OP17BIGZ [ADI]

IC OP-AMP, 3800 uV OFFSET-MAX, 26 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier;
OP17BIGZ
型号: OP17BIGZ
厂家: ADI    ADI
描述:

IC OP-AMP, 3800 uV OFFSET-MAX, 26 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier

运算放大器
文件: 总12页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision JFET-Input  
Operational Amplifiers  
a
OP15/OP17  
FEATURES  
GENERAL DESCRIPTION  
Significant Performance Advantages over LF155 and  
LF157 Devices  
The ADI-JFET input series of devices offer clear advantages over  
industry-generic devices and are superior in both cost and perfor-  
mance to many dielectrically-isolated and hybrid op amps. All devices  
offer offset voltages as low as 0.5 mV with TCVOS guaranteed to  
5 mV/C. A unique input bias cancellation circuit reduces the IB  
by a factor 10 over conventional designs. In addition ADI specifies  
IB and IOS with the devices warmed up and operating at 25C ambient.  
Low Input Offset Voltages: 500 V Max  
Low Input Offset Voltage Drift: 2.0 V/؇C  
Minimum Slew Rate Guaranteed on All Models  
Temperature-Compensated Input Bias Currents  
Bias Current Specified Warmed-Up Over Temperature  
Internal Compensation  
Low Input Noise Current: 0.01 pA/÷Hz  
High Common-Mode Rejection Ratio: 100 dB  
Models with MIL-STD 883 Processing Available  
These devices were designed to provide real precision performance  
along with high speed. Although they can be nulled, the design  
objective was to provide low offset-voltage without nulling. Systems  
generally become more cost effective as the number of trim circuits  
is decreased. ADI achieves this performance by use of an improved  
bipolar compatible JFET process coupled with on chip, zener-zap  
offset trimming.  
OP15  
156 Speed with 155 Dissipation: 80 mW Typ  
Wide Bandwidth: 6 MHz  
High Slew Rate: 13 V/s  
Fast Settling to ±0.1%: 1,200 ns  
T he OP15 provides an excellent combinations of high speed and  
low input offset voltage. In addition, the OP15 offers the speed  
of the 156A op amp with the power dissipation of a 155A. T he  
combination of a low input offset voltage of 500 mV, slew rate of  
13 V/ms, and settling time of 1,200 ns to 0.1% makes the OP15  
an op amp of both precision and speed. T he additional features  
of low supply current coupled with an input bias current makes  
the OP15 ideal for a wide range of applications.  
OP17  
Highest Slew Rate: 60 V/s  
Fastest Settling to ±0.1%: 600 ns  
Highest Gain Bandwidth Product (AVCL = 5 Min): 30 MHz  
Guaranteed Input Bias Current @ 125؇C  
T he OP17 has a slew rate of 60 V/ms and is the best choice for  
applications requiring high closed-loop gain with high speed. See  
OP42 datasheet for unity gain applications and the OP215 datasheet  
for a dual configuration of the OP15.  
*R7, R8 ARE ELECTRONICALLY  
ADJUSTED ON CHIP FOR  
MINIMUM OFFSETVOLTAGE.  
V+  
J5  
R8*  
R7*  
Q5  
J8  
NULL  
NULL  
Q16  
Q6  
Q7  
R3  
Q9  
J6  
Q19  
Q24  
Q8  
R1  
J11  
NONINVERTING  
INPUT  
Q17  
Q22  
R13  
J1  
J2  
R2  
C2  
Q2  
–INV  
INPUT  
OUTPUT  
Q1  
Q10  
J9  
J10  
Q3  
Q4  
Q12  
Q23  
R5  
R6  
3.6k  
Q13  
Q11  
Q14  
Q20  
Q25  
3.6k⍀  
R3  
J4  
J3  
C1  
7.4pF  
Q21  
Q16  
Q15  
R11  
R4  
V–  
Figure 1. Simplified Schematic  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
OP15/OP17–SPECIFICATIONS  
؇
(@ V = ؎15 V, T = 25 C, unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
A
OP15A, OP15E  
OP17A, OP17E  
OP15F  
OP17F  
Typ  
OP15G  
OP17G  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Min  
Max  
Min  
Max Unit  
Input Offset Voltage VOS  
RS = 50 W  
0.2  
0.5  
0.4  
1.0  
0.5  
3.0  
mV  
Input Offset Current IOS  
OP15  
T J = 25C1  
3
5
3
5
10  
22  
10  
25  
6
10  
6
20  
40  
20  
50  
12  
20  
12  
20  
50  
100  
50  
pA  
pA  
pA  
pA  
Device Operating  
OP17  
T J = 25C1  
Device Operating  
10  
125  
Input Bias Current  
OP15  
IB  
T J = 25C1  
±15  
±18  
±15  
±20  
±50  
±30  
±40  
±30  
±40  
±100  
±200  
±100  
±250  
±60  
±80  
±60  
±80  
±200 pA  
±400 pA  
±200 pA  
±500 pA  
Device Operating  
±110  
±50  
OP17  
T J = 25C1  
Device Operating  
±130  
Input Resistance  
RIN  
1012  
1012  
1012  
W
Large-Signal  
Voltage Gain  
AVO  
RL 2 kW  
VO = ±10 V  
100  
240  
75  
220  
50  
200  
V/mV  
Output Voltage  
Swing  
VO  
RL = 10 kW  
RL = 2 kW  
±12  
±11  
±13  
±12.7  
±12  
±11  
±13  
±12.7  
±12  
±11  
±13  
±12.7  
V
V
Supply Current  
Slew Rate2  
ISY  
OP15  
OP17  
2.7  
4.6  
4.0  
7.0  
2.7  
4.6  
4.0  
7.0  
2.8  
4.8  
5.0  
8.0  
mA  
mA  
SR  
AVCL = 1, OP15  
AVCL = 5, OP17  
10  
45  
13  
60  
7.5  
35  
11  
50  
5
25  
9
40  
V/ms  
V/ms  
Gain Bandwidth3  
Product  
GBW  
CLBW  
tS  
OP15  
OP17  
4.0  
20  
6.0  
30  
3.5  
15  
5.7  
28  
3.0  
11  
5.4  
26  
MHz  
MHz  
Closed-Loop  
Bandwidth  
AVCL = 1, OP15  
AVCL = 5, OP17  
14  
11  
13  
10  
12  
9
MHz  
MHz  
Settling T ime  
OP15  
T o 0.01%  
T o 0.05%  
T o 0.10%  
T o 0.01%  
T o 0.05%  
T o 0.10%  
4.5  
1.5  
1.2  
1.5  
0.7  
0.6  
4.5  
1.5  
1.2  
1.5  
0.7  
0.6  
4.7  
1.6  
1.3  
1.6  
0.8  
0.7  
ms  
ms  
ms  
ms  
ms  
ms  
OP17  
Input Voltage Range IVR  
±10.5  
±10.5  
±10.3  
V
Common-Mode  
Rejection Ratio  
CMRR  
VCM = ±10.5 V  
VCM = ±10.3 V  
86  
100  
10  
86  
100  
10  
dB  
dB  
82  
96  
10  
Power Supply  
Rejection Ratio  
PSRR  
en  
VS = ±10 V to ±18 V  
VS = ±10 V to ±18 V  
51  
51  
mV/V  
mV/V  
80  
Input Noise  
Voltage Density  
fO = 100 Hz  
fO = 1 kHz  
20  
15  
20  
15  
20  
15  
nV/÷Hz  
nV/÷Hz  
Input Noise  
Current Density  
in  
fO = 100 Hz  
fO = 1 kHz  
0.01  
0.01  
0.01  
0.01  
0.01  
0.01  
pA/÷Hz  
pA/÷Hz  
Input Capacitance  
NOT ES  
CIN  
3
3
3
pF  
1Input bias current is specified for two different conditions. T he T J = 25C specification is with the junction at ambient temperature; the device operating specification  
is with the device operating in a warmed-up condition at 25C ambient. T he warmed-up bias current value is correlated to the junction temperature value via the  
curves of IB versus T J and IB versus T A. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and  
IOS are measured at VCM = 0.  
2Settling time is defined here for a unity gain inverter connection using 2 kW resistors. It is the time required for the error voltage (the voltages at the inverting input pit  
on the amplifier) to settle to within a specified percent of its final value from the time a 10 V step input is applied to the inverter. See settling time test circuit.  
3Sample tested.  
4Settling time is defined here for AV = –5 connection with RF = 2 kW. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to  
settle to within 0.01% of its final value from the time a 2 V step input is applied to the inverter. See settling time test circuit.  
–2–  
REV. A  
OP15/OP17  
؇
؇
Electrical Characteristics (@ V = ±15 V, 55 C £ T £ 125 C, unless otherwise noted.)  
S
A
Conditions  
RS = 50 W  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Input Offset Voltage  
VOS  
0.4  
0.9  
mV  
Average Input Offset Voltage Drift1  
Without External T rim  
With External T rim  
T CVOS  
T CVOS  
2
2
5
mV/C  
mV/C  
RP = 100 W  
Input Offset Current2  
OP17  
IOS  
TJ = 125C  
TA = 125C, device operating  
0.6  
1.0  
4.0  
8.5  
nA  
nA  
Input Bias Current2  
OP17  
IB  
TJ = 125C  
TA = 125C, device operating  
±1.2  
±2.0  
±5.0  
±11  
nA  
nA  
Input Voltage Range  
IVR  
±10.4  
V
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing  
CMRR  
PSRR  
AVO  
VCM = ±10.4 V  
85  
97  
dB  
VS = ±10 V to ±18 V  
RL 2 kW, VO = ± 10 V  
RL 10 kW  
15  
57  
mV/V  
V/mV  
V
35  
120  
±13  
VO  
±12  
NOT ES  
1Sample tested.  
2Input bias current is specified for two different conditions. T he T J = 25C specification is with the junction at ambient temperature; the device operating specification  
is with the device operating in a warmed-up condition at 25C ambient. T he warmed-up bias current value is correlated to the junction temperature value via the  
curves of IB versus T J and IB versus T A. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and  
IOS are measured at VCM = 0.  
؇
؇
؇
؇
ELECTRICAL CHARACTERISTICS (@ V = ؎15 V, 0 C £ T £ 70 C for E and F grades, –40 C £ T £ 85 C for G grades  
unless otherwise noted)  
S
A
A
OP15E/OP17E  
OP15F/OP17F  
OP15G/OP17G  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max Unit  
Input Offset Voltage VOS  
RS = 50 W  
0.3  
0.75  
0.55  
1.5  
0.7  
3.8  
mV  
Average Input Offset  
Voltage Drift1  
Without External Trim T CVOS  
2
2
5
3
3
10  
4
4
30  
mV/C  
mV/C  
With External T rim  
T CVOSn  
RP = 100 W  
T J = 70C  
TA = 70C, Device Operating  
T J = 70C  
Input Offset Current2 IOS  
OP15  
0.04  
0.06  
0.04  
0.07  
0.30  
0.55  
0.30  
0.70  
0.06  
0.08  
0.06  
0.10  
0.45  
0.80  
0.45  
1.1  
0.08  
0.10  
0.08  
0.15  
0.85 nA  
1.2 nA  
0.85 nA  
1.7 nA  
OP17  
TA = 70C, Device Operating  
Input Bias Current2  
OP15  
IB  
T J = 70C  
TA = 70C, Device Operating  
T J = 70C  
±0.10 ±0.40  
±0.13 ±0.75  
±0.10 ±0.40  
±0.15 ±0.90  
±0.12 ±0.60  
±0.16 ±1.1  
±0.12 ±0.60  
±0.20 ±1.4  
±0.14 ±0.80 nA  
±0.19 ±1.5 nA  
±0.14 ±0.80 nA  
±0.25 ±2.0 nA  
OP17  
TA = 70C, Device Operating  
Input Voltage Range IVR  
±10.4  
±10.4  
±10.25  
V
Common-Mode  
Rejection Ratio  
CMRR  
VCM = ±10.4 V  
VCM = ±10.25 V  
85  
98  
85  
96  
dB  
dB  
80  
94  
Power Supply  
Rejection Ratio  
PSRR  
AVO  
VO  
VS = ±10 V to ±18 V  
VS = ±10 V to ±15 V  
13  
57  
13  
57  
mV/V  
mV/V  
20  
100  
Large Signal  
Voltage Gain  
RL 2 kW  
VO = ±10 V  
65  
200  
±13  
50  
180  
±13  
35  
160  
V/mV  
Output Voltage  
Swing  
RL 10 kW  
±12  
±12  
±12  
±13  
V
NOT ES  
1Sample tested.  
2Input bias current is specified for two different conditions. T he T J = 25C specification is with the junction at ambient temperature; the device operating specification  
is with the device operating in a warmed-up condition at 25C ambient. T he warmed-up bias current value is correlated to the junction temperature value via the  
curves of IB versus T J and IB versus T A. ADI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I B and  
IOS are measured at VCM = 0.  
–3–  
REV. A  
OP15/OP17–SPECIFICATIONS  
ABSOLUTEMAXIMUMRATINGS1  
Package Type  
JA*  
Unit  
JC  
Supply Voltage  
All Devices Except C, G (Packaged)  
and GR Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22 V  
C, G (Packaged) and GR Grades . . . . . . . . . . . . . . . . ±18 V  
Operating T emperature  
A Grade . . . . . . . . . . . . . . . . . . . . . . . . . . –55C to +125C  
E, F Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . 0C to 70C  
G Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . –40C to +85C  
Maximum Junction T emperature . . . . . . . . . . . . . . . . . 150C  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
All Devices Except C, G Grades . . . . . . . . . . . . . . . . ±40 V  
C, G Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30 V  
Input Voltage2  
8-Lead Hermetic DIP (Z)  
8-Lead SO (S)  
T O-99 (J)  
148  
158  
150  
16  
43  
18  
C/W  
C/W  
C/W  
*JA is specified for worst-case mounting conditions, i.e., JA is specified for device  
in socket for CERDIP and PDIP packages; JA is specified for device soldered to  
printed circuit board for SO packages.  
+20V  
10k  
All Devices Except C, G Grades . . . . . . . . . . . . . . . . ±20 V  
C, G Grades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V  
Input Voltage  
2
7
8
OP15E, OP15F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V  
OP15G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V  
OP17A, OP17E, OP17F . . . . . . . . . . . . . . . . . . . . . . ±20 V  
OP17G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±16 V  
3
+3V  
4
10k⍀  
300⍀  
–20V  
Output Short-Circuit Duration  
Indefinite  
Figure 2. Burn-In Circuit  
Storage T emperature Range . . . . . . . . . . . . –65C to +150C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . . . 300C  
NOT ES  
*Absolute Maximum Ratings apply to packaged parts, unless otherwise noted.  
8-LeadCERDIP  
8-LeadSOIC  
(S-Suffix)  
8-Lead TO-99  
(J-Suffix)  
(Z-Suffix)  
BAL  
–IN  
+IN  
V–  
NC  
V+  
BAL  
–IN  
+IN  
V–  
NC  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
OUT  
BAL  
OUT  
BAL  
ORDERING GUIDE  
Package Options  
TA = 25C  
VOS MAX  
(mV)  
Operating  
Temperature  
Range  
TO-99  
CERDIP  
SOIC  
0.5  
1.0  
3.0  
OP17EJ  
OP15EZ  
OP17EZ  
COM  
COM  
XIND  
OP15FJ*  
OP17FJ  
OP15FZ*  
OP17FZ  
OP15GJ*  
OP15GZ*  
OP15GS*  
OP17GZ  
For military processed devices, please refer to the Standard Microcircuit Drawing  
(SMD) available at www.dscc.dl.mil/programs/milspec/default.asp.  
SMD Part Number  
ADI Equivalent  
5962-8954201GA*  
5962-8954201PA*  
5962-8954301GA*  
5962-8954301PA*  
OP15AJMDA  
OP15AZMDA  
OP16AJMDA  
OP16AZMDA  
*Not recommended for new designs. Obsolete April 2002.  
–4–  
REV. A  
TypicalPerformanceCharacteristics –OP15/OP17  
30  
27  
24  
21  
18  
15  
12  
9
100  
WARMED-UP IN FREE AIR  
V
S
= 15V  
V
S
=
15V  
T
A
= 25؇C  
80  
60  
–55؇C  
+25؇C  
a. UNDERCANCELLED I = +16pA @V  
= 0  
CM  
B
b. PERFECTLY CANCELLED I = 0pA @V  
= 0  
B
CM  
= 0  
40 c. UNDERCANCELLED I = –16pA @V  
B
CM  
+125؇C  
20  
a
c
b
6
0
3
0
–20  
–12 –10 –8 –6 –4 –2  
100  
1k  
10k  
100k  
0
2
4
6
8
10 12  
INPUT COMMON-MODEVOLTAGE V  
OUTPUT LOAD RESISTANCE ⍀  
TPC 4. Input Bias Current vs. Common-Mode Voltage  
TPC 1. Maximum Output Swing vs. Load Performance  
1M  
20  
R
L
= 2k⍀  
T
A
= 25؇C  
500k  
400k  
–55؇C  
15  
10  
5
300k  
200k  
25؇C  
125؇C  
100k  
POSITIVE  
FROM –55؇CTO –125؇C  
CHANGE IN CMVR IS < 0.2V  
NEGATIVE  
10k  
0
0
5
10  
SUPPLYVOLTAGE V  
15  
20  
5
10  
15  
20  
SUPPLYVOLTAGE V  
TPC 2. Common-Mode Input Voltage Range vs. Supply  
Voltage  
TPC 5. Open-Loop Voltage Gain vs. Supply Voltage  
40  
1k  
T
V
= 25؇C  
R
T
= 2k⍀  
= 25؇C  
A
L
=
15V  
S
A
100Hz < f < 10kHz  
10Hz < f < 10kHz FOR R > 4M⍀  
a AMPLIFIER NOISE  
b JOHNSON RESISTOR NOISE  
c AMPLIFIER NOISE MEASURED  
WITH SOURCE RESISTOR  
100  
10  
S
30  
20  
10  
0
c
b
1
0.1  
0.01  
a
0
5
10  
15  
20  
100k  
1M  
10M  
100M  
1G  
10G  
SUPPLYVOLTAGE V  
SOURCE RESISTANCE ⍀  
TPC 6. Output Voltage Swing vs. Supply Voltage  
TPC 3. Voltage Noise vs. Source Resistance  
–5–  
REV. A  
OP15/OP17  
9
1n  
100p  
10p  
V
S
= 15V  
T
A
= 25؇C  
7
I
= 4.0mA FOR MAX CURVES  
2.5mA FOR TYP CURVES  
SY  
5
155A MAX  
V
OS  
3
OP15A MAX  
1
155A TYP  
TYPICAL DRIFT BAND  
–1  
–3  
OP15 TYP  
120 140  
–5  
10k  
100k  
R -TRIMMING POTENTIOMETERVALUE  
1M  
0
20  
40  
60  
80  
100  
P
TIME AFTER POWER APPLIED – s  
TPC 7. Nulled Offset Voltage Drift vs. Potentiometer Size  
TPC 10. OP15 Bias Current vs. Time in Free Air  
6
1n  
V
S
= 15V  
156A/157A MAX  
4
2
156A/157A TYP  
0
100p  
OP17A MAX  
V
S
=
15V  
T
= 25؇C  
A
–2  
–4  
–6  
I
= 6.7mA FOR MAX CURVES  
5.0mA FOR TYP CURVES  
SY  
OP17A TYP  
10p  
–50  
–25  
0
25  
50  
75  
100  
125  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE – ؇C  
TIME AFTER POWER APPLIED – s  
TPC 8. Offset Voltage Drift vs. Temperature of  
Representative Units  
TPC 11. OP17 Bias Current vs. Time in Free Air  
100n  
100n  
V
S
= 15V  
UNITS AREWARMED UP  
155A MAX  
10n  
155A MAX  
155ATYP  
10n  
1n  
155ATYP  
OP15A MAX  
OP15A MAXP  
OP15 TYP  
1n  
OP15A TYP  
100p  
100p  
10p  
10p  
10  
30  
50  
70  
90  
110  
130  
150  
AMBIENTTEMPERATURE – ؇C  
10  
30  
50  
70  
90  
110  
130  
150  
AMBIENTTEMPERATURE – ؇C  
TPC 12. OP15 Input Bias Current vs. Ambient Temperature  
(Units Warmed Up in Free Air)  
TPC 9. Input Bias Current vs. Ambient Temperature  
(Units Warmed Up in Free Air)  
–6–  
REV. A  
OP15/OP17  
100n  
10n  
1n  
0
0
0
0
0
0
0
0
0
156A/157A MAX  
156A/157A TYP  
OP17A MAX  
OP17A TYP  
100p  
10p  
10  
30  
50  
70  
90  
110  
130  
150  
0
0
0
0
0
0
0
0
0
0
0
TIME – 500ns/DIV  
AMBIENTTEMPERATURE – ؇C  
TPC 13. OP17 Input Bias Current vs. Ambient Temperature  
(Units Warmed Up in Free Air)  
TPC 16. OP15 Large Signal Transient Response  
0
0
0
0
0
0
0
0
0
3.5  
3.0  
–55؇C  
2.5  
25؇C  
125؇C  
2.0  
1.5  
0
5
10  
15  
20  
0
0
0
0
0
0
0
0
0
0
0
TIME – 100ns/DIV  
SUPPLYVOLTAGE V  
TPC 14. OP15 Supply Current vs. Supply Voltage  
TPC 17. OP15 Small Signal Transient Response  
5.5  
10  
V
T
= 15V  
= 25؇C  
S
10mV  
5mV  
1mV  
A
A
V
= –1  
5.0  
4.5  
5
0
–55؇C  
25؇C  
4.0  
–5  
125؇C  
10mV  
0.5  
5mV  
1mV  
2.0  
3.5  
–10  
0
5
10  
15  
20  
0
1.0  
1.5  
2.5  
SUPPLYVOLTAGE V  
SUPPLYVOLTAGE V  
TPC 15. OP17 Supply Current vs. Supply Voltage  
TPC 18 OP15 Settling Time  
–7–  
REV. A  
OP15/OP17  
18  
90  
28  
24  
20  
16  
12  
8
V
T
A
= 15V  
= 25؇C  
= 1  
V
T
= 15V  
= 25؇C  
S
S
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
16  
14  
PHASE MARGIN = 86؇  
A
A
V
12  
10  
8
6
A
V
> 10  
4
2
0
–2  
–4  
–6  
4
0
A
V
= 1  
–8  
–10  
1M  
100k  
1M  
10M  
10M  
100M  
FREQUENCY – MHz  
FREQUENCY – MHz  
TPC 19. OP15 Closed-Loop Bandwidth and Phase vs.  
Frequency  
TPC 22. OP15 Maximum Output Swing vs. Frequency  
70  
28  
V
= 15V  
V
=
15V  
S
S
A
= 1  
60  
50  
40  
30  
20  
10  
0
24  
20  
16  
12  
8
V
BANDWIDTHVARIATION FROM  
5V <V  
<
20V IS < 5 %  
S
NEGATIVE  
CLOSED-LOOP  
BANDWIDTH A = 1  
V
GAIN BANDWIDTH  
PRODUCT  
POSITIVE  
4
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
AMBIENTTEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 23. OP15 Slew Rate vs. Temperature  
TPC 20. OP15 Bandwidth vs. Temperature  
100  
80  
60  
40  
20  
0
120  
100  
80  
V
T
=
15V  
V
T
=
15V  
S
S
= 25؇C  
= 25؇C  
A
A
60  
40  
20  
0
–20  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 24. OP15 Common-Mode Rejection Ratio vs. Frequency  
TPC 21. OP15 Open-Loop Gain vs. Frequency  
–8–  
REV. A  
OP15/OP17  
120  
100  
80  
60  
40  
20  
0
0
0
0
0
0
0
0
0
0
T
= 25؇C  
A
POSITIVE SUPPLY  
NEGATIVE SUPPLY  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
0
0
0
0
0
0
0
0
0
0
FREQUENCY – Hz  
TIME – 200ns/DIV  
TPC 25. OP15 Power Supply Rejection Ratio vs. Frequency  
TPC 28. OP17 Large Signal Transient Response  
100  
0
0
0
0
0
0
0
0
0
V
T
=
15V  
S
= 25؇C  
A
A
= 100  
V
10  
A
= 10  
V
A
V
= 1  
1
0
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
0
0
0
0
0
0
0
0
0
0
0
TIME – 100ns/DIV  
TPC 26. OP15 Output Impedance vs. Frequency  
TPC 29. OP17 Small Signal Transient Response  
140  
10  
V
T
A
= 15V  
= 25؇C  
= –5  
V
T
=
15V  
S
S
= 25؇C  
5mV  
10mV  
1mV  
A
A
120  
100  
80  
60  
40  
20  
0
V
5
0
l/f CORNER FREQUENCY  
–5  
5mV  
1mV  
10mV  
–10  
1k  
10k  
100k  
1M  
10M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
FREQUENCY – Hz  
SUPPLYVOLTAGE V  
TPC 30. OP17 Settling Time  
TPC 27. OP15 Voltage Noise Density vs. Frequency  
–9–  
REV. A  
OP15/OP17  
28  
24  
20  
16  
12  
8
120  
100  
80  
60  
40  
20  
0
V
= 15V  
= 25؇C  
= 5  
S
T
= 25؇C  
A
T
A
A
V
POSITIVE  
SUPPLY  
NEGATIVE SUPPLY  
4
0
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – MHz  
FREQUENCY – Hz  
TPC 31. OP17 Maximum Output Swing vs. Frequency  
TPC 34. OP17 Power Supply Rejection Ratio vs. Frequency  
110  
100  
V
=
15V  
V
T
= 15V  
= 25؇C  
NEGATIVE  
POSITIVE  
S
S
A
= 5  
A
100  
90  
80  
70  
60  
50  
40  
V
10  
1.0  
0
A
= 100  
V
A
V
= 10  
–50  
–25  
0
25  
50  
75  
100  
125  
100k  
FREQUENCY – Hz  
1k  
10k  
1M  
10M  
AMBIENTTEMPERATURE – ؇C  
TPC 32. OP17 Slew Rate vs. Temperature  
TPC 35. OP17 Output Impedance vs. Frequency  
100  
80  
60  
40  
20  
0
140  
V
=
15V  
S
V
T
=
15V  
S
T
A
= 25؇C  
= 25؇C  
A
120  
100  
80  
60  
40  
20  
0
l/f CORNER FREQUENCY  
1
10  
100  
1k  
10k  
100k  
1M  
10M 100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
TPC 33. OP17 Common-Mode Rejection Ration vs.  
Frequency  
TPC 36. OP17 Voltage Noise vs. Frequency  
–10–  
REV. A  
OP15/OP17  
2k  
0.1%  
TEST CIRCUITS  
+15V  
V+  
400⍀  
0.1%  
10V  
0V  
100k  
2
3
7
6
7
OP17  
2N4416  
100pF  
5
2
3
1k⍀  
0.1%  
1
4
6
4
3k⍀  
–15V  
V
OUT  
SUMMING  
NODE  
A
V
= –1  
5k⍀  
0.1%  
NOTE:V  
CAN BETRIMMEDWITH POTENTIOMETERS  
OS  
RANGING FROM 10kTO 1M. FOR MOST UNITS  
TCV WILL BE MINIMIZEDWHEN V IS ADJUSTED  
WITH A 100kPOTENTIOMETER  
OS  
OS  
SCOPE  
+15V  
2N4416  
Figure 3. Input Offset Voltage Nulling  
2k⍀  
2k⍀  
0.1%  
Figure 6. OP17 Settling Time Test Circuit  
+15V  
APPLICATION INFORMATION  
DynamicOperatingConsiderations  
2k⍀  
0.1%  
10V  
0V  
2
3
7
OP15  
4
6
As with most amplifiers, care should be taken with lead dress,  
component placement and supply decoupling in order to ensure  
stability. For example, resistors from the output to an input should  
be placed with the body close to the input to minimize “pick-up”  
and maximize the frequency of the feedback pole by minimizing  
the capacitance for the input to ground.  
2N4416  
5k⍀  
0.1%  
100pF  
3k⍀  
–15V  
V
OUT  
SUMMING  
NODE  
A
V
= –1  
5k⍀  
0.1%  
SCOPE  
A feedback pole is created when the feedback around any amplifier  
is resistive. The parallel resistance and capacitance from the input  
of the device (usually the inverting input) to ac ground set the  
frequency of this pole. In many instances the frequency of this  
pole is much greater than the expected, 3 dB frequency of the  
close-loop gain, and consequently there is negligible effect on  
stability margin. However, if the feedback pole is less than approxi-  
mately six times the expected 3 dB frequency, a lead capacitor  
should be placed from the output to the negative input of the op  
amp. T he value of the added capacitor should be such that the  
RC time-constant of this capacitor and the resistance it parallels  
is greater than, or equal to, the original feedback pole time is constant.  
+15V  
2N4416  
2k⍀  
Figure 4. OP15 Settling Time Test Circuit  
R1  
R2  
10k  
5k⍀  
C2  
30pF  
DIGITAL INPUTS  
+10V  
LSB  
MSB  
5
+15V  
7
R
6
7
8
9
10 11  
12  
REF  
5k  
B1 B2 B3 B4 B5 B6 B7 B8  
14  
15  
4
2
2
3
V
I
O
REF+  
6
DAC08E  
OP15F  
V
I
O
REF–  
V+  
V
= 0VTO 10V  
O
4
V–  
13  
C
C
V
LC  
3
16  
1
C1  
0.1F  
+15V  
–15V  
–15V  
Figure 5. Current-to-Voltage Amplifier Output  
REV. A  
–11–  
OP15/OP17  
OUTLINEDIMENSIONS  
D imensions shown in millimeters and (inches).  
8-LeadCeramicDipGlassHermeticSeal[CERDIP]  
8-LeadStandardSmallOutlinePackage[SOIC]  
(Q-8)  
NarrowBody  
(R-8)  
0.13 (0.0051) 1.40 (0.0551)  
MIN  
MAX  
5.00 (0.1968)  
4.80 (0.1890)  
8
5
7.87 (0.3089)  
5.59 (0.2201)  
8
1
5
4
PIN 1  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1
4
2.54 (0.1000) BSC  
10.29 (0.4051) MAX  
PIN 1  
8.13 (0.3201)  
7.37 (0.2902)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.52 (0.0600)  
0.38 (0.0150)  
1.75 (0.0688)  
1.35 (0.0532)  
5.08 (0.2000)  
MAX  
0.25 (0.0098)  
0.10 (0.0040)  
3.81 (0.1500)  
5.08 (0.2000)  
3.18 (0.1252)  
8؇  
0.51 (0.0201)  
0.33 (0.0130)  
MIN  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.19 (0.0075)  
SEATING  
PLANE  
0.41 (0.0160)  
0.38 (0.0150)  
0.20 (0.0079)  
0.58 (0.0228)  
0.36 (0.0142)  
SEATING  
PLANE  
15  
0
1.78 (0.0701)  
0.76 (0.0299)  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
8-Lead MetalCan[TO-99]  
(H-08)  
REFERENCE PLANE  
12.70 (0.5000)  
MIN  
4.70 (0.1850)  
4.19 (0.1650)  
6.35 (0.2500) MIN  
2.54 (0.1000) BSC  
5
4.06 (0.1600)  
3.56 (0.1400)  
1.27 (0.0500) MAX  
4
6
1.14 (0.0450)  
0.69 (0.0270)  
5.08  
(0.2000)  
BSC  
3
7
2
8
1
2.54  
(0.1000)  
BSC  
0.48 (0.0190)  
0.41 (0.0160)  
0.86 (0.0340)  
0.71 (0.0280)  
1.02 (0.0400) MAX  
0.53 (0.0210)  
0.41 (0.0160)  
1.02 (0.0400)  
0.25 (0.0100)  
45 BSC  
BASE & SEATING PLANE  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-002AK  
Revision History  
Location  
Page  
9/02DataSheetchangedfromREV. 0toREV. A.  
Deleted OP16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Edits to FEAT URES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to GENERAL DESCRIPT ION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to SPECIFICAT IONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to ABSOLUT E MAXIMUM RAT INGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Edits to DICE CHARACT ERIST ICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Edits to WAFER T EST LIMIT S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Deleted 12 T PCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-12  
Updated OUT LINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–12–  
REV. A  

相关型号:

OP17BJ

Operational Amplifier, 1 Func, 2000uV Offset-Max, BIPolar, TO-99, 8 PIN
ROCHESTER

OP17BJ/883

Voltage-Feedback Operational Amplifier
ETC

OP17BJ/883C

OP-AMP, 2000uV OFFSET-MAX, 28MHz BAND WIDTH, MBCY8, TO-99, 8 PIN
ROCHESTER

OP17BZ

Analog IC
ETC

OP17CJ

Operational Amplifier
ETC

OP17CJ/883

Voltage-Feedback Operational Amplifier
ETC

OP17CJ/883C

IC OP-AMP, 3000 uV OFFSET-MAX, 26 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP17CZ/883

Voltage-Feedback Operational Amplifier
ETC

OP17EJ

Operational Amplifier, 1 Func, 750uV Offset-Max, BIPolar, TO-99, 8 PIN
ROCHESTER

OP17EJ

IC OP-AMP, 500 uV OFFSET-MAX, 30 MHz BAND WIDTH, MBCY8, TO-99, 8 PIN, Operational Amplifier
ADI

OP17EZ

IC OP-AMP, 500 uV OFFSET-MAX, 30 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERAMIC, DIP-8, Operational Amplifier
ADI

OP17EZ

Operational Amplifier, 1 Func, 750uV Offset-Max, BIPolar, CDIP8, HERMETIC SEALED, CERAMIC, DIP-8
ROCHESTER