUPPLY, 2.5V  
INTERNAL STARTUP  
THRESHOLD, 2.0V  
40µs  
Figure 9. Start-Up Condition, Supply Slew Rate > 12.5 V/ms  
MAGNETIC FIELD IMMUNITY  
The ADuM2250/ADuM2251 are extremely immune to external  
magnetic fields. The limitation on the magnetic field immunity  
of the ADuM2250/ADuM2251 is set by the condition in which  
induced voltage in the receiving coil of the transformer is suffi-  
ciently large to either falsely set or reset the decoder. The following  
analysis defines the conditions under which this may occur.  
The 3 V operating condition of the ADuM2250/ADuM2251 is  
examined because it represents the most susceptible mode of  
operation.  
Rev. A | Page 11 of 16  
 
 
 
 
 
ADuM2250/ADuM2251  
Data Sheet  
1000  
100  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from  
the ADuM2250/ADuM2251 transformers. Figure 11 expresses  
these allowable current magnitudes as a function of frequency  
for selected distances. As seen, the ADuM2250/ADuM2251 is  
extremely immune and can be affected only by extremely large  
currents operated at high frequency and very close to the com-  
ponent. For the 1 MHz example, place a 0.5 kA current 5 mm  
away from the ADuM2250/ADuM2251 to affect the operation  
of the component.  
DISTANCE = 1m  
10  
1
DISTANCE = 100mm  
DISTANCE = 5mm  
0.1  
Note that at combinations of strong magnetic fields and high  
frequencies, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
threshold of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 11. Maximum Allowable Current for Various  
Current-to-ADuM2250/ADuM2251 Spacings  
Rev. A | Page 12 of 16  
 
Data Sheet  
ADuM2250/ADuM2251  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 12. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters (inches)  
13.00 (0.5118)  
12.60 (0.4961)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27  
(0.0500)  
BSC  
0.33 (0.0130)  
0.20 (0.0079)  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
COMPLIANT TO JEDEC STANDARDS MS-013-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 13. 16-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]  
Wide Body (RI-16-1)  
Dimension shown in millimeters and (inches)  
ORDERING GUIDE  
Maximum  
Number of  
Inputs, VDD1 Side  
Number of  
Inputs, VDD2 Side (Mbps)  
Data Rate  
Temperature  
Range  
Package  
Option  
Model1  
Package Description  
16-Lead SOIC_W  
16-Lead SOIC_W, 13Reel  
16-Lead SOIC_IC  
16-Lead SOIC_IC, 13Reel  
16-Lead SOIC_W  
16-Lead SOIC_W, 13Reel  
16-Lead SOIC_IC  
ADuM2250ARWZ  
ADuM2250ARWZ-RL  
ADuM2250ARIZ  
ADuM2250ARIZ-RL  
ADuM2251ARWZ  
ADuM2251ARWZ-RL  
ADuM2251ARIZ  
ADuM2251ARIZ-RL  
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
RW-16  
RW-16  
RI-16-1  
RI-16-1  
RW-16  
RW-16  
RI-16-1  
RI-16-1  
16-Lead SOIC_IC, 13Reel  
1 Z = RoHS Compliant Part.  
Rev. A | Page 13 of 16  
 
 
 
ADuM2250/ADuM2251  
NOTES  
Data Sheet  
Rev. A | Page 14 of 16  
Data Sheet  
NOTES  
ADuM2250/ADuM2251  
Rev. A | Page 15 of 16  
ADuM2250/ADuM2251  
NOTES  
Data Sheet  
©2007–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06670-0-9/11(A)  
Rev. A | Page 16 of 16  

相关型号:

ADUM2250ARWZ

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2250ARWZ-RL

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2250WARWZ

Hot-Swappable Dual I2C&reg; Isolators, 5 kV
ADI

ADUM2250WARWZ-RL

Hot-Swappable Dual I2C&reg; Isolators, 5 kV
ADI

ADUM2250_11

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2250_15

Hot Swappable, Dual IC Isolators, 5 kV
ADI

ADUM2251

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2251ARIZ

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2251ARIZ-RL

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2251ARWZ

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2251ARWZ-RL

Hot-Swappable, Dual I2C Isolators, 5 kV
ADI

ADUM2251WARWZ

Hot-Swappable Dual I2C&reg; Isolators, 5 kV
ADI