ADUM4401ARIZ-RL [ADI]

5 kV RMS Quad-Channel Digital Isolators;
ADUM4401ARIZ-RL
型号: ADUM4401ARIZ-RL
厂家: ADI    ADI
描述:

5 kV RMS Quad-Channel Digital Isolators

文件: 总20页 (文件大小:464K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5 kV RMS Quad-Channel Digital Isolators  
ADuM4400/ADuM4401/ADuM4402  
FEATURES  
GENERAL DESCRIPTION  
The ADuM440x1 are 4-channel digital isolators based on the  
Analog Devices, Inc., iCoupler® technology. Combining high  
speed CMOS and monolithic air core transformer technology,  
these isolation components provide outstanding performance  
characteristics that are superior to the alternatives, such as  
optocoupler devices and other integrated couplers.  
Enhanced system-level ESD performance per IEC 61000-4-x  
Safety and regulatory approvals  
UL recognition 5000 V rms for 1 minute (double protection)  
CSA Component Acceptance Notice #5A (pending)  
IEC 60950-1: 600 V rms (reinforced)  
IEC 60601-1: 250 V rms (reinforced)  
VDE Certificate of Conformity (pending)  
The ADuM440x isolators provide four independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). All models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier.  
The ADuM440x isolators have a patented refresh feature that  
ensures dc correctness in the absence of input logic transitions  
and during power-up/power-down conditions.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VIORM = 846 V peak (reinforced)  
Low power operation  
5 V operation  
1.4 mA per channel maximum @ 0 Mbps to 2 Mbps  
4.3 mA per channel maximum @ 10 Mbps  
34 mA per channel maximum @ 90 Mbps  
3 V operation  
0.9 mA per channel maximum @ 0 Mbps to 2 Mbps  
2.4 mA per channel maximum @ 10 Mbps  
20 mA per channel maximum @ 90 Mbps  
Bidirectional communication  
This family of isolators, like many Analog Devices isolators,  
offers very low power consumption, consuming one-tenth to  
one-sixth the power of comparable isolators at comparable data  
rates up to 10 Mbps. All models of the ADuM440x provide low  
pulse width distortion (<2 ns for C grade). In addition, every  
model has an input glitch filter to protect against extraneous noise  
disturbances.  
3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
2 ns maximum pulse width distortion  
2 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
The ADuM440x contain circuit and layout enhancements to help  
achieve system-level IEC 61000-4-x compliance (ESD/burst/surge).  
The precise capability in these tests for the ADuM440x are strongly  
determined by the design and layout of the users board or module.  
For more information, see the AN-793 Application Note,  
ESD/Latch-Up Considerations with iCoupler Isolation Products.  
16-lead SOIC wide body package (RoHS-compliant)  
APPLICATIONS  
General-purpose, high voltage, multichannel isolation  
Medical equipment  
Motor drives  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents  
pending.  
Power supplies  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
ADuM4400 16  
V
V
DD2  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
V
V
V
V
DD2  
ADuM4401  
ADuM4402  
DD1  
DD1  
DD2  
DD1  
15  
GND  
GND  
GND  
V
GND  
GND  
V
GND  
2
1
2
1
2
1
14  
13  
12  
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
IA  
IB  
OA  
IA  
IB  
OA  
IA  
IB  
OA  
V
4
5
V
V
V
4
5
13  
12  
4
5
13  
12  
V
V
OB  
OB  
OB  
V
V
V
V
V
V
V
V
IC  
ID  
OC  
IC  
OC  
OC  
IC  
6
7
8
11  
10  
9
V
6
7
8
11  
10  
9
6
7
8
11  
10  
9
V
V
V
OD  
OD  
ID  
OD  
ID  
NC  
GND  
V
V
V
V
V
E2  
E1  
E2  
E1  
E2  
GND  
GND  
GND  
GND  
GND  
2
1
2
1
2
1
Figure 3. ADuM4402  
Figure 1. ADuM4400  
Figure 2. ADuM4401  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
ADuM4400/ADuM4401/ADuM4402  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .......................................8  
Absolute Maximum Ratings ............................................................9  
ESD Caution...................................................................................9  
Pin Configurations and Function Descriptions......................... 10  
Typical Performance Characteristics ........................................... 13  
Applications Information.............................................................. 15  
PC Board Layout ........................................................................ 15  
System-Level ESD Considerations and Enhancements ........ 15  
Propagation Delay-Related Parameters................................... 15  
DC Correctness and Magnetic Field Immunity..................... 15  
Power Consumption .................................................................. 16  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 4  
Electrical Characteristics—Mixed 5 V/3 V Operation............ 5  
Electrical Characteristics—Mixed 3 V/5 V Operation............ 6  
Package Characteristics ............................................................... 7  
Regulatory Information............................................................... 7  
Insulation and Safety-Related Specifications............................ 7  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics (Pending)............................................................ 8  
REVISION HISTORY  
4/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADuM4400/ADuM4401/ADuM4402  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ 105°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 1.  
A Grade  
B Grade  
C Grade  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
Test Conditions  
Mbps Within PWD limit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
50  
3
90  
32  
2
tPHL, tPLH  
PWD  
50  
65  
11  
20  
32  
5
18  
27  
0.5  
3
ns  
ns  
ps/°C  
50% input to 50% output  
|tPLH − tPHL  
|
PW  
tPSK  
1000  
100  
8.3  
11.1 ns  
Within PWD limit  
Between any two units  
50  
15  
10  
ns  
tPSKCD  
tPSKOD  
50  
50  
3
6
2
5
ns  
ns  
Opposing-Direction  
7
Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.  
Table 2.  
1 Mbps—A, B, C Grades  
10 Mbps—B, C Grades  
90 Mbps—C Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit Test Conditions  
SUPPLY CURRENT  
ADuM4400  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
1.2  
2.5  
1.6  
2.0  
2.0  
3.5  
1.9  
3.2  
2.4  
2.8  
2.8  
9.0  
3.0  
7.4  
4.4  
6.0  
6.0  
11.6  
5.5  
10.6  
6.5  
7.5  
7.5  
72  
19  
59  
32  
51  
51  
100  
36  
82  
46  
62  
62  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401  
ADuM4402  
Table 3. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
2.0  
V
V
V
V
0.8  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
Input Current per Channel  
Supply Current per Channel  
II  
−10  
+0.01  
+10  
μA  
0 V ≤ VI x ≤ VDDx  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.23  
0.20  
0.05  
0.83  
0.35  
mA  
mA  
mA/Mbps  
mA/Mbps  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/μs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ,tPLH  
tPZH,tPZL  
fr  
6
6
1.2  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 3 of 20  
 
ADuM4400/ADuM4401/ADuM4402  
ELECTRICAL CHARACTERISTICS—3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ 105°C, unless otherwise noted. Switching specifications are  
tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 4.  
A Grade  
B Grade  
C Grade  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
Test Conditions  
Mbps Within PWD limit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
50  
3
90  
45  
2
tPHL, tPLH  
PWD  
50  
75  
11  
20  
38  
5
20  
34  
0.5  
3
ns  
ns  
ps/°C  
50% input to 50% output  
|tPLH − tPHL  
|
PW  
tPSK  
1000  
100  
8.3  
11.1 ns  
Within PWD limit  
Between any two units  
50  
22  
16  
ns  
tPSKCD  
tPSKOD  
50  
50  
3
6
2
5
ns  
ns  
Opposing-Direction  
7
Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.  
Table 5.  
1 Mbps—A, B, C Grades  
10 Mbps—B, C Grades  
90 Mbps—C Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit Test Conditions  
SUPPLY CURRENT  
ADuM4400  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
1.6  
0.7  
1.4  
0.9  
1.2  
1.2  
2.1  
1.2  
1.9  
1.5  
1.7  
1.7  
4.8  
1.8  
0.1  
2.5  
3.3  
3.3  
7.1  
2.3  
5.6  
3.3  
4.4  
4.4  
37  
11  
31  
17  
24  
24  
54  
15  
44  
24  
39  
39  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401  
ADuM4402  
Table 6. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
1.6  
V
V
V
V
0.4  
VDDx − 0.1  
VDDx − 0.4  
3.0  
2.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
Input Current per Channel  
Supply Current per Channel  
II  
−10  
+0.01  
+10  
μA  
0 V ≤ VI x ≤ VDDx  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.03  
0.49  
0.27  
mA  
mA  
mA/Mbps  
mA/Mbps  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
3
35  
ns  
kV/μs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ,tPLH  
tPZH,tPZL  
fr  
6
6
1.2  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 4 of 20  
 
ADuM4400/ADuM4401/ADuM4402  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 5 V, VDD2 = 3.0 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ 105°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 7.  
7
Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.  
A Grade  
B Grade  
C Grade  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
Test Conditions  
Mbps Within PWD limit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
50  
40  
10  
50  
3
90  
40  
2
tPHL, tPLH  
PWD  
50  
70  
11  
15  
35  
5
20  
30  
0.5  
3
ns  
ns  
ps/°C  
50% input to 50% output  
|tPLH − tPHL  
|
PW  
tPSK  
1000  
100  
8.3  
11.1 ns  
Within PWD limit  
Between any two units  
50  
22  
14  
ns  
tPSKCD  
tPSKOD  
50  
50  
3
6
2
5
ns  
ns  
Opposing-Direction  
Table 8.  
1 Mbps—A, B, C Grades  
10 Mbps—B, C Grades 90 Mbps—C Grade  
Parameter  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ Max  
Unit Test Conditions  
SUPPLY CURRENT  
ADuM4400  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
2.9  
0.7  
2.5  
0.9  
2.0  
1.2  
3.5  
1.2  
3.2  
1.5  
2.8  
1.7  
9.0  
1.8  
7.4  
2.5  
6.0  
3.3  
11.6  
2.3  
10.6  
3.3  
7.5  
4.4  
72  
11  
59  
17  
46  
24  
100  
15  
82  
24  
62  
39  
mA  
mA  
mA  
mA  
mA  
mA  
ADuM4401  
ADuM4402  
Table 9. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
2.0  
V
V
V
V
0.8  
VDDx − 0.1  
VDDx − 0.4  
3.0  
2.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
Input Current per Channel  
Supply Current per Channel  
II  
−10  
+0.01  
+10  
μA  
0 V ≤ VI x ≤ VDDx  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.57  
0.29  
0.20  
0.03  
0.83  
0.27  
mA  
mA  
mA/Mbps  
mA/Mbps  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
3
35  
ns  
kV/μs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ,tPLH  
tPZH,tPZL  
fr  
6
6
1.2  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 5 of 20  
 
 
ADuM4400/ADuM4401/ADuM4402  
ELECTRICAL CHARACTERISTICS—MIXED 3 V/5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = 3.0 V, VDD2 = 5 V. Minimum/maximum specifications apply over the entire  
recommended operation range: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; and −40°C ≤ TA ≤ 105°C, unless otherwise noted. Switching  
specifications are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted.  
Table 10.  
A Grade  
B Grade  
C Grade  
Parameter  
Symbol Min  
Typ Max Min Typ Max Min Typ Max Unit  
Test Conditions  
Mbps Within PWD limit  
SWITCHING SPECIFICATIONS  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Pulse Width  
Propagation Delay Skew  
Channel Matching  
Codirectional  
1
100  
40  
10  
50  
3
90  
40  
2
tPHL, tPLH  
PWD  
50  
70  
11  
15  
35  
5
20  
30  
0.5  
3
ns  
ns  
ps/°C  
50% input to 50% output  
|tPLH − tPHL  
|
PW  
tPSK  
1000  
100  
8.3  
11.1 ns  
Within PWD limit  
Between any two units  
50  
22  
14  
ns  
tPSKCD  
tPSKOD  
50  
50  
3
6
2
5
ns  
ns  
Opposing-Direction  
7
Codirectional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.  
Table 11.  
1 MBps—A, B, C Grades  
10 MBps—B, C Grades  
90 MBps—C Grade  
Parameter  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Test Conditions  
SUPPLY CURRENT  
ADuM4400  
IDD1  
IDD2  
IDD1  
IDD2  
IDD1  
IDD2  
mA  
mA  
mA  
mA  
mA  
mA  
1.6  
1.2  
1.4  
1.6  
1.2  
2.0  
2.1  
1.9  
1.9  
2.4  
1.7  
2.8  
4.8  
3.0  
4.1  
4.4  
3.3  
6.0  
7.1  
5.5  
5.6  
6.5  
4.4  
7.5  
37  
19  
31  
32  
24  
46  
54  
36  
44  
46  
39  
62  
ADuM4401  
ADuM4402  
Table 12. For All Models  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltage  
VIH  
VIL  
VOH  
1.6  
V
V
V
V
0.4  
VDDx − 0.1  
VDDx − 0.4  
5.0  
4.8  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
Input Current per Channel  
Supply Current per Channel  
Quiescent Input Supply Current  
Quiescent Output Supply Current  
Dynamic Input Supply Current  
Dynamic Output Supply Current  
AC SPECIFICATIONS  
II  
−10  
+0.01  
+10  
μA  
0 V ≤ VI x ≤ VDDx  
IDDI(Q)  
IDDO(Q)  
IDDI(D)  
IDDO(D)  
0.31  
0.19  
0.10  
0.05  
0.49  
0.35  
mA  
mA  
mA/Mbps  
mA/Mbps  
Output Rise/Fall Time  
Common-Mode Transient Immunity1  
tR/tF  
|CM|  
2.5  
35  
ns  
kV/μs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
25  
transient magnitude = 800 V  
Output Disable Propagation Delay  
Output Enable Propagation Delay  
Refresh Rate  
tPHZ,tPLH  
tPZH,tPZL  
fr  
6
6
1.1  
8
8
ns  
ns  
Mbps  
High/low-to-high impedance  
High impedance-to-high/low  
1|CM| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD. The common-mode voltage slew rates apply to both  
rising and falling common-mode voltage edges.  
Rev. 0 | Page 6 of 20  
 
 
ADuM4400/ADuM4401/ADuM4402  
PACKAGE CHARACTERISTICS  
Table 13.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located at  
center of package underside  
θJCO  
28  
1 Device considered a 2-terminal device: Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15, and  
Pin 16 shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM440x are approved by the organizations listed in Table 14. Refer to Table 19 and the Insulation Lifetime section for details  
regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.  
Table 14.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
Recognized under 1577 component  
recognition program1  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V 0884-10  
(VDE V 0884-10):2006-122  
Double/reinforced insulation,  
5000 V rms isolation voltage  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 600 V rms (848 V peak)  
maximum working voltage  
Reinforced insulation, 846 V peak  
Reinforced insulation per IEC 60601-1  
250 V rms (353 V peak) maximum working  
voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM440x is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 sec (current leakage detection limit = 10 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM440x is proof tested by applying an insulation test voltage ≥1590 V peak for 1 sec (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 15.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
5000  
8.0 min  
V rms 1 minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
8.0 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
0.017 min mm  
>175  
IIIa  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
V
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. 0 | Page 7 of 20  
 
 
 
 
 
ADuM4400/ADuM4401/ADuM4402  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS (PENDING)  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
means of protective circuits.  
Note that the * marking on packages denotes DIN V VDE V 0884-10 approval for 846 V peak working voltage.  
Table 16.  
Description  
Conditions  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 450 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
I to IV  
I to II  
I to II  
40/105/21  
2
846  
VIORM  
VPR  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
1590  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VPR  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
1375  
1018  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure;  
see Figure 4  
VTR  
6000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
350  
300  
250  
RECOMMENDED OPERATING CONDITIONS  
Table 17.  
Parameter  
Symbol Min Max Unit  
TA −40 +105 °C  
VDD1, VDD2 2.7 5.5  
1.0  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
SIDE #2  
200  
150  
100  
50  
V
ms  
1 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to  
external magnetic fields.  
SIDE #1  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 4. Thermal Derating Curve, Dependence of Safety Limiting  
Values with Case Temperature per DIN V VDE V 0884-10  
Rev. 0 | Page 8 of 20  
 
 
 
ADuM4400/ADuM4401/ADuM4402  
ABSOLUTE MAXIMUM RATINGS  
Table 18.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Storage Temperature (TST)  
−65°C to +150°C  
Ambient Operating Temperature (TA) −40°C to +105°C  
1
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +7.0 V  
Input Voltage (VIA, VIB, VIC, VID, VE1, VE2)1, 2  
Output Voltage (VOA, VOB, VOC, VOD)1, 2  
Average Output Current Per Pin3  
Side 1 (IO1)  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
−18 mA to +18 mA  
ESD CAUTION  
Side 2 (IO2)  
Common-Mode Transients4  
−22 mA to +22 mA  
−100 kV/μs to +100 kV/μs  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the Absolute Maximum Rating can cause latch-  
up or permanent damage.  
Table 19. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50 year minimum lifetime  
846  
V peak  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Reinforced Insulation  
846  
V peak  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 20. Truth Table (Positive Logic)  
VIx Input1  
VEx Input  
VDDI State1 VDDO State1 VOx Output1 Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to input state within 1 μs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to input state within 1 μs of VDDO power restoration if  
VEx state is H or NC. Outputs return to high impedance state within  
8 ns of VDDO power restoration if VEx state is L.  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and  
DDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
V
Rev. 0 | Page 9 of 20  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADuM4400/ADuM4401/ADuM4402  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND  
15 GND  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
ADuM4400  
TOP VIEW  
(Not to Scale)  
NC  
GND  
GND  
1
2
NOTES  
1. NC = NO CONNECT  
2. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
1
3. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM4400 Pin Configuration  
Table 21. ADuM4400 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
VID  
Logic Input D.  
7
NC  
No Connect.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
VOx Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low  
is recommended.  
11  
12  
13  
14  
15  
16  
VOD  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 10 of 20  
 
ADuM4400/ADuM4401/ADuM4402  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND  
15 GND  
1
IA  
IB  
IC  
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
ID  
ADuM4401  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
GND  
GND  
2
1
NOTES  
1. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
1
2. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM4401 Pin Configuration  
Table 22. ADuM4401 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
VIB  
VIC  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Input C.  
VOD  
VE1  
Logic Output D.  
Output Enable. Active high logic input. VOx Side 1 outputs are enabled when VE1 is high or disconnected. VOX Side 1  
outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is  
recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
V
Ox Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low  
is recommended.  
11  
12  
13  
14  
15  
16  
VID  
VOC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 11 of 20  
ADuM4400/ADuM4401/ADuM4402  
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
GND  
15 GND  
1
IA  
IB  
2
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
IC  
ADuM4402  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
GND  
GND  
2
1
NOTES  
1. PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
1
2. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED,  
AND CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 7. ADuM4402 Pin Configuration  
Table 23. ADuM4402 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
7
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for isolator Side 1.  
Logic Input A.  
Logic Input B.  
Logic Output C.  
VIB  
VOC  
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOx Side 1 outputs are enabled when VE1 is high or disconnected. VOX Side 1  
outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is  
recommended.  
8
9
10  
GND1  
GND2  
VE2  
Ground 1. Ground reference for isolator Side 1.  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOx outputs on Side 2 are enabled when VE2 is high or disconnected.  
V
Ox Side 2 outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low  
is recommended.  
11  
12  
13  
14  
15  
16  
VID  
VIC  
VOB  
VOA  
GND2  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Ground 2. Ground reference for isolator Side 2.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 12 of 20  
ADuM4400/ADuM4401/ADuM4402  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
80  
60  
40  
15  
5V  
10  
5V  
3V  
3V  
5
20  
0
0
0
20  
40  
60  
80  
100  
0
0
0
20  
40  
60  
80  
100  
100  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)  
Figure 11. Typical ADuM4400 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
20  
80  
60  
40  
15  
10  
5
20  
0
5V  
5V  
3V  
3V  
0
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)  
Figure 12. Typical ADuM4400 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
20  
80  
60  
40  
15  
10  
5V  
5V  
5
20  
0
3V  
3V  
0
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs.  
Data Rate (15 pF Output Load)  
Figure 13. Typical ADuM4401 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 13 of 20  
 
 
 
 
ADuM4400/ADuM4401/ADuM4402  
40  
35  
30  
25  
80  
60  
40  
3V  
5V  
20  
5V  
3V  
0
–50  
–25  
0
25  
50  
75  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 14. Typical ADuM4401 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Figure 16. Propagation Delay vs. Temperature, C Grade  
80  
60  
40  
5V  
20  
0
3V  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
Figure 15. Typical ADuM4402 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 14 of 20  
 
ADuM4400/ADuM4401/ADuM4402  
APPLICATIONS INFORMATION  
While the ADuM440x improve system-level ESD reliability,  
they are no substitute for a robust system-level design. See the  
AN-793 Application Note, ESD/Latch-Up Considerations with  
iCoupler Isolation Products, for detailed recommendations on  
board layout and system-level design.  
PC BOARD LAYOUT  
The ADuM440x digital isolators require no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins  
(see Figure 17). Bypass capacitors are most conveniently  
connected between Pin 1 and Pin 2 for VDD1 and between Pin 15  
and Pin 16 for VDD2. The capacitor value should be between 0.01  
μF and 0.1 μF. The total lead length between both ends of the  
capacitor and the input power supply pin should not exceed  
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 should also be considered unless the ground pair  
on each package side are connected close to the package.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the length of  
time for a logic signal to propagate through a component. The  
propagation delay to a logic low output can differ from the  
propagation delay to logic high.  
INPUT (V  
)
50%  
Ix  
V
GND  
V
tPLH  
tPHL  
DD1  
DD2  
GND  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OUTPUT (V )  
Ox  
50%  
OB  
V
OC/ IC  
V
V
V
IC/ OC  
Figure 18. Propagation Delay Parameters  
V
V
ID/ OD  
OD/ ID  
NC/V  
E1  
GND  
E2  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
GND  
1
2
Figure 17. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients,  
ensure that board coupling across the isolation barrier is  
minimized. Furthermore, the board layout should be designed  
such that any coupling that does occur equally affects all pins  
on a given component side. Failure to ensure this could cause  
voltage differentials between pins exceeding the Absolute  
Maximum Ratings of the device, thereby leading to latch-up  
or permanent damage.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs among channels within a single  
ADuM440x component.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs among multiple ADuM440x  
components operated under the same conditions.  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent via the transformer to the  
decoder. The decoder is bistable and is therefore either set or  
reset by the pulses, indicating input logic transitions. In the  
absence of logic transitions at the input for more than ~1 μs, a  
periodic set of refresh pulses indicative of the correct input state  
are sent to ensure dc correctness at the output. If the decoder  
receives no internal pulses for more than approximately 5 μs,  
the input side is assumed to be without power or nonfunctional;  
in which case, the isolator output is forced to a default state  
(see Table 20) by the watchdog timer circuit.  
System-level ESD reliability (for example, per IEC 61000-4-x) is  
highly dependent on system design, which varies widely by  
application. The ADuM440x incorporate many enhancements  
to make ESD reliability less dependent on system design. The  
enhancements include  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The SCR effect, inherent in CMOS devices, minimized by  
using guarding and isolation techniques between PMOS  
and NMOS devices.  
The limitation on the ADuM440x magnetic field immunity is  
set by the condition in which induced voltage in the trans-  
formers receiving coil is large enough to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this can occur. The 3 V operating condition of the  
ADuM440x is examined because it represents the most  
susceptible mode of operation.  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
Rev. 0 | Page 15 of 20  
 
 
ADuM4400/ADuM4401/ADuM4402  
1000  
100  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
thereby establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil is  
given by  
DISTANCE = 1m  
10  
1
2
V = (−/dt)Σ∏rn ; n = 1, 2,…, N  
DISTANCE = 100mm  
where:  
β is the magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
DISTANCE = 5mm  
0.1  
Given the geometry of the receiving coil in the ADuM440x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 19.  
100  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 20. Maximum Allowable Current  
for Various Current-to-ADuM440x Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces may  
induce sufficiently large error voltages to trigger the thresholds  
of succeeding circuitry. Care should be taken in the layout of  
such traces to avoid this possibility.  
10  
1
POWER CONSUMPTION  
0.1  
The supply current at a given channel of the ADuM440x  
isolator is a function of the supply voltage, the channels data  
rate, and the channels output load.  
0.01  
For each input channel, the supply current is given by  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
I
DDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
MAGNETIC FIELD FREQUENCY (Hz)  
IDDI = IDDI (D) × (2f − fr) + IDDI (Q)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
For each output channel, the supply current is given by:  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
I
I
DDO = IDDO (Q)  
f ≤ 0.5fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f fr) + IDDO (Q)  
f > 0.5fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM440x transformers. Figure 20 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As can be seen, the ADuM440x are immune and can  
be affected only by extremely large currents operated at high  
frequency and very close to the component. For the 1 MHz  
example noted, one would have to place a 0.5 kA current 5 mm  
away from the ADuM440x to affect the components operation.  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz, half of the input data  
rate, NRZ signaling).  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
Rev. 0 | Page 16 of 20  
 
 
 
ADuM4400/ADuM4401/ADuM4402  
To calculate the total IDD1 and IDD2, the supply currents for  
each input and output channel corresponding to IDD1 and IDD2  
are calculated and totaled. Figure 8 and Figure 9 provide per  
channel supply currents as a function of data rate for an  
unloaded output condition. Figure 10 provides per channel  
supply current as a function of data rate for a 15 pF output  
condition. Figure 11 through Figure 15 provide total IDD1 and  
In the case of unipolar ac or dc voltage, the stress on the insu-  
lation is significantly lower. This allows operation at higher  
working voltages while still achieving a 50-year service life.  
The working voltages listed in Table 19 can be applied while  
maintaining the 50-year minimum lifetime, provided the  
voltage conforms to either the unipolar ac or dc voltage cases.  
Any cross-insulation voltage waveform that does not conform  
to Figure 22 or Figure 23 should be treated as a bipolar ac  
waveform, and its peak voltage should be limited to the 50-year  
lifetime voltage value listed in Table 19.  
I
DD2 as a function of data rate for ADuM4400/ADuM4401/  
ADuM4402 channel configurations.  
INSULATION LIFETIME  
Note that the voltage presented in Figure 22 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage cannot  
cross 0 V.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM440x.  
RATED PEAK VOLTAGE  
0V  
Analog Devices performs accelerated life testing using voltage levels  
higher than the rated continuous working voltage. Acceleration  
factors for several operating conditions are determined. These  
factors allow calculation of the time to failure at the actual working  
voltage. The values shown in Table 19 summarize the peak voltage  
for 50 years of service life for a bipolar ac operating condition and  
the maximum CSA/VDE approved working voltages. In many  
cases, the approved working voltage is higher than the 50-year  
service life voltage. Operation at these high working voltages can  
lead to shortened insulation life in some cases.  
Figure 21. Bipolar AC Waveform  
RATED PEAK VOLTAGE  
0V  
Figure 22. Unipolar AC Waveform  
RATED PEAK VOLTAGE  
The insulation lifetime of the ADuM440x depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates,  
depending on whether the waveform is bipolar ac, unipolar  
ac, or dc. Figure 21, Figure 22, and Figure 23 illustrate these  
different isolation voltage waveforms.  
0V  
Figure 23. DC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines Analog Devices recommended maximum working  
voltage.  
Rev. 0 | Page 17 of 20  
 
 
 
 
 
ADuM4400/ADuM4401/ADuM4402  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.  
0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number Number Maximum Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Maximum  
Pulse Width  
Temperature  
Delay, 5 V (ns) Distortion (ns) Range  
Package  
Package Description Option  
Model  
V
4
4
4
3
3
3
2
2
2
DD1 Side VDD2 Side (Mbps)  
ADuM4400ARWZ1, 2  
ADuM4400BRWZ1, 2  
ADuM4400CRWZ1, 2  
ADuM4401ARWZ1, 2  
ADuM4401BRWZ1, 2  
ADuM4401CRWZ1, 2  
ADuM4402ARWZ1, 2  
ADuM4402BRWZ1, 2  
ADuM4402CRWZ1, 2  
0
0
0
1
1
1
2
2
2
1
100  
50  
40  
3
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
−40°C to +105°C 16-Lead SOIC_W  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
10  
90  
1
32  
2
100  
50  
40  
3
10  
90  
1
32  
2
100  
50  
40  
3
10  
90  
32  
2
1 Tape and reel is available. The addition of an -RL suffix designates a 13” (1,000 units) tape and reel option.  
2 Z = RoHS Compliant Part.  
Rev. 0 | Page 18 of 20  
 
 
 
ADuM4400/ADuM4401/ADuM4402  
NOTES  
ADuM4400/ADuM4401/ADuM4402  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08157-0-4/09(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADUM4401ARWZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401ARWZ-RL

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401BRIZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401BRIZ-RL

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401BRWZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401BRWZ-RL

暂无描述
ADI

ADUM4401CRIZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401CRIZ-RL

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401CRWZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4401WBRWZ

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4402

5 kV RMS Quad-Channel Digital Isolators
ADI

ADUM4402ARIZ

5 kV RMS Quad-Channel Digital Isolators
ADI