UT7C139C45GPX [AEROFLEX]

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag; 4Kx8 / 9抗辐射双口静态RAM与忙标志
UT7C139C45GPX
型号: UT7C139C45GPX
厂家: AEROFLEX CIRCUIT TECHNOLOGY    AEROFLEX CIRCUIT TECHNOLOGY
描述:

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag
4Kx8 / 9抗辐射双口静态RAM与忙标志

内存集成电路 静态存储器
文件: 总21页 (文件大小:360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UStaTnd7arCd P1ro3du8c/ts139 4Kx8/9 Radiation-Hardened  
Dual-Port Static RAM with Busy Flag  
Data Sheet  
January 2002  
FEATURES  
INTRODUCTION  
The UT7C138 and UT7C139 are high-speed radiation-  
hardened CMOS 4K x 8 and 4K x 9 dual-port static RAMs.  
Arbitration schemes are included on the UT7C138/139 to  
handle situations when multiple processors access the same  
memory location. Two ports provide independent,  
asynchronous access for reads and writes to any location in  
memory. The UT7C138/139 can be utilized as a stand-alone  
32/36-Kbit dual-port static RAM or multiple devices can be  
combined in order to function as a 16/18-bit or wider master/  
slave dual-port static RAM. For applications that require  
depth expansion, the BUSY pin is open-collector allowing  
for wired OR circuit configuration. An M/S pin is provided  
for implementing 16/18-bit or wider memory applications  
without the need for separate master and slave devices or  
additional discrete logic. Application areas include  
interprocessor/multiprocessor designs, communications,  
and status buffering.  
q
q
45ns and 55ns maximum address access time  
Asynchronous operation for compatibility with industry-  
standard 4K x 8/9 dual-port static RAM  
q
CMOS compatible inputs, TTL/CMOS compatible output  
levels  
q
q
q
Three-state bidirectional data bus  
Low operating and standby current  
Radiation-hardened process and design; total dose  
irradiation testing to MIL-STD-883 Method 1019  
- Total-dose: 1.0E6 rads(Si)  
- Memory Cell LET threshold: 85 MeV-cm2/mg  
- Latchup immune (LET >100 MeV-cm2/mg)  
QML Q and QML V compliant part  
Packaging options:  
q
q
- 68-lead Flatpack  
- 68-pin PGA  
Each port has independent control pins: chip enable (CE),  
read or write enable (R/W), and output enable ( OE). BUSY  
signals that the port is trying to access the same location  
currently being accessed by the other port.  
q
q
5-volt operation  
Standard Microcircuit Drawing 5962-96845  
R/W  
L
R/W  
R
CE  
OE  
L
L
CE  
OE  
R
R
A
A
11L  
10L  
A
11R  
10R  
A
I/O (7C139)  
I/O (7C139)  
8R  
8L  
COL  
SEL  
COL  
SEL  
I/O  
I/O  
COLUMN  
I/O  
COLUMN  
I/O  
7R  
7L  
I/O  
I/O  
0L  
0R  
BUSY  
A
BUSY  
R
L
A
A
9L  
0L  
ROW  
SELECT  
MEMORY  
ARRAY  
ROW  
SELECT  
9R  
A
0R  
M/S  
ARBITRATION  
Figure 1. Logic Block Diagram  
I/O  
I/O  
I/O  
I/O  
2L  
3L  
4L  
5L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A
A
A
A
A
A
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
5L  
4L  
3L  
2L  
1L  
0L  
GND  
I/O  
I/O  
6L  
7L  
NC  
V
DD  
7C138/139  
BUSY  
L
R
GND  
GND  
M/S  
I/O  
I/O  
I/O  
0R  
1R  
2R  
BUSY  
NC  
V
DD  
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
I/O  
I/O  
I/O  
I/O  
3R  
4R  
5R  
6R  
46  
45  
44  
Figure 2a. DPRAM Pinout (68-Flatpack)  
(top view)  
Notes:  
1. I/O8R on the7C139  
2. I/O8L on the 7C139  
2
B11  
C11  
D11  
E11  
F11  
BUSY M/S  
G11  
H11  
NC  
J11  
K11  
11  
10  
A
A
A
A
A
A
5L  
4L  
2L  
0L  
L
1R  
3R  
A10  
B10  
C10  
D10  
E10  
NC  
F10  
GND  
G10  
BUSY  
H10  
J10  
K10  
L10  
A
A
A
A
A
A
A
A
7L  
6L  
3L  
1L  
R
0R  
2R  
4R  
5R  
A9  
B9  
K9  
L9  
9
8
7
6
A
A
A
A
9L  
8L  
7R  
6R  
A8  
B8  
K8  
L8  
A
A
A
A
11L  
10L  
9R  
8R  
A7  
B7  
NC  
K7  
L7  
V
A
A
DD  
11R  
10R  
A6  
NC  
B6  
NC  
K6  
GND NC  
L6  
7C138/139  
A5  
NC  
B5  
CE  
K5  
NC  
L5  
NC  
5
4
3
L
A4  
OE  
B4  
R/W  
B3  
K4  
NC  
L4  
CE  
L
L
R
A3  
I/O  
K3  
OE  
L3  
R/W  
L2  
(2)  
NC  
0L  
1L  
R
R
A2  
I/O  
B2  
I/O  
C2  
I/O  
D2  
GND I/O  
E2  
F2  
GND  
G2  
I/O  
H2  
J2  
I/O  
K2  
I/O  
2
1
(1)  
V
NC  
2L  
4L  
7L  
1R  
DD  
4R  
7R  
B1  
I/O  
C1  
I/O  
D1  
I/O  
E1  
F1  
I/O  
G1  
I/O  
H1  
I/O  
J1  
I/O  
K1  
I/O  
V
3L  
5L  
6L  
DD  
0R  
2R  
3R  
5R  
6R  
A
B
C
D
E
F
G
H
J
K
L
Figure 2b: DPRAM Pinout (68 PGA)  
(top view)  
Notes:  
1. I/O8R on the7C139  
2. I/O8L on the 7C139  
PIN NAMES  
LEFT PORT  
RIGHT PORT  
0R-7R(8R)  
DESCRIPTION  
I/O  
I/O  
Data Bus Input/Output  
Address Lines  
0L-7L(8L)  
A
A
0R-11R  
0L-11L  
CE  
CE  
Chip Enable  
L
R
OE  
OE  
Output Enable  
L
R
R/W  
R/W  
Read/Write Enable  
Busy Flag Input/Output  
L
R
BUSY  
M/S  
BUSY  
R
L
Master or Slave Select  
Power  
V
DD  
GND  
Ground  
3
The UT7C138/139 consists of an array of 4K words of 8 or 9  
bits of dual-port SRAM cells, I/O and address lines, and control  
signals (CE, OE, R/W). These control pins permit independent  
access for reads or writes to any location in memory. To handle  
simultaneous writes/reads to the same location, a BUSY pin is  
provided on each port. With the M/S pin, the UT7C138/139 can  
function as a master (BUSY pins are outputs) or as a slave  
(BUSY pins are inputs). Each port is provided with its own  
output enable control (OE), which allows data to be read from  
the device.  
input, the M/S pin allows the device to be used as a master and,  
therefore, the BUSY line is an output. BUSY can then be used  
to send the arbitration outcome to a slave. When presented as a  
LOW input, the M/S pin allows the device to be used as a slave,  
and, therefore, the BUSY pin is an input.  
Table 1. Non-Contending Read/Write  
INPUTS  
OUTPUTS  
CE  
H
R/W  
X
OE  
X
I/O0-7  
OPERATION  
WRITE CYCLE  
High Z  
High Z  
Power Down  
X
X
H
I/O Lines  
Disabled  
A combination of R/W less than VIL (max), andCE less than  
VIL (max), defines a write cycle. The state of OE is a “don’t  
care” for a write cycle. The outputs are placed in the high-  
impedance state when eitherOE is greater than VIH (min), or  
L
L
L
H
L
L
Data Out  
Data In  
---  
Read  
X
X
Write  
when R/W is less than VIL (max).  
X
Illegal  
Condition  
WRITE OPERATION  
Write Cycle 1, the Write Enable-controlled Access shown in  
figure 4a, is defined by a write terminated by R/W going high  
with CE active. The write pulse width is defined by tPWE when  
RADIATION HARDNESS  
the write is initiated by R/W, and by tSCE when the write is  
The UT7C138/139 incorporates special design and layout  
features which allow operation in high-level radiation  
environments. UTMC has developed special low-temperature  
processing techniques designed to enhance the total-dose  
radiation hardness of both the gate oxide and the field oxide  
while maintaining the circuit density and reliability. For  
transient radiation hardness and latchup immunity, UTMC  
builds all radiation-hardened products on epitaxial wafers using  
an advanced twin-tub CMOS process. In addition, UTMC pays  
special attention to power and ground distribution during the  
design phase, minimizing dose-rate upset caused by rail  
collapse.  
initiated byCE going active. Unless the outputs have been  
previously placed in the high-impedance state byOE, the user  
must wait tHZOE before applying data to the eight/nine  
bidirectional pins I/O(0:7/0:8) to avoid bus contention.  
Write Cycle 2, the Chip Enable-controlled Access shown in  
figure 4b, is defined by a write terminated byCE going inactive.  
The write pulse width is defined by tPWE when the write is  
initiated by R/W, and by tSCE when the write is initiated by CE  
going active. For the R/W initiated write, unless the outputs have  
been previously placed in the high-impedance state by OE, the  
user must wait tHZWE before applying data to the eight/nine  
bidirectional pins I/O(0:7/0:8) to avoid bus contention.  
Table 2. Radiation Hardness  
Design Specifications1  
If a location is being written by one port and the opposite port  
attempts to read that location, a port-to-port flow through delay  
must be met before the data is read on the output. Data will be  
valid on the port wishing to read the location (tBZA + t BDD) after  
Total Dose  
1.0E6  
85  
rads(Si)  
the data is written on the other port (see figure 5a).  
MeV-cm2/mg  
n/cm2  
LET Threshold  
READ OPERATION  
Neutron Fluence2  
3.0E14  
When reading the device, the user must assert both the OE and  
CE pins. Data will be available tACE after CE or tDOE afterOE  
< 1.376E -2 (4Kx8) cm2  
< 1.548E -2 (4Kx9)  
Memory Device  
Cross Section @ LET  
= 120MeV-cm2/mg  
is asserted (see figures 3a and 3b).  
MASTER/SLAVE  
A M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to theBUSY input of the slave.  
Writing of slave devices must be delayed until after the BUSY  
input has settled. Otherwise, the slave chip may begin a write  
cycle during a contention situation. When presented as a HIGH  
Notes:  
1. The DPRAM will not latchup during radiation exposure under recommended  
operating conditions.  
2. Not tested for CMOS technology.  
4
1
ABSOLUTE MAXIMUM RATINGS  
(Referenced to VSS  
)
SYMBOL  
PARAMETER  
DC supply voltage  
LIMITS  
VDD  
-0.5 to 7.0V  
VI/O  
TSTG  
PD  
Voltage on any pin  
-0.5 to (VDD + 0.3)V  
-65 to +150°C  
2.0W  
Storage temperature  
Maximum power dissipation  
Maximum junction temperature2  
TJ  
+150°C  
Thermal resistance, junction-to-case3  
DC input current  
QJC  
3.3°C/W  
II  
±10 mA  
Notes:  
1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device  
at these or any other conditions beyond limits indicated in the operational sections of this specification is not recommended. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2. Maximum junction temperature may be increased to +175°C during burn-in and steady-static life.  
3. Test per MIL-STD-883, Method 1012, infinite heat sink.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
Positive supply voltage  
LIMITS  
VDD  
4.5 to 5.5V  
TC  
Case temperature range  
DC input voltage  
-55 to +125°C  
VIN  
0V to VDD  
5
DC ELECTRICAL CHARACTERISTICS (Pre/Post-Radiation)*  
(VDD = 5.0V ±10%; -55°C < TC < +125°C)  
SYMBOL  
PARAMETER  
CONDITION  
MIN  
MAX  
UNIT  
VIH  
High-level input voltage  
(CMOS)  
(CMOS)  
0.7VDD  
V
VIL  
VOL  
VOL  
VOH  
VOH  
Low-level input voltage  
Low-level output voltage  
Low-level output voltage  
High-level output voltage  
High-level output voltage  
Input capacitance  
0.3VDD  
0.4  
V
V
IOL = 8mA, VDD = 4.5V (TTL)  
IOL = 200mA, VDD = 4.5V (CMOS)  
IOH = -4mA, VDD = 4.5V (TTL)  
IOH = -200mA, VDD = 4.5V (CMOS)  
¦ = 1MHz @ 0V  
0.05  
V
2.4  
V
4.45  
V
1
25  
25  
pF  
CIN  
1
Bidirectional I/O capacitance  
¦ = 1MHz @ 0V  
pF  
CIO  
IIN  
Input leakage current  
VIN = VDD and VSS  
-10  
-10  
10  
10  
mA  
mA  
IOZ  
Three-state output leakage current  
VO = VDD and VSS  
VDD = 5.5V  
G = 5.5V  
2,3  
Short-circuit output current  
VDD = 5.5V, VO = VDD  
VDD = 5.5V, VO = 0V  
90  
mA  
mA  
IOS  
-90  
IDD(OP)4,5  
IDD(OP)4,6  
IDD(OP)4,5  
IDD(OP)4,6  
Supply current operating (both ports)  
@ 22.2MHz  
CMOS inputs (IOUT = 0)  
VDD = 5.5V  
300  
mA  
mA  
mA  
mA  
mA  
Supply current operating (single port)  
@ 22.2 MHz  
CMOS inputs (IOUT = 0)  
VDD = 5.5V  
150  
275  
138  
1
Supply current operating (both ports)  
@ 18.2MHz  
CMOS inputs (IOUT = 0)  
VDD = 5.5V  
Supply current operating (single port)  
@ 18.2 MHz  
CMOS inputs (IOUT = 0)  
VDD = 5.5V  
IDD(SB)4  
Supply current standby  
CMOS inputs (IOUT = 0)  
CE = VDD - 0.5, VDD = 5.5V  
Notes:  
* Post-radiation performance guaranteed at 25°C per MIL-STD-883 Method 1019.  
1. Measured only for initial qualification and after process or design changes that could affect input/output capacitance.  
2. Supplied as a design limit but not guaranteed or tested.  
3. Not more than one output may be shorted at a time for maximum duration of one second.  
4. V = 5.5V, V = 0V.  
IH  
IL  
5. I (OP) derates at 6.4mA/MHz.  
DD  
6. I (OP) derates at 3.4mA/MHz.  
DD  
6
AC CHARACTERISTICS READ CYCLE1,2  
(VDD = 5.0V±10%)  
7C138 - 45  
7C139 - 45  
7C138 - 55  
7C139 - 55  
MIN MAX  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
tRC  
tAA  
Read cycle time  
45  
5
55  
55  
5
ns  
ns  
ns  
ns  
ns  
ns  
Address to data valid2  
45  
tOHA  
tACE  
tDOE  
Output hold from address change  
CE LOW to data valid2  
OE LOW to data valid2  
OE LOW to low Z  
45  
20  
55  
20  
0
0
0
tLZOE  
tHZOE  
tLZCE  
tHZCE  
OE HIGH to high Z  
CE LOW to low Z  
CE HIGH to high Z  
20  
20  
20  
ns  
ns  
ns  
0
20  
Notes:  
1. Test conditions assume signal transition time of 5ns or less, timing reference levels of V /2, input pulse levels of 0.5V to V -0.5V, and output  
DD  
DD  
loading of the specified I /I and 50-pF load capacitance.  
OL OH  
2. AC test conditions use V /V =V /2 + 500mV.  
OH OL  
DD  
7
tRC  
Address  
tAA  
tOHA  
Data Out  
Previous Data Valid  
Data Valid  
Assumptions:  
1.R/W is HIGH for read cycle  
2.Device is continuously selected CE=LOW and OE=LOW  
Figure 3a. Read Cycle 1  
CE  
tACE  
OE  
tHZCE  
tHZOE  
tDOE  
tLZOE  
tLZCE  
Data Out  
Assumptions:  
1. Address valid prior to or coincident with CE transition LOW  
2. R/W is HIGH for read cycle  
Figure 3b. Read Cycle 2  
tWC  
Address  
R/WR  
MATCH  
tPWE  
tHD  
tSD  
DataINR  
VALID  
AddressL  
MATCH  
tDDD  
VALID  
DATAOUTL  
tWDD  
Assumptions:  
1. BUSY = HIGH for the writing port  
2. CE = CE = LOW  
L
R
Figure 3c. Read Timing with Port-to-Port Delay  
8
AC CHARACTERISTICS WRITE CYCLE1  
(VDD = 5.0V±10%)  
7C138 - 45  
7C139 - 45  
7C138 - 55  
7C139 - 55  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
tWC  
tSCE  
tAW  
tHA  
Write cycle time  
CE LOW to write end  
Address set-up to write end  
Address hold from write end  
Address set-up to write start  
Write pulse width  
45  
40  
40  
0
55  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSA  
0
0
tPWE  
tSD  
40  
40  
0
50  
50  
0
Data set-up to write end  
Data hold from write end  
R/W LOW to high Z  
tHD  
20  
20  
tHZWE  
tLZWE  
tWDD  
R/W HIGH to low Z  
Write pulse to data delay  
Write data valid to read data valid  
Write disable time  
0
95  
95  
5
0
ns  
ns  
ns  
ns  
105  
105  
5
tDDD  
tWHWL  
Notes:  
1. For information on part-to-part delay through DPRAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform (see figure 3c).  
9
tWC  
Address  
CE  
tSCE  
tAW  
tHA  
R/W  
tPWE  
tSD  
tHD  
tSA  
Data in  
DATA VALID  
tHZOE  
OE  
HIGH IMPEDANCE  
tLZOE  
Data out  
Assumptions:  
1. The internal write time of memory is defined by the overlap of CE  
LOW and R/W LOW. Both signals must be LOW to initiate a write,  
and either signal can terminate a write by going HIGH. The data input  
set-up and hold timing should be referenced to the rising edge of the  
signal that terminates the write.  
2. If OE is LOW during a R/W controlled write cycle, the write pulse  
width must be the larger of t  
or (t  
+ t ) to allow the I/O  
HZWE SD  
PWE  
drivers to turn off and data to be placed on the bus for the required t  
.
SD  
If OE is HIGH during a R/W controlled write cycle (as in this exam-  
ple), this requirement does not apply and the write pulse can be as  
short as the specified t  
.
PWE  
3. R/W must be HIGH during all address transactions.  
Figure 4a. Write Cycle 1: OE Three-States Data I/Os (Either Port)  
10  
tWC  
Address  
CE  
tHA  
tSCE  
tAW  
tWHWL  
R/W  
tSA  
tPWE  
tSD  
tHD  
Data in  
DATA VALID  
tLZWE  
tHZWE  
HIGH IMPEDANCE  
Data out  
Assumptions:  
1. The internal write time of memory is defined by the overlap of CE  
LOW and R/W LOW. Both signals must be LOW to initialize a write,  
and either signal can terminate a write by going HIGH. The data input  
set-up and hold timing should be referenced to the rising edge of the sig-  
nal that terminates the write.  
2. R/W must be HIGH during all address transactions.  
3. Data I/O pins enter high impedance even if OE is held LOW during  
write.  
Figure 4b. Write Cycle 2: R/W Three-States Data I/Os (Either Port)  
11  
AC CHARACTERISTICS BUSY CYCLE 1  
(VDD = 5.0V±10%)  
7C138 - 45  
7C139 - 45  
7C138 - 55  
7C139 - 55  
MIN MAX  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
tBLA  
tBZA  
tBLC  
tBZC  
BUSY LOW from address match  
BUSY HIGH-Z from address mismatch  
BUSY LOW from CE LOW  
25  
25  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
30  
30  
BUSY HIGH from CE HIGH  
Port set-up for priority  
30  
2,3  
5
5
tPS  
tWB  
tWH  
tBDD  
R/W LOW after BUSY LOW  
R/W HIGH after BUSY HIGH  
BUSY HIGH to data valid  
0
0
ns  
ns  
ns  
40  
50  
45  
55  
Notes:  
1. Test conditions assume signal transition time of 5ns or less, timing reference levels of V /2, input pulse levels of 0.5V to V -0.5V, and output  
DD  
DD  
loading of the specified I /I and 50-pF load capacitance.  
OL OH  
2. Violation of t (with addresses matching) results in at least one of the two busy output signals asserting, only one port remains busy.  
PS  
3. When violating t , the busy signal asserts on one port or the other; there is no guarantee on which port the busy signal asserts.  
PS  
12  
tWC  
AddressR  
R/WR  
MATCH  
tPWE  
tHD  
tSD  
Data InR  
VALID  
tPS  
AddressL  
BUSYL  
MATCH  
tBLA  
tBZA  
tBDD  
tDDD  
DataOUTL  
VALID  
Assumptions:  
tWDD  
1. CE = CE = LOW  
L
R
Figure 5a. Read Timing with BUSY (M/S=HIGH)  
R/W  
tPWE  
tWB  
tWH  
BUSY  
Figure 5b. Write Timing withBUSY (M/S=LOW)  
13  
CEL Valid First:  
AddressL,R  
ADDRESS MATCH  
CEL  
tPS  
CER  
tBLC  
tBZC  
BUSYR  
CER Valid First:  
AddressL,R  
ADDRESS MATCH  
CER  
tPS  
CEL  
BUSYL  
tBLC  
tBZC  
Assumptions:  
1. If t is violated, the BUSY signal will be asserted on  
PS  
one side or the other, but there is no guarantee on which  
side BUSY will be asserted.  
Figure 5c. BUSY Timing Diagram No. 1 (CE Arbitration)  
14  
Left Address Valid First:  
tRC or tWC  
AddressL  
AddressR  
BUSYR  
ADDRESS MATCH  
ADDRESS MISMATCH  
tPS  
tBLA  
tBZA  
Right Address Valid First:  
tRC or tWC  
ADDRESS MATCH  
tPS  
AddressR  
AddressL  
ADDRESS MISMATCH  
tBLA  
tBZA  
BUSYL  
Assumptions:  
1. If t is violated, the BUSY signal will be asserted on  
PS  
one side or the other, but there is no guarantee on which  
side BUSY will be asserted.  
Figure 5d. BUSY Timing Diagram No. 2 (Address Arbitration)  
15  
DATA RETENTION CHARACTERISTICS (Pre-Radiation)  
(TC = 25°C)  
SYMBOL  
PARAMETER  
MINIMUM  
MAXIMUM UNIT  
VDD  
2.5V  
@
VDR  
VDD for data retention  
2.5  
--  
--  
400  
V
1
Data retention current  
mA  
IDDR  
1,2  
Chip deselect to data retention time  
Operation recovery time  
0
ns  
ns  
tEFR  
1,2  
tWC or tRC  
tR  
Notes:  
1. CE equals V  
all other inputs equal V  
or V .  
SS  
DR,  
DR  
2. Guaranteed but not tested.  
DATA RETENTION MODE  
VDR 2.5V  
VDD  
4.5V  
tEFR  
4.5V  
tR  
V
< 1.5V CMOS  
VDR  
IN  
CE  
Figure 6. Low VDD Data Retention Waveform  
CMOS  
460 ohms  
90%  
V
-0.5V  
DD  
V
/2  
DD  
10%  
0.5V  
50pF  
< 5ns  
< 5ns  
Input Pulses  
Notes:  
1. 50pF including scope probe and test socket.  
2. Measurement of data output occurs at the low to high or high to low transition mid-point  
(CMOS input = V /2).  
DD  
Figure 7. AC Test Loads and Input Waveforms  
16  
Notes:  
1. All package finishes are per MIL-PRF-38535.  
2. Letter designations are for cross-reference to MIL-STD-1835.  
3. All leads increase max limit by 0.003 measured at the center of the  
flat, when lead finish A (solder) is applied.  
4. ID mark: Configuration is optional.  
5. Lettering is not subject to marking criteria.  
6. Total weight is approximately 4.5 grams.  
Figure 8. 68-lead Flatpack  
17  
L
K
J
H
G
F
E
D
C
B
A
11 10 9 8 7 6 5 4 3 2 1  
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11  
Notes:  
1. All packages finishes are per MIL-PRF-38535.  
2. True position applies at base plane (Datum C).  
3. True position applies at pin tips.  
4. Letter designations are for cross-reference to MIL-STD-1835.  
5. Total weight is approximately 7.0 grams.  
Figure 9. 68-pin PGA  
18  
ORDERING INFORMATION  
UT7C138/UT7C139 Dual-Port SRAM: SMD  
5962 * 96845 *  
*
*
*
Lead Finish:  
(A)  
(C)  
=
=
Solder  
Gold  
(X)  
=
Optional  
Case Outline:  
(X)  
(Y)  
=
=
68-pin PGA  
68-lead Flatpack  
Class Designator:  
(Q)  
(V)  
=
=
Class Q  
Class V  
Device Type  
(01) = 4Kx8, CMOS Compatible Inputs, 45ns  
(02) = 4Kx9, CMOS Compatible Inputs, 45ns  
(03) = 4Kx8, CMOS Compatible Inputs, 55ns  
(04) = 4Kx9, CMOS Compatible Inputs, 55ns  
Drawing Number: 96845  
Total Dose:  
(H)  
(G)  
(F)  
(R)  
=
=
=
=
1E6 rads(Si)  
5E5 rads(Si)  
3E5 rads(Si)  
1E5 rads(Si)  
Federal Stock Class Designator: No options  
Notes:  
1. Lead finish (A, C, or X) must be specified.  
2. If an “X” is specified when ordering, part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening.  
19  
UT7C138/UT7C139 Dual-Port SRAM  
UT **** *** * * * * * *  
Total Dose:  
( ) = None  
Lead Finish:  
(A)  
(C)  
(X)  
=
=
=
Solder  
Gold  
Optional  
Screening:  
(C)  
(P)  
=
=
Military Temperature Range flow  
Prototype flow  
Package Type:  
(G) 68-lead PGA  
=
(W) = 68-lead Flatpack  
Access Time:  
(45) = 45ns access time  
(55) = 55ns access time  
Device Type Modifier:  
(C)  
= CMOS-compatible Inputs, 5.0V operation  
Device Type:  
(7C138) = 4Kx8 Dual-Port SRAM  
(7C139) = 4Kx9 Dual-Port SRAM  
Notes:  
1. Lead finish (A,C, or X) must be specified.  
2. If an “X” is specified when ordering, then the part marking will match the lead finish and will be either “A” (solder) or “C” (gold).  
3. Military Temperature Range flow per UTMC Manufacturing Flows Document. Radiation characteristics are neither tested nor guaranteed and may  
not be specified.  
4. Prototypes are produced to UTMC’s prototype flow and are tested at 25°C only. Radiation characteristics are neither tested nor guaranteed. Lead finish  
is GOLD only.  
20  
UTMC Main Office  
4350 Centennial Blvd.  
Colorado Springs, CO 80907-3486  
800-MIL-UTMC  
European Sales Office  
1+719-594-8166  
1+719-594-8468 FAX  
http://www.utmc.com  
Boston Sales Office  
40 Mall Road, Suite 203  
Burlington, MA 01830  
781-221-4122  
800-645-8862  
http://www.utmc.com  
Melbourne Sales Office  
1901 S. Harbor City Blvd., Suite 802  
Melbourne, FL 32901  
South LA Sales Office  
101 Columbia Street, Suite 130  
Aliso Viejo, CA 92656  
714-362-2260  
407-951-4164  
UTMC Microelectronic Systems Inc. (UTMC) reserves the right to make changes to any products and services herein at any time without notice. Consult UTMC  
or an authorized sales representative to verify that the information in this data sheet is current before using this product. UTMC does not assume any responsibility  
or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by UTMC; nor does the purchase,  
lease, or use of a product or service from UTMC convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of  
UTMC or of third parties.  
Copyright 1996 & 1997 by UTMC Microelectronic Systems Inc.  
DUALPORT-2-12-97  
All rights reserved  

相关型号:

UT7C139C45WCA

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C45WCC

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C45WCX

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C45WPA

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C45WPC

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C45WPX

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GCA

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GCC

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GCX

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GPA

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GPC

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX

UT7C139C55GPX

4Kx8/9 Radiation-Hardened Dual-Port Static RAM with Busy Flag

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
AEROFLEX