UT63M147CPA [AEROFLEX]

MIL-STD-1553A/B Bus Transceiver; MIL -STD - 1553A / B总线收发器
UT63M147CPA
型号: UT63M147CPA
厂家: AEROFLEX CIRCUIT TECHNOLOGY    AEROFLEX CIRCUIT TECHNOLOGY
描述:

MIL-STD-1553A/B Bus Transceiver
MIL -STD - 1553A / B总线收发器

总线收发器
文件: 总20页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Standard Products  
UT63M147 MIL-STD-1553A/B Bus  
Transceiver  
Data Sheet  
May 2006  
FEATURES  
INTRODUCTION  
‰ 5-volt only operation (+10%)  
The monolithic UT63M147 Transceivers are complete  
transmitter and receiver pairs for MIL-STD-1553A and 1553B  
applications. Encoder and decoder interfaces are idle low.  
‰ Fit and functionally compatible to industry standard  
transceiver  
The receiver section of the UT63M147 series accepts biphase-  
modulated Manchester II bipolar data from a MIL-STD-1553  
data bus and produces TTL-level signal data at its RXOUT and  
RXOUT outputs. An external RXEN input enables or disables  
the receiver outputs.  
‰ Idle low transmitter inputs and receiver outputs  
‰ Dual-channel 50-mil center 24-lead Flatpack  
‰ Dual-channel 100-mil center 36-pin DIP  
‰ Full military operating temperature range, -55°C to +125°C,  
screened to QML Q or QML V requirements  
‰ Radiation hardened to 1.0E6 rads(Si)  
‰ Supports MIL-STD-1553 (UT63M147)  
RXEN  
‰ Standard Microcircuit Drawing (SMD) 5962-93226 available  
RXOUT  
FILTER  
RXIN  
FILTER  
TO DECODER  
and  
LIMITER  
RXIN  
RXOUT  
TXIN  
THRESHOLD  
REFERENCE  
DRIVERS  
TXOUT  
TXOUT  
COMPARE  
TXIN  
TXIHB  
Figure 1. Functional Block Diagram  
1
The transmitter section accepts biphase TTL-level signal data  
at its TXIN and TXIN and produces MIL-STD-1553 data  
signals. The transmitter’s output voltage is typically  
The UT63M14x series offers complete transmitter and receiver  
pairs packaged in a dual-channel 36-pin DIP or 24-lead flatpack  
configurations designed for use in any MIL-STD-1553  
application.  
12 V  
. Activating the TXIHB input or setting both data  
PP, L-L  
inputs to the same logic level disables the transmitter outputs.  
Legend for TYPE field:  
TI  
=
=
=
=
TTL input  
TTL output  
Differential output  
Differential input  
TO  
DO  
DI  
DIO = Differential input/output  
( )  
[ ]  
=
=
Channel designator  
24-lead flatpack  
TRANSMITTER  
NAME  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
1
1 [1]  
10 [7]  
2 [2]  
DO  
[DIO]  
Transmitter outputs: TXOUT and TXOUT are differential data  
signals.  
TXOUT  
(A)  
DO  
[DIO]  
TXOUT  
(B)  
1
DO  
[DIO]  
TXOUT is the half-cycle complement of TXOUT.  
Transmitter inhibit: This is an active high input signal.  
TXOUT  
(A)  
11 [8]  
34 [22]  
DO  
[DIO]  
TXOUT  
(B)  
TXIHB  
(A)  
TI  
TXIHB  
(B)  
25 [16]  
35 [23]  
TI  
TI  
TXIN  
(A)  
Transmitter input: TXIN and TXIN are complementary TTL-  
level Manchester II encoder inputs.  
TXIN  
(B)  
26 [17]  
36 [24]  
TI  
TI  
TXIN  
(A)  
TXIN is the complement of TXIN input.  
TXIN  
(B)  
27 [18]  
TI  
Note:  
1. The 24-lead flatpack internally connects TXOUT to RXIN (CHA, CHB) and TXOUT to RXIN (CHA, CHB) for each channel.  
Appendix 2 - 2  
RECEIVER  
NAME  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
RXOUT  
(A)  
5 [4]  
TO  
Receiver outputs: RXOUT and RXOUT are complementary  
Manchester II decoder outputs.  
RXOUT  
(B)  
14 [10]  
8 [6]  
TO  
TO  
RXOUT  
(A)  
RXOUT is the complement of RXOUT output.  
RXOUT  
(B)  
17 [12]  
6 [5]  
TO  
TI  
RXEN  
(A)  
Receiver enable/disable: This is an active high input signal.  
RXEN  
(B)  
15 [11]  
29 [1]  
TI  
1
DI  
[DIO]  
Receiver input: RXIN and RXIN are biphase-modulated  
Manchester II bipolar inputs from MIL-STD-1553 data bus.  
RXIN  
(A)  
20 [7]  
30 [2]  
21 [8]  
DI  
[DIO]  
RXIN  
(B)  
1
DI  
[DIO]  
RXIN is the half-cycle complement of RXIN input.  
RXIN  
(A)  
DI  
[DIO]  
RXIN  
(B)  
Note:  
1. The 24-lead flatpack internally connects TXOUT to RXIN (CHA, CHB) and TXOUT to RXIN (CHA, CHB) for each channel.  
POWER AND GROUND  
NAME  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
V
(A)  
33 [20]  
24 [14]  
PWR  
+5 V power (±10%)  
DC  
CC  
Recommended decoupling capacitors:  
47µF (tantalum), 0.1µF (ceramic) and 0.01µF (ceramic)  
PWR  
GND  
GND  
V
(B)  
CC  
GND  
(A)  
3, 7, 31  
[3,19,21]  
Ground reference  
GND  
(B)  
12, 16, 22  
[9,13,15]  
Appendix 2 - 3  
1
2
3
36  
35  
34  
33  
32  
TXIN  
TXIN  
TXIHB  
VCC  
TXOUT  
TXOUT  
GND  
4
5
NC  
CHANNEL A  
NC  
RXOUT  
RXEN  
GND  
6
7
8
9
31  
30  
29  
28  
GND  
RXIN  
RXIN  
NC  
RXOUT  
NC  
10  
27  
26  
25  
24  
23  
22  
21  
20  
19  
TXOUT  
TXOUT  
GND  
TXIN  
TXIN  
TXIHB  
VCC  
11  
12  
13  
14  
15  
NC  
CHANNEL B  
RXOUT  
RXEN  
GND  
NC  
GND  
RXIN  
RXIN  
NC  
16  
17  
18  
RXOUT  
NC  
Figure 2a. Functional Pin Diagram -- Dual Channel (36)  
1
2
3
24  
23  
22  
21  
20  
CHA  
TXIN  
CHA  
TXIN  
TXIHB  
GND  
VCC  
GND  
CHANNEL A  
4
5
RXOUT  
RXEN  
6
19  
GND  
RXOUT  
7
18  
17  
16  
15  
14  
CHB  
CHB  
GND  
TXIN  
8
TXIN  
9
TXIHB  
CHANNEL B  
10  
11  
12  
RXOUT  
RXEN  
GND  
VCC  
13  
RXOUT  
GND  
1
Figure 2b. Functional Pin Diagram -- Dual Channel (24)  
Note:  
1. The 24-lead flatpack internally connects TXOUT to RXIN (CHA, CHB) and TXOUT to RXIN (CHA, CHB) for each channel.  
Appendix 2 - 4  
TRANSMITTER  
TXIN  
TXIN  
BOTH HIGH  
OR  
BOTH LOW  
The transmitter section accepts Manchester II biphase TTL data  
and converts this data into differential phase-modulated current  
drive. Transmitter current drivers are coupled to a MIL-STD-  
1553 data bus via a transformer driven from the TXOUT and  
TXOUT terminals. Transmitter output terminals’ non-  
transmitting state is enabled by asserting TXIHB (logic “1”), or  
by placing both TXIN and TXIN at the same logic level. Table  
1, Transmit Operating Mode, lists the functions for the output  
data in reference to the state of TXIHB. Figure 3 shows typical  
transmitter waveforms.  
TXIHB  
LINE-TO-LINE  
DIFFERENTIAL  
OUTPUT  
90%  
10%  
TXOUT, TXOUT  
RECEIVER  
The receiver section accepts biphase differential data from a  
MIL-STD-1553 data bus at its RXIN and RXIN inputs. The  
receiver converts input data to biphase Manchester II TTL  
formatandisavailablefordecodingattheRXOUTandRXOUT  
terminals. The outputs RXOUT and RXOUT represent positive  
and negative excursions (respectively) of the inputs RXIN and  
RXIN. Figure 4 shows typical receiver output waveforms.  
TXIN  
TXIN  
tTXDD  
Table 1. Transmit Operating Mode  
TXIN  
TXIN  
TXIHB  
TXOUT  
2
1
x
1
Off  
x
3
Figure 3. Typical Transmitter  
Wave  
Off  
0
0
1
1
0
1
0
1
x
0
0
x
On  
On  
LINE-TO-LINE  
DIFFERENTIAL  
INPUT  
3
Off  
Notes:  
1. x = Don’t care.  
2. Transmitter output terminals are in the non-transmitting mode during  
Off-time.  
3. Transmitter output terminals are in the non-transmitting mode during  
Off-time, independent of TXIHB status.  
RXOUT  
RXOUT  
RXOUT  
RXOUT  
tRXDD  
Figure 4. Typical Receiver Waveforms  
Appendix 2 - 5  
1
RECOMMENDED THERMAL PROTECTION  
DATA BUS INTERFACE  
All packages should mount to or contact a heat removal rail  
located in the printed circuit board. To insure proper heat  
transfer between the package and the heat removal rail, use a  
thermally-conductivematerialbetweenthepackageandtheheat  
removal rail. Use a material such as Mereco XLN-589 or  
equivalent to insure heat transfer between the package and heat  
removal rail.  
The designer can connect the UT63M14x to the data bus via a  
short-stub (direct-coupling) connection or a long-stub  
(transformer-coupling)connection. Useashort-stubconnection  
when the distance from the isolation transformer to the data bus  
does not exceed a one-foot maximum. Use a long-stub  
connection when the distance from the isolation transformer  
exceeds the one-foot maximum and is less than twenty feet.  
Figure 5 shows various examples of bus coupling  
configurations.TheUT63M14xseriestransceiversaredesigned  
to function with MIL-STD-1553A and 1553B compatible  
transformers.  
Note:  
1. The 24-lead flatpack internally connects TXOUT to RXIN and TXOUT to  
RXIN for each channel.  
SHORT-STUB  
DIRECT COUPLING  
1 FT. MAX.  
ZO  
1:2.5  
55 OHMS  
55 OHMS  
+5V DC OPERATION  
1:1.79  
.75 ZO  
.75 ZO  
20 FT MAX  
1:1.4  
TXOUT  
RXIN  
TXOUT  
RXIN  
LONG-STUB  
TRANSFORMER COUPLING  
Note:  
O defined per MIL-STD-1553B, Section 4.5.1.5.2.1.  
Figure 8. Transceiver Test Circuit MIL-STD-1553B  
Z
ZO  
Figure 5. Bus Coupling Configuration  
Appendix 2 - 6  
VCC  
RECEIVER  
2KOHMS  
2KOHMS  
RXOUT  
15 pF  
2.5:1  
55 OHMS  
35 OHMS  
RXIN  
RXIN  
*
TP  
RXOUT  
15 pF  
Vin  
55 OHMS  
TP  
RXEN  
TRANSMITTER  
55 OHMS  
1:2.5  
TXOUT  
TXOUT  
TXIN  
A
RL =  
35 OHMS  
55 OHMS  
TXIN  
TXIHB  
Notes:  
1. TP = Test point.  
2. RL removed for terminal  
input impedance test.  
3. TXOUT and RXIN tied together.  
TXOUT and RXIN tied together.  
Figure 6. Direct Coupled Transceiver with Load  
VCC  
RECEIVER  
2KOHMS  
RXOUT  
2KOHMS  
1.79:1  
1.4:1  
RXIN  
15 pF  
*
TP  
TP  
Vin  
RXOUT  
RXIN  
15 pF  
RXEN  
1:1.79  
TRANSMITTER  
.75 ZO  
1:1.4  
TXOUT  
TXIN  
A
B
35 OHMS  
.75 ZO  
TXIN  
TXOUT  
TXIHB  
Notes:  
1. TP = Test point.  
Figure 7. Transformer Coupled Transceiver with Load  
2. RL removed for terminal impedance test.  
3. TXOUT and RXIN tied together.  
TXOUT and RXIN tied together.  
Appendix 2 - 7  
TXOUT  
RL  
TXOUT  
A
TERMINAL  
Notes:  
1. Transformer Coupled Stub:  
Terminal is defined as transceiver plus isolation transformer. Point A is defined in figure 7.  
2. Direct Coupled Stub:  
Terminal is defined as transceiver plus isolation transformer and fault resistors. Point A is defined in figure 6.  
Figure 8. Transceiver Test Circuit MIL-STD-1553  
1
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
LIMITS  
UNIT  
V
-0.3 to +7.0  
V
CC  
Input voltage range (receiver)  
10  
V
PP, L-L  
V
Logic input voltage range  
-0.3 to +5.5  
Power dissipation 100% duty cycle (per channel)  
3.6  
6.0  
W
2
°C/W  
Thermal impedance junction to case  
Maximum junction temperature  
Storage temperature  
+175  
°C  
°C  
V
-65 to +150  
-5.0 to +5.0  
Receiver common mode input voltage range  
Notes:  
1. Stress outside the listed absolute maximum rating may cause permanent damage to the devices. This is a stress rating only, and functional operation of the device  
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. Mounting per MIL-STD-883, Method 1012.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
LIMITS  
+4.50 to +5.50  
0 to +5.0  
8.0  
UNIT  
V
Supply voltage range  
Logic input voltage range  
V
Receiver differential voltage  
V
P-P  
Receiver common mode voltage range  
Driver peak output current  
Serial data rate  
+4.0  
600  
V
mA  
MHz  
°C  
0.3 to 1  
-55 to +125  
Case operating temperature range (T )  
C
Appendix 2 - 8  
1
DC ELECTRICAL CHARACTERISTICS  
= 5.0V ±10%  
V
CC  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM  
UNIT  
CONDITION  
V
Input low voltage  
Input high voltage  
Input low current  
0.8  
V
RXEN, TXIHB, TXIN, TXIN  
IL  
IH  
IL  
V
2.0  
V
RXEN, TXIHB, TXIN, TXIN  
I
-0.1  
mA  
V
= 0.4V; RXEN, TXIHB, TXIN,  
IL  
TXIN  
I
Input high current  
-40  
2.4  
40  
µA  
V
IH  
TXIN  
= 2.7V; RXEN, TXIHB, TXIN,  
IH  
V
Output low voltage  
Output high voltage  
.55  
V
V
I
I
= 4mA; RXOUT, RXOUT  
= 0.4mA; RXOUT, RXOUT  
OL  
OH  
CC  
OL  
OH  
V
I
V
supply current  
22  
mA  
mA  
mA  
mA  
0% duty cycle (non-transmitting)  
25% duty cycle (ƒ = 1MHz)  
50% duty cycle (ƒ = 1MHz)  
87.5% duty cycle (ƒ = 1MHz)  
100% duty cycle (ƒ = 1MHz)  
CC  
200  
380  
650  
740  
2
mA  
Note:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed but not tested.  
Appendix 2 - 9  
1
RECEIVER ELECTRICAL CHARACTERISTICS  
= 5.0V ±10%  
V
CC  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM MAXIMUM  
UNIT  
CONDITION  
2
Input capacitance  
Output capacitance  
15  
pF  
RXEN; input ƒ = 1MHz @ 0V  
C
IN  
2
20  
pF  
V
RXOUT, RXOUT; ƒ = 1MHz @ 0V  
C
OUT  
5
Common mode input  
voltage  
-5  
5
Direct-coupled stub; input 1.2 V ,  
200ns rise/fall time ±25ns,  
ƒ = 1MHz  
PP  
V
IC  
V
Input threshold  
0.20  
V
Transformer-coupled stub; input at  
ƒ = 1MHz, rise/fall time 200ns at  
(Receiver output 0 1 transition)  
TH  
PP,L-L  
4
voltage (no response)  
Direct-coupled stub; input at ƒ = 1MHz,  
rise/fall time 200ns at (Receiver output  
0 1 transition)  
V
V
PP,L-L  
PP,L-L  
0.28  
14.0  
Input threshold voltage  
(no response)  
Transformer-coupled stub; input at  
ƒ = 1MHz, rise/fall time 200ns at  
(Receiver output 0 1 transition)  
0.86  
Input threshold  
4
voltage (response)  
Direct-coupled stub; input at ƒ = 1MHz,  
rise/fall time 200ns at (Receiver output  
0 1 transition)  
V
PP,L-L  
2
1.20  
20.0  
Input threshold voltage  
(response)  
5
3
Common mode  
rejection ratio  
N/A  
CMRR  
Pass/Fail  
Notes:  
1. All tests guaranteed per test figure 6.  
2. Capacitance is measured only for initial qualification and after any process or design changes which may affect input or output capacitance.  
3. Pass/fail criteria per the test method described in MIL-HDBK-1553 Appendix A, RT Validation Test Plan, Section 5.1.2.2, Common Mode Rejection.  
4. Guaranteed by design.  
5. Guaranteed to the limits specified if not tested.  
Appendix 2 - 10  
1
TRANSMITTER ELECTRICAL CHARACTERISTICS  
= 5.0V ±10%  
V
CC  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM MAXIMUM  
UNIT  
CONDITION  
V
Output voltage swing per  
18  
6.0  
6.0  
27  
V
Transformer-coupled stub, Figure 8,  
O
PP,L-L  
3, 5  
Point A; input ƒ = 1MHz,  
MIL-STD-1553B  
(see figure 9)  
R = 70 ohms  
L
9.0  
V
V
Direct-coupled stub, Figure 8, Point  
per MIL-STD-1553B  
(see figure 9)  
PP,L-L  
PP,L-L  
A; input ƒ = 1MHz,  
R = 35 ohms  
L
5
20  
14  
5
per MIL-STD-1553A  
Figure 7, Point A; input  
(see figure 9)  
ƒ = 1MHz, R = 35 ohms  
L
2
NS  
Output noise voltage  
differential (see figure 9)  
mV-RMS  
mV-RMS  
Transformer-coupled stub, Figure 8,  
V
V
L-L  
L-L  
Point A; input ƒ = DC to 10MHz, R  
L
= 70 ohms  
Direct-coupled stub, Figure 8, Point  
A; input ƒ = DC to 10MHz,  
R = 35 ohms  
L
4
OS  
Output symmetry  
-250  
-90  
+250  
+90  
mV  
mV  
Transformer-coupled stub, Figure 8,  
PP,L-L  
Point A; R = 140 ohms,  
L
measurement taken 2.5µs after end  
of transmission  
PP,L-L  
Direct-coupled stub, Figure 8, Point  
A; R = 35 ohms, measurement  
L
taken 2.5µs after end of transmission  
V
Output voltage  
distortion (overshoot or  
ring) (see figure 9)  
-900  
-300  
+900  
+300  
15  
mV  
mV  
Transformer-coupled stub, Figure 8,  
DIS  
peak,L-L  
peak,L-L  
pF  
Point A; R = 70 ohms  
L
Direct-coupled stub, Figure 8, Point  
A; R = 35 ohms  
L
2
Input capacitance  
RXEN, TXIHB, TXIN, TXIN; input  
ƒ = 1MHz @ 0V  
C
T
IN  
5
Terminal input  
impedance  
1
2
Kohm  
Kohm  
Transformer-coupled stub, Figure 7,  
Point A; input ƒ = 75KHz to 1MHZ  
(power on or power off; non-  
IZ  
transmitting, R removed from  
L
circuit).  
Direct-coupled stub, Figure 6, Point  
A;inputƒ=75KHzto1MHZ(power  
on or power off; non-transmitting,  
R removed from circuit).  
L
Notes:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed by device characterization. Capacitance is measured only for initial qualification and after any process or design changes which may affect  
input or output capacitance.  
3. For MIL-STD-1760, 22 Vp-p, L-L min.  
4. Test in accordance with the method described in MIL-STD-1553B output symmetry, section 4.5.2.1.1.4.  
5. Guaranteed to the limits specified if not tested.  
Appendix 2 - 11  
1
AC ELECTRICAL CHARACTERISTICS  
= 5.0V ±10%  
V
CC  
-55°C < T < +125°C  
C
SYMBOL  
PARAMETER  
MINIMUM MAXIMUM  
UNIT  
CONDITION  
t
t
Transmitter output rise/  
fall time (see figure 10)  
100  
300  
ns  
Input ƒ = 1MHz 50% duty cycle:  
R, F  
direct-coupled R = 35 ohms output  
L
at 10% through 90% points TXOUT,  
TXOUT. Figure 10.  
t
RXOUT delay  
TXIN skew  
-200  
-25  
200  
25  
ns  
ns  
RXOUT to RXOUT, Figure 4.  
TXIN to TXIN, Figure 3.  
RXDD  
3
t
t
TXDD  
RZCD  
Zerocrossingdistortion  
(see figure 11)  
-150  
150  
ns  
Direct-coupled stub; input ƒ = 1MHz,  
3V (skewINPUT±150ns),rise/fall  
PP  
time 200ns.  
Zero crossing stability  
(see figure 11)  
-25  
25  
ns  
Input TXIN and TXIN should create  
Transmitter output zero crossings at  
500ns, 1000ns, 1500ns, and 2000ns.  
These zero crossings should not  
deviate more than ±25ns.  
t
TZCS  
3,4  
RDXOFF  
Transmitter off; delay  
from inhibit active  
100  
150  
ns  
ns  
TXIN and TXIN toggling @ 1MHz;  
TXIHB transitions from logic zero to  
one, see figure 12.  
t
t
3,5  
Transmitter on; delay  
from inhibit inactive  
TXIN and TXIN toggling @ 1MHz;  
TXIHB transitions from logic one to  
zero, see figure 13.  
DXON  
3
Receiver off  
50  
50  
ns  
ns  
ns  
Receiver turn off time, see figure 13.  
Receiver turn on time, see figure 13.  
t
t
t
RCVOFF  
3
Receiver on  
RCVON  
RCVPD  
3
Receiver propagation  
450  
Receiver propagation delay, see  
figure 13.  
3
Transmitter  
propagation  
200  
ns  
Transmitter propagation delay, see  
figure 12.  
t
XMITPD  
Notes:  
1. All tests guaranteed per test figure 6.  
2. Guaranteed by device characterization.  
3. Supplied as a design limit but not guaranteed or tested.  
4. Delay time from transmit inhibit (1.5V) rising to transmit off (280mV).  
5. Delay time from not transmit inhibit (1.5V) falling to transmit off (1.2V).  
Table 2. Transformer Requirements  
COUPLING TECHNIQUE  
± 5VDC  
DIRECT-COUPLED:  
Isolation Transformer Ratio  
2.5:1  
1.79:1  
1:1.4  
TRANSFORMER-COUPLED:  
Isolation Transformer Ratio  
Coupling Transformer Ratio  
Appendix 2 - 12  
V
DIS (Overshoot)  
VDIS (Ring)  
0 Volts  
0 Volts  
VO  
V
NS  
Figure 9. Transmitter Output Characteristics (V , V , V )  
DIS  
NS  
O
tR  
90%  
90%  
VO  
tTZCS  
10%  
10%  
tF  
Figure 10. Transmitter Output Zero Crossing Stability, Rise Time, Fall Time (t  
, t , t )  
R F  
TZCS  
VIN  
tRZCD  
Figure 11. Receiver Input Zero Crossing Distortion (t  
)
RZCD  
Appendix 2 - 13  
10%  
TX OUTPUT  
zero crossing  
10%  
tDXON  
tDXOFF  
50%  
tXMITPD  
INHIBIT  
50%  
TX IN  
and  
50%  
TX IN  
Figure 12. Transmitter Timing  
RX INPUT  
RXEN  
zero crossing  
tRCVPD  
50%  
50%  
RXEN  
tRCVON  
tRCVOFF  
RX OUT  
and  
50%  
50%  
50%  
RX OUT  
Figure 13. Receiving Timing  
Appendix 2 - 14  
0.001 MIN.  
.023 MAX.  
.014 MIN.  
LEAD 1  
INDICATOR  
1.89 MAX.  
0.100  
0.150  
MIN.  
0.155  
MAX.  
.610 MAX.  
.570 MIN.  
0.005 MIN.  
Notes:  
1. Package material: opaque ceramic.  
2. All package finishes are per MIL-PRF-38535.  
3. It is recommended that package ceramic be mounted on a heat removal  
rail in the printed circuit board. A thermally conductive material should  
be used.  
.015 MAX.  
.008 MIN.  
.620 MAX.  
.590 MIN.  
(AT SEATING PLANE)  
Figure 14. 36-Pin Side-Brazed DIP, Dual Cavity  
LEAD 1 INDICATOR  
0.016 ±.002  
.810 MAX.  
.050  
.600 MAX.  
.400 MIN.  
.010 + .002 - .001  
0.130 MAX.  
0.070 ±0.010  
(AT CERAMIC BODY)  
Notes:  
1. Package material: opaque ceramic.  
2. All package plating finishes are per MIL-PRF-38535.  
3. It is recommended that package ceramic be mounted to a heat removal rail located in the  
printed circuit board. A thermally conductive material should be used.  
Figure 15. 24-Lead Flatpack, Dual Cavity  
(50-mil lead spacing)  
Appendix 2 - 16  
LEAD 1 INDICATOR  
0.016 ±.002  
.810 MAX.  
.050  
.600 MAX.  
.400 MIN.  
.010 + .002 - .001  
0.130 MAX.  
0.070 ±0.010  
(AT CERAMIC BODY)  
Notes:  
1. Package material: opaque ceramic.  
2. All package plating finishes are per MIL-PRF-38535.  
3. It is recommended that package ceramic be mounted to a heat removal rail located in the  
printed circuit board. A thermally conductive material should be used.  
Figure 15. 24-Lead Flatpack, Dual Cavity  
(50-mil lead spacing)  
16  
ORDERING INFORMATION  
UT63M14x Monolithic Transceiver, 5V Operation: SMD  
5962  
*
93226 *  
*
*
*
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Case Outline:  
(X)  
(Z)  
=
=
36 pin DIP  
24 pin FP  
Class Designator:  
(Q)  
(V)  
=
=
Class Q  
Class V  
Device Type  
(03) = Idle low  
Drawing Number: 93226  
Total Dose:  
(H)  
(G)  
(F)  
(R)  
(-)  
=
=
1E6 rads(Si)  
5E5 ads(Si)  
3E5 rads(Si)  
1E5rads(Si)  
None  
=
=
=
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. Total dose must be specified for all QML Q and QML V devices.  
4. Neutron irradiation limits will be added when available.  
17  
UT63M14x Monolithic Transceiver, 5V Operation  
UT63M-  
*
*
*
*
Total Dose:  
() None  
=
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
=
=
Military Temperature  
Prototype  
Package Type:  
(B)  
(C)  
=
=
36-pin DIP  
24-pin FP  
Device Type Modifier:  
147 Idle Low Transceiver  
=
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold).  
3. Military Temperature range devices are burned-in and tested at -55°C, room temperature, and 125°C. Radiation characteristics are neither tested nor  
guaranteed and may not be specified.  
4. Devices have prototype assembly and are tested at 25°C only. Radiation characteristics are neither tested nor guaranteed and may not be specified.  
Lead finish is GOLD only.  
18  
COLORADO  
Toll Free: 800-645-8862  
INTERNATIONAL  
Tel: 805-778-9229  
NORTHEAST  
Tel: 603-888-3975  
Fax: 719-594-8468  
Fax: 805-778-1980  
Fax: 603-888-4585  
SE AND MID-ATLANTIC  
Tel: 321-951-4164  
WEST COAST  
Tel: 949-362-2260  
CENTRAL  
Tel: 719-594-8017  
Fax: 321-951-4254  
Fax: 949-362-2266  
Fax: 719-594-8468  
w w w . a e r o f l e x . c o m  
i n f o - a m s @ a e r o f l e x . c o m  
Aeroflex Colorado Springs, Inc., reserves the right to make  
changes to any products and services herein at any time  
without notice. Consult Aeroflex or an authorized sales  
representative to verify that the information in this data sheet  
iscurrentbeforeusingthisproduct. Aeroflexdoesnotassume  
any responsibility or liability arising out of the application or  
use of any product or service described herein, except as  
expressly agreed to in writing by Aeroflex; nor does the  
purchase, lease, or use of a product or service from Aeroflex  
convey a license under any patent rights, copyrights,  
trademark rights, or any other of the intellectual rights of  
Aeroflex or of third parties.  
Our passion for performance is defined by three  
attributes represented by these three icons:  
solution-minded, performance-driven and customer-focused  

相关型号:

UT63M147CPC

MIL-STD-1553A/B Bus Transceiver
AEROFLEX

UT63M147CPX

MIL-STD-1553A/B Bus Transceiver
AEROFLEX

UT63M147CSA

Transceiver
ETC

UT63M147CSC

Transceiver
ETC

UT63M149BBA

Transceiver
ETC

UT63M149BBC

Transceiver
ETC

UT63M149BCC

Transceiver
ETC

UT63M149BSA

Transceiver
ETC

UT63M149BSC

Transceiver
ETC

UT63M149CBA

Transceiver
ETC

UT63M149CBC

Transceiver
ETC

UT63M149CCA

Transceiver
ETC