ADuM131E0BRWZ [ADI]

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators;
ADuM131E0BRWZ
型号: ADuM131E0BRWZ
厂家: ADI    ADI
描述:

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators

文件: 总22页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.0 kV RMS/3.75 kV RMS Triple-Channel  
Digital Isolators  
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
V
V
1
2
3
4
5
6
7
8
16  
DD1  
DD2  
High common-mode transient immunity: 100 kV/μs  
High robustness to radiated and conducted noise  
Low propagation delay: 13 ns maximum for 5 V operation,  
15 ns maximum for 1.8 V operation  
150 Mbps maximum guaranteed data rate  
Safety and regulatory approvals (pending)  
UL recognition  
ADuM130D  
GND  
V
15 GND  
1
2
V
V
V
14  
13  
12  
11  
10  
9
ENCODE  
DECODE  
DECODE  
DECODE  
IA  
IB  
IC  
OA  
OB  
OC  
V
V
ENCODE  
ENCODE  
NIC  
DISABLE  
NIC  
NIC  
GND  
1
GND  
1
2
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 1. ADuM130D Functional Block Diagram  
3000 V rms/3750 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE certificate of conformity  
V
V
1
2
3
4
5
6
7
8
16  
DD1  
DD2  
2
ADuM130E  
GND  
V
15 GND  
1
V
V
V
14  
13  
12  
11  
10  
9
ENCODE  
DECODE  
DECODE  
DECODE  
IA  
OA  
OB  
OC  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
V
IB  
IC  
ENCODE  
ENCODE  
V
IORM = 849 V peak  
CQC certification per GB4943.1-2011  
Backward compatibility  
NIC  
NIC  
GND  
NIC  
V
E2  
GND  
1
2
ADuM130E1/ADuM131E1 pin-compatible with  
ADuM1300/ADuM1301  
Low dynamic power consumption  
1.8 V to 5 V level translation  
High temperature operation: 125°C  
Fail-safe high or low options  
16-lead, RoHS compliant, SOIC package  
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 2. ADuM130E Functional Block Diagram  
V
V
DD2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
DD1  
ADuM131D  
GND  
V
GND  
1
2
V
ENCODE  
DECODE  
DECODE  
ENCODE  
IA  
IB  
OA  
V
V
OB  
ENCODE  
DECODE  
V
V
IC  
OC  
NIC  
DISABLE  
NIC  
DISABLE  
2
1
APPLICATIONS  
GND  
2
GND  
1
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
General-purpose multichannel isolation  
Serial peripheral interface (SPI)/data converter isolation  
Industrial field bus isolation  
Figure 3. ADuM131D Functional Block Diagram  
V
V
1
2
3
4
5
6
7
8
16  
DD1  
DD2  
ADuM131E  
GND  
V
15 GND  
1
2
GENERAL DESCRIPTION  
V
V
V
14  
13  
12  
11  
10  
9
ENCODE  
DECODE  
DECODE  
ENCODE  
IA  
IB  
OA  
OB  
IC  
The ADuM130D/ADuM130E/ADuM131D/ADuM131E1 are  
triple-channel digital isolators based on Analog Devices, Inc.,  
iCoupler® technology. Combining high speed, complementary  
metal-oxide semiconductor (CMOS) and monolithic air core  
transformer technology, these isolation components provide  
outstanding performance characteristics superior to alternatives  
such as optocoupler devices and other integrated couplers. The  
maximum propagation delay is 13 ns with a pulse width distortion  
of less than 3 ns at 5 V operation. Channel matching is tight at  
3.0 ns maximum.  
V
ENCODE  
DECODE  
V
OC  
NIC  
NIC  
V
GND  
V
E1  
E2  
GND  
1
2
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 4. ADuM131E Functional Block Diagram  
Unlike other optocoupler alternatives, dc correctness is ensured  
in the absence of input logic transitions. Two different fail-safe  
options are available, in which the outputs transition to a pre-  
determined state when the input power supply is not applied or  
the inputs are disabled. The ADuM130E1/ADuM131E1 are pin-  
compatible with the ADuM1300/ADuM1301.  
The ADuM130D/ADuM130E/ADuM131D/ADuM131E data  
channels are independent and are available in a variety of config-  
urations with a withstand voltage rating of 3.0 kV rms or  
3.75 kV rms (see the Ordering Guide). The devices operate with  
the supply voltage on either side ranging from 1.8 V to 5 V, prov-  
iding compatibility with lower voltage systems as well as enabling  
voltage translation functionality across the isolation barrier.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 12  
Absolute Maximum Ratings ......................................................... 13  
ESD Caution................................................................................ 13  
Truth Tables................................................................................. 14  
Pin Configurations and Function Descriptions......................... 15  
Typical Performance Characteristics ........................................... 17  
Applications Information.............................................................. 18  
Overview ..................................................................................... 18  
Printed Circuit Board (PCB) Layout ....................................... 18  
Propagation Delay Related Parameters ................................... 19  
Jitter Measurement..................................................................... 19  
Insulation Lifetime..................................................................... 19  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 4  
Electrical Characteristics—2.5 V Operation ............................ 6  
Electrical Characteristics—1.8 V Operation ............................ 7  
Insulation and Safety Related Specifications ............................ 9  
Package Characteristics ............................................................... 9  
Regulatory Information............................................................. 10  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 11  
REVISION HISTORY  
11/15—Rev. 0 to Rev. A  
Added 16-Lead, Narrow Body SOIC Package ................Universal  
Changes to Title, Features Section, and General Description  
Section................................................................................................ 1  
Added Table 9; Renumbered Sequentially .................................... 9  
Changes to Table 10 and Table 11 .................................................. 9  
Added Table 12 ............................................................................... 10  
Changes to Table 13........................................................................ 10  
Changes to Table 15 Title............................................................... 12  
Added Figure 5; Renumbered Sequentially ................................ 12  
Changes to Table 17 and Table 19 ................................................ 13  
Added Table 18 ............................................................................... 13  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 22  
7/15—Revision 0: Initial Version  
Rev. A | Page 2 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 1.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
6.6  
150  
4.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within pulse width distortion (PWD) limit  
Within PWD limit  
50% input to 50% output  
Data Rate1  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
7.2  
0.5  
1.5  
13  
3
|tPLH − tPHL|  
tPSK  
6.1  
Between any two devices at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.5  
0.5  
630  
80  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
3
VOH  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx  
0.2  
V
V
IOx2 = −20 µA, VIx = VIxH  
3
IOx2 = −4 mA, VIx = VIxH  
4
Logic Low  
VOL  
0.0  
0.2  
0.1  
0.4  
V
V
IOx2 = 20 µA, VIx = VIxL  
4
IOx2 = 4 mA, VIx = VIxL  
Input Current per Channel  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Quiescent Supply Current  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
ADuM130D/ADuM130E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.35  
1.73  
9.7  
2.6  
2.9  
15.2  
3.0  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
1.87  
ADuM131D/ADuM131E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.62  
1.61  
7.4  
2.7  
2.8  
11.4  
7.2  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
5.34  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.02  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 3 of 22  
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity7  
|CMH|  
75  
75  
100  
kV/µs  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.  
2 IOx is the Channel x output current, where x = A, B, or C.  
3 VIxH is the input side logic high.  
4 VIxL is the input side logic low.  
5 VI is the voltage input.  
6 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VOx > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 2. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM130D/ADuM130E  
Supply Current Side 1  
Supply Current Side 2  
ADuM131D/ADuM131E  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
5.6  
1.9  
9.0  
3.7  
6.3  
3.1  
9.8  
4.9  
9.4  
6.8  
14.3  
10  
mA  
mA  
IDD1  
IDD2  
4.6  
3.6  
7.2  
5.8  
5.5  
4.6  
8.3  
6.8  
8.8  
8.0  
11.9  
11.3  
mA  
mA  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
6.6  
150  
4.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Data Rate1  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
6.8  
0.7  
1.5  
14  
3
tPSK  
7.5  
Between any two devices at the  
same temperature, voltage, and  
load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
640  
75  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Rev. A | Page 4 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Output Voltage  
Logic High  
3
VOH  
VOL  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx − 0.2  
V
V
V
V
IOx2 = −20 µA, VIx = VIxH  
3
IOx2 = −2 mA, VIx = VIxH  
4
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx2 = 20 µA, VIx = VIxL  
4
IOx2 = 2 mA, VIx = VIxL  
Input Current per Channel  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
Quiescent Supply Current  
ADuM130D/ADuM130E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.25  
1.65  
9.57  
1.79  
2.5  
2.8  
15.0  
2.9  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
ADuM131D/ADuM131E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.52  
1.52  
7.28  
5.24  
2.6  
2.6  
11.3  
7.1  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.01  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
Common-Mode Transient Immunity7 |CMH|  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.  
2 IOx is the Channel x output current, where x = A, B, or C.  
3 VIxH is the input side logic high.  
4 VIxL is the input side logic low.  
5 VI is the voltage input.  
6 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VOx > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 4. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM130D/ADuM130E  
Supply Current Side 1  
Supply Current Side 2  
ADuM131D/ADuM131E  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
5.4  
1.8  
8.8  
3.6  
6.0  
2.9  
9.4  
4.7  
8.5  
6.2  
12.7  
8.4  
mA  
mA  
IDD1  
IDD2  
4.4  
3.4  
7.1  
5.6  
5.2  
4.3  
8.0  
6.5  
8.1  
7.4  
10.7  
9.5  
mA  
mA  
Rev. A | Page 5 of 22  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 5.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
6.6  
150  
5.0  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Data Rate1  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
7.0  
0.7  
1.5  
14  
3
tPSK  
6.8  
Between any two devices at the  
same temperature, voltage, load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
770  
160  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
Logic Low  
Output Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
VDDx − 0.1  
V
V
0.3 × VDDx  
3
VOH  
VOL  
VDDx  
V
V
V
V
IOx2 = −20 µA, VIx = VIxH  
3
VDDx − 0.4 VDDx − 0.2  
IOx2 = −2 mA, VIx = VIxH  
4
Logic Low  
0.0  
0.2  
0.1  
0.4  
IOx2 = 20 µA, VIx = VIxL  
4
IOx2 = 2 mA, VIx = VIxL  
Input Current per Channel  
II  
−10  
−10  
+0.01  
−3  
9
+10  
µA  
µA  
µA  
µA  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Quiescent Supply Current  
IPU  
IPD  
IOZ  
15  
+10  
−10  
+0.01  
ADuM130D/ADuM130E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.2  
2.4  
2.7  
14.9  
2.8  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
1.61  
9.52  
1.76  
ADuM131D/ADuM131E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.47  
1.48  
7.23  
5.19  
2.5  
2.5  
11.2  
7.0  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
IDDI (D)  
IDDO (D)  
0.01  
0.01  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 6 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity7  
tR/tF  
|CMH|  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.  
2 IOx is the Channel x output current, where x = A, B, or C.  
3 VIxH is the input side logic high.  
4 VIxL is the input side logic low.  
5 VI is the voltage input.  
6 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VOx > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 6. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM130E/ADuM130D  
Supply Current Side 1  
Supply Current Side 2  
ADuM131E/ADuM131D  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
5.3  
1.8  
8.7  
3.6  
5.9  
2.6  
9.3  
4.4  
8.2  
5.2  
12.3  
7.4  
mA  
mA  
IDD1  
IDD2  
4.4  
3.4  
7.1  
5.6  
5.0  
4.1  
7.8  
6.3  
7.5  
6.6  
10.1  
8.7  
mA  
mA  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 7.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
6.6  
150  
5.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Data Rate1  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
tPHL, tPLH  
PWD  
8.7  
0.7  
1.5  
15  
3
tPSK  
7.0  
Between any two devices at the  
same temperature, voltage, and  
load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
600  
90  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold  
Logic High  
Logic Low  
Output Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
VDDx − 0.1  
V
V
0.3 × VDDx  
3
VOH  
VDDx  
V
V
IOx2 = −20 µA, VIx = VIxH  
3
VDDx − 0.4 VDDx − 0.2  
IOx2 = −2 mA, VIx = VIxH  
Rev. A | Page 7 of 22  
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
Parameter  
Logic Low  
Symbol Min  
Typ  
0.0  
0.2  
+0.01  
−3  
9
Max  
0.1  
0.4  
Unit  
V
V
µA  
µA  
µA  
µA  
Test Conditions/Comments  
IOx2 = 20 µA, VIx = VIxL  
4
VOL  
4
IOx2 = 2 mA, VIx = VIxL  
0 V ≤ VIx ≤ VDDx  
VE2 = 0 V  
Input Current per Channel  
II  
−10  
−10  
+10  
VE2 Enable Input Pull-Up Current  
DISABLE1 Input Pull-Down Current  
Tristate Output Current per Channel  
Quiescent Supply Current  
IPU  
IPD  
IOZ  
15  
+10  
DISABLE1 = VDDx  
0 V ≤ VOx ≤ VDDx  
−10  
+0.01  
ADuM130D/ADuM130E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.15  
1.58  
9.41  
1.72  
2.3  
2.6  
14.8  
2.7  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
ADuM131D/ADuM131E  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
1.42  
1.44  
7.15  
5.13  
2.4  
2.4  
11.1  
6.9  
mA  
mA  
mA  
mA  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 0 (E0, D0), 1 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
VI5 = 1 (E0, D0), 0 (E1, D1)6  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.01  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
Common-Mode Transient Immunity7 |CMH|  
75  
75  
|CML|  
100  
kV/µs  
transient magnitude = 800 V  
1 150 Mbps is the highest data rate that can be guaranteed, although higher data rates are possible.  
2 IOx is the Channel x output current, where x = A, B, or C.  
3 VIxH is the input side logic high.  
4 VIxL is the input side logic low.  
5 VI is the voltage input.  
6 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
7 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VOx > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 8. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM130D/ADuM130E  
Supply Current Side 1  
Supply Current Side 2  
ADuM131D/ADuM131E  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
5.2  
1.7  
8.6  
3.5  
5.8  
2.5  
9.3  
4.3  
8.1  
5.2  
12.2  
7.3  
mA  
mA  
IDD1  
IDD2  
4.3  
3.3  
7.0  
5.5  
4.9  
4.0  
7.7  
6.2  
7.26  
6.5  
10.0  
8.6  
mA  
mA  
Rev. A | Page 8 of 22  
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 9. R-16 Narrow Body [SOIC_N] Package  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3000  
4.0  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
4.0  
4.5  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>400  
II  
μm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
Table 10. RW-16 Wide Body [SOIC_W] Package  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3750  
7.8  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
7.8  
8.1  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>400  
II  
μm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
PACKAGE CHARACTERISTICS  
Table 11.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2.2  
4.0  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance  
R-16 Narrow Body [SOIC_N] Package  
RW-16 Wide Body [SOIC_W] Package  
θJA  
θJA  
76  
45  
°C/W Thermocouple located at center of package underside  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. A | Page 9 of 22  
 
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
REGULATORY INFORMATION  
See Table 19 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-  
isolation waveforms and insulation levels.  
Table 12. R-16 Narrow Body [SOIC_N] Package  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
CQC (Pending)  
Recognized Under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10):2006-122  
Certified under  
CQC11-471543-2012  
Single Protection, 3000 V rms  
Isolation Voltage  
CSA 60950-1-07+A1+A2 and IEC  
60950-1, second edition, +A1+A2:  
Reinforced insulation, VIORM  
565 V peak, VIOSM = 6000 V peak  
=
GB4943.1-2011:  
Double Protection, 3000 V rms Basic insulation at 400 V rms  
Basic insulation, VIORM = 565 V peak,  
Basic insulation at  
Isolation Voltage  
(565 V peak)  
V
IOSM = 10 kV peak  
770 V rms (1089 V peak)  
Reinforced insulation at 200 V rms  
(283 V peak)  
Reinforced insulation at  
385 V rms (545 V peak)  
IEC 60601-1 Edition 3.1: Basic  
insulation (one means of patient  
protection (1 MOPP)), 250 V rms  
(354 V peak)  
Tropical climate, altitude  
≤5000 m  
CSA 61010-1-12 and IEC 61010-1  
third edition:  
Basic insulation at 300 V rms mains,  
400 V rms secondary (565 V peak)  
Reinforced insulation at 300 V rms  
mains, 200 V secondary (282 V peak)  
File E214100  
File 205078  
File 2471900-4880-0001  
File (pending)  
1 In accordance with UL 1577, each ADuM130D/ADuM130E/ADuM131D/ADuM131E in the R-16 narrow body [SOIC_N] package is proof tested by applying an insulation  
test voltage ≥ 3600 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADuM130D/ADuM130E/ADuM131D/ADuM131E in the R-16 narrow body [SOIC_N] package is proof tested by applying an  
insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
Table 13. RW-16 Wide Body [SOIC_W] Package  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
CQC (Pending)  
Recognized Under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10):2006-122  
Certified under  
CQC11-471543-2012  
Single Protection, 3750 V rms  
Isolation Voltage  
CSA 60950-1-07+A1+A2 and IEC 60950-1,  
second edition, +A1+A2:  
Reinforced insulation, VIORM  
849 V peak, VIOSM = 6000 V peak  
=
GB4943.1-2011  
Double Protection, 3750 V rms Basic insulation at 780 V rms  
Basic insulation, VIORM = 849 V peak,  
VIOSM = 10 kV peak  
Basic insulation at  
780 V rms (1103 V peak)  
Isolation Voltage  
(1103 V peak)  
Reinforced insulation at 390 V rms  
(552 V peak)  
Reinforced insulation at  
390 V rms (552 V peak)  
IEC 60601-1 Edition 3.1: basic insulation  
(1 means of patient protection (MOPP)),  
490 V rms (693 V peak)  
Tropical climate,  
altitude ≤5000 m  
CSA 61010-1-12 and IEC 61010-1 third  
edition:  
Basic insulation at 300 V rms mains, 780V  
secondary (1103 V peak)  
Reinforced insulation at 300 V rms mains,  
390 V secondary (552 V peak)  
File E214100  
File 205078  
File 2471900-4880-0001  
File (pending)  
1 In accordance with UL 1577, each ADuM130D/ADuM130E/ADuM131D/ADuM131E in the RW-16 wide body [SOIC_W] package is proof tested by applying an insulation  
test voltage ≥ 4500 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADuM130D/ADuM130E/ADuM131D/ADuM131E in the RW-16 wide body [SOIC_W] package is proof tested by applying an  
insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
Rev. A | Page 10 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance  
of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 14. R-16 Narrow Body [SOIC_N] Package  
Description  
Test Conditions/Comments  
Symbol  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
Vpd (m)  
565  
1059  
V peak  
V peak  
VIORM × 1.875 = Vpd (m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
Vpd (m)  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
848  
678  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage Basic  
VIOTM  
VIOSM  
4200  
10000  
V peak  
V peak  
V peak = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
Surge Isolation Voltage Reinforced  
V peak = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
VIOSM  
6000  
V peak  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 5)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
1.64  
>109  
°C  
W
VIO = 500 V  
Rev. A | Page 11 of 22  
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
Table 15. RW-16 Wide Body [SOIC_W] Package  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 600 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to IV  
I to III  
40/125/21  
2
VIORM  
Vpd (m)  
849  
1592  
V peak  
V peak  
VIORM × 1.875 = Vpd (m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
Vpd (m)  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
1274  
1019  
5300  
V peak  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage  
Basic  
VIOTM  
VPEAK = 12.8 kV, 1.2 µs rise time, 50 µs, 50% fall time  
VPEAK = 10 kV, 1.2 µs rise time, 50 µs, 50% fall time  
VIOSM  
VIOSM  
12,000  
6000  
V peak  
V peak  
Reinforced  
Safety Limiting Values  
Maximum value allowed in the event of a failure  
(see Figure 6)  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
2.78  
>109  
°C  
W
VIO = 500 V  
3.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 6. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Figure 5. Thermal Derating Curve for R-16 Narrow Body [SOIC_N] Package,  
Dependence of Safety Limiting Values with Ambient Temperature per  
DIN V VDE V 0884-10  
RECOMMENDED OPERATING CONDITIONS  
Table 16.  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Rating  
Operating Temperature  
Supply Voltages  
Input Signal Rise and Fall Times  
−40°C to +125°C  
1.7 V to 5.5 V  
1.0 ms  
Rev. A | Page 12 of 22  
 
 
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 17.  
Parameter  
Rating  
Storage Temperature (TST) Range  
Ambient Operating Temperature  
(TA) Range  
−65°C to +150°C  
−40°C to +125°C  
Supply Voltages (VDD1, VDD2  
Input Voltages (VIA, VIB, VIC, VE1, VE2,  
DISABLE1, DISABLE2)  
Output Voltages (VOA, VOB, VOC)  
Average Output Current per Pin3  
Side 1 Output Current (IO1)  
Side 2 Output Current (IO2)  
Common-Mode Transients4  
)
−0.5 V to +7.0 V  
−0.5 V to VDDI1 + 0.5 V  
ESD CAUTION  
−0.5 V to VDDO2 + 0.5 V  
−10 mA to +10 mA  
−10 mA to +10 mA  
−150 kV/μs to +150 kV/μs  
1 VDDI is the input side supply voltage.  
2 VDDO is the output side supply voltage.  
3 See Figure 5 for the R-16 narrow body [SOIC_N] package or Figure 6 for the  
RW-16 wide body [SOIC_W] package for the maximum rated current values  
for various ambient temperatures.  
4 Refers to the common-mode transients across the insulation barrier.  
Common-mode transients exceeding the absolute maximum ratings may  
cause latch-up or permanent damage.  
Table 18. Maximum Continuous Working Voltage R-16 Narrow Body [SOIC_N] Package1  
Parameter  
Rating  
Constraint2  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
789 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
403 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
909 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
469 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
Basic Insulation  
Reinforced Insulation  
558 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
285 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
2 Insulation lifetime for the specified test condition is greater than 50 years.  
Table 19. Maximum Continuous Working Voltage RW-16 Wide Body [SOIC_W] Package1  
Parameter  
Rating  
Constraint2  
AC Voltage  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
849 V peak  
768 V peak  
50-year minimum insulation lifetime  
Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
1698 V peak 50-year minimum insulation lifetime  
768 V peak  
Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
Basic Insulation  
Reinforced Insulation  
1092 V peak Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
543 V peak  
Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
1 Refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
2 Insulation lifetime for the specified test condition is greater than 50 years.  
Rev. A | Page 13 of 22  
 
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
TRUTH TABLES  
Table 20. ADuM130D/ADuM131D Truth Table (Positive Logic)  
Default Low (D0), Default High (D1),  
VIx Input1, 2 VDISABLEx Input1, 2  
VDDI State2  
Powered  
Powered  
Powered  
Unpowered  
Powered  
VDDO State2  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VOx Output1, 2, 3  
VOx Output1, 2, 3  
Test Conditions/Comments  
Normal operation  
Normal operation  
Inputs disabled, fail-safe output  
Fail-safe output  
L
H
X
L or NC  
L or NC  
H
L
L
H
H
L
H
X4  
X4  
X4  
L
H
X4  
Indeterminate  
Indeterminate  
1 L means low, H means high, X means don’t care, and NC means not connected.  
2 VIx and VOx refer to the input and output signals of a given channel (A, B, or C). VDISABLEx refers to the input disable signal on the same side as the VIx inputs. VDDI and VDDO  
refer to the supply voltages on the input and output sides of the given channel, respectively.  
3 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
4 Input pins (VIx, DISABLE1, and DISABLE2) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection  
circuitry.  
Table 21. ADuM130E/ADuM131E Truth Table (Positive Logic)  
Default Low (E0),  
Default High (E1),  
VOx Output1, 2, 3  
VIx Input1, 2  
VEx Input1, 2  
H or NC  
H or NC  
L
H or NC  
L4  
X4  
VDDI State2  
Powered  
Powered  
Powered  
Unpowered  
Unpowered  
Powered  
VDDO State2  
Powered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
VOx Output1, 2, 3  
Test Conditions/Comments  
Normal operation  
Normal operation  
Outputs disabled  
Fail-safe output  
L
H
X
L
X4  
X4  
L
H
Z
L
L
H
Z
H
Z
Z
Outputs disabled  
Indeterminate  
Indeterminate  
1 L means low, H means high, X means don’t care, and NC means not connected, and Z means high impedance.  
2 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D). VEx refers to the output enable signal on the same side as the VOx outputs. VDDI and  
V
DDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
3 E0 refers to the ADuM130E0/ADuM131E0 models, D0 refers to the ADuM130D0/ADuM131D0 models, E1 refers to the ADuM130E1/ADuM131E1 models, and D1 refers  
to the ADuM130D1/ADuM131D1 models. See the Ordering Guide section.  
4 Input pins (VIx, VE1, and VE2) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.  
Rev. A | Page 14 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15 GND  
V
V
1
2
3
4
5
6
7
8
16  
15 GND  
V
V
DD1  
DD2  
DD1  
DD2  
GND  
V
GND  
V
1
2
1
2
14  
13  
12  
V
V
V
14  
13  
12  
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
IA  
IB  
IC  
OA  
OB  
OC  
ADuM130E  
ADuM130D  
V
V
V
V
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
11 NIC  
NIC  
NIC  
NIC  
11 NIC  
V
10  
9
10  
E2  
DISABLE  
NIC  
1
1
GND  
GND  
2
GND  
9 GND  
2
1
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
Figure 8. ADuM130E Pin Configuration  
Figure 7. ADuM130D Pin Configuration  
Table 22. Pin Function Descriptions  
Pin No.1  
ADuM130E  
ADuM130D  
Mnemonic Description  
1
2, 8  
3
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
4
VIB  
Logic Input B.  
5
5
VIC  
Logic Input C.  
6, 10, 11  
7
6, 7, 11  
Not applicable DISABLE1  
NIC  
No Internal Connection. Leave these pins floating.  
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state  
determined by the fail-safe option shown in the Ordering Guide.  
9, 15  
Not applicable  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA, VOB,  
and VOC outputs are enabled. When VE2 is low, the VOA, VOB, and VOC outputs are disabled  
to the high-Z state.  
12  
13  
14  
16  
12  
13  
14  
16  
VOC  
VOB  
VOA  
VDD2  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2.  
1 Reference the AN-1109 Application Note for specific layout guidelines.  
Rev. A | Page 15 of 22  
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
V
1
2
3
4
5
6
7
8
16  
V
V
1
2
3
4
5
6
7
8
16  
V
DD1  
DD2  
DD1  
DD2  
2
GND  
V
15 GND  
GND  
V
15 GND  
1
1
2
14  
13  
12  
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
IA  
IB  
OA  
OB  
IC  
IA  
IB  
OA  
OB  
IC  
ADuM131E  
ADuM131D  
V
V
TOP VIEW  
TOP VIEW  
V
V
(Not to Scale)  
OC  
(Not to Scale)  
OC  
NIC  
11 NIC  
NIC  
NIC  
V
10  
9
V
E2  
DISABLE  
DISABLE  
E1  
1
1
2
GND  
GND  
2
GND  
GND  
2
1
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
NIC = NO INTERNAL CONNECTION.  
LEAVE THIS PIN FLOATING.  
Figure 10. ADuM131E Pin Configuration  
Figure 9. ADuM131D Pin Configuration  
Table 23. Pin Function Descriptions  
Pin No.1  
ADuM131E  
ADuM131D  
Mnemonic Description  
1
2, 8  
3
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
4
VIB  
Logic Input B.  
5
5
VOC  
Logic Output C.  
6, 11  
7
6, 11  
NIC  
No Internal Connection. Leave this pin floating.  
Input Disable 1. This pin disables the isolator inputs. Outputs take on the logic state  
determined by the fail-safe option shown in the Ordering Guide.  
Not applicable DISABLE1  
Not applicable  
7
VE1  
Output Enable 1. Active high logic input. When VE1 is high or disconnected, the VOC  
output is enabled. When VE1 is low, the VOC output is disabled to the high-Z state.  
9, 15  
10  
9, 15  
GND2  
Ground 2. Ground reference for Isolator Side 2.  
Input Disable 2. This pin disables the isolator inputs. Outputs take on the logic state  
determined by the fail-safe option shown in the Ordering Guide.  
Not applicable DISABLE2  
Not applicable  
10  
VE2  
Output Enable 2. Active high logic input. When VE2 is high or disconnected, the VOA and  
V
OB outputs are enabled. When VE2 is low, the VOA and VOB outputs are disabled to the  
high-Z state.  
12  
13  
14  
16  
12  
13  
14  
16  
VIC  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2.  
VOB  
VOA  
VDD2  
1 Reference the AN-1109 Application Note for specific layout guidelines.  
Rev. A | Page 16 of 22  
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
16  
5.0V  
3.3V  
5.0V  
3.3V  
2.5V  
1.8V  
14  
14  
12  
10  
8
2.5V  
1.8V  
12  
10  
8
6
6
4
4
2
2
0
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 11. ADuM130D/ADuM130E IDD1 Supply Current vs. Data Rate at  
Various Voltages  
Figure 14. ADuM131D/ADuM131E IDD2 Supply Current vs. Data Rate at  
Various Voltages  
16  
14  
5.0V  
3.3V  
5.0V  
3.3V  
14  
12  
10  
8
2.5V  
2.5V  
1.8V  
12  
1.8V  
10  
8
6
4
2
0
6
4
2
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
160  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 15. Propagation Delay (tPLH) vs. Temperature at Various Voltages  
Figure 12. ADuM130D/ADuM130E IDD2 Supply Current vs. Data Rate at  
Various Voltages  
14  
16  
5.0V  
3.3V  
5.0V  
3.3V  
2.5V  
14  
12  
10  
8
2.5V  
1.8V  
12  
1.8V  
10  
8
6
4
2
0
6
4
2
0
0
20  
40  
60  
80  
100  
120  
140  
160  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 13. ADuM131D/ADuM131E IDD1 Supply Current vs. Data Rate at  
Various Voltages  
Figure 16. Propagation Delay( tPHL) vs. Temperature at Various Voltages  
Rev. A | Page 17 of 22  
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
APPLICATIONS INFORMATION  
OVERVIEW  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
The ADuM130D/ADuM130E/ADuM131D/ADuM131E use a  
high frequency carrier to transmit data across the isolation barrier  
using iCoupler chip scale transformer coils separated by layers of  
polyimide isolation. Using an on/off keying (OOK) technique  
and the differential architecture shown in Figure 18 and Figure 19,  
the ADuM130D/ADuM130E/ADuM131D/ADuM131E have very  
low propagation delay and high speed. Internal regulators and  
input/output design techniques allow logic and supply voltages  
over a wide range from 1.7 V to 5.5 V, offering voltage translation  
of 1.8 V, 2.5 V, 3.3 V, and 5 V logic. The architecture is designed  
for high common-mode transient immunity and high immunity to  
electrical noise and magnetic interference. Radiated emissions  
are minimized with a spread spectrum OOK carrier and other  
techniques.  
The ADuM130D/ADuM130E/ADuM131D/ADuM131E digital  
isolators require no external interface circuitry for the logic  
interfaces. Power supply bypassing is strongly recommended at  
the input and output supply pins (see Figure 17). Bypass capacitors  
are most conveniently connected between Pin 1 and Pin 2 for  
VDD1 and between Pin 15 and Pin 16 for VDD2. The recommended  
bypass capacitor value is between 0.01 µF and 0.1 µF. The total  
lead length between both ends of the capacitor and the input  
power supply pin must not exceed 10 mm. Bypassing between  
Pin 1 and Pin 8 and between Pin 9 and Pin 16 must also be  
considered, unless the ground pair on each package side is  
connected close to the package.  
V
V
DD2  
DD1  
GND  
V
V
GND  
1
IA  
IB  
2
V
V
V
OA  
OB  
/V  
IC OC  
Figure 18 illustrates the waveforms for models of the ADuM130D/  
ADuM130E/ADuM131D/ADuM131E that have the condition of  
the fail-safe output state equal to low, where the carrier waveform is  
off when the input state is low. If the input side is off or not  
operating, the fail-safe output state of low (the ADuM130D0,  
ADuM131D0, ADuM130E0, and ADuM131E0 models) sets the  
output to low. For the ADuM130D/ADuM130E/ADuM131D/  
ADuM131E that have a fail-safe output state of high, Figure 19  
illustrates the conditions where the carrier waveform is off  
when the input state is high. When the input side is off or not  
operating, the fail-safe output state of high (the ADuM130D1,  
ADuM131D1, ADuM130E1, and ADuM131E1 models) sets the  
output to high. See the Ordering Guide for the model numbers  
that have the fail-safe output state of low or the fail-safe output  
state of high.  
V
/V  
IC OC  
NIC  
NIC  
DISABLE /V  
E2  
DISABLE /V  
1
E1  
2
GND  
GND  
2
1
NIC = NO INTERNAL CONNECTION. LEAVE THIS PIN FLOATING.  
Figure 17. Recommended PCB Layout  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling that  
does occur equally affects all pins on a given component side.  
Failure to ensure this can cause voltage differentials between pins  
exceeding the Absolute Maximum Ratings of the device, thereby  
leading to latch-up or permanent damage.  
See the AN-1109 Application Note for board layout guidelines.  
REGULATOR  
REGULATOR  
RECEIVER  
TRANSMITTER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 18. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State  
REGULATOR  
REGULATOR  
TRANSMITTER  
RECEIVER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 19. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State  
Rev. A | Page 18 of 22  
 
 
 
 
 
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
PROPAGATION DELAY RELATED PARAMETERS  
INSULATION LIFETIME  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a Logic 0 output may differ from the propagation delay  
to a Logic 1 output.  
All insulation structures eventually break down when subjected to  
voltage stress over a sufficiently long period. The rate of insulation  
degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation as well as on the materials  
and material interfaces.  
INPUT (V  
)
50%  
Ix  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation wear  
out. Surface breakdown is the phenomenon of surface tracking  
and the primary determinant of surface creepage requirements  
in system level standards. Insulation wear out is the phenomenon  
where charge injection or displacement currents inside the  
insulation material cause long-term insulation degradation.  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 20. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between these  
two propagation delay values and is an indication of how accurately  
the timing of the input signal is preserved.  
Surface Tracking  
Channel matching is the maximum amount the propagation  
delay differs between channels within a single ADuM130D/  
ADuM130E/ADuM131D/ADuM131E component.  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in each  
system level standard and is based on the total rms voltage across  
the isolation, pollution degree, and material group. The material  
group and creepage for the ADuM130D/ADuM130E/  
Propagation delay skew is the maximum amount the propagation  
delay differs between multiple ADuM130D/ADuM130E/  
ADuM131D/ADuM131E components operating under the  
same conditions.  
JITTER MEASUREMENT  
Figure 21 shows the eye diagram for the ADuM130D/ADuM130E/  
ADuM131D/ADuM131E. The measurement was taken using an  
Agilent 81110A pulse pattern generator at 150 Mbps with pseudo-  
random bit sequences (PRBS), 2(n − 1), n = 14, for 5 V supplies.  
Jitter was measured with the Tektronix Model 5104B oscilloscope,  
at 1 GHz, 10 GSPS with the DPOJET jitter and eye diagram  
analysis tools. The result shows a typical measurement on the  
ADuM130D/ADuM130E/ADuM131D/ADuM131E with  
630 ps p-p jitter.  
ADuM131D/ADuM131E isolators are presented in Table 9.  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. It is the working voltage applicable  
to tracking that is specified in most standards.  
5
4
3
2
1
0
Testing and modeling have shown that the primary driver of  
long-term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the insula-  
tion can be broken down into broad categories, such as dc stress,  
which causes very little wear out because there is no displacement  
current, and an ac component time varying voltage stress, which  
causes wear out.  
–10  
–5  
0
5
10  
TIME (ns)  
Figure 21. Eye Diagram  
Rev. A | Page 19 of 22  
 
 
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this reflects isolation from line  
voltage. However, many practical applications have combinations  
of 60 Hz ac and dc across the barrier as shown in Equation 1.  
Because only the ac portion of the stress causes wear out, the  
equation can be rearranged to solve for the ac rms voltage, as  
shown in Equation 2. For insulation wear out with the polyimide  
materials used in these products, the ac rms voltage determines  
the product lifetime.  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 +VDC  
VRMS = 2402 + 4002  
VRMS = 466 V  
This VRMS value is the working voltage used together with the  
material group and pollution degree when looking up the  
creepage required by a system standard.  
2
VRMS = VAC RMS2 +VDC  
(1)  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
or  
2
VAC RMS = VRMS2 VDC  
(2)  
2
VAC RMS = VRMS2 VDC  
where:  
VAC RMS  
AC RMS = 240 V rms  
=
4662 4002  
V
V
V
AC RMS is the time varying portion of the working voltage.  
RMS is the total rms working voltage.  
DC is the dc offset of the working voltage.  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 19 for the expected lifetime, less than a 60 Hz  
sine wave, and it is well within the limit for a 50-year service life.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 V ac rms and a 400 V dc bus voltage is present  
on the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance, and lifetime of a device, see Figure 22 and  
the following equations.  
Note that the dc working voltage limit in Table 19 is set by the  
creepage of the package as specified in IEC 60664-1. This value  
can differ for specific system level standards.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
TIME  
Figure 22. Critical Voltage Example  
Rev. A | Page 20 of 22  
 
Data Sheet  
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
OUTLINE DIMENSIONS  
10.00 (0.3937)  
9.80 (0.3858)  
9
8
16  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
45°  
0.25 (0.0098)  
1.75 (0.0689)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
1.35 (0.0531)  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AC  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 23. 16-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-16)  
Dimensions shown in millimeters and (inches)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 24. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-16)  
Dimensions shown in millimeters and (inches)  
Rev. A | Page 21 of 22  
 
 
ADuM130D/ADuM130E/ADuM131D/ADuM131E  
Data Sheet  
ORDERING GUIDE  
No. of  
No. of  
Withstand  
Inputs, Inputs, Voltage  
Fail-Safe  
Output  
State  
Temperature  
Range  
VDD1  
Side  
VDD2  
Side  
Rating  
(kV rms)  
Input  
Disable Enable Description  
16-Lead SOIC_N R-16  
Output Package  
Package  
Option  
Model1  
ADuM130D1BRZ  
−40°C to +125°C  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.0  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
ADuM130D1BRZ-RL7 −40°C to +125°C  
ADuM130D0BRZ −40°C to +125°C  
ADuM130D0BRZ-RL7 −40°C to +125°C  
ADuM130E1BRZ −40°C to +125°C  
ADuM130E1BRZ-RL7 −40°C to +125°C  
ADuM130E0BRZ −40°C to +125°C  
ADuM130E0BRZ-RL7 −40°C to +125°C  
ADuM130D1BRWZ −40°C to +125°C  
ADuM130D1BRWZ-RL −40°C to +125°C  
ADuM130D0BRWZ −40°C to +125°C  
ADuM130D0BRWZ-RL −40°C to +125°C  
ADuM130E1BRWZ −40°C to +125°C  
ADuM130E1BRWZ-RL −40°C to +125°C  
ADuM130E0BRWZ −40°C to +125°C  
ADuM130E0BRWZ-RL −40°C to +125°C  
ADuM131D1BRZ −40°C to +125°C  
ADuM131D1BRZ-RL7 −40°C to +125°C  
ADuM131D0BRZ −40°C to +125°C  
ADuM131D0BRZ-RL7 −40°C to +125°C  
ADuM131E1BRZ −40°C to +125°C  
ADuM131E1BRZ-RL7 −40°C to +125°C  
ADuM131E0BRZ −40°C to +125°C  
ADuM131E0BRZ-RL7 −40°C to +125°C  
ADuM131D1BRWZ −40°C to +125°C  
ADuM131D1BRWZ-RL −40°C to +125°C  
ADuM131D0BRWZ −40°C to +125°C  
ADuM131D0BRWZ-RL −40°C to +125°C  
ADuM131E1BRWZ −40°C to +125°C  
ADuM131E1BRWZ-RL −40°C to +125°C  
ADuM131E0BRWZ −40°C to +125°C  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.0  
3.0  
3.0  
3.0  
3.0  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_N R-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
16-Lead SOIC_W RW-16  
3.0  
3.0  
3.0  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
3.75  
ADuM131E0BRWZ-RL −40°C to +125°C  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13348-0-11/15(A)  
Rev. A | Page 22 of 22  
 

相关型号:

ADuM131E0BRWZ-RL

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E0BRZ

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E0BRZ-RL7

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E1BRWZ

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E1BRWZ-RL

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E1BRZ

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADuM131E1BRZ-RL7

3.0 kV RMS/3.75 kV RMS Triple-Channel Digital Isolators
ADI

ADUM131X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM1400

Quad-Channel Digital Isolators
ADI

ADUM1400ARW

Quad-Channel Digital Isolators
ADI

ADUM1400ARW-RL

Quad-Channel Digital Isolator (4/0 Channel Directionality)
ADI

ADUM1400ARWZ

Quad-Channel Digital Isolators
ADI