LG1628AXA [AGERE]

LG1628AXA SONET/SDH 2.488 Gbits/s Transimpedance Amplifier; LG1628AXA SONET / SDH 2.488 Gb / s的互阻放大器
LG1628AXA
型号: LG1628AXA
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

LG1628AXA SONET/SDH 2.488 Gbits/s Transimpedance Amplifier
LG1628AXA SONET / SDH 2.488 Gb / s的互阻放大器

放大器
文件: 总12页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
A complete receiver/regenerator can be constructed  
with an LG1628AXA followed by an LG1605 limiting  
amplifier and LG1600 clock and data regenerator.  
Features  
High data rate: 2.5 Gbits/s  
High gain: 5.8 ktransimpedance  
Complementary 50 outputs  
Low noise  
Figure 1 shows the block diagram of the LG1628AXA  
transimpedance amplifier. The amplifier consists of a  
4.2 kdifferential transimpedance stage followed by  
a limiting buffer that provides complementary 50 Ω  
outputs.  
Ultrawide dynamic range  
Single –5.2 V ECL power supply  
RF  
GND  
Applications  
OUT+  
OUT–  
IN–  
IN+  
ZEFF  
SONET/SDH receivers  
50 Ω  
SONET/SDH test equipment  
Digital video transmission  
LIMITING  
BUFFER  
VSS  
RF  
OVERLOAD CONTROL  
Functional Description  
5-5329(F)  
The Lucent Technologies Microelectronics Group  
LG1628AXA is a hybrid integrated circuit that com-  
bines the Lucent LG1628A gallium arsenide (GaAs)  
transimpedance amplifier chip with an external Si  
dual operational amplifier and necessary filtering to  
achieve an ultrawide dynamic range amplifier. The  
LG1628AXA is capable of handling input currents  
from 3 µAavg to 4 mAavg (patent pending). Amplifier  
operation is from a single –5.2 V power supply. The  
targeted transmission system is SONET OC-48 and  
SDH STM-16.  
Figure 1. LG1628AXA Functional Diagram  
 
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Preliminary Data Sheet  
January 1998  
Die Pad Configuration  
The die pad configuration is shown in Figure 2.  
22  
21  
20  
19  
19  
19  
19  
18  
18  
17  
16  
15  
15  
14  
14  
DNC  
BG  
GND2  
GND1  
23  
24  
24  
OUT+  
IN–  
OUTSIDE DIE DIMENSIONS:  
1.62 mm2 x 1.62 mm2  
PAD SIZE:  
100 µm2 x 100 µm2  
OUT–  
GND2  
(EXCEPT PAD #23, 100 µm2 x 150 µm2)  
PAD SEPARATION:  
50 µm  
IN+  
1
2
3
3
13  
12  
12  
11  
GND1  
VSS2  
BYPASS  
4
5
6
7
8
9
10  
11  
5-5336(F)r.2  
Figure 2. Die Pad Configuration  
2
Lucent Technologies Inc.  
 
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Die Pad Configuration (continued)  
The pad descriptions for the LG1628AXA are given in Table 1.  
Table 1. Pad Descriptions  
Pad  
Symbol  
Description  
1
IN+  
Amplifier input; connect to detector anode, current should enter this node.  
Ground.  
2, 19, 23  
GND1  
3
4
BYPASS  
OP2OUT  
OP1OUT  
OP1–  
Connections between these nodes and an external dual op amp form the over-  
load control circuitry. See the test circuit in Figure 4 for wiring details.  
To operate the amplifier without overload control connect OP2OUT to VSS,  
OP1OUT to GND, and leave BYPASS and the remaining op amp connections  
open (Figure 5).  
5
6
7
OP1+  
8
OP2–  
9
OP2+A  
OP2+B  
10  
11  
VSS1  
VSS2  
GND2  
OUT–  
OUT+  
BG  
Supply voltage; –5.2 Vdc nominal.  
12  
13, 16, 18  
14  
Supply voltage; –5.2 Vdc nominal.  
Ground.  
Inverted data output (produces low-level output for current entering IN+).  
Noninverted data output (produces high-level output for current entering IN+).  
15  
17  
Connection for external –2.5 Vdc voltage reference (typically use an Si band-  
gap).  
20, 21, 22  
24  
DNC  
IN–  
Do not connect; internal test point or reserved for future use.  
Inverting input; must provide ac bypass to ground when using overload control.  
Lucent Technologies Inc.  
3
 
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Preliminary Data Sheet  
January 1998  
Typical Connections and Padout of the Hybrid Integrated Circuit  
OUT+*  
50 Ω  
OUT–*  
50 Ω  
60x30  
7
5
9
10  
4
17  
18  
IN+  
2
19  
60X30  
16  
15  
APD  
13  
60X30  
8
6
60X30  
12  
14  
APD+  
3
120X100  
20  
+VDET  
VSS  
GND THERMISTOR  
5-5336(F).r3  
* OUT– is delayed approximately 25 ps with respect to OUT+ due to the longer microstrip line associated with OUT–. An extra delay should be  
added to OUT+ before connecting to the next circuit.  
Figure 3.Typical Connections to the HIC (See Figure 4 for a Schematic of the Circuitry on the HIC.)  
Table 2. HIC Pad Functional Description  
Symbol  
Description  
IN+  
APD+  
+VDET  
VSS  
Amplifier input; connect to detector anode, current should enter this node.  
RF bypassed connection for the cathode of the APD.  
APD power supply connection.  
Supply voltage; –5.2 Vdc nominal.  
GND  
Ground (back of HIC is also ground).  
Thermistor Negative temperature coefficient thermistor for APD gain control.  
OUT+  
OUT–  
Noninverted data output (produces high-level output for current entering IN+).  
Inverted data output (produces low-level output for current entering IN+).  
4
Lucent Technologies Inc.  
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These  
are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
Supply Voltage Range (VSS)  
Min  
Max  
Unit  
–7  
0.5  
1
V
W
V
Power Dissipation  
Voltage (all pins)  
0.5  
–40  
0
VSS  
125  
100  
Storage Temperature Range  
Operating Temperature Range  
°C  
°C  
Recommended Operating Conditions  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Max  
Unit  
Ambient Temperature  
Power Supply  
TA  
0
85  
°C  
VSS  
–4.7  
–5.7  
V
Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-  
sure to electrostatic discharge (ESD) during handling and mounting. Lucent Technologies Microelectronics Group  
employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and pro-  
tection design evaluation. No industry-wide standard has been adopted for the CDM. However, a standard HBM  
(resistance = 1500 , capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes.  
The HBM ESD threshold presented here was obtained by using these circuit parameters.  
Table 5. ESD Threshold  
HBM ESD Threshold  
Device  
Voltage  
LG1628AXA  
>500 V  
Lucent Technologies Inc.  
5
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Preliminary Data Sheet  
January 1998  
Electrical Characteristics  
TA = 25 °C, VSS = –5.2 V, CDETECTOR = 0.5 pF, RLOAD = 50 , unless otherwise indicated.  
Parameter  
Power Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
VSS  
ISS  
TZ  
–5.7  
–5.2  
140  
5.8  
–4.7  
V
Power Supply Current  
mA  
kΩ  
Effective Small-signal Transimpedance  
(Single-ended input to either OUT+ or  
OUT– each driving a 50 load, differ-  
ential gain is twice this value.)  
Small-signal Bandwidth  
Transimpedance Peaking  
Output Return Loss  
BW  
TPK  
1.5  
1.6  
0
1
GHz  
dB  
S22  
10  
15  
300  
dB  
Input Noise Current  
(100 kHz—2.5 GHz)  
INOISE  
350  
nArms  
Operating Temperature Range  
TOP  
0
85  
°C  
6
Lucent Technologies Inc.  
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Test Circuit with Overload Control  
19  
18  
2.5 V  
BANDGAP2  
BG  
~100 µA  
RF  
17  
15  
14  
10 Ω  
27 kΩ  
0.02 µF  
300 pF  
VSS1  
0.047 µF  
50 Ω  
50 Ω  
LOUT  
LOUT  
24  
IN–  
IN+  
OUT+  
OUT–  
50 Ω  
LIMITING  
BUFFER  
(SEE NOTE 3 FOR BIAS CONDITIONS)  
ZEFF  
COUT  
RIN  
LIN  
APD  
1
0.047 µF  
(LPF, SEE NOTE 5)  
(SEE NOTE 4)  
APD+  
RF  
100 pF  
OVERLOAD CONTROL  
50 Ω  
1 kΩ  
0.033 µF  
100 V CAPS  
3
4
5
6
7
8
9
10  
11 12  
+VDET  
100 pF  
0.047 µF  
300 pF  
0.047 µF  
10 Ω  
0.1 µF  
OP11  
+
Vss  
5.2 V  
0.047 µF  
+
OP21  
+
0.047 µF  
5-5335(F)r.1  
1. Operational amplifiers OP1 and OP2 should have the following characteristics (suggested op amps are the LMC6082IM or OP291GS, both  
are available as dual op amps in an 8-pin SOIC package):  
a.Single 5 V supply operation.  
b.Maximum input offset voltage of 1 mV.  
c.Low-level output includes negative rail.  
d.High-level output to within 2 V of the positive rail.  
e.Gain bandwidth product 1.8 MHz.  
f. Large signal voltage gain 100 V/mV.  
2. An on-chip 75 kresistor to the negative supply is provided for biasing the voltage reference. Approximately 100 µA of current will be  
drawn. (Suggested bandgap reference is the LM4040BIM–2.5, available in an SOT-23 package.)  
3. Node IN+ is nominally at –3.3 Vdc. APD supply voltage +Vdet should be adjusted appropriately.  
4. RINLIN may be necessary to achieve stability depending on the physical arrangement of the APD and its associated electrical parasitics  
(series inductance and other resonances). The amplifier will be stable with a 0.5 pF detector capacitance in series with a 0.5 nH inductor,  
but packaged detectors usually do not behave so ideally at frequencies above a few gigahertz. A parallel RL network consisting of a 200 Ω  
resistor and a 6 nH inductor is provided on HIC and may be optionally used with a slight noise penalty. Good isolation from output to input  
is also essential for amplifier stability.  
5. A low-pass filter is provided on the LG1628AXA HIC to reduce higher-frequency noise contributions (Butterworth N = 2, Zo = 50 and fc =  
4.25 GHz, LOUT = 2.65 nH, COUT = 0.5 pF).  
Figure 4. Optical Receiver with Overload Control  
Lucent Technologies Inc.  
7
 
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Preliminary Data Sheet  
January 1998  
Test Circuit with Overload Control Disabled  
19  
18  
2.5 V  
BANDGAP  
BG  
~100 µA  
RF  
17  
15  
14  
10 Ω  
27 kΩ  
0.02 µF  
300 pF  
VSS1  
0.047 µF  
50 Ω  
50 Ω  
LOUT  
LOUT  
24  
1
IN–  
IN+  
OUT+  
OUT–  
50 Ω  
LIMITING  
BUFFER  
ZEFF  
COUT  
RIN  
LIN  
APD  
0.047 µF  
APD+  
RF  
100 pF  
OVERLOAD CONTROL  
50 Ω  
1 kΩ  
0.033 µF  
3
4
5
6
7
8
9
10  
11 12  
100 V CAPS  
VSS  
NC  
NC NC NC NC NC  
5.2 V  
100 pF  
0.1 µF  
+
10 Ω  
5-5334(F)r.3  
Note: Notes 2, 3, 4, and 5 from the previous page (Figure 4) apply to this drawing.  
Figure 5. Optical Receiver with Overload Control Disabled  
8
Lucent Technologies Inc.  
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Characteristic Curves (at TA = 25 °C, VSS = –5.2 V, CDETECTOR = 0.0 pF, 0.5 pF, 1.0 pF, RLOAD = 50 )  
600  
500  
400  
300  
200  
80  
77  
74  
71  
1.0 pF  
68  
65  
62  
59  
56  
0.5 pF  
0.0 pF  
100  
0
53  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
0.001  
0.01  
0.1  
1
10  
APD CURRENT (mAavg)  
FREQUENCY (GHz)  
A. Small-Signal Transimpedance  
B. Overload Characteristics1  
30  
400  
1.0 pF  
0.5 pF  
0.0 pF  
350  
300  
250  
200  
150  
25  
20  
1.0 pF  
0.5 pF  
0.0 pF  
15  
10  
5
100  
50  
0
0
0.0 0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
0.0 0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5 4.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
C. Input Spectral Noise Density  
D.Total Input Noise Current  
5-5330(F)r.1, 5-5331(F).ar2, 5-5332(F)r.2, 5-5333(F)r.2  
1. >25 dB dynamic range requires an external Si dual operational amplifier. The detector polarity is such that current enters the LG1628A (i.e.,  
the detector anode is connected to the LG1628A).  
Figure 6. Characteristic Curves as Measured on the LG1628AXA Hybrid Integrated Circuit  
Lucent Technologies Inc.  
9
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Preliminary Data Sheet  
January 1998  
Dimensional Drawing of the Hybrid Integrated Circuit (HIC)  
Dimensions are in inches. Ceramic thickness is 0.025 inches.  
0.327  
0.224  
0.005  
0.005  
60x30  
7
5
9
10  
4
17  
18  
2
19  
60X30  
16  
15  
0.550  
13  
60X30  
8
6
0.358  
60X30  
12  
14  
0.141  
3
120X100  
20  
0.018  
0.019  
0.238  
0.035  
0.318  
0.380  
0.525  
5-5336(F).ar3  
Figure 7. HIC Dimensions and Location of Bonding Pads  
Ordering Information  
Device Code  
LG1628AXA  
LG1628BXA*  
Package  
Temperature  
0 °C to 85 °C  
0 °C to 85 °C  
Comcode  
(Ordering Number)  
Hybrid Integrated Circuit  
Differential Output  
107791469  
108052085  
Hybrid Integrated Circuit  
Single-ended Output  
* Second output on BXA is terminated through to ground 50 on hybrid.  
10  
Lucent Technologies Inc.  
Preliminary Data Sheet  
January 1998  
LG1628AXA SONET/SDH 2.488 Gbits/s  
Transimpedance Amplifier  
Notes  
Lucent Technologies Inc.  
11  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
U.S.A.:  
Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE:Tel. (44) 1189 324 299, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Bracknell),  
FRANCE: (33) 1 41 45 77 00 (Paris), SWEDEN: (46) 8 600 7070 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 2 6601 1800 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1998 Lucent Technologies Inc.  
All Rights Reserved  
Printed in U.S.A.  
January 1998  
DS97-156FCE  

相关型号:

LG16M10K0BP342040

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 10000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M10K0BP342525

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 10000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M15K0BP442240

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 15000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M18K0BPF-2245

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 18000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M27K0BP443040

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 27000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M27K0BP443530

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 27000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG16M33K0BP343045

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 16V, 20% +Tol, 20% -Tol, 33000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO

LG170Z

GREEN OVAL LAMP LED
SEOUL

LG171

INFRARED LAMP LED
SEOUL

LG1740

TOWER TYPE LED LAMPS
LIGITEK

LG180M0180BPF-2220

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 180V, 20% +Tol, 20% -Tol, 180uF, Through Hole Mount, RADIAL LEADED
YAGEO

LG180M1000BP342545

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 180V, 20% +Tol, 20% -Tol, 1000uF, Through Hole Mount, ROHS COMPLIANT
YAGEO