OP97BIFZ [ADI]

IC OP-AMP, 200 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier;
OP97BIFZ
型号: OP97BIFZ
厂家: ADI    ADI
描述:

IC OP-AMP, 200 uV OFFSET-MAX, 0.9 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier

放大器 CD
文件: 总16页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, High Precision  
Operational Amplifier  
OP97  
FEATURES  
PIN CONNECTIONS  
1
Low supply current: 600 μA maximum  
OP07 type performance  
Offset voltage: 20 μV maximum  
Offset voltage drift: 0.6 μV/°C maximum  
Very low bias current  
25°C: 100 pA maximum  
NULL  
8
7
6
5
NULL  
OP97  
2
3
4
V+  
–IN  
+IN  
OUT  
OVER  
COMP  
V–  
Figure 1. 8-Lead PDIP (P Suffix)  
8-Lead SOIC (S Suffix)  
−55°C to +125°C: 250 pA maximum  
High common-mode rejection: 114 dB minimum  
Extended industrial temperature range: −40°C to +85°C  
GENERAL DESCRIPTION  
The OP97 is a low power alternative to the industry-standard  
OP07 precision amplifier. The OP97 maintains the standards of  
performance set by the OP07 while utilizing only 600 μA supply  
current, less than 1/6 that of an OP07. Offset voltage is an ultralow  
25 μV, and drift over temperature is below 0.6 μV/°C. External  
offset trimming is not required in the majority of circuits.  
Common-mode rejection and power supply rejection are also  
improved with the OP97, at 114 dB minimum over wider  
ranges of common-mode or supply voltage. Outstanding PSR, a  
supply range specified from 2.25 V to 20 V, and the minimal  
power requirements of the OP97 combine to make the OP97 a  
preferred device for portable and battery-powered instruments.  
Improvements have been made over OP07 specifications in  
several areas. Notable is bias current, which remains below  
250 pA over the full military temperature range. The OP97 is  
ideal for use in precision long-term integrators or sample-and-  
hold circuits that must operate at elevated temperatures.  
The OP97 conforms to the OP07 pinout, with the null potenti-  
ometer connected between Pin 1 and Pin 8 with the wiper to  
V+. The OP97 upgrades circuit designs using AD725, OP05,  
OP07, OP12, and PM1012 type amplifiers. It may replace 741-  
type amplifiers in circuits without nulling or where the nulling  
circuitry has been removed.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1997–2009 Analog Devices, Inc. All rights reserved.  
 
OP97  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Application Information................................................................ 11  
AC Performance ............................................................................. 12  
Guarding and Shielding................................................................. 13  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 16  
Pin Connections ............................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
01/02—Rev. C to Rev. D  
3/09—Rev. F to Rev. G  
Changes to Figure 20 and Figure 23............................................... 9  
Changes to Figure 26 and Figure 27............................................. 10  
Updated Outline Dimensions....................................................... 15  
Changes to Ordering Guide .......................................................... 16  
Edits to Absolute Maximum Ratings..............................................3  
Edits to Ordering Guide ...................................................................3  
Deleted DICE Characteristics..........................................................3  
Deleted Wafer Test Limits ................................................................3  
Edits to Applications Information...................................................7  
11/07—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Ordering Guide .......................................................... 16  
07/03—Rev. D to Rev. E  
Deleted H-08A....................................................................Universal  
Deleted Q-8 .........................................................................Universal  
Deleted E-20A.....................................................................Universal  
Deleted Die Characteristics............................................................. 4  
Deleted Wafer Test Limits ............................................................... 4  
Updated TPC 14 ............................................................................... 5  
Updated Outline Dimensions....................................................... 10  
Rev. G | Page 2 of 16  
 
OP97  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP97E  
Typ  
OP97F  
Typ  
Parameter  
Symbol  
Conditions  
Min  
Max  
Min  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Offset Voltage  
VOS  
10  
25  
30  
75  
μV  
Long-Term Offset  
Voltage Stability  
Input Offset Current  
Input Bias Current  
ΔVOS/Time  
IOS  
IB  
0.3  
30  
30  
0.3  
30  
30  
μV/month  
pA  
150 pA  
100  
100  
150  
Input Noise Voltage  
Input Noise Voltage Density  
en p-p  
en  
0.1 Hz to 10 Hz  
fO = 10 Hz1  
0.5  
17  
14  
0.5  
17  
14  
μV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
V/mV  
dB  
30  
22  
30  
22  
fO = 1000 Hz2  
Input Noise Current Density  
Large Signal Voltage Gain  
Common-Mode Rejection  
Input Voltage Range3  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Differential Input Resistance4  
POWER SUPPLY  
in  
fO = 10 Hz  
VO = 10 V; RL = 2 kΩ  
20  
20  
AVO  
CMR  
IVR  
300  
114  
13.5  
2000  
132  
14.0  
200  
110  
13.5  
2000  
132  
14.0  
VCM  
= 13.5 V  
V
VO  
RIN  
RL = 10 kΩ  
13  
30  
14  
13  
30  
14  
V
MΩ  
Power Supply Rejection  
Supply Current  
PSR  
ISY  
VS = 2 V to 20 V  
Operating range  
114  
2
132  
380  
15  
110  
2
132  
380  
15  
dB  
μA  
V
600  
20  
600  
20  
Supply Voltage  
VS  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
0.1  
0.4  
0.2  
0.9  
0.1  
0.4  
0.2  
0.9  
V/μs  
MHz  
Closed-Loop Bandwidth  
BW  
AVCL = 1  
1 10 Hz noise voltage density is sample tested. Devices 100% tested for noise are available on request.  
2 Sample tested.  
3 Guaranteed by CMR test.  
4 Guaranteed by design.  
Rev. G | Page 3 of 16  
 
 
 
 
OP97  
VS = 15 V, VCM = 0 V, 40°C ≤ TA ≤ +85°C for the OP97E/OP97F, unless otherwise noted.  
Table 2.  
OP97E  
Typ  
25  
OP97F  
Typ  
60  
Parameter  
Symbol  
VOS  
TCVOS  
Conditions  
Min  
Max  
60  
Min  
Max  
200  
2.0  
Unit  
μV  
μV/°C  
Input Offset Voltage  
Average Temperature  
Coefficient of VOS  
S suffix  
0.2  
0.6  
0.3  
0.3  
Input Offset Current  
Average Temperature  
Coefficient of IOS  
IOS  
TCIOS  
60  
0.4  
250  
2.5  
80  
0.6  
750  
7.5  
pA  
pA/°C  
Input Bias Current  
Average Temperature  
Coefficient of IB  
Large Signal Voltage Gain  
Common-Mode Rejection  
Power Supply Rejection  
Input Voltage Range1  
Output Voltage Swing  
Slew Rate  
IB  
60  
250  
2.5  
80  
750  
7.5  
pA  
TCIB  
AVO  
CMR  
PSR  
IVR  
VO  
SR  
ISY  
VS  
0.4  
0.6  
pA/°C  
V/mV  
dB  
dB  
V
V
V/μs  
μA  
VO = 10 V; RL = 2 kΩ  
200  
108  
108  
13.5  
13  
1000  
128  
126  
14.0  
14  
0.15  
400  
15  
150  
108  
108  
13.5  
13  
1000  
128  
128  
14.0  
14  
0.15  
400  
15  
VCM  
= 13.5 V  
VS = 2.5 V to 20 V  
RL = 10 kΩ  
0.05  
0.05  
Supply Current  
Supply Voltage  
800  
20  
800  
20  
Operating range  
2.5  
2.5  
V
1 Guaranteed by CMR test.  
Rev. G | Page 4 of 16  
 
OP97  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Absolute maximum ratings apply to both DICE and packaged  
parts, unless otherwise noted.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3.  
Table 4.  
Package Type  
Parameter  
Rating  
20 V  
20 V  
1 V  
10 mA  
1
Supply Voltage  
Input Voltage1  
θJA  
θJC  
43  
43  
Unit  
°C/W  
°C/W  
8-Lead PDIP (P Suffix)  
8-Lead SOIC (S Suffix)  
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for  
device in socket for PDIP package; θJA is specified for device soldered to  
printed circuit board for SOIC package.  
103  
158  
Differential Input Voltage2  
Differential Input Current2  
Output Short-Circuit Duration  
Operating Temperature Range  
OP97E, OP97F (P, S)  
Storage Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Indefinite  
−40°C to +85°C  
ESD CAUTION  
−65°C to +150°C  
−65°C to +150°C  
300°C  
1 For supply voltages less than 20 V, the absolute maximum input voltage is  
equal to the supply voltage.  
2 The inputs of the OP97 are protected by back-to-back diodes. Current-  
limiting resistors are not used in order to achieve low noise. Differential  
input voltages greater than 1 V cause excessive current to flow through the  
input protection diodes unless limiting resistance is used.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. G | Page 5 of 16  
 
 
 
 
 
OP97  
TYPICAL PERFORMANCE CHARACTERISTICS  
400  
60  
40  
T
V
= 25°C  
A
V
T
= ±15V  
= 25°C  
1894 UNITS  
S
A
= 0V  
CM  
V
= 0V  
CM  
I
B
300  
200  
100  
0
20  
0
I
+
B
–20  
–40  
–60  
I
OS  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–40  
–20  
0
20  
40  
100  
60  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
Figure 5. Input Bias, Offset Current vs. Temperature  
Figure 2. Typical Distribution of Input Offset Voltage  
60  
40  
400  
300  
200  
100  
0
T
V
= 25°C  
= ±15V  
1920 UNITS  
V
T
V
= ±15V  
= 25°C  
= 0V  
A
S
S
A
CM  
I
I
+
B
20  
B
0
I
OS  
–20  
–40  
–60  
–15  
–10  
–5  
0
5
10  
15  
–100  
–50  
0
50  
COMMON-MODE VOLTAGE (V)  
INPUT BIAS CURRENT (pA)  
Figure 6. Input Bias, Offset Current vs. Common-Mode Voltage  
Figure 3. Typical Distribution of Input Bias Current  
±5  
500  
400  
T
= 25°C  
= ±15V  
= 0V  
A
1894 UNITS  
V
T
= ±15V  
= 25°C  
= 0V  
S
A
V
V
S
CM  
V
CM  
±4  
±3  
±2  
±1  
0
300  
200  
100  
J PACKAGES  
Z, P PACKAGES  
0
–60  
–40  
–20  
0
20  
40  
0
1
2
3
4
5
INPUT OFFSET CURRENT (pA)  
TIME AFTER POWER APPLIED (Minutes)  
Figure 4. Typical Distribution of Input Offset Current  
Figure 7. Input Offset Voltage Warmup Drift  
Rev. G | Page 6 of 16  
 
OP97  
1000  
100  
10  
450  
425  
400  
BALANCED OR UNBALANCED  
NO LOAD  
V
V
= ±15V  
S
= 0V  
CM  
T
T
= +125°C  
= +25°C  
A
–55°C T +125°C  
A
375  
350  
325  
300  
A
T
= 25°C  
A
T
= –55°C  
A
1
1k  
3k  
10k  
30k  
100k 300k  
1M  
3M  
10M  
100M  
3
0
5
10  
SUPPLY VOLTAGE (±V)  
15  
20  
SOURCE RESISTANCE ()  
Figure 8. Effective Offset Voltage vs. Source Resistance  
Figure 11. Supply Current vs. Supply Voltage  
140  
120  
100  
100  
10  
1
BALANCED OR UNBALANCED  
T
V
V
= 25°C  
= ±15V  
A
V
V
= ±15V  
S
S
= 0V  
= ±10V  
CM  
CM  
80  
60  
40  
20  
0.1  
0
1
10  
100  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
SOURCE RESISTANCE ()  
Figure 12. Common-Mode Rejection vs. Frequency  
Figure 9. Effective TCVOS vs. Source Resistance  
140  
120  
100  
20  
T
V
= 25°C  
= ±15V  
A
T
T
= –55°C  
= +25°C  
A
S
15  
ΔV = 10V p-p  
S
A
10  
5
T
= +125°C  
A
–PSR  
V
= ±15V  
S
80  
60  
40  
20  
0
OUTPUT SHORTED TO GROUND  
+PSR  
–5  
T
A
= +125°C  
= +25°C  
= –55°C  
–10  
–15  
–20  
T
A
A
T
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
0
1
2
FREQUENCY (Hz)  
TIME FROM OUTPUT SHORT (Minutes)  
Figure 10. Short-Circuit Current vs. Time, Temperature  
Figure 13. Power Supply Rejection vs. Frequency  
Rev. G | Page 7 of 16  
OP97  
10k  
R
= 10k  
L
= ±15V  
= 0V  
V
V
= ±15V  
= ±10V  
S
V
S
O
T
= +125°C  
A
V
CM  
T
T
T
= –55°C  
= +25°C  
= +125°C  
A
A
A
T
= +25°C  
= –55°C  
A
1k  
T
A
100  
–15  
–10  
–5  
0
5
10  
15  
1
2
5
10  
20  
OUTPUT VOLTAGE (V)  
LOAD RESISTANCE (k)  
Figure 17. Open-Loop Gain Linearity  
Figure 14. Open-Loop Gain vs. Load Resistance  
35  
1k  
1k  
100  
10  
1
T
V
= 25°C  
= ±2V TO ±20V  
T
= 25°C  
A
A
V
= ±15V  
S
S
30  
25  
A
= +1  
VCL  
1% THD  
fO = 1kHz  
100  
10  
1
20  
CURRENT NOISE  
15  
10  
VOLTAGE NOISE  
1/1 CORNER  
2.5Hz  
5
1/1 CORNER  
120Hz  
0
10  
100  
1k  
10k  
1
10  
100  
FREQUENCY (Hz)  
1k  
LOAD RESISTANCE ()  
Figure 18. Maximum Output Swing vs. Load Resistance  
Figure 15. Noise Density vs. Frequency  
35  
10  
T
V
A
= 25°C  
= ±15V  
= +1  
A
T
V
= 25°C  
= ±2V TO ±20V  
A
S
30  
25  
S
VCL  
1% THD  
= 10kΩ  
R
L
1
R
20  
R
15  
10  
R
= 2R  
S
0.1  
0.01  
10Hz  
1kHz  
5
0
RESISTOR NOISE  
100k 1M  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
10M  
100M  
SOURCE RESISTANCE ()  
Figure 19. Maximum Output Swing vs. Frequency  
Figure 16. Total Noise Density vs. Source Resistance  
Rev. G | Page 8 of 16  
OP97  
80  
60  
40  
80  
60  
40  
PHASE  
GAIN  
T
= –55°C  
A
T
= –55°C  
A
T
= +125°C  
A
90  
90  
T
= +125°C  
PHASE  
GAIN  
A
20  
0
135  
180  
225  
20  
0
135  
180  
225  
T
= +125°C  
A
T
= +125°C  
A
T
= –55°C  
A
T
= –55°C  
A
–20  
–40  
–20  
–40  
V
C
R
= ±15V  
= 20pF  
= 1M  
S
V
C
R
= ±15V  
= 20pF  
= 1MΩ  
S
L
L
L
L
–60  
100  
–60  
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Open-Loop Gain, Phase vs. Frequency (COC = 0 pF)  
Figure 23. Open-Loop Gain, Phase vs. Frequency (COC = 100 pF)  
10  
1
R
V
= 10k  
= ±15V  
= 100pF  
T
V
R
= 25°C  
= ±15V  
= 10kΩ  
L
A
S
S
T
= +125°C  
= –55°C  
C
A
L
L
1
0.1  
1% THD  
= 3V rms  
V
OUT  
0.1  
0.01  
T
A
A
VCL  
= 100  
0.01  
A
= 10  
VCL  
0.001  
A
= 1  
VCL  
0.0001  
0.001  
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
FREQUENCY ()  
OVERCOMPENSATION CAPACITOR (pF)  
Figure 21. Total Harmonic Distortion Plus Noise vs. Frequency  
Figure 24. Slew Rate vs. Overcompensation  
70  
1000  
100  
10  
T
V
A
V
C
= 25°C  
= ±15V  
A
S
60  
50  
T
= +125°C  
A
= +1  
VCL  
= 100mV p-p  
OUT  
+EDGE  
–EDGE  
T
= –55°C  
A
= 0pF  
OC  
40  
30  
20  
V
= ±15V  
= 20pF  
= 1MΩ  
= 100  
S
C
R
A
L
L
V
10  
0
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
LOAD CAPACITANCE (pF)  
OVERCOMPENSATION CAPACITOR (pF)  
Figure 22. Small Signal Overshoot vs. Capacitive Load  
Figure 25. Gain Bandwidth Product vs. Overcompensation  
Rev. G | Page 9 of 16  
OP97  
1k  
100  
10  
80  
60  
40  
T
V
= 25°C  
= ±15V  
A
T
= –55°C  
A
S
T
= +25°C  
A
90  
PHASE  
= +125°C  
T
A
= 1000  
A
VCL  
20  
0
135  
180  
225  
T
= –55°C  
A
1
GAIN  
T
= +125°C  
0.1  
A
–20  
–40  
A
= 1  
1k  
VCL  
V
C
R
= ±15V  
= 20pF  
= 1MΩ  
S
0.01  
0.001  
L
L
–60  
100  
1
10  
100  
10k  
100k  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28. Closed-Loop Output Resistance vs. Frequency  
Figure 26. Open-Loop Gain, Phase vs. Frequency (COC = 1000 pF)  
80  
`
T
= –55°C  
A
60  
40  
T = +25°C  
A
PHASE  
90  
T
= +125°C  
= –55°C  
A
20  
135  
180  
225  
GAIN  
0
T
A
–20  
–40  
–60  
T
= +125°C  
A
V
C
R
= ±15V  
= 20pF  
= 1MΩ  
S
L
L
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 27. Open-Loop Gain, Phase vs. Frequency (COC = 10,000 pF)  
Rev. G | Page 10 of 16  
OP97  
APPLICATION INFORMATION  
The OP97 is a low power alternative to the industry-standard  
precision op amp, the OP07. The OP97 can be substituted  
directly into OP07, OP77, AD725, and PM1012 sockets with  
improved performance and/or less power dissipation and can be  
inserted into sockets conforming to the 741 pinout if nulling  
circuitry is not used. Generally, nulling circuitry used with earlier  
generation amplifiers is rendered superfluous by the extremely  
low offset voltage of the OP97 and can be removed without  
compromising circuit performance.  
The input pins of the OP97 are protected against large  
differential voltage by back-to-back diodes. Current-limiting  
resistors are not used to maintain low noise performance. If  
differential voltages above 1 V are expected at the inputs,  
series resistors must be used to limit the current flow to a  
maximum of 10 mA. Common-mode voltages at the inputs are  
not restricted and may vary over the full range of the supply  
voltages used.  
The OP97 requires very little operating headroom about the  
supply rails and is specified for operation with supplies as low as  
2 V. Typically, the common-mode range extends to within 1 V  
of either rail. The output typically swings to within 1 V of the  
rails when using a 10 kΩ load.  
Extremely low bias current over the full military temperature  
range makes the OP97 attractive for use in sample-and-hold  
amplifiers, peak detectors, and log amplifiers that must operate  
over a wide temperature range. Balancing input resistances is  
not necessary with the OP97. Offset voltage and TCVOS are  
degraded only minimally by high source resistance, even when  
unbalanced.  
Offset nulling is achieved utilizing the same circuitry as an  
OP07. A potentiometer between 5 kΩ and 100 kΩ is connected  
between Pin 1 and Pin 8 with the wiper connected to the  
positive supply. The trim range is between 300 μV and 850 μV,  
depending upon the internal trimming of the device.  
+V  
1
R
= 5kTO 100kΩ  
POT  
8
2
3
7
6
OP97  
5
4
C
OC  
–V  
Figure 29. Optional Input Offset Voltage Nulling  
and Overcompensation Circuit  
Rev. G | Page 11 of 16  
 
OP97  
AC PERFORMANCE  
The ac characteristics of the OP97 are highly stable over its full  
operating temperature range. Unity-gain small-signal response  
is shown in Figure 30. Extremely tolerant of capacitive loading  
on the output, the OP97 displays excellent response even with  
1000 pF loads (see Figure 31). In large signal applications, the  
input protection diodes effectively short the input to the output  
during the transients if the amplifier is connected in the usual  
unity-gain configuration. The output enters short-circuit current  
limit, with the flow going through the protection diodes.  
Improved large signal transient response is obtained by using a  
feedback resistor between the output and the inverting input.  
Figure 32 shows the large-signal response of the OP97 in unity-  
gain with a 10 kΩ feedback resistor. The unity-gain follower  
circuit is shown in Figure 33.  
100  
90  
10  
0%  
2V  
20µs  
Figure 32. Large Signal Transient Response (AVCL = 1)  
The overcompensation pin (Pin 5) can be used to increase the  
phase margin of the OP97 or to decrease gain bandwidth  
product at gains greater than 10.  
10k  
2
6
V
OUT  
OP97  
3
V
IN  
Figure 33. Unity-Gain Follower  
100  
90  
100  
90  
10  
0%  
20mV  
5µs  
10  
Figure 30. Small Signal Transient Response  
(CLOAD = 100 pF, AVCL = 1)  
0%  
20mV  
5µs  
Figure 34. Small Signal Transient Response with Overcompensation  
(CLOAD = 1000 pF, AVCL = 1, COC = 220 pF)  
100  
90  
10  
0%  
20mV  
5µs  
Figure 31. Small-Signal Transient Response  
(CLOAD = 1000 pF, AVCL = 1)  
Rev. G | Page 12 of 16  
 
 
 
 
 
OP97  
GUARDING AND SHIELDING  
The OP97 is an excellent choice as an output amplifier for  
To maintain the extremely high input impedances of the OP97,  
care must be taken in circuit board layout and manufacturing.  
Board surfaces must be kept scrupulously clean and free of  
moisture. Conformal coating is recommended to provide a  
humidity barrier. Even a clean PCB can have 100 pA of leakage  
currents between adjacent traces; therefore, use guard rings  
around the inputs. Guard traces are operated at a voltage close  
to that on the inputs, so that leakage currents are minimal. In  
noninverting applications, connect the guard ring to the common-  
mode voltage at the inverting input (Pin 2). In inverting appli-  
cations, both inputs remain at ground, so that the guard trace  
should be grounded. Make guard traces on both sides of the  
circuit board.  
higher resolution CMOS DACs. Its tightly trimmed offset  
voltage and minimal bias current result in virtually no  
degradation of linearity, even over wide temperature ranges.  
Figure 36 shows a versatile monitor circuit that can typically  
sense current at any point between the 15 V supplies. This  
makes it ideal for sensing current in applications such as full  
bridge drivers where bidirectional current is associated with  
large common-mode voltage changes. The 114 dB CMRR of the  
OP97 makes the contribution of the amplifier to common-  
mode error negligible, leaving only the error due to the resistor  
ratio inequality. Ideally, R2/R4 = R3/R5.  
High impedance circuitry is extremely susceptible to RF pickup,  
line frequency hum, and radiated noise from switching power  
supplies. Enclosing sensitive analog sections within grounded  
shields is generally necessary to prevent excessive noise pickup.  
Twisted-pair cable aid in rejection of line frequency hum.  
R1  
10k  
I
L
V1  
R5  
10kΩ  
R
L
R2  
10kΩ  
R3  
10kΩ  
+15V  
2
3
7
4
6
V
OUT  
OP97  
R4  
10kΩ  
30pF  
R
FB  
–15V  
I
I
O
2
3
6
Figure 36. Current Monitor  
V
OUT  
AD7548  
OP97  
O
DIGITAL  
INPUTS  
Figure 35. DAC Output Amplifier  
UNITY-GAIN FOLLOWER  
2
NONINVERTING AMPLIFIER  
2
6
6
OP97  
OP97  
3
3
PDIP  
INVERTING AMPLIFIER  
2
BOTTOM VIEW  
8
1
6
OP97  
3
Figure 37. Guard Ring Layout and Connections  
Rev. G | Page 13 of 16  
 
 
OP97  
+15V  
The digitally programmable gain amplifier shown in Figure 38  
has 12-bit gain resolution with 10-bit gain linearity over the  
range of −1 to −1024. The low bias current of the OP97 main-  
tains this linearity, while C1 limits the noise voltage bandwidth,  
allowing accurate measurement down to microvolt levels.  
V
IN  
18  
16  
±2.5mV TO ±10V  
RANGE DEPENDING  
ON GAIN SETTING  
0.1µF  
R
FB  
V
I
REF  
17  
OUT1  
1
2
I
OUT2  
3
AD7541A  
+15V  
Table 5.  
C1  
220pF  
DIGITAL IN  
GAIN (Av)  
−1.00024  
−2  
−4  
−8  
−16  
−32  
−64  
4095  
2048  
1024  
512  
256  
128  
64  
0.1µF  
2
3
6
V
OUT  
OP97  
0.1µF  
–15V  
Figure 38. Precision Programmable Gain Amplifier  
32  
16  
8
4
2
1
0
−128  
−256  
−512  
−1024  
−2048  
−4096  
Open Loop  
R2  
20k  
5pF  
R1  
2kΩ  
1µF  
2
3
V
IN  
6
V
OUT  
10kΩ  
AD8610  
10kΩ  
Many high speed amplifiers suffer from less-than-perfect low  
frequency performance. A combination amplifier consisting of  
a high precision, slow device like the OP97 and a faster device such  
as the AD8610 results in uniformly accurate performance from  
dc to the high frequency limit of the AD8610, which has a gain-  
bandwidth product of 25 MHz. The circuit shown in Figure 39  
accomplishes this, with the AD8610 providing high frequency  
amplification and the OP97 operating on low frequency signals  
and providing offset correction. Offset voltage and drift of the  
circuit are controlled by the OP97.  
2
6
R2  
R1  
A
= –  
OP97  
V
3
5
0.1µF  
0.1µF  
Figure 39. Combination High Speed, Precision Amplifier  
5V  
100  
90  
10  
0%  
1V  
2µs  
Figure 40. Combination Amplifier Transient Response  
Rev. G | Page 14 of 16  
 
 
OP97  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 41. 8-Lead Plastic Dual In-Line Package [PDIP]  
P-Suffix  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 42. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
S-Suffix  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. G | Page 15 of 16  
 
OP97  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead PDIP  
Package Option  
OP97EP  
OP97EPZ1  
N-8  
N-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
8-Lead PDIP  
OP97FP  
OP97FPZ1  
OP97FS  
OP97FS-REEL  
OP97FS-REEL7  
OP97FSZ1  
OP97FSZ-REEL1  
OP97FSZ-REEL71  
8-Lead PDIP  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
1 Z = RoHS Compliant Part.  
©1997–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00299-0-3/09(G)  
Rev. G | Page 16 of 16  
 
 
 
 
 
 
 
 
 
 
 
 

相关型号:

OP97EJ

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97EJ8

IC OPAMP PREC LP 8-CDIP
Linear

OP97EP

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97EPZ

Low Power, High Precision Operational Amplifier
ADI

OP97EZ

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97FJ

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97FP

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97FPZ

Low Power, High Precision Operational Amplifier
ADI

OP97FS

LOW POWER, HIGH PRECISION OPERATIONAL AMPLIFIER
ADI

OP97FS-REEL

Low-Power, High-Precision Operational Amplifier
ADI

OP97FS-REEL7

Low-Power, High-Precision Operational Amplifier
ADI

OP97FSZ

Low Power, High Precision Operational Amplifier
ADI