T7630 [AGERE]

T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II); T7630双T1 / E1 5.0 V短程终结者(终结者II )
T7630
型号: T7630
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)
T7630双T1 / E1 5.0 V短程终结者(终结者II )

文件: 总210页 (文件大小:2787K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Alarm reporting and performance monitoring per  
AT&T, ANSI*, and ITU-T standards.  
Features  
Programmable, independent transmit and receive  
system interfaces at a 2.048 MHz, 4.096 MHz, or  
8.192 MHz data rate.  
The T7630 Dual T1/E1 Terminator consists of two  
independent, highly integrated, software-config-  
urable, full-featured short-haul transceiver/framers.  
The T7630 provides glueless interconnection from a  
T1/E1 line to a digital PCM system. Minimal external  
clocks are needed. Only a system clock/frame sync  
and a phase-locked line rate clock are required. Sys-  
tem diagnostic and performance monitoring capabil-  
ity with integrated programmable test pattern  
System interface master mode for generation of  
system frame sync from the line source.  
Internal phase-locked loop (with external VCXO)  
for generation of system clock from the line source.  
Facility Data Link Features  
generator/detector and loopback modes is provided.  
HDLC or transparent modes.  
Automatic transmission and detection of ANSI  
T1.403 FDL performance report message and bit-  
oriented codes.  
Power Requirements and Package  
Single 5 V ± 5% supply.  
64-byte FIFO in both transmit and receive direc-  
tions.  
Low power: 375 mW per channel maximum.  
144-pin TQFP package.  
Operating temperature range: –40 °C to +85 °C.  
Microprocessor Interface  
T1/E1 Line Interface Features  
33 MHz, 8-bit data interface, no wait-states.  
Intelor Motorolainterface modes with multi-  
Full T1/E1 pulse template compliance.  
plexed or demultiplexed buses.  
Receiver provides equalization for up to 11 dB of  
loss.  
Directly addressable control registers.  
Digital clock and data recovery.  
Applications  
Line coding: B8ZS, HDB3, ZCS, and AMI.  
Line interface coupling and matching networks for  
T1 and E1 (120 and 75 ).  
Customer Premises Equipment—CSU/DSU,  
routers, digital PBX, channel banks (CB), base  
transceiver stations (BTS-picocell), small switches,  
and digital subscriber loop access multiplexers  
(DSLAM).  
T1/E1 Framer Features  
Supports T1 framing modes ESF, D4, SLC®-96,  
T1DM DDS.  
Loop/Access—DLC/IDLC, DCS, BTS (microcell/  
macrocell), DSLAMs, and multiplexers (terminal,  
synchronous/asynchronous, add drop).  
Supports G.704 basic and CRC-4 multiframe for-  
mat E1 framing and procedures consistent with  
G.706.  
Central Office—Digital switches, DCS, CB,  
access concentrators, remote switch modules  
(RSM), and DSLAMs.  
Supports unframed transmission format.  
T1 signaling modes: transparent; ESF 2-state,  
4-state, and 16-state; D4 2-state and 4-state;  
SLC-96 2-state, 4-state, 9-state and 16-state. E1  
signaling modes: transparent and CAS.  
Test EquipmentTransmission/BERT tester.  
* ANSI is a registered trademark of American National Standards  
Institute, Inc.  
Intel is a registered trademark of Intel Corporation.  
Motorola is a registered trademark of Motorola, Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents  
Contents  
Page  
Features ................................................................................................................................................................... 1  
T1/E1 Line Interface Features............................................................................................................................... 1  
Power Requirements and Package....................................................................................................................... 1  
T1/E1 Framer Features......................................................................................................................................... 1  
Facility Data Link Features.................................................................................................................................... 1  
Microprocessor Interface....................................................................................................................................... 1  
Applications........................................................................................................................................................... 1  
Feature Descriptions .............................................................................................................................................. 12  
T1/E1 Line Interface Features............................................................................................................................. 12  
T1/E1 Framer Features....................................................................................................................................... 12  
Facility Data Link Features.................................................................................................................................. 13  
User-Programmable Microprocessor Interface ................................................................................................... 13  
Functional Description............................................................................................................................................ 14  
Pin Information ....................................................................................................................................................... 18  
Line Interface Unit: Block Diagram......................................................................................................................... 25  
Line Interface Unit: Receive ................................................................................................................................... 25  
Data Recovery..................................................................................................................................................... 25  
Jitter Accommodation and Jitter Transfer Without the Jitter Attenuator.............................................................. 26  
Receive Line Interface Configuration Modes ...................................................................................................... 26  
Line Interface Unit: Transmit .................................................................................................................................. 32  
Output Pulse Generation..................................................................................................................................... 32  
LIU Transmitter Configuration Modes ................................................................................................................. 33  
LIU Transmitter Alarms ....................................................................................................................................... 33  
DSX-1 Transmitter Pulse Template and Specifications ...................................................................................... 34  
CEPT Transmitter Pulse Template and Specifications ....................................................................................... 36  
Line Interface Unit: Jitter Attenuator....................................................................................................................... 37  
Generated (Intrinsic) Jitter................................................................................................................................... 37  
Jitter Transfer Function ....................................................................................................................................... 37  
Jitter Accommodation.......................................................................................................................................... 38  
Jitter Attenuator Enable (Transmit or Receive Path)........................................................................................... 38  
Line Interface Unit: Loopbacks............................................................................................................................... 41  
Full Local Loopback (FLLOOP)........................................................................................................................... 41  
Remote Loopback (RLOOP) ............................................................................................................................... 41  
Digital Local Loopback (DLLOOP) ...................................................................................................................... 41  
Line Interface Unit: Other Features ........................................................................................................................ 41  
LIU Powerdown (PWRDN).................................................................................................................................. 41  
Loss of Framer Receive Line Clock (LOFRMRLCK Pin)..................................................................................... 41  
In-Circuit Testing and Driver High-Impedance State (3-STATE)......................................................................... 41  
LIU Delay Values................................................................................................................................................. 42  
SYSCK Reference Clock........................................................................................................................................ 42  
Line Interface Unit: Line Interface Networks........................................................................................................... 43  
LIU-Framer Interface .............................................................................................................................................. 46  
LIU-Framer Physical Interface............................................................................................................................. 46  
Interface Mode and Line Encoding...................................................................................................................... 47  
DS1: Alternate Mark Inversion (AMI)................................................................................................................... 48  
DS1: Zero Code Suppression (ZCS)................................................................................................................... 48  
CEPT: High-Density Bipolar of Order 3 (HDB3).................................................................................................. 49  
Frame Formats....................................................................................................................................................... 49  
T1 Framing Structures......................................................................................................................................... 49  
2
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Contents  
Page  
T1 Loss of Frame Alignment (LFA)......................................................................................................................57  
T1 Frame Recovery Alignment Algorithms ..........................................................................................................58  
T1 Robbed-Bit Signaling..................................................................................................................................... 59  
CEPT 2.048 Basic Frame, CRC-4 Time Slot 0, and Signaling Time Slot 16 Multiframe Structures....................61  
CEPT 2.048 Basic Frame Structure.....................................................................................................................62  
CEPT Loss of Basic Frame Alignment (LFA).......................................................................................................63  
CEPT Loss of Frame Alignment Recovery Algorithm..........................................................................................63  
CEPT Time Slot 0 CRC-4 Multiframe Structure...................................................................................................64  
CEPT Loss of CRC-4 Multiframe Alignment (LTS0MFA) ....................................................................................65  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms......................................................................66  
CEPT Time Slot 16 Multiframe Structure.............................................................................................................70  
CEPT Loss of Time Slot 16 Multiframe Alignment (LTS16MFA) .........................................................................71  
CEPT Loss of Time Slot 16 Multiframe Alignment Recovery Algorithm ..............................................................71  
CEPT Time Slot 0 FAS/NOT FAS Control Bits ......................................................................................................71  
FAS/NOT FAS Si- and E-Bit Source....................................................................................................................71  
NOT FAS A-Bit (CEPT Remote Frame Alarm) Sources......................................................................................72  
NOT FAS Sa-Bit Sources ....................................................................................................................................72  
Sa Facility Data Link Access................................................................................................................................73  
NOT FAS Sa Stack Source and Destination........................................................................................................74  
CEPT Time Slot 16 X0—X2 Control Bits .............................................................................................................76  
Signaling Access.....................................................................................................................................................76  
Transparent Signaling..........................................................................................................................................76  
DS1: Robbed-Bit Signaling ..................................................................................................................................76  
CEPT: Time Slot 16 Signaling.................................................................................................................................77  
Auxiliary Framer I/O Timing ....................................................................................................................................78  
Alarms and Performance Monitoring.......................................................................................................................81  
Interrupt Generation.............................................................................................................................................81  
Alarm Definition....................................................................................................................................................81  
Event Counters Definition ....................................................................................................................................86  
Loopback and Transmission Modes ....................................................................................................................88  
Line Test Patterns................................................................................................................................................91  
Automatic and On-Demand Commands..............................................................................................................95  
Receive Facility Data Link Interface.....................................................................................................................97  
Transmit Facility Data Link Interface..................................................................................................................103  
HDLC Operation ................................................................................................................................................104  
Transparent Mode..............................................................................................................................................107  
Diagnostic Modes ..............................................................................................................................................108  
Phase-Lock Loop Circuit.......................................................................................................................................110  
Framer-System (CHI) Interface.............................................................................................................................112  
DS1 Modes ........................................................................................................................................................112  
CEPT Modes......................................................................................................................................................112  
Receive Elastic Store.........................................................................................................................................112  
Transmit Elastic Store........................................................................................................................................112  
Concentration Highway Interface..........................................................................................................................112  
CHI Parameters .................................................................................................................................................113  
CHI Frame Timing..............................................................................................................................................115  
CHI Offset Programming....................................................................................................................................118  
JTAG Boundary-Scan Specification......................................................................................................................120  
Principle of the Boundary Scan..........................................................................................................................120  
Lucent Technologies Inc.  
3
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Contents  
Page  
Test Access Port Controller............................................................................................................................... 121  
Instruction Register ........................................................................................................................................... 123  
Boundary-Scan Register ................................................................................................................................... 124  
BYPASS Register.............................................................................................................................................. 124  
IDCODE Register.............................................................................................................................................. 124  
3-State Procedures ........................................................................................................................................... 124  
Microprocessor Interface...................................................................................................................................... 125  
Overview ........................................................................................................................................................... 125  
Microprocessor Configuration Modes................................................................................................................ 125  
Microprocessor Interface Pinout Definitions...................................................................................................... 126  
Microprocessor Clock (MPCLK) Specifications................................................................................................. 127  
Microprocessor Interface Register Address Map .............................................................................................. 127  
I/O Timing.......................................................................................................................................................... 127  
Reset .................................................................................................................................................................... 134  
Hardware Reset (Pin 43/139)............................................................................................................................ 134  
Software Reset/Software Restart...................................................................................................................... 134  
Register Architecture............................................................................................................................................ 135  
Global Register Architecture................................................................................................................................. 139  
Global Register Structure ..................................................................................................................................... 140  
Primary Block Interrupt Status Register (GREG0) ............................................................................................ 140  
Primary Block Interrupt Enable Register (GREG1) ........................................................................................... 140  
Global Loopback Control Register (GREG2) .................................................................................................... 141  
Global Loopback Control Register (GREG3) .................................................................................................... 141  
Global Control Register (GREG4)..................................................................................................................... 142  
Device ID and Version Registers (GREG5—GREG7) ...................................................................................... 142  
Line Interface Unit (LIU) Register Architecture..................................................................................................... 143  
Line Interface Alarm Register............................................................................................................................... 144  
Alarm Status Register (LIU_REG0)................................................................................................................... 144  
Line Interface Alarm Interrupt Enable Register .................................................................................................... 144  
Alarm Interrupt Enable Register (LIU_REG1) ................................................................................................... 144  
Line Interface Control Registers........................................................................................................................... 145  
LIU Control Register (LIU_REG2)..................................................................................................................... 145  
LIU Control Register (LIU_REG3)..................................................................................................................... 145  
LIU Control Register (LIU_REG4)..................................................................................................................... 146  
LIU Configuration Register (LIU_REG5) ........................................................................................................... 147  
LIU Configuration Register (LIU_REG6) ........................................................................................................... 147  
Framer Register Architecture ............................................................................................................................... 148  
Framer Status/Counter Registers...................................................................................................................... 149  
FDL Register Architecture .................................................................................................................................... 190  
FDL Parameter/Control Registers (800—80E; E00—E0E).................................................................................. 191  
Register Maps ...................................................................................................................................................... 198  
Global Registers................................................................................................................................................ 198  
Line Interface Unit Parameter/Control and Status Registers ............................................................................ 198  
Framer Parameter/Control Registers (Read-Write)........................................................................................... 199  
Receive Framer Signaling Registers (Read-Only) ............................................................................................ 201  
Framer Unit Parameter Register Map .............................................................................................................. 202  
Transmit Signaling Registers (Read/Write)....................................................................................................... 205  
Facility Data Link Parameter/Control and Status Registers (Read-Write)........................................................ 206  
Absolute Maximum Ratings................................................................................................................................. 207  
4
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Contents  
Page  
Operating Conditions ........................................................................................................................................... 207  
Handling Precautions............................................................................................................................................207  
Electrical Characteristics.......................................................................................................................................208  
Logic Interface Characteristics...........................................................................................................................208  
Power Supply Bypassing ......................................................................................................................................208  
Outline Diagram ....................................................................................................................................................209  
144-Pin TQFP....................................................................................................................................................209  
Ordering Information .............................................................................................................................................210  
Figures  
Page  
Figure 1. T7630 Block Diagram (One of Two Channels).........................................................................................14  
Figure 2. T7630 Block Diagram: Receive Section (One of Two Channels) .............................................................16  
Figure 3. T7630 Block Diagram: Transmit Section (One of Two Channels).............................................................17  
Figure 4. Pin Assignment........................................................................................................................................18  
Figure 5. Block Diagram of Line Interface Unit: Single Channel .............................................................................25  
Figure 6. T1/DS1 Receiver Jitter Accommodation Without Jitter Attenuator...........................................................30  
Figure 7. T1/DS1 Receiver Jitter Transfer Without Jitter Attenuator........................................................................30  
Figure 8. CEPT/E1 Receiver Jitter Accommodation Without Jitter Attenuator........................................................31  
Figure 9. CEPT/E1 Receiver Jitter Transfer Without Jitter Attenuator.....................................................................31  
Figure 10. DSX-1 Isolated Pulse Template .............................................................................................................34  
Figure 11. ITU-T G.703 Pulse Template..................................................................................................................36  
Figure 12. T1/DS1 Receiver Jitter Accommodation with Jitter Attenuator ..............................................................39  
Figure 13. T1/DS1 Jitter Transfer of the Jitter Attenuator........................................................................................39  
Figure 14. CEPT/E1 Receiver Jitter Accommodation with Jitter Attenuator............................................................40  
Figure 15. CEPT/E1 Jitter Transfer of the Jitter Attenuator .....................................................................................40  
Figure 16. Line Termination Circuitry ......................................................................................................................43  
Figure 17. T7630 Line Interface Unit Approximate Equivalent Analog I/O Circuits.................................................45  
Figure 18. Block Diagram of Framer Line Interface.................................................................................................46  
Figure 19. Transmit Framer TLCK to TND, TPD and Receive Framer RND, RPD to RLCK Timing........................47  
Figure 20. T1 Frame Structure................................................................................................................................50  
Figure 21. T1 Transparent Frame Structure ............................................................................................................51  
Figure 22. T7630 Facility Data Link Access Timing of the Transmit and Receive Framer Sections........................53  
Figure 23. Fs Pattern SLC-96 Superframe Format .................................................................................................53  
Figure 24. ITU 2.048 Basic Frame, CRC-4 Multiframe, and Channel Associated Signaling Multiframe  
Structures .............................................................................................................................................................61  
Figure 25. CEPT Transparent Frame Structure.......................................................................................................62  
Figure 26. Receive CRC-4 Multiframe Search Algorithm Using the 100 ms Internal Timer ...................................67  
Figure 27. Receive CRC-4 Multiframe Search Algorithm for Automatic, CRC-4/Non-CRC-4  
Equipment Interworking as Defined by ITU (From ITU Rec. G.706, Annex B.2.2 - 1991)....................................69  
Figure 28. Facility Data Link Access Timing of the Transmit and Receive Framer Sections in the CEPT Mode.....73  
Figure 29. Transmit and Receive Sa Stack Accessing Protocol..............................................................................75  
Figure 30. Timing Specification for RFRMCK, RFRMDATA, and RFS in DS1 Mode...............................................78  
Figure 31. Timing Specification for TFS, TLCK, and TPD in DS1 Mode.................................................................78  
Figure 32. Timing Specification for RFRMCK, RFRMDATA, and RFS in CEPT Mode............................................79  
Figure 33. Timing Specification for RFRMCK, RFRMDATA, RFS, and RSSFS in CEPT Mode ..............................79  
Figure 34. Timing Specification for RCRCMFS in CEPT Mode ..............................................................................80  
Figure 35. Timing Specification for TFS, TLCK, and TPD in CEPT Mode ..............................................................80  
Figure 36. Timing Specification for TFS, TLCK, TPD, and TSSFS in CEPT Mode.................................................80  
Figure 37. Timing Specification for TFS, TLCK, TPD, and TCRCMFS in CEPT Mode...........................................81  
Lucent Technologies Inc.  
5
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Figures  
Page  
Figure 38. Relation Between RLCK1 and Interrupt (Pin 99)................................................................................... 81  
Figure 39. Timing for Generation of LOPLLCK (Pin 39/143).................................................................................. 83  
Figure 40. The T and V Reference Points for a Typical CEPT E1 Application........................................................ 85  
Figure 41. Loopback and Test Transmission Modes............................................................................................... 90  
Figure 42. 20-Stage Shift Register Used to Generate the Quasi-Random Signal.................................................. 91  
Figure 43. 15-Stage Shift Register Used to Generate the Pseudorandom Signal ................................................. 92  
Figure 44. T7630 Facility Data Link Access Timing of the Transmit and Receive Framer Sections ....................... 97  
Figure 45. Block Diagram for the Receive Facility Data Link Interface ................................................................... 98  
Figure 46. Block Diagram for the Transmit Facility Data Link Interface................................................................. 103  
Figure 47. Local Loopback Mode ......................................................................................................................... 109  
Figure 48. Remote Loopback Mode ..................................................................................................................... 109  
Figure 49. T7630 Phase Detector Circuitry.......................................................................................................... 111  
Figure 50. Nominal Concentration Highway Interface Timing (for FRM_PR43 bit 0—bit 2 = 100 (Binary)) ......... 115  
Figure 51. CHIDTS Mode Concentration Highway Interface Timing .................................................................... 116  
Figure 52. Associated Signaling Mode Concentration Highway Interface Timing ................................................ 117  
Figure 53. CHI Timing with ASM and CHIDTS Enabled....................................................................................... 117  
Figure 54. TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 0  
(CEX = 3 and CER = 4, Respectively) ............................................................................................................... 118  
Figure 55. Receive CHI (RCHIDATA) Timing........................................................................................................ 119  
Figure 56. Transmit CHI (TCHIDATA) Timing........................................................................................................ 119  
Figure 57. Block Diagram of the T7630's Boundary-Scan Test Logic .................................................................. 120  
Figure 58. BS TAP Controller State Diagram........................................................................................................ 121  
Figure 59. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0) ............................................................... 130  
Figure 60. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0) ............................................................... 130  
Figure 61. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1) ............................................................... 131  
Figure 62. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1) ............................................................... 131  
Figure 63. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0) ............................................................... 132  
Figure 64. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0) ............................................................... 132  
Figure 65. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1) ............................................................... 133  
Figure 66. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1) ............................................................... 133  
6
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Table  
Page  
Table 1. Pin Descriptions-Channel 1 and Channel 2..............................................................................................19  
Table 2. Pin Descriptions-Global ............................................................................................................................23  
Table 3. Digital Loss of Signal Standard Select......................................................................................................27  
Table 4. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes) ..................................27  
Table 5. T1/DS1 LIU Receiver Specifications.........................................................................................................28  
Table 6. CEPT LIU Receiver Specifications ...........................................................................................................29  
Table 7. Transmit Line Interface Short-Haul Equalizer/Rate Control ......................................................................32  
Table 8. DSX-1 Pulse Template Corner Points (from CB119, T1.102)...................................................................35  
Table 9. DS1 Transmitter Specifications.................................................................................................................35  
Table 10. CEPT Transmitter Specifications ............................................................................................................37  
Table 11. Loopback Control....................................................................................................................................41  
Table 12. SYSCK (16x, CKSEL = 1) Timing Specifications....................................................................................42  
Table 13. SYSCK (1x, CKSEL = 0) Timing Specifications......................................................................................42  
Table 14. Termination Components by Application.................................................................................................44  
Table 15. AMI Encoding .........................................................................................................................................48  
Table 16. DS1 ZCS Encoding.................................................................................................................................48  
Table 17. DS1 B8ZS Encoding...............................................................................................................................49  
Table 18. ITU HDB3 Coding...................................................................................................................................49  
Table 19. T-Carrier Hierarchy..................................................................................................................................49  
Table 20. D4 Superframe Format ...........................................................................................................................52  
Table 21. DDS Channel-24 Format ........................................................................................................................52  
Table 22. SLC-96 Data Link Block Format .............................................................................................................54  
Table 23. SLC-96 Line Switch Message Codes .....................................................................................................55  
Table 24. Transmit and Receive SLC-96 Stack Structure.......................................................................................55  
Table 25. Extended Superframe (ESF) Structure...................................................................................................56  
Table 26. T1 Loss of Frame Alignment Criteria ......................................................................................................57  
Table 27. T1 Frame Alignment Procedures............................................................................................................58  
Table 28. Robbed-Bit Signaling Options.................................................................................................................59  
Table 29. SLC-96 9-State Signaling Format...........................................................................................................59  
Table 30. 16-State Signaling Format......................................................................................................................60  
Table 31. Allocation of Bits 1 to 8 of the FAS Frame and the NOT FAS Frame ......................................................62  
Table 32. ITU CRC-4 Multiframe Structure.............................................................................................................64  
Table 33. ITU CEPT Time Slot 16 Channel Associated Signaling Multiframe Structure........................................70  
Table 34. Transmit and Receive Sa Stack Structure...............................................................................................74  
Table 35. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames ...........................................77  
Table 36. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels....................................77  
Table 37. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT .....................................................77  
Table 38. Red Alarm or Loss of Frame Alignment Conditions................................................................................82  
Table 39. Remote Frame Alarm Conditions............................................................................................................82  
Table 40. Alarm Indication Signal Conditions.........................................................................................................82  
Table 41. Sa6 Bit Coding Recognized by the Receive Framer-Asynchronous Bit Stream .....................................84  
Table 42. Sa6 Bit Coding Recognized by the Receive Framer-Synchronous Bit Stream.......................................85  
Table 43. AUXP Synchronization and Clear Sychronization Process ....................................................................85  
Table 44. Event Counters Definition .......................................................................................................................86  
Table 45. Summary of the Deactivation of SSTSSLB and SSTSLLB Modes as a Function  
of Activating the Primary Loopback Modes ..........................................................................................................89  
Table 46. Register FRM_PR69 Test Patterns.........................................................................................................92  
Table 47. Register FRM_PR70 Test Patterns.........................................................................................................93  
Table 48. Automatic Enable Commands ................................................................................................................95  
Table 49. On-Demand Commands.........................................................................................................................96  
Lucent Technologies Inc.  
7
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Table  
Page  
Table 50. Receive ANSI Code ............................................................................................................................... 99  
Table 51. Performance Report Message Structure................................................................................................ 99  
Table 52. FDL Performance Report Message Field Definition............................................................................. 100  
Table 53. Octet Contents and Definition .............................................................................................................. 100  
Table 54. Receive Status of Frame Byte.............................................................................................................. 101  
Table 55. HDLC Frame Format............................................................................................................................ 104  
Table 56. Receiver Operation in Transparent Mode............................................................................................. 108  
Table 57. Summary of the T7630’s Concentration Highway Interface Parameters.............................................. 113  
Table 58. Programming Values for TOFF[2:0] and ROFF[2:0] when CMS = 0 .................................................... 118  
Table 59. TAP Controller States in the Data Register Branch.............................................................................. 122  
Table 60. TAP Controller States in the Instruction Register Branch..................................................................... 122  
Table 61. T7630’s Boundary-Scan Instructions ................................................................................................... 123  
Table 62. IDCODE Register................................................................................................................................. 124  
Table 63. Microprocessor Configuration Modes .................................................................................................. 125  
Table 64. Mode [1—4] Microprocessor Pin Definitions........................................................................................ 126  
Table 65. Microprocessor Input Clock Specifications .......................................................................................... 127  
Table 66. T7630 Register Address Map .............................................................................................................. 127  
Table 67. Microprocessor Interface I/O Timing Specifications............................................................................. 128  
Table 68. Register Summary ............................................................................................................................... 135  
Table 69. Global Register Set (0x000—0x008) ................................................................................................... 139  
Table 70. Primary Block Interrupt Status Register (GREG0) (000) ..................................................................... 140  
Table 71. Primary Block Interrupt Enable Register (GREG1) (001) .................................................................... 140  
Table 72. Global Loopback Control Register (GREG2) (002).............................................................................. 141  
Table 73. Global Loopback Control Register (GREG3) (003).............................................................................. 141  
Table 74. Global Control Register (GREG4) (004) .............................................................................................. 142  
Table 75. Device ID and Version Registers (GREG5—GREG7) (005—007) ...................................................... 142  
Table 76. Line Interface Units Register Set* ((400—40F); (A00—A0F)).............................................................. 143  
Table 77. LIU Alarm Status Register (LIU_REG0) (400, A00)............................................................................. 144  
Table 78. LIU Alarm Interrupt Enable Register (LIU_REG1) (401, A01) ............................................................. 144  
Table 79. LIU Control Register (LIU_REG2) (402, A02)...................................................................................... 145  
Table 80. LIU Control Register (LIU_REG3) (403, A03)...................................................................................... 145  
Table 81. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes) (from Table 3) ...... 146  
Table 82. LIU Register (LIU_REG4) (404, A04)................................................................................................... 146  
Table 83. LIU Configuration Register (LIU_REG5) (405, A05) ............................................................................ 147  
Table 84. Loopback Control................................................................................................................................. 147  
Table 85. LIU Configuration Register (LIU_REG6) (406, A06) ............................................................................ 147  
Table 86. Transmit Line Interface Short-Haul Equalizer/Rate Control (from Table 6)........................................... 148  
Table 87. Framer Status and Control Blocks Address Range (Hexadecimal)...................................................... 148  
Table 88. Interrupt Status Register (FRM_SR0) (600; C00)................................................................................ 149  
Table 89. Facility Alarm Condition Register (FRM_SR1) (601; C01)................................................................... 150  
Table 90. Remote End Alarm Register (FRM_SR2) (602; C02).......................................................................... 151  
Table 91. Facility Errored Event Register-1 (FRM_SR3) (603; C03) ................................................................... 152  
Table 92. Facility Event Register-2 (FRM_SR4) (604; C04) ................................................................................ 153  
Table 93. Exchange Termination and Exchange Termination Remote  
End Interface Status Register (FRM_SR5) (605; C05)...................................................................................... 154  
Table 94. Network Termination and Network Termination Remote  
End Interface Status Register (FRM_SR6) (606; C06)...................................................................................... 155  
Table 95. Facility Event Register (FRM_SR7) (607; C07) ................................................................................... 156  
Table 96. Bipolar Violation Counter Registers (FRM_SR8—FRM_SR9) ((608—609); (C08—C09)).................. 156  
Table 97. Framing Bit Error Counter Registers (FRM_SR10—FRM_SR11) ((60A—60B); (C0A—C0B)) ........... 156  
8
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Table  
Page  
Table 98. CRC Error Counter Registers (FRM_SR12—FRM_SR13) ((60C—60D); (C0C—C0D))......................157  
Table 99. E-Bit Counter Registers (FRM_SR14—FRM_SR15) ((60E—60F); (C0E—C0F))................................157  
Table 100. CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17) ((610—611);  
(C10—C11)) .......................................................................................................................................................157  
Table 101. E Bit at NT1 from NT2 Counter (FRM_SR18—FRM_SR19) ((612—613); (C12—C13)) ...................157  
Table 102. ET Errored Seconds Counter (FRM_SR20—FRM_SR21) ((614—615); (C14—C15)) ......................158  
Table 103. ET Bursty Errored Seconds Counter (FRM_SR22—FRM_SR23) ((616—617); (C16—C17))...........158  
Table 104. ET Severely Errored Seconds Counter (FRM_SR24—FRM_SR25) ((618—619); (C18—C19))........158  
Table 105. ET Unavailable Seconds Counter (FRM_SR26—FRM_SR27) ((61A—61B); (C1A—C1B)) ..............158  
Table 106. ET-RE Errored Seconds Counter (FRM_SR28—FRM_SR29) ((61C—61D); (C1C—C1D)) ..............158  
Table 107. ET-RE Bursty Errored Seconds Counter (FRM_SR30—FRM_SR31) ((61E—61F); (C1E—C1F)) ....158  
Table 108. ET-RE Severely Errored Seconds Counter (FRM_SR32—FRM_SR33) ((620—621); (C20—C21))..158  
Table 109. ET-RE Unavailable Seconds Counter (FRM_SR34—FRM_SR35) ((622—623); (C22—C23)) ..........159  
Table 110. NT1 Errored Seconds Counter (FRM_SR36—FRM_SR37) ((624—625); (C24—C25)) ....................159  
Table 111. NT1 Bursty Errored Seconds Counter (FRM_SR38—FRM_SR39) ((626—627); (C26—C27)).........159  
Table 112. NT1 Severely Errored Seconds Counter (FRM_SR40—FRM_SR41) ((628—629); (C28—C29)) .....159  
Table 113. NT1 Unavailable Seconds Counter (FRM_SR42—FRM_SR43) ((62A—62B); (C2A—C2B))............159  
Table 114. NT1-RE Errored Seconds Counter (FRM_SR44—FRM_SR45) ((62C—62D); (C2C—C2D))............159  
Table 115. NT1-RE Bursty Errored Seconds Counter (FRM_SR46—FRM_SR47) ((62E—62F); (C2E—C2F))..159  
Table 116. NT1-RE Severely Errored Seconds Counter (FRM_SR48—FRM_SR49 ((630—631);  
(C30—C31)) .......................................................................................................................................................160  
Table 117. NT1-RE Unavailable Seconds Counter (FRM_SR50—FRM_SR51) ((632—633); (C32—C33)) .......160  
Table 118. Receive NOT-FAS TS0 Register (FRM_SR52) (634; C34).................................................................160  
Table 119. Receive Sa Register (FRM_SR53) (635; C35)...................................................................................160  
Table 120. SLC-96 FDL Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F)) ........................161  
Table 121. CEPT Sa Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F)) .............................161  
Table 122. Transmit Framer ANSI Performance Report Message Status Register Structure ..............................162  
Table 123. Received Signaling Registers: DS1 Format (FRM_RSR0—FRM_RSR23) ((640—658);  
(C40—C58)) .......................................................................................................................................................162  
Table 124. Receive Signaling Registers: CEPT Format (FRM_RSR0—FRM_RSR31) ((640—65F);  
(C40—C5F)).......................................................................................................................................................162  
Table 125. Summary of Interrupt Group Enable Registers (FRM_PR0—FRM_PR7) ((660—667);  
(C60—C67)) .......................................................................................................................................................163  
Table 126. Primary Interrupt Group Enable Register (FRM_PR0) (660; C60) .....................................................164  
Table 127. Interrupt Enable Register (FRM_PR1) (661; C61)..............................................................................165  
Table 128. Interrupt Enable Register (FRM_PR2) (662; C62)..............................................................................165  
Table 129. Interrupt Enable Register (FRM_PR3) (663; C63)..............................................................................165  
Table 130. Interrupt Enable Register (FRM_PR4) (664; C64)..............................................................................165  
Table 131. Interrupt Enable Register (FRM_PR5) (665; C65)..............................................................................165  
Table 132. Interrupt Enable Register (FRM_PR6) (666; C66)..............................................................................165  
Table 133. Interrupt Enable Register (FRM_PR7) (667; C67)..............................................................................165  
Table 134. Framer Mode Bits Decoding (FRM_PR8) (668; C68) .........................................................................166  
Table 135. Line Code Option Bits Decoding (FRM_PR8) (668; C68) ..................................................................166  
Table 136. CRC Option Bits Decoding (FRM_PR9) (669, C69)...........................................................................167  
Table 137. Alarm Filter Register (FRM_PR10) (66A; C6A)..................................................................................167  
Table 138. Errored Event Threshold Definition.....................................................................................................168  
Table 139. Errored Second Threshold Register (FRM_PR11) (66B; C6B) ..........................................................168  
Table 140. Severely Errored Second Threshold Registers (FRM_PR12—FRM_PR13) ((66C—66D;  
C6C—C6D)) .......................................................................................................................................................168  
Table 141. ET1 Errored Event Enable Register (FRM_PR14) (66E; C6E)...........................................................169  
Lucent Technologies Inc.  
9
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Table  
Page  
Table 142. ET1 Remote End Errored Event Enable Register (FRM_PR15) (66F; C6F) ..................................... 169  
Table 143. NT1 Errored Event Enable Register (FRM_PR16) (670; C70)........................................................... 169  
Table 144. NT1 Remote End Errored Event Enable Registers  
(FRM_PR17—FRM_PR18) ((671—672);(C71—C72))...................................................................................... 169  
Table 145. Automatic AIS to the System and Automatic Loopback Enable Register (FRM_PR19) (673; C73) .. 170  
Table 146. Transmit Test Pattern to the Line Enable Register (FRM_PR20) (674; C74) ..................................... 170  
Table 147. Framer FDL Control Command Register (FRM_PR21) (675; C75) ................................................... 171  
Table 148. Framer Transmit Line Idle Code Register (FRM_PR22) (676; C76)................................................... 171  
Table 149. Framer System Stuffed Time-Slot Code Register (FRM_PR23) (677; C77)...................................... 171  
Table 150. Primary Time-Slot Loopback Address Register (FRM_PR24) (678; C78)......................................... 172  
Table 151. Loopback Decoding of Bits LBC[2:0] in FRM_PR24, Bits 7—5 ........................................................ 172  
Table 152. Secondary Time-Slot Loopback Address Register (FRM_PR25) (679; C79) .................................... 173  
Table 153. Loopback Decoding of Bits LBC[1:0] in FRM_PR25, Bits 6—5 ......................................................... 173  
Table 154. Framer Reset and Transparent Mode Control Register (FRM_PR26) (67A, C7A)............................. 174  
Table 155. Transmission of Remote Frame Alarm and CEPT  
Automatic Transmission of A Bit = 1 Control Register (FRM_PR27) (67B, C7B)............................................... 175  
Table 156. CEPT Automatic Transmission of E Bit = 0 Control Register (FRM_PR28) (67C; C7C).................... 176  
Table 157. Sa4—Sa8 Source Register (FRM_PR29) (67D; C7D)....................................................................... 177  
Table 158. Sa Bits Source Control for Bit 5—Bit 7 in FRM_PR29 ....................................................................... 177  
Table 159. Sa4—Sa8 Control Register (FRM_PR30) (67E; C7E)....................................................................... 178  
Table 160. Sa Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))....................................... 178  
Table 161. SLC-96 Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))............................... 179  
Table 162. Transmit SLC-96 FDL Format ............................................................................................................ 179  
Table 163. CEPT Time Slot 16 X-Bit Remote Multiframe Alarm  
and AIS Control Register (FRM_PR41)(689; C89)............................................................................................ 179  
Table 164. Framer Exercise Register (FRM_PR42) (68A; C8A).......................................................................... 180  
Table 165. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A)..................................................................... 180  
Table 166. DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43) (68B; C8B).. 181  
Table 167. Signaling Mode Register (FRM_PR44) (68C; C8C)........................................................................... 182  
Table 168. CHI Common Control Register (FRM_PR45) (68D; C8D)................................................................. 183  
Table 169. CHI Common Control Register (FRM_PR46) (68E; C8E) ................................................................. 184  
Table 170. CHI Transmit Control Register (FRM_PR47) (68F; C8F)................................................................... 184  
Table 171. CHI Receive Control Register (FRM_PR48) (690; C90).................................................................... 184  
Table 172. CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52) ((691—694); (C91—C94))... 185  
Table 173. CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56) ((695—698); (C95—C98)) ... 185  
Table 174. CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60) ((699—69C); (C99—C9C)) .... 185  
Table 175. CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64) ((69D—6A0); (C9D—CA0)) .... 186  
Table 176. CHI Transmit Control Register (FRM_PR65) (6A1; CA1)................................................................... 186  
Table 177. CHI Receive Control Register (FRM_PR66) (6A2; CA2)................................................................... 186  
Table 178. Auxiliary Pattern Generator Control Register (FRM_PR69) (6A5; CA5)............................................ 187  
Table 179. Pattern Detector Control Register (FRM_PR70) (6A6; CA6)............................................................. 188  
Table 180. Transmit Signaling Registers: DS1 Format  
(FRM_TSR0—FRM_TSR23) ((6E0—6F7); (CE0—CF7)) ................................................................................. 189  
Table 181. Transmit Signaling Registers: CEPT Format  
(FRM_TSR0—FRM_TSR31) ((6E0—6FF); (CE0—CFF))................................................................................. 189  
Table 182. FDL Register Set (800—80E); (E00—E0E)....................................................................................... 190  
Table 183. FDL Configuration Control Register (FDL_PR0) (800; E00).............................................................. 191  
Table 184. FDL Control Register (FDL_PR1) (801; E01) .................................................................................... 191  
Table 185. FDL Interrupt Mask Control Register (FDL_PR2) (802; E02) ............................................................ 192  
Table 186. FDL Transmitter Configuration Control Register (FDL_PR3) (803; E03) ........................................... 193  
10  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table of Contents (continued)  
Table  
Page  
Table 187. FDL Transmitter FIFO Register (FDL_PR4) (804; E04)......................................................................193  
Table 188. FDL Transmitter Idle Character Register (FDL_PR5) (805; E05) .......................................................193  
Table 189. FDL Receiver Interrupt Level Control Register (FDL_PR6) (806; E06) ..............................................194  
Table 190. FDL Register FDL_PR7......................................................................................................................194  
Table 191. FDL Receiver Match Character Register (FDL_PR8) (808; E08).......................................................194  
Table 192. FDL Transparent Control Register (FDL_PR9) (809; E09) .................................................................195  
Table 193. FDL Transmit ANSI ESF Bit Codes (FDL_PR10) (80A; E0A).............................................................195  
Table 194. FDL Interrupt Status Register (Clear on Read) (FDL_SR0) (80B; E0B).............................................196  
Table 195. FDL Transmitter Status Register (FDL_SR1) (80C; E0C)...................................................................197  
Table 196. FDL Receiver Status Register (FDL_SR2) (80D; E0D) ......................................................................197  
Table 197. Receive ANSI FDL Status Register (FDL_SR3) (80E; E0E) ..............................................................197  
Table 198. FDL Receiver FIFO Register (FDL_SR4) (807; E07) .........................................................................197  
Table 199. Global Register Set.............................................................................................................................198  
Table 200. Line Interface Unit Register Set..........................................................................................................198  
Table 201. Framer Unit Status Register Map .......................................................................................................199  
Table 202. Receive Signaling Registers Map.......................................................................................................201  
Table 203. Framer Unit Parameter Register Map .................................................................................................202  
Table 204. Transmit Signaling Registers Map ......................................................................................................205  
Table 205. Facility Data Link Register Map ..........................................................................................................206  
Table 206. ESD Threshold Voltage.......................................................................................................................207  
Table 207. Logic Interface Characteristics (TA = –40 °C to +85 °C, VDD = 5.0 V ± 5%, VSS = 0).........................208  
Lucent Technologies Inc.  
11  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Compliant with AT&T CB119(10/79);  
ITU G.703(88), G.732(88), G.735-9(88),  
Feature Descriptions  
G.823-4(3/93), I.431(3/93); ANSI T1.102(93), T1.  
408(90); ETSI, ETS-300-166(8/93), TBR12(12/93, 1/  
96), TBR13(1/96); TR-TSY-000009(5/86), TSY-  
000170(1/93), GR-253-CORE(12/95), GR-499-  
CORE(12/95), GR-820-CORE(11/94), GR-1244-  
CORE(6/95).  
Two independent T1/E1 channels each consisting of  
a T1/E1 short-haul line interface and a T1/E1 framer  
with HDLC formatting on the facility data link inter-  
face.  
Memory-mapped read and write registers.  
Maskable interrupt events.  
Hardware and software resets.  
T1/E1 Framer Features  
Onboard software-selectable pseudorandom test  
pattern generator and detector for line performance  
monitoring.  
Framing formats:  
— Compliant with T1 standards ANSI T1.231 (1993),  
AT&T TR54016, AT&T TR62411 (1998).  
— Unframed, transparent transmission in T1 and E1  
formats.  
— DS1 extended superframe (ESF).  
— DS1 superframe (SF): D4; SLC-96; T1DM DDS;  
T1DM DDS with FDL access.  
3-state outputs.  
Single 5 V ± 5% supply.  
Low power consumption: 750 mW max.  
— DS1 independent transmit and receive framing  
modes when using the ESF and D4 formats.  
— Compliant with ITU CEPT framing recommenda-  
tion:  
T1/E1 Line Interface Features  
Transmitter includes transmit encoder (B8ZS or  
HDB3), pulse shaping, and line driver.  
1. G.704 and G.706 basic frame format.  
2. G.704 Section 2.3.3.4 and G.706 Section 4.2:  
CRC-4 multiframe search algorithm.  
3. G.706 Annex B: CRC-4 multiframe search algo-  
rithm with 400 ms timer for interworking of  
CRC-4 and non-CRC-4 equipment.  
Five pulse equalization settings for template compli-  
ance at DSX cross connect.  
Receive includes equalization, digital clock and data  
recovery (immune to false lock), and receive  
decoder.  
4. G.706 Section 4.3.2 Note 2: monitoring of 915  
CRC-4 checksum errors for loss of frame state.  
Framer line codes:  
CEPT/E1 interference immunity as required by  
G.703.  
— DS1: alternate mark inversion (AMI); binary eight  
zero code suppression (B8ZS); per-channel zero  
code suppression; decoding bipolar violation  
monitor; monitoring of eight or fifteen bit intervals  
without positive or negative pulses error indica-  
tion.  
— DS1 independent transmit and receive path line  
code formats when using AMI/ZCS and B8ZS  
coding.  
Transmit jitter <0.02 UI.  
Receive generated jitter <0.05 UI.  
Jitter attenuator selectable for use in transmit or  
receive path. Jitter attenuation characteristics are  
data pattern independent.  
For use with 100 DS1 twisted-pair, 120 E1  
twisted-pair, and 75 E1 coaxial cable.  
— ITU-CEPT: AMI; high-density bipolar 3 (HDB3)  
encoding and decoding bipolar violation monitor-  
ing, monitoring of four bit intervals without positive  
or negative pulses error indication.  
Common transformer for transmit/receive.  
Analog LOS alarm for signals less than –18 dB for  
greater than 1 ms or 10-bit to 255-bit symbol periods  
(selectable).  
— Single-rail option.  
Digital LOS alarm for 100 zeros (DS1) or 255 zeros  
(E1).  
Diagnostic loopback modes.  
12  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
faces.  
Feature Descriptions (continued)  
— Independent transmit and receive frame synchro-  
nization input signals.  
— Independent transmit and receive system inter-  
face clock.  
— 2.048 Mbits/s, 2.048 MHz concentration highway  
interface (CHI) default mode.  
— Optional 4.096 Mbits/s and 8.192 Mbits/s data  
rates.  
— Optional 4.096 MHz, 8.192 MHz, and 16.384 MHz  
frequency system clock.  
— Programmable clock edge for latching frame syn-  
chronization signals.  
— Programmable clock edge for latching transmit  
and receive data.  
— Programmable bit and byte offset.  
— Programmable CHI master mode for the genera-  
tion of the transmit CHI FS from internal logic with  
timing derived from the receive line clock signal.  
Signaling:  
— DS1: extended superframe 2-state, 4-state, and  
16-state per-channel robbed bit.  
— DS1: D4 superframe 2-state and 4-state per-  
channel robbed bit.  
— DS1: SLC-96 superframe 2-state, 4-state, 9-state,  
and 16-state per-channel robbed bit.  
— DS1: channel-24 message-oriented signaling.  
— ITU CEPT: channel associated signaling (CAS).  
Transparent (all data channels).  
Alarm reporting, performance monitoring, and main-  
tenance:  
ANSI T1.403-1995, AT&T TR 54016, and ITU  
G.826 standard error checking.  
— Error and status counters.  
— Bipolar violations.  
— Errored frame alignment signals.  
— Errored CRC checksum block.  
— CEPT: received E bit = 0.  
Digital phase comparator for clock generation in the  
receive and transmit paths.  
— Errored, severely errored, and unavailable sec-  
onds.  
— Selectable errored event monitoring for errored  
and severely errored seconds processing with  
programmable thresholds for errored and severely  
errored second monitoring.  
— CEPT: Selectable automatic transmission of E bit  
to the line.  
— CEPT: Sa6 coded remote end CRC-4 error E bit =  
0 events.  
Facility Data Link Features  
HDLC or transparent mode.  
Automatic transmission of the ESF performance  
report messages (PRM).  
Detection of the ESF PRM.  
Detection of the ANSI ESF FDL bit-oriented codes.  
64-byte FIFO in both transmit and receive directions.  
Programmable FIFO full- and empty-level interrupt.  
— Programmable automatic and on-demand alarm  
transmission.  
1. Automatic transmission of remote frame alarm  
to the line while in loss of frame alignment  
state.  
2. Automatic transmission of alarm indication sig-  
nal (AIS) to the system while in loss of frame  
alignment state.  
SLC-96: FDL transmit and receive register access of  
D bits.  
User-Programmable Microprocessor Inter-  
face  
— Multiple loopback modes.  
— Optional automatic line and payload loopback  
activate and deactivate modes.  
— CEPT nailed-up connect loopback and CEPT  
nailed-up broadcast transmission TS-X in TS-0  
transmit mode.  
33 MHz read and write access with no wait-states.  
12-bit address, 8-bit data interface.  
Programmable Intel or Motorola interface modes.  
Demultiplexed or multiplexed address and data bus.  
Directly addressable internal registers.  
No clock required.  
— Selectable test patterns for line transmission.  
— Detection of framed and unframed pseudorandom  
and quasi-random test patterns.  
— Programmable squelch and idle codes.  
System interface:  
— Autonomous transmit and receive system inter-  
Lucent Technologies Inc.  
13  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Functional Description  
RECEIVE  
CHANNEL [1—2]  
TCHICK[1—2]  
TCHIFS[1—2]  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
INTERFACE  
(TCHI)  
RTIP_RPD[1—2]  
RECEIVE  
ELASTIC STORE  
(2 FRAMES)  
RECEIVE LINE  
INTERFACE  
RECEIVE  
FRAMER  
UNIT  
TCHIDATA[1—2]  
TCHIDATAB[1—2]  
UNIT  
(RLIU)  
RRING_RND[1—2]  
RFRMCK[1—2], RFRMDATA[1—2],  
RFS[1—2], RSSFS[1—2],  
RCRCMFS[1—2]  
SYSCK[1—2]  
RLCK[1—2]  
RFDL[1—2], RFDLCK[1—2]  
TCHICK  
RECEIVE  
RECEIVE FACILITY  
DATA LINK MONITOR  
(HDLC OR  
TRANSPARENT  
FRAMING)  
RECEIVE  
CHANNEL DIGITAL  
PHASE DETECTOR  
SIGNALING UNIT  
(DS1: ROBBED-BIT  
OR  
RLCK  
DIV-RLCK[1—2], DIV-TCHICK[1—2],  
TCHICK-EPLL[1—2]  
CEPT: TS16)  
TRANSMIT  
CHANNEL [1—2]  
PLLCK[1—2]  
TRANSMIT FACILITY  
DATA LINK MONITOR  
(HDLC OR  
TRANSPARENT  
FRAMING)  
TRANSMIT  
SIGNALING UNIT  
(DS1: ROBBED-BIT  
OR  
TRANSMIT  
CHANNEL DIGITAL  
PHASE DETECTOR  
RCHICK  
DIV-PLLCK[1—2], DIV-RCHICK[1—2],  
PLLCK-EPLL[1—2]  
CEPT: TS16)  
TFDL[1—2], TFDLCK[1—2]  
XMIT FRAMER  
TCLK  
TRANSMIT  
ELASTIC STORE  
(2 FRAMES)  
TTIP[1—2]  
TRANSMIT LINE  
INTERFACE  
RECEIVE  
CONCENTRATION  
HIGHWAY  
RCHICK[1—2]  
RCHIFS[1—2]  
RCHIDATA[1—2]  
RCHDATAB[1—2]  
UNIT  
(XLIU)  
TRANSMIT  
FRAMER  
UNIT  
INTERFACE  
TRING[1—2]  
(RCHI)  
TND[1—2],  
TPD[1—2],  
TLCK[1—2]  
TFS[1—2], TSSFS[1—2],  
TCRCMFS[1—2]  
MPMODE  
MPMUX  
MICROPROCESSOR INTERFACE  
A[11:0]  
AD[7:0]  
CS  
ALE_AS  
RD_R/W  
WR_DS  
RDY_DTACK INTERRUPT  
MPCK  
5-4512(F).cr.2  
Figure 1. T7630 Block Diagram (One of Two Channels)  
14  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
0 conditions, CEPT Sa6 codes, errored events, errored  
seconds, bursty errored seconds, severely errored sec-  
onds, and unavailable seconds.  
Functional Description (continued)  
The Lucent T7630 Dual T1/E1 Terminator (Terminator-  
II) provides two complete T1/E1 interfaces each con-  
sisting of a fully integrated, full-featured, short-haul line  
interface transceiver and a full-featured primary rate  
framer with an HDLC formatter for facility data link  
access. The T7630 provides glueless interconnection  
from a T1 or E1 analog line interface to devices inter-  
facing to its CHI; for example, the T7270 Time-Slot  
Interchanger or T7115A Synchronous Protocol Data  
Formatter.  
In-band loopback activation and deactivation codes  
can be transmitted to the line via the payload or the  
facility data link. In-band loopback activation and deac-  
tivation codes in the payload or the facility data link are  
detected.  
System, payload, and line loopbacks are programma-  
ble.  
The default system interface is a 2.048 Mbits/s data  
and 2.048 MHz clock CHI serial bus. This CHI interface  
consists of independent transmit and receive paths.  
The CHI interface can be reconfigured into several  
modes: a 2.048 Mbits/s data interface and 4.096 MHz  
clock interface, a 4.096 Mbits/s data interface and  
4.096 MHz clock interface, a 4.096 Mbits/s data inter-  
face and 8.192 MHz clock interface, a 8.192 Mbits/s  
data interface and 8.192 MHz clock interface, and  
8.192 Mbits/s data interface and 16.384 MHz clock  
interface.  
The line interface receiver performs clock and data  
recovery using a digital phase-locked loop, thereby  
avoiding false lock conditions that are common when  
recovering sparse data patterns with an analog imple-  
mentation. The receiver’s equalization circuit guaran-  
tees a high level of interference immunity. The receive  
line unit monitors the amplitude at the receive input for  
analog loss of signal (ALOS) detection and the pulse  
density of the receive signal for digital loss of signal  
(DLOS) detection. The receive line unit may be pro-  
grammed to detect bipolar violations. The line interface  
unit may be optionally bypassed. It is recommended  
that the LIU/framer interface be placed in dual-rail  
mode, which allows the framers error/event detector to  
detect and report code and bipolar violation (BPV)  
errors.  
The signaling formats supported are T1 per-channel  
robbed-bit signaling (RBS), channel-24 message-ori-  
ented signaling (MOS), and ITU-CEPT-E1 channel-  
associated signaling (CAS). In the T1, RBS mode voice  
and data channels are programmable. The entire pay-  
load can be programmed into a data-only (no signaling  
channels) mode, i.e., transparent mode. Signaling  
access can be through the on-chip signaling registers  
or the system CHI port in the associated signaling  
mode. Data and its associated signaling information  
can be accessed through the CHI in either DS1 or  
CEPT-E1 modes.  
The line interface unit’s transmit equalization is done  
with low-impedance output drivers that provide shaped  
waveforms to the transformer, guaranteeing template  
conformance. The transmitter will interface to the digital  
cross connect (DSX) at lengths up to 655 feet for DS1  
operation, and line impedances of 75 or 120 for  
CEPT-E1 operation. The transmit line unit monitors  
nonfunctional links due to faults at the primary of the  
transmit transformer and periods of no data transmis-  
sion.  
Extraction and insertion of the facility data link in ESF,  
T1DM, SLC-96, or CEPT-E1 modes are provided  
through a four-port serial interface or through a micro-  
processor-accessed, 64-byte FIFO either with HDLC  
formatting or transparently. In the T7630’s SLC-96 or  
CEPT-E1 frame formats, a facility data link (FDL) is pro-  
vided for FDL access. The bit-oriented ESF data-link  
messages defined in ANSI T1.403-1995 are monitored  
by the receive framer’s facility data link unit and are  
transmitted by the transmit framer FDL  
The line codes supported in the framer unit include  
AMI, T1 B8ZS, per-channel T1 zero code suppression  
and ITU-CEPT HDB3.  
The T7630 supports T1 D4, T1DM, and SLC-96 SF,  
ESF; ITU-CEPT-E1 basic frame; ITU-CEPT-E1 time  
slot 0 multiframe; and time slot 16 multiframe formats.  
The receive framer includes a two-frame elastic store  
buffer for jitter attenuations that performs control slips  
and provides indication of slip directions.  
The receive framer monitors the following alarms: loss  
of receive clock, loss of frame, alarm indication signal  
(AIS), remote frame alarms, and remote multiframe  
alarms. These alarms are detected as defined by the  
appropriate ANSI, AT&T, and ITU standards.  
Accessing internal registers is done via the demulti-  
plexed/multiplexed address and data bus microproces-  
sor interface using either the Intel 80188 (or 80X88)  
interface protocol with independent read and write sig-  
nals or the Motorola MC680X0 or M68360 interface  
protocol with address and data strobe signals.  
Performance monitoring as specified by AT&T, ANSI,  
and ITU is provided through counters monitoring bipo-  
lar violation, frame bit errors, CRC errors, CEPT E bit =  
Lucent Technologies Inc.  
15  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Functional Description (continued)  
The T7630 is manufactured using low-power CMOS technology and is packaged in an 144-pin thin quad flat pack  
(TQFP) with 20 mils lead pitch.  
RLCK  
FRAMER  
RPDE, RNDE, RLCKE  
RPD, RND, RLCK  
RTIP_RPD  
JITTER  
DIGITAL  
CLOCK AND  
DATA  
ATTENUATION  
(OPTIONAL:  
RECEIVE  
RECEIVE  
ANALOG  
FRONT END  
BPV DECODER  
AND MONITOR  
RPD-LIU, RND-LIU,  
RLCK-LIU  
RECOVERY  
OR TRANSMIT)  
RRING_RND  
LINE INTERFACE UNIT BYPASS  
RECEIVE T1/E1 FRAME ALIGNMENT MONITOR,  
RE-ALIGNER, AND SYNC GENERATOR:  
– SF: D4, SLC-96, DDS  
– ESF  
– CEPT: BASIC FRAME, CRC-4 MULTIFRAME,  
& SIGNALING MULTIFRAME  
RECEIVE PERFORMANCE MONITOR:  
– BIPOLAR VIOLATION ERRORS  
– T1/E1 CRC ERRORS  
– ERRORED EVENTS  
– ERRORED SECONDS  
TCHIFS  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
INTERFACE  
(RATE ADAPTER)  
RECEIVE  
ELASTIC  
STORE  
– BURSTY ERRORED SECONDS  
– SEVERELY ERRORED SECONDS  
– UNAVAILABLE SECONDS  
TCHIDATA  
BUFFER  
TCHIDATAB  
(2 FRAMES)  
RECEIVE ALARM MONITOR:  
– ANALOG LOSS OF SIGNAL  
– DIGITAL LOSS OF SIGNAL  
– REMOTE FRAME ALARM  
– CEPT REMOTE MULTIFRAME ALARM  
– ALARM INDICATION SIGNAL (AIS)  
– SLIPS  
RECEIVE PATTERN MONITOR:  
20  
– QUASI-RANDOM: 2 – 1  
TCHICK  
RFRMCK  
INTERNAL  
SYSTEM CLOCK  
RECEIVE SLIP  
MONITOR  
15  
– PSEUDORANDOM: 2 – 1  
ANSI T1.403 BIT-ORIENTED AND ESF-FDL ACTIVATE  
AND DEACTIVATE LINE LOOPBACK CODES  
– CEPT AUXILIARY PATTERN (CEPT = 01)  
– CEPT ACTIVATE AND DEACTIVATE LOOPBACK  
CODES  
RECEIVE SIGNALING EXTRACTER:  
– DS1 ROBBED-BIT SIGNALING (RBS)  
– CEPT CHANNEL ASSOCIATED AND  
COMMON CHANNEL SIGNALING  
– CONCENTRATION HIGHWAY ACCESS  
– MICROPROCESSOR ACCESS  
– CEPT Sa6 CODES  
TEST PATTERN DETECTOR  
– MARK (ALLONES)  
20  
– QRSS (QUASI-RANDOM: 2 – 1)  
RECEIVE FDL HDLC EXTRACTER:  
– 64-byte RECEIVE FIFO  
– TRANSPARENT MODE (NO HDLC FRAMING)  
– MICROPROCESSOR ACCESS  
5
– 2 – 1  
6
– 2 – 1 (53)  
9
– 2 – 1 (511)  
11  
– 2 – 1 (2047)  
15  
– 2 – 1 (PSEUDORANDOM)  
20  
– 2 – 1  
23  
– 2 – 1  
– 1:1 (ALTERNATING 10)  
RECEIVE FACILITY DATA LINK EXTRACTER  
AND MONITOR:  
RFDLCK  
RFDL  
SLC-96 FORMAT  
– DDS ACCESS  
ANSI T1.403-1989 ESF FORMAT:  
• BIT-ORIENTED MESSAGES  
• MESSAGE-ORIENTED MESSAGES  
5-4513(F).c  
Figure 2. T7630 Block Diagram: Receive Section (One of Two Channels)  
16  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Functional Description (continued)  
TLCK, TND, TPD  
÷ 16  
SYSCK  
LOSS  
OF  
TLCK  
TRANSMIT DATA  
MONITOR  
ALL ONES SIGNAL  
(AIS)  
PULSE  
JITTER  
TTIP  
EQUALIZER  
AND  
BPV  
ATTENUATION  
(OPTIONAL:  
TRANSMIT OR  
RECEIVE)  
LINE FORMAT ENCODER  
(AMI; B8ZS; HDB3)  
ENCODER  
WIDTH  
(OPTIONAL)  
CONTROLLER  
TLCK, TND, TPD  
TRING  
PLLCK  
TFDL  
TRANSMIT FACILITY DATA LINK  
INSERTER:  
SLC-96 FORMAT  
TRANSMIT T1/E1 FRAME FORMATTER,  
AND FRAME SYNC GENERATOR:  
– DDS ACCESS  
ANSI T1.403-1989 ESF FORMAT:  
• BIT-ORIENTED MESSAGES  
• MESSAGE-ORIENTED MESSAGES  
TRANSMIT CRC GENERATOR:  
TFDLCK  
– SF: D4, SLC-96, DDS; SIGNALING  
SUPERFRAME  
– ESF  
– ESF  
– CEPT  
TRANSMIT FDL HDLC INSERTER:  
– CEPT: BASIC FRAME, CRC-4  
MULTIFRAME, & SIGNALING MULTIFRAME  
– TRANSPARENT FRAMING  
– 64-byte TRANSMIT FIFO  
– TRANSPARENT MODE  
(NO HDLC FRAMING)  
TRANSMIT ALARM MONITOR:  
– LOSS OF SYSTEM BIFRAME ALIGNMENT  
– SYSTEM ALARM INDICATION SIGNAL (AIS)  
– MICROPROCESSOR ACCESS  
TRANSMIT SIGNALING INSERTER:  
AUTOMATIC AND ON-DEMAND COMMANDS:  
– DS1 ROBBED-BIT SIGNALING (RBS)  
– CEPT CHANNEL ASSOCIATED AND  
COMMON-CHANNEL SIGNALING  
– CONCENTRATION HIGHWAY ACCESS  
– MICROPROCESSOR ACCESS  
– AIS (LINE, SYSTEM, FDL)  
– LOOPBACKS  
– REMOTE FRAME ALARMS (RFA)  
– CEPT E BIT = 0  
– CEPT TS16 AIS  
– CEPT TS16 RPA  
RCHICK  
RECEIVE CONCENTRATION  
TEST PATTERN GENERATOR  
RCHIFS  
RCHIDATA  
RCHIDATAB  
TRANSMIT ELASTIC  
STORE BUFFER  
(2 FRAMES)  
HIGHWAY INTERFACE  
(RATE ADAPTER)  
– MARK (ALL1s)  
– QRSS  
– 25 – 1  
– 26 – 1 (53)  
– 29 – 1 (511)  
– 211 – 1 (2047)  
– 215 – 1  
– 220 – 1  
– 223 – 1  
– 1:1 (ALTERNATING 10)  
5-4514(F).d  
Figure 3. T7630 Block Diagram: Transmit Section (One of Two Channels)  
Lucent Technologies Inc.  
17  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Pin Information  
The package type and pin assignment for the T7630 (Terminator-II) is illustrated in Figure 4.  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
GRND  
LORLCK1  
SYSCK1  
2
WR_DS  
TRST  
TMS  
TCK  
3
PLLCK-EPLL1  
DIV-RCHICK1  
DIV-PLLCK1  
PLLCK1  
4
5
6
TDI  
7
TDO  
MPCK  
RDY_DTACK  
INTERRUPT  
A11  
8
GRNDA1  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
RRING_RND1  
RTIP_RPD1  
NC  
98  
97  
A10  
96  
VDDA1  
A9  
95  
GRNDX1  
TRING1  
VDDX1  
A8  
94  
A7  
93  
A6  
92  
TTIP1  
A5  
91  
GRNDX1  
GRNDS  
GRNDX2  
TTIP2  
A4  
90  
A3  
89  
A2  
88  
A1  
87  
VDDX2  
A0  
86  
TRING2  
GRNDX2  
VDDA2  
AD7  
85  
AD6  
84  
AD5  
83  
NC  
AD4  
82  
RTIP_RPD2  
RRING_RND2  
NC  
AD3  
81  
AD2  
80  
AD1  
79  
GRNDA2  
PLLCK2  
DIV-PLLCK2  
DIV-RCHICK2  
PLLCK-EPLL2  
SYSCK2  
AD0  
78  
ALE_AS  
CS  
77  
76  
MPMUX  
RD_R/W  
MPMODE  
GRND  
75  
74  
73  
GRND  
5-4712(F).cr.2  
Figure 4. Pin Assignment  
18  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Pin Information (continued)  
Table 1 and Table 2 show the list of T7630 pins and a functional description for each.  
Table 1. Pin Descriptions-Channel 1 and Channel 2  
Pin  
Symbol  
Type*  
Description  
CH1 CH2  
1, 36, 73,  
109  
GRND  
P
Digital Ground Reference.  
2
38 LOFRMRLCK  
O
Loss of Framer Receive Line Clock. This pin is asserted high (1) when the  
framer internal receive line clock does not toggle for a 250 µs interval. Once  
asserted, this signal is deasserted on the first edge of the framer internal  
receive line clock.  
Terminator Mode: (FRAMER, pin 41/141 = 1) LOFRMRLCK is asserted high  
when SYSCK clock, pin 3/35, is absent.  
Framer Mode: (FRAMER, pin 41/141 = 0) LOFRMRLCK is asserted high  
when RLCK clock, pin 47/135, is absent.  
3
4
35  
SYSCK  
Iu  
LIU System Clock. The clock signal used for clock and data recovery and jit-  
ter attenuation. This clock must be ungapped and free of jitter. For CKSEL =  
1, a 16x clock (for DS1, SYSCK = 24.704 MHz ± 100 ppm and for CEPT,  
SYSCK = 32.768 MHz ± 100 ppm). For CKSEL = 0, a 1x clock (for DS1,  
SYSCK = 1.544 MHz ± 100 ppm and for CEPT, SYSCK = 2.048 MHz  
± 100 ppm).  
34 PLLCK-EPLL  
33 DIV-RCHICK  
O
Error Phase-Lock Loop Signal. The error signal proportional to the phase  
difference between DIV-PLLCK and DIV-RCHICK as detected by the internal  
PLL circuitry (refer to the Phase-Lock Loop Circuit section).  
5
6
7
O
O
I
Divided-Down RCHI Clock. 32 kHz or 8 kHz clock signal derived from the  
RCHICK input signal.  
32  
31  
DIV-PLLCK  
PLLCK  
Divided-Down PLLCK Clock. 32 kHz or 8 kHz clock signal derived from the  
PLLCK input signal.  
Transmit Framer Phase-Locked Line Interface Clock. Clock signal used to  
time the transmit framer. This signal must be phase-locked to RCHICK clock  
signal and be ungapped and free of jitter. For FRM_PR45, bit 0 (HFLF) = 0, in  
DS1 PLLCK = 1.544 MHz and in CEPT PLLCK = 2.048 MHz. For  
FRM_PR45, bit 0 (HFLF) = 1 in DS1 PLLCK = 6.176 MHz and in CEPT  
PLLCK = 8.192 MHz.  
8
30  
GRNDA  
NC  
P
Analog Ground Reference.  
No Connection.  
9, 12, 19,  
26, 29  
10 28 RRING_RND  
I
Receive Bipolar Ring. Negative bipolar input data from the receive analog  
line isolation transformer.  
Receive Negative Rail Data. Valid when the FRAMER pin is strapped to 0 V.  
Nonreturn-to-zero (NRZ) serial data latched by the rising edge of RLCK. Data  
rates: DS1-1.544 Mbits/s; CEPT-2.048 Mbits/s. In the single-rail mode, when  
RND = 1 the receive bipolar violation counter increments once for each rising  
edge of RLCK.  
u
* I indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
Lucent Technologies Inc.  
19  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Pin Information (continued)  
Table 1. Pin Descriptions-Channel 1 and Channel 2 (continued)  
Pin  
Symbol  
Type*  
Description  
CH1 CH2  
11 27  
RTIP_RPD  
I
Receive Bipolar Tip. Positive bipolar input data from the receive analog line  
isolation transformer.  
Receive Positive Rail Data. Valid when the FRAMER pin is strapped to 0 V.  
NRZ serial data latched by the rising edge of RLCK. Data rates:  
DS1-1.544 Mbits/s; CEPT-2.048 Mbits/s. Optional single-rail NRZ receive  
data latched by the rising edge of RLCK.  
13 25  
VDDA  
P
P
Analog 5 V Power Supply. 5 V ± 5%.  
14, 20,  
18 24  
GRNDX  
Transmit Line Driver Ground Reference.  
15 23  
TRING  
O
Transmit Bipolar Ring. Negative bipolar output data to the transmit analog  
isolation transformer.  
16 22  
17 21  
VDDX  
TTIP  
P
Transmit Line Driver 5 V Power Supply. 5 V ± 5%.  
O
Transmit Bipolar Tip. Positive bipolar output data to the transmit analog  
isolation transformer.  
37, 72,  
VDD  
P
5 V Power Supply. 5 V ± 5%.  
108, 144  
143 39  
LOPLLCK  
O
Loss of PLLCK Clock. This pin is asserted high when the PLLCK clock does  
not toggle for a 250 µs interval. This pin is deasserted 250 µs after PLLCK  
clock restarts toggling.  
142 40  
141 41  
DS1/CEPT  
FRAMER  
Iu  
Iu  
DS1/CEPT. Strap to VDD to enable defaults for DS1 operation. Strap to VSS to  
enable defaults for CEPT operation.  
Framer Mode. Strap to VDD to enable integrated LIU and framer operation.  
Strap to VSS to bypass the LIU section; the receive framer is sourced directly  
from the RPD, RND, and RLCK pins while the TPD, TND, and TLCK pins are  
driven by the transmit framer.  
140 42  
139 43  
3-STATE  
RESET†  
TPD  
Iu  
Iu  
O
3-State (Active-Low). Asserting this pin low forces the channel outputs into a  
high-impedance state. Asserting both 3-state pins low forces all outputs into a  
high-impedance state.  
Reset (Active-Low). Asserting this pin low resets the channel.  
Asserting both RESET pins low resets the entire device including the global  
registers.  
138 44  
Transmit Line Interface Positive-Rail Data. This signal is the transmit  
framer positive NRZ output data. Data changes on the rising edge of TLCK.  
In the single-rail mode, TPD = transmit framer data.  
u
* I indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
20  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Pin Information (continued)  
Table 1. Pin Descriptions-Channel 1 and Channel 2 (continued)  
Pin  
Symbol  
Type*  
Description  
CH1 CH2  
137 45  
TND  
O
Transmit Line Interface Negative-Rail Data. This signal is the transmit  
framer negative NRZ output data. Data changes on the rising edge of TLCK.  
In the single-rail mode, TND = 0.  
136 46  
135 47  
134 49  
TLCK  
RLCK  
O
I
Transmit Framer Line Interface Clock. Optional 1.544 MHz DS1 or  
2.048 MHz output signal from the transmit framer. TND and TPD data  
changes on the rising edge of TLCK.  
Receive Framer Line Interface Clock. Valid when the FRAMER pin is  
strapped to 0 V. This is the 1.544 MHz DS1 or 2.048 MHz input clock signal  
used by the receive framer to latch RPD and RND data.  
RFRMCK  
O
Receive Framer Clock. Output receive framer clock signal used to clock out  
the receive framer output signals. In normal operation, this is the recovered  
receive line clock signal.  
133 48  
132 50  
131 51  
130 52  
CKSEL  
RFRMDATA  
RFS  
Iu  
O
O
O
LIU System Clock Mode. This pin selects either a 16x rate clock for SYSCK  
(CKSEL = 1) or a primary line rate clock for SYSCK (CKSEL = 0).  
Receive Framer Data. This signal is the decoded data input to the receive  
elastic store. During loss of frame alignment, this signal is forced to 1.  
Receive Frame Sync. This active-high signal is the 8 kHz frame synchroni-  
zation pulse generated by the receive framer.  
RSSFS  
Receive Framer Signaling Superframe Sync. This active-high signal is the  
CEPT signaling superframe (multiframe) synchronization pulse in the receive  
framer.  
129 53  
128 54  
RCRCMFS  
RFDLCK  
O
O
Receive Framer CRC-4 Multiframe Sync. This active-high signal is the  
CEPT CRC-4 multiframe synchronization pulse in the receive framer.  
Receive Facility Data Link Clock. In DS1-DDS with data link access, this is  
an 8 kHz clock signal. Otherwise, this is a 4 kHz clock signal. The receive  
data link bit changes on the falling edge of RFDLCK.  
127 55  
RFDL  
O
Receive Facility Data Link. Serial output facility data link bit stream  
extracted from the receive line data stream by the receive framer. In DS1-  
DDS with data link access, this is an 8 kbits/s signal; otherwise,  
4 kbits/s. In the CEPT frame format, RFDL can be programmed to one of the  
Sa bits of the NOT FAS frame TS0. During loss of frame alignment, this sig-  
nal is 1.  
126 56  
125 57  
u
TCHICK  
TCHIFS  
I
TransmitrCHI Clock.  
2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.  
This clock must be free of jitter.  
I/O Transmit CHI Frame Sync. Transmit CHI 8 kHz input frame synchronization  
pulse phase-locked to TCHICK. In the CHI master mode, the transmit CHI  
generates the 8 kHz frame sync to control the CHI.  
* I indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
Lucent Technologies Inc.  
21  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Pin Information (continued)  
Table 1. Pin Descriptions-Channel 1 and Channel 2 (continued)  
Pin  
Symbol  
Type*  
Description  
CH1 CH2  
124 58  
TCHIDATA  
O
Transmit CHI Data. Serial output system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s. This port is forced into a high-impedance  
state for all inactive time slots.  
123 59  
122 60  
TCHIDATAB  
DIV-RLCK  
O
Transmit CHI Data B. Serial output system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s. This port is forced into a high-impedance  
state for all inactive time slots.  
O
O
O
Divided-Down Receive Line Clock. 8 kHz clock signal derived from the  
recovered receive line interface unit clock or the RLCK input signal.  
121 61 DIV-TCHICK  
120 62 TCHICK-EPLL  
Divided-Down CHI Clock. 8 kHz clock signal derived from the transmit CHI  
CLOCK input signal.  
Error Phase-Lock Loop Signal. The error signal proportional to the phase  
difference between DIV-TCHICK and DIV-RLCK as detected from the internal  
PLL circuitry (refer to the Phase-Lock Loop Circuit section.  
119 63  
118 64  
TFS  
O
O
Transmit Framer Frame Sync. This signal is the 8 kHz frame synchroniza-  
tion pulse in the transmit framer. This signal is active-high.  
TSSFS  
Transmit Framer Signaling Superframe Sync. This signal is the CEPT  
signaling superframe (multiframe) synchronization pulse in the transmit  
framer. This signal is active-high.  
117 65  
116 66  
115 67  
TCRCMFS  
TFDLCK  
TFDL  
O
O
I
Transmit Framer CRC-4 Multiframe Sync. This signal is the CEPT CRC-4  
submultiframe synchronization pulse in the transmit framer. This signal is  
active-high.  
Transmit Facility Data Link Clock. In DS1-DDS with data link access, this is  
an 8 kHz clock signal; otherwise, 4 kHz. The transmit frame latches data link  
bits on the falling edge of TFDLCK.  
Transmit Facility Data Link. Optional serial input facility data link bit stream  
inserted into the transmit line data stream by the transmit framer. In DS1-  
DDS with data link access, this is an 8 kbits/s signal; otherwise, 4 kbits/s. In  
the CEPT frame format, TFDL can be programmed to one of the Sa bits of  
the NOT-FAS frame time slot 0.  
114 68  
113 69  
112 70  
111 71  
u
RCHICK  
RCHIFS  
I
I
I
I
Receive CHI Clock. 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.  
This clock must be free of jitter.  
Receive CHI Frame Sync. Receive CHI 8 kHz frame synchronization pulse  
phase-locked to RCHICK.  
RCHIDATA  
RCHIDATAB  
Receive CHI Data. Serial input system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s.  
Receive CHI Data B. Serial input system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s.  
* I indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
22  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Pin Information (continued)  
Table 2. Pin Descriptions-Global  
Pin  
Symbol  
Type*  
Description  
74  
MPMODE  
Iu  
MPMODE. Strap to ground to enable the Motorola 68360 microprocessor  
protocol (MODE1 or MODE2). Strapped to VDD to enable the Intel 80X86/88  
microprocessor protocol (MODE3 or MODE4).  
75  
RD_R/W  
I
Read (Active-Low). In the Intel interface mode, the T7630 drives the data  
bus with the contents of the addressed register while RD is low.  
Read/Write. In the Motorola interface mode, this signal is asserted high for  
read accesses; this pin is asserted low for write accesses.  
76  
77  
MPMUX  
CS‡  
Iu  
I
MPMUX. Strap to VSS to enable the demultiplexed address and data bus  
mode. Strap to VDD to enable the multiplexed address and data bus mode.  
Chip Select (Active-Low). In the Intel interface mode, this pin must be  
asserted low to initiate a read or write access and kept low for the duration of  
the access; asserting CS low forces RDY out of its high-impedance state into  
a 0 state.  
78  
ALE_AS  
I
Address Latch Enable/Address Strobe. In the address/data bus multiplex  
mode of the microprocessor, when this signal transitions from high to low, the  
state of the address bus is latched into internal address registers. In the  
demultiplexed address mode, the address is transparent through the T7630  
and is latched on the rising edge of the ALE_AS signal. Alternatively, if  
ALE_AS is not connected to the micropressor or other driver, it must be con-  
nected to ground.  
79—86  
87—98  
99  
AD0—AD7  
A0—A11  
I/O Microprocessor Address_Data Bus. Multiplexed address and bidirectional  
data bus used for read and write accesses. High-impedance output.  
I
Microprocessor Address Bus. Address bus used to access the internal reg-  
isters.  
INTERRUPT  
O
Interrupt. INTERRUPT is asserted high indicating an internal interrupt condi-  
tion/event has been generated. Otherwise, INTERRUPT is 0. Interrupt  
events/conditions are maskable through the control registers. Interrupt asser-  
tion may be inverted (active-low) by setting register GREG 4 bit 6 = 1. This  
output may not be wire OR connected to any other logic output.  
u
d
* I indicates an internal pull-up. I indicates an internal pull-down.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
Lucent Technologies Inc.  
23  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Pin Information (continued)  
Table 2. Pin Descriptions-Global (continued)  
Pin  
Symbol  
Type*  
Description  
100  
RDY_DTACK  
O
Ready. In the Intel interface mode, this pin is asserted high to  
indicate the completion of a read or write access; this pin is forced  
into a high-impedance state while CS is high.  
Data Transfer Acknowledge (Active-Low). In the Motorola  
interface mode, DTACK is asserted low to indicate the completion  
of a read or write access; DTACK is 1 otherwise.  
101  
102  
103  
104  
105  
MPCK  
Iu  
O
Iu  
Iu  
Iu  
Microprocessor Clock. Microprocessor clock used in the Intel  
mode to generate the READY signal.  
JTAGTDO  
JTAGTDI  
JTAGTCK  
JTAGTMS  
JTAG Data Output. Serial output data sampled on the falling edge  
of TCK from the boundary-scan test circuitry.  
JTAG Data Input. Serial input data sampled on the rising edge of  
TCK for the boundary-scan test circuitry.  
JTAG Clock Input. TCK provides the clock for the boundary-scan  
test logic.  
JTAG Mode Select (Active-High). The signal values received at  
TMS are sampled on the rising edge of TCK and decoded by the  
boundary-scan TAP controller to control boundary-scan test opera-  
tions.  
106  
107  
JTAGTRST  
WR_DS  
Id  
I
JTAG Reset Input (Active-Low). Assert this pin low to asynchro-  
nously initialize/reset the boundary-scan test logic.  
Write (Active-Low). In the Intel mode, the value present on the  
data bus is latched into the addressed register on the positive edge  
of the signal applied to WR.  
Data Strobe (Active-Low). In the Motorola mode, when AS is low  
and R/W is low (write), the value present on the data bus is latched  
into the addressed register on the positive edge of the signal  
applied to DS; when AS is low and R/W is high (read), the T7630  
drives the data bus with the contents of the addressed register  
while DS is low.  
110  
SECOND  
O
Second Pulse. A one second timer with an active-high pulse. The  
duration of the pulse is one RLCK cycle. The received line clock of  
FRAMER1 (RLCK1) is the default clock source for the internal sec-  
ond pulse timer. When LOFRMCLK1 is active, the received line  
clock of FRAMER2 is used as the clock signal source for the inter-  
nal second pulse timer. The second pulse is used for performance  
monitoring.  
u
d
* I indicates an internal pull-up. I indicates an internal pull-down.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
24  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Block Diagram  
The T7630 LIU diagram is shown in Figure 5. Only a single transceiver is shown here for illustration purposes.  
(UNCOMMITTED FEATURE)  
RDLOS  
RALOS  
LINE LENGTH  
INDICATOR  
RND_BPV  
RPD  
DECODER  
JITTER  
ATTENUATOR  
CLOCK AND  
DATA  
RECOVERY  
RTIP  
EQUALIZER  
SLICERS  
TO RECEIVE  
FRAMER  
RRING  
(RECEIVE PATH)  
RLCK  
FLLOOP  
(DURING LIU AIS)  
FLLOOP  
(NO LIU AIS)  
TDM  
DLLOOP  
RLOOP  
(CLOCK)  
LOTC  
PULSE-  
WIDTH  
CONTROLLER  
TLCK-LIU  
TND-LIU  
JITTER  
TTIP  
ATTENUATOR  
TRANSMIT  
DRIVER  
PULSE  
EQUALIZER  
(TRANSMIT PATH)  
(DATA)  
ENCODER  
FROM TRANSMIT  
TRING  
TPD-LIU  
FRAMER  
ALARM  
INDICATION  
SIGNAL (AIS)  
LBO  
LOSS  
OF  
0.0 db  
7.5 db  
TLCK  
15.0 db  
22.5 db  
DIVIDE BY 16  
LOSS OF  
SYSCK  
SYSCK  
MONITOR  
5-4556(F).g  
Figure 5. Block Diagram of Line Interface Unit: Single Channel  
The clock is recovered by a digital phase-locked loop  
that uses SYSCK as a reference to lock to the data rate  
component. Because the reference clock is a multiple  
of the received data rate, the internal RLCK (RLCK-  
LIU) output will always be a valid DS1/CEPT clock that  
eliminates false lock conditions. During periods with no  
receive input signal from the line, the free-run fre-  
quency of RLCK-LIU is defined to be either SYSCK/16  
or SYSCK depending on the state of CKSEL. RLCK-  
LIU is always active with a duty cycle centered at 50%,  
deviating by no more than ±5%. Valid data is recovered  
within the first few bit periods after the application of  
SYSCK.  
Line Interface Unit: Receive  
Data Recovery  
The receive line-interface unit (RLIU) transmission for-  
mat is bipolar alternate mark inversion (AMI). The RLIU  
accepts input data with a data rate tolerance of  
±130 ppm (DS1) or ±80 ppm (E1). The RLIU first  
restores the incoming data and detects ALOS. Subse-  
quent processing is optional and depends on the pro-  
grammable LIU configuration established within the  
microprocessor interface registers. The RLIU utilizes  
an adaptive equalizer to operate on line length with typ-  
ically up to 3615 dB of loss at 772 kHz (T1/DS1) or  
4313 dB loss at 1.024 MHz (E1). The signal is then  
peak-detected and sliced to produce digital representa-  
tions of the data. Selectable DLOS, jitter attenuation,  
and data decoding are performed.  
Lucent Technologies Inc.  
25  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
will latch the alarm and remain set until being cleared  
by a read (clear on read). Upon the transition from  
ALOS = 0 to ALOS = 1, a microprocessor interrupt will  
be generated if the ALOS interrupt enable bit ALOSIE  
(register LIU_REG1, bit 0) is set. The reset default is  
ALOSIE = 0.  
Line Interface Unit: Receive (continued)  
Jitter Accommodation and Jitter Transfer  
Without the Jitter Attenuator  
The RLIU is designed to accommodate large amounts  
of input jitter. The RLIU’s jitter performance exceeds  
the requirements shown in the RLIU specification  
Table 5 and Table 6. Typical receiver performance with-  
out the jitter attenuator in the path is shown in  
Figures 6—9. Typical receiver performance with the jit-  
ter attenuator is given in Figures 12—15. Jitter transfer  
is independent of input ones density on the line inter-  
face.  
The ALOS circuitry provides 4 dB of hysteresis to pre-  
vent alarm chattering. The time required to detect  
ALOS is selectable. When ALTIMER = 0 (register  
LIU_REG4, bit 0), ALOS is declared between 1 ms and  
2.6 ms after losing signal as required by I.431(3/93)  
and ETS-300-233 (5/94). If ALTIMER = 1, ALOS is  
declared between 10-bit and 255-bit symbol periods  
after losing signal as required by G.775 (11/95). The  
timing is derived from the SYSCK clock. The detection  
time is independent of signal amplitude before the loss  
condition occurs. Normally, ALTIMER = 1 would be  
used only in E1 mode since no T1/DS1 standards  
require this mode. In T1/DS1 mode, this bit should nor-  
mally be zero. The reset default is ALTIMER = 0.  
Receive Line Interface Configuration Modes  
Zero Substitution Decoding (CODE)  
When single-rail operation is selected with DUAL = 0  
(register LIU_REG3, bit 3), the LIU B8ZS/HDB3 zero  
substitution decoding can be selected via the CODE bit  
(register LIU_REG3, bit 2). If CODE = 1, the B8ZS/  
HDB3 decoding function is enabled in the receive path.  
Decoded receive data appears at the internal LIU-to-  
framer RPD interface (RPD-LIU). Code violations,  
including BPVs, appear at the internal LIU-to-framer  
RND_BPV interface (RND-LIU). If CODE = 0, the  
receive data is passed unaltered to RPD-LIU, and all  
bipolar violations (such as two consecutive ones if the  
same polarity) appear at RND-LIU. The default configu-  
ration is single-rail, DUAL = 0, with the decoding active,  
CODE = 1.  
The behavior of the receiver RLIU outputs under ALOS  
conditions is dependent on the loss shutdown (LOSSD)  
control bit (register LIU_REG3, bit 4) in conjunction  
with the receive alarm indication select (RCVAIS) con-  
trol bit (register LIU_REG4, bit 1) as described in the  
Loss Shutdown (LOSSD) and Receiver AIS (RCVAIS)  
section on page 27. When operating on long-haul  
loops, the receive input signal will routinely be well  
below the 20 dB ALOS level. Therefore, when the  
transmit equalization is programmed to any of the long-  
haul settings shown in Table 8, the ALOS function is  
completely disabled.  
Digital Loss of Signal (DLOS) Alarm. A (DLOS)  
detector guarantees the received signal quality as  
defined in the appropriate ANSI, Bellcore, and ITU  
standards. The DLOS alarm is reported in the RLIU  
alarm status register (register LIU_REG0, bit 1). For  
DS1 operation, digital loss of signal (DLOS = 1) is indi-  
cated if 100 or more consecutive zeros occur in the  
receive data stream. The DLOS condition is deacti-  
vated when the average ones density of at least 12.5%  
is received in 100 contiguous pulse positions. The  
DLOS alarm status bit will latch the alarm and remain  
set until being cleared by a read (clear on read). The  
LOSSTD control bit (register LIU_REG2, bit 2) selects  
the conformance protocols for the DLOS alarm indica-  
tion per Table 3. Setting LOSSTD = 1 adds an addi-  
tional constraint that there are less than 15 consecutive  
zeros in the DS1 data stream before DLOS is deacti-  
vated. The reset default is LOSSTD = 0.  
If DUAL = 0, the receive framer must be programmed to  
the single-rail mode and the receive framer’s internal  
LIU-to-framer RPD input will be the receive data port. If  
DUAL = 0, then the receive framer’s bipolar violation  
count will increment by one whenever the internal LIU-  
to-framer RND_BPV signal is one. The bipolar violation  
count is incremented on the rising edge of the receive  
framer’s RLCK clock signal.  
Receive Line Interface Unit (RLIU) Alarms  
Analog Loss of Signal (ALOS) Alarm. An analog sig-  
nal detector monitors the receive signal amplitude and  
reports its status in the ALOS alarm bit ALOS (register  
LIU_REG0, bit 0). ALOS is indicated (ALOS = 1) if the  
amplitude at the RRING and RTIP inputs drops below a  
voltage approximately 18 dB below the nominal signal  
amplitude. The ALOS alarm condition will clear when  
the receive signal amplitude returns to a level greater  
than 14 dB below normal. The ALOS alarm status bit  
26  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
mined state when a DLOS or ALOS alarm occurs.  
Line Interface Unit: Receive (continued)  
If LOSSD = 0 and RCVAIS = 0, the RND-LIU, RPD-  
LIU, and RLCK-LIU signals will be unaffected by the  
DLOS alarm condition. However, when an ALOS alarm  
condition is indicated in the LIU alarm status register  
(register LIU_REG0, bit 0), the RPD-LIU and RND-LIU  
signals are forced to 0 state and the RLCK-LIU free  
runs (at the INTSYSCK/16 frequency).  
For E1 operation, DLOS is indicated when 255 or more  
consecutive zeros occur in the receive data stream.  
The DLOS indication is deactivated when the average  
ones density of at least 12.5% is received in 255 contig-  
uous pulse positions. LOSSTD has no effect in E1  
mode.  
Upon the transition from DLOS = 0 to DLOS = 1, a  
microprocessor interrupt will be generated if the DLOS  
interrupt enable bit DLOSIE (register LIU_REG1, bit 1)  
is set. The reset default is DLOSIE = 0.  
If LOSSD = 1, RCVAIS = 0, and a DLOS alarm condi-  
tion is indicated in the LIU alarm status register (regis-  
ter LIU_REG0, bit 1) or an ALOS alarm condition is  
indicated, the RPD-LIU and RND-LIU signals are  
forced to the inactive (dependent on ALM) and the  
RLCK-LIU free runs (at the INTSYSCK/16 frequency).  
The DLOS alarm may occur when FLLOOP is activated  
(see Line Interface Unit: Loopbacks) due to the abrupt  
change in signal level at the receiver input. Setting the  
FLLOOP alarm prevention PFLALM = 1 (register  
LIU_REG 4, bit 2) prevents the DLOS alarm from  
occurring when FLLOOP is activated by quickly reset-  
ting the receiver’s internal peak detector. It will not pre-  
vent the DLOS alarm during the FLLOOP period but  
only avoids the alarm created by the signal amplitude  
transient. The reset default is PFLALM = 0.  
If LOSSD = 0, RCVAIS = 1, and a DLOS or an ALOS  
alarm condition is indicated in the LIU alarm status reg-  
ister (register LIU_REG0, bits 0 or 1), the RPD-LIU and  
RND-LIU signals will present an alarm indication signal  
(AIS, all ones) based on the free-running INTSYSCK/  
16 frequency.  
If LOSSD = 1, RCVAIS = 1, and a DLOS or an ALOS  
alarm condition is indicated in LIU alarm status register  
(register LIU_REG0, bits 0 or 1), the RPD-LIU and  
RND-LIU signals are forced to inactive (dependent on  
ALM) and the RLCK-LIU free runs at the INTSYSCK/  
16 frequency.  
Table 3. DLOS Standard Select  
LOSSTD  
DS1 Mode  
CEPT Mode  
0
T1M1.3/93-005,  
ITU-T G.775  
ITU-T G.775  
The RND-LIU, RPD-LIU, and RLCK-LIU signals will be  
remain unaffected if any loopback (FLLOOP, RLOOP,  
DLLOOP) is activated independent of LOSSD and  
RCVAIS settings.  
1
TR-TSY-000009  
ITU-T G.775  
Loss Shutdown (LOSSD) and Receiver AIS  
(RCVAIS). The loss shutdown (LOSSD) control bit (reg-  
ister LIU_REG3, bit 4) acts in conjunction with the  
receive alarm indication select (RCVAIS) control bit  
(register LIU_REG4, bit 1) to place the digital RLIU sig-  
nals (RPD-LIU, RND-LIU, RLCK-LIU) in a predeter-  
The default reset state is LOSSD = 0 and RCVAIS = 0.  
The LOSSD and RCVAIS behavior is summarized in  
Table 4.  
Table 4. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes)  
LOSSD  
RCVAIS  
ALARM  
RPD/RND  
RLCK  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
Inactive (1/0 dependent on ALM)  
Normal Data  
Free Runs  
Recovered Clock  
Free Runs  
Inactive (1/0 dependent on ALM)  
Inactive (1/0 dependent on ALM)  
AIS (all ones)  
Free Runs  
Free Runs  
AIS (all ones)  
Free Runs  
Inactive (1/0 dependent on ALM)  
Inactive (1/0 dependent on ALM)  
Free Runs  
Free Runs  
LIU Receiver BPV Alarm. The receiver LIU BPV alarm is used only in the single-rail mode. When B8ZS(DS1)/  
HDB3(E1) coding is not used (i.e., CODE = 0), any violations in the receive data (such as two or more consecutive  
ones on a rail) are indicated on the RND-LIU output. When B8ZS(DS1)/HDB3(E1) coding is used (i.e., CODE = 1),  
the HDB3/B8ZS code violations, as defined in the appropriate standards, are reflected on the RND-LIU output.  
Lucent Technologies Inc.  
27  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Receive (continued)  
During T1/DS1 operation, the LIU receiver will perform as specified in Table 5.  
Table 5. T1/DS1 LIU Receiver Specifications  
Parameter  
Analog Loss of Signal:  
Min  
Typ  
Max  
Unit  
Spec  
Threshold to Assert  
Threshold to Clear  
Hysteresis  
23  
17.5  
18  
14  
4
16.5  
12.5  
dB1  
dB1  
dB  
I.431  
Time to Assert (ALTIMER = 0)  
1.0  
2.6  
ms  
I.431  
Receiver Sensitivity2  
11  
15  
dB  
Jitter Transfer:  
3 dB Bandwidth  
Peaking  
3.84  
0.1  
kHz  
dB  
Figure 7  
Figure 13  
Generated Jitter  
0.04  
0.05  
UIp-p  
TR-TSY-000499,  
ITU-T G.824  
Jitter Accommodation  
Figure 6  
Figure 12  
Return Loss:3  
51 kHz to 102 kHz  
102 kHz to 1.544 MHz  
1.544 MHz to 2.316 MHz  
14  
20  
16  
dB  
dB  
dB  
Digital Loss of Signal:  
ITU-T G.775,  
T1M1.3/93-005  
Flag Asserted When Consecutive Bit  
Positions Contain  
100  
zeros  
Flag Deasserted when  
Data Density Is  
and  
12.5  
%ones  
TR-TRY-000009  
Maximum Consecutive Zeros Are  
15  
99  
zeros  
zeros  
ITU-T G.775, T1M1.3/  
93-005  
1. Below the nominal pulse amplitude of 3.0 V with the line interface circuitry specified in the Line Interface Unit: Line Interface Networks  
section.  
2. Cable loss at 772 kHz.  
3. Using Lucent transformer 2795B and components listed in Table 14.  
28  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit: Receive (continued)  
During E1 operation, the LIU receiver will perform as specified in Table 6.  
Table 6. CEPT LIU Receiver Specifications  
Parameter  
Analog Loss of Signal:  
Threshold to Assert  
Threshold to Clear  
Min  
Typ  
Max  
Unit  
Specification  
23  
17.5  
18  
14  
4
16.5  
12.5  
dB1  
dB1  
dB  
I.431, ETSI 300 233  
Hysteresis  
Time to Assert (ALTIMER = 0)  
Time to Assert (ALTIMER = 1)  
1.0  
10  
2.6  
255  
ms  
UI  
I.431, ETSI 300 233  
G.775  
Receiver Sensitivity2  
Interference Immunity:3  
11  
9
13.5  
12  
dB  
dB  
ITU-T G.703  
Jitter Transfer:  
3 dB Bandwidth, Single-pole Roll Off  
Peaking  
5.1  
0.5  
kHz  
dB  
Figure 9  
Figure 15  
Generated Jitter  
0.04  
0.05  
UIp-p  
ITU-T G.823, I.431  
Jitter Accommodation  
Figure 8  
Figure 14  
Return Loss:4  
51 kHz to 102 kHz  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
ITU-T G.703  
14  
20  
16  
dB  
dB  
dB  
Digital Loss of Signal:  
Flag Asserted When Consecutive Bit  
Positions Contain  
255  
zeros  
Flag Deasserted When Data Density Is  
(LOSSTD = 1)  
ITU-T G.775  
12.5  
%ones  
1. Below the nominal pulse amplitude of 3.0 V for 120 and 2.37 V for 75 applications with the line circuitry specified in the Line Interface  
Unit: Line Interface Networks section.  
2. Cable loss at 1.024 MHz.  
3. Amount of cable loss for which the receiver will operate error-free in the presence of a –18 dB interference signal summing with the intended  
signal source.  
4. Using Lucent transformer 2795D or 2795C and components listed in Table 14.  
Lucent Technologies Inc.  
29  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Receive (continued)  
100 UI  
TYPICAL  
28 UI  
(SUBJECT TO DEVICE CHARACTERIZATION)  
T1.408/I.431(DS1)/G.824(DS1)  
10 UI  
GR-499-CORE  
(NON-SONET CAT II INTERFACES)  
I.431(DS1), G.824(DS1)  
1.0 UI  
TR-TSY-000009 (DS1, MUXes)  
GR-499/1244-CORE (CAT I INTERFACES)  
0.1 UI  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
5-5260(F)  
Figure 6. T1/DS1 Receiver Jitter Accommodation Without Jitter Attenuator  
GR-499-CORE  
(NON-SONET CAT II TO CAT II)  
0
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10  
20  
30  
40  
50  
60  
1
10  
100  
1k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5261(F)  
Figure 7. T1/DS1 Receiver Jitter Transfer Without Jitter Attenuator  
30  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit: Receive (continued)  
100 UI  
G.823  
37 UI  
I.431(CEPT)/ETS-300-011  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10 UI  
G.823,ETS-300-011A1  
I.431(CEPT)/ETS-300-011  
1.0 UI  
0.1 UI  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
5-5262(F)r.9  
Figure 8. CEPT/E1 Receiver Jitter Accommodation Without Jitter Attenuator  
G.735-9 WITHOUT JITTER REDUCER  
0
10  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
20  
30  
40  
50  
60  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (HZ)  
5-5263(F)  
Figure 9. CEPT/E1 Receiver Jitter Transfer Without Jitter Attenuator  
31  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
equalizer. The pulse-width controller produces high-  
speed timing signals to accurately control the transmit  
pulse widths. This eliminates the need for a tightly con-  
trolled transmit clock duty cycle that is usually required  
in discrete implementations. The pulse equalizer con-  
trols the amplitudes and shapes of the pulses. Different  
pulse equalizations are selected through settings of  
EQ2, EQ1, and EQ0 bits (register LIU_REG6, bits 0 to  
2) as described in Table 7, Transmit Line Interface  
Short-Haul Equalizer/Rate Control below.  
Line Interface Unit: Transmit  
Output Pulse Generation  
The line interface transmitter accepts a line rate clock  
and NRZ data in single-rail mode (DUAL = 0) or posi-  
tive and negative NRZ data in dual-rail mode (DUAL =  
1) from the transmit framer unit or, optionally, the sys-  
tem interface. The line interface transmitter converts  
this data to a balanced bipolar signal (AMI format) with  
optional B8ZS(DS1)/HDB3(E1) encoding and optional  
jitter attenuation. Low-impedance output drivers pro-  
duce the line transmit pulses. Positive ones are output  
as positive pulses on TTIP, and negative ones are out-  
put as positive pulses on TRING. Binary zeros are con-  
verted to null pulses.  
The reset default state of the equalization bits EQ2,  
EQ1, and EQ0 can be predetermined by setting the  
DS1_CEPT pin. The default transmit equalization is  
EQ2, EQ1, and EQ0 = 000 (0 dB T1/DS1) when  
DS1_CEPT = 1; EQ2, EQ1, and EQ0 = 110 (CEPT 120  
/75 ) when DS1_CEPT = 0. This feature aids in  
transmitting AIS at the correct rate upon completion of  
hardware reset; See LIU transmitter alarm indication  
signal generator (XLAIS) on Table 33.  
In DSX-1 applications, transmit pulse shaping is con-  
trolled by the on-chip pulse-width controller and pulse  
Table 7. Transmit Line Interface Short-Haul Equalizer/Rate Control  
Short-Haul Applications  
EQ2  
EQ1  
EQ0 Service  
Clock Rate  
Transmitter Equalization*†  
Maximum  
Cable Loss to  
DSX‡  
Feet  
Meters  
dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DSX-1  
CEPT§  
1.544 MHz  
0 to 131  
0 to 40  
40 to 80  
0.6  
1.2  
1.8  
2.4  
3.0  
131 to 262  
262 to 393  
393 to 524  
524 to 655  
80 to 120  
120 to 160  
160 to 200  
2.048 MHz  
75 (Option 2)  
120 or 75 (Option 1)  
Not Used  
* In DS1 mode, the distance to the DSX for 22-Gauge PIC (ABAM) cable is specified. Use the maximum cable loss figures for other cable types.  
In CEPT mode, equalization is specified for coaxial or twisted-pair cable.  
† Reset default state is EQ2, EQ1, and EQ0 = 000 when pin DS1_CEPT = 1 and EQ2, EQ1, and EQ0 = 110 when pin DS1_CEPT = 0.  
‡ Loss measured at 772 kHz.  
§ In 75 applications, Option 1 is recommended over Option 2 for lower LIU power dissipation. Option 2 allows for the use of the same trans-  
former as in CEPT 120 applications (see Line Interface Unit: Line Circuitry section).  
32  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
LIU Transmitter Alarms  
Line Interface Unit: Transmit (continued)  
Loss of LIU Transmit Clock (LOTC) Alarm  
LIU Transmitter Configuration Modes  
A loss of LIU transmit clock alarm (LOTC = 1, see reg-  
ister LIU_REG0, bit 3) is indicated if any of the clocks  
used in the LIU transmitter paths are absent. This  
includes loss of TLCK-LIU input, loss of RLCK-LIU dur-  
ing remote loopback, loss of jitter attenuator output  
clock (when enabled in transmit path), or the internal  
loss of clock from the pulse-width controller. For all of  
these conditions, the LIU transmitter timing clock is lost  
and no data can be driven onto the line. Output drivers  
TTIP and TRING are placed in a high-impedance state  
when this alarm is active. The LOTC alarm asserts  
between 3 µs and 16 µs after the clock is lost and  
deasserts immediately after detecting the first clock  
edge. The LOTC alarm status bit will latch the alarm  
and remain set until being cleared by a read (clear on  
read). Upon the transition from LOTC = 0 to LOTC = 1,  
an interrupt will be generated if the LOTC interrupt  
enable bit LOTCIE (register LIU_REG1, bit 3) is set.  
The reset default is LOTCIE = 0.  
LIU Transmitter Zero Substitution Encoding  
(CODE)  
LIU transmitter zero substitution (B8ZS/HDB3) encod-  
ing can be activated only in the single-rail (DUAL = 0)  
system/framer interface mode. It is activated by setting  
CODE = 1 (register LIU_REG3, bit 2). Data transmitted  
from the framer interface on TPD-LIU will be B8ZS/  
HDB3 encoded before appearing on TTIP and TRING  
at the line interface.  
LIU Transmitter Alarm Indication Signal Generator  
(XLAIS)  
When the transmit alarm indication signal control is set  
(XLAIS = 1) for a given channel (see register  
LIU_REG5, bit 1), a continuous stream of bipolar ones  
is transmitted to the line interface. The internal LIU to  
framer TPD interface (TPD) and internal LIU to framer  
TND interface (TND) signals are ignored during this  
mode. The XLAIS control is ignored when a remote  
loopback (RLOOP) is selected using loopback control  
bits LOOPA and LOOPB (register LIU_REG5, bits 2 to  
3). The clock source used for the alarm indication sig-  
nal is TLCK if present or INTSYSCK if TLCK is not  
present. The clock tolerance must meet the nominal  
transmission specifications of 1.544 MHz ± 32 ppm for  
DS1 (T1) or 2.048 MHz ± 50 ppm CEPT (E1).  
An LOTC alarm may occur when RLOOP is activated  
and deactivated due to the phase transient that occurs  
as TLCK-LIU switches its source to and from RLCK-  
LIU. Setting the RLOOP alarm prevention PRLALM = 1  
(register LIU_REG4, bit 3) prevents the LOTC alarm  
from occurring at the activation and deactivation of  
RLOOP but allows the alarm to operate normally dur-  
ing the RLOOP active period. The reset default is  
PRLALM = 0.  
The XLAIS bit is defaulted to 1 on hardware reset  
allowing the transmitter to send AIS as soon as clocks  
are available, without needing to write the LIU regis-  
ters*. Because the transmit equalization bits are  
needed to determine the correct system rate (DS1/E1),  
the reset default state of the equalization bits EQ2,  
EQ1, EQ0 (register LIU_REG6, bits 0—2) can be pre-  
determined by setting the DS1_CEPT pin (see  
Table 7). The default transmit equalization is EQ2,  
EQ1, and EQ0 = 000 (0 dB T1/DS1) when DS1_CEPT  
= 1, and EQ2, EQ1, and EQ0 = 110 (CEPT 120 /75  
) when DS1_CEPT = 0. The transmit equalization bits  
can be subsequently programmed to any state by writ-  
ing the LIU register regardless of the state of the  
DS1_CEPT pin. The DS1_CEPT pin is only used to  
determine the reset default state of the equalization  
bits.  
LIU Transmitter Driver Monitor (TDM) Alarm  
The transmit driver monitor detects two conditions: a  
nonfunctional link due to faults on the primary of the  
transmit line transformer and periods of no data trans-  
mission. The TDM alarm (register LIU_REG0, bit 2) is  
the OR’d function of both faults and provides informa-  
tion about the integrity of the LIU transmitter signal  
path.  
* If TLCK from the framer is present, automatic transmission of AIS  
upon reset will occur only if the CHI common control register  
FRM_PR45 bit 0 = 0, the default, or low-frequency PLLCK mode. In  
this case, PLLCK will be equal to the line transmit rate, either  
1.544 MHz for DS1 or 2.048 MHz for CEPT.  
Lucent Technologies Inc.  
33  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
The second monitoring function is to indicate periods of  
no data transmission. The alarm is set (TDM = 1) when  
33 consecutive zeros have been transmitted. The  
alarm is cleared (TDM = 0) on the detection of a single  
pulse. This alarm condition does not alter the function-  
ality of the signal path.  
Line Interface Unit: Transmit (continued)  
The first monitoring function is provided to detect non-  
functional links and protect the LIU transmitter from  
damage. The alarm is set (TDM = 1) when one of the  
LIU transmitter line drivers (TTIP or TRING) is shorted  
to power supply or ground, or TTIP and TRING are  
shorted together. Under these conditions, internal cir-  
cuitry protects the LIU transmitter from damage and  
excessive power supply current consumption by forcing  
the TTIP and TRING output drivers into a high-imped-  
ance state. The monitor detects faults on the trans-  
former primary side, but the transformer secondary  
faults may not be detected. The monitor operates by  
comparing the line pulses with the transmit inputs. After  
32 transmit clock cycles, the LIU transmitter is powered  
up in its normal operating mode. The LIU transmitter  
drivers attempt to correctly transmit the next data bit. If  
the error persists, TDM remains active to eliminate  
alarm chatter and the transmitter is again internally  
protected for another 32 transmit clock cycles. This pro-  
cess is repeated until the error condition is removed,  
and then the TDM alarm is deactivated. The TDM  
alarm status bit will latch the alarm and remain set until  
being cleared by a read (clear on read).  
Upon the transition from TDM = 0 to TDM = 1, a micro-  
processor interrupt will be generated if the TDM inter-  
rupt enable bit TDMIE (register LIU_REG1, bit 2) is set.  
The reset default is TDMIE = 0.  
A TDM alarm may occur when RLOOP is activated and  
deactivated. If the PRLALM bit is not set, then RLOOP  
may activate an LOTC alarm, which will put the output  
drivers TTIP and TRING in a high-impedance state as  
described in loss of LIU transmit clock (LOTC) alarm.  
The high-impedance state of the drivers may in turn  
generate a TDM alarm.  
Setting the HIGHZ alarm prevention PHIZALM = 1  
(register LIU_REG4, bit 4) prevents the TDM alarm  
from occurring when the drivers are in a high-imped-  
ance state. The reset default is PHIZALM = 0.  
DSX-1 Transmitter Pulse Template and Specifications  
The DS1 pulse shape template is specified at the DSX (defined by CB119 and ANSI T1.102) and is illustrated in  
Figure 10. The LIU transmitter also meets the pulse template specified by ITU-T G.703 (not shown).  
1.0  
0.5  
0
–0.5  
0
250  
500  
750  
1000  
1250  
TIME (ns)  
5-1160(F)  
Figure 10. DSX-1 Isolated Pulse Template  
34  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit: Transmit (continued)  
Table 8. DSX-1 Pulse Template Corner Points (from CB119, T1.102)  
Maximum Curve  
Minimum Curve  
UI  
ns  
Normalized  
UI  
ns  
Normalized  
Amplitude  
Amplitude  
–0.77  
–0.39  
–0.27  
–0.27  
–0.12  
0.0  
0.27  
0.25  
0.93  
1.16  
0
0.05  
0.05  
0.80  
1.15  
1.15  
1.05  
1.05  
–0.07  
0.05  
0.05  
–0.77  
–0.23  
–0.23  
–0.15  
0.0  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
0
–0.05  
–0.05  
0.50  
0.95  
0.95  
250  
325  
325  
425  
500  
675  
725  
1100  
1250  
350  
350  
400  
500  
600  
650  
650  
800  
925  
1100  
1250  
0.90  
0.50  
–0.45  
–0.45  
–0.20  
–0.05  
–0.05  
During DS1 operation, the LIU transmitter TTIP and TRING pins will perform as specified in Table 9.  
Table 9. DS1 Transmitter Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Specification  
Output Pulse Amplitude at DSX1  
2.5  
3.0  
3.5  
V
AT&T CB119,  
ANSI T1.102  
Output Pulse Width at Line Side of  
Transformer1  
325  
350  
375  
ns  
Output Pulse Width at Device Pins  
330  
350  
0.1  
370  
0.4  
ns  
TTIP and TRING1  
Positive/Negative Pulse Imbalance2  
Power Levels:3,4  
dB  
772 kHz  
1.544 MHz5  
12.6  
29  
17.9  
dBm  
dB  
39  
1. With the line circuitry specified in Table 14.  
2. Total power difference.  
3. Measured in a 2 kHz band around the specified frequency.  
4. Using Lucent transformer 2795B and components in Table 14.  
5. Below the power at 772 kHz.  
Lucent Technologies Inc.  
35  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Transmit (continued)  
CEPT Transmitter Pulse Template and Specifications  
CEPT pulse shape template is specified at the system output (defined by ITU-T G.703) and is illustrated in  
Figure 11.  
269 ns  
(244 + 25)  
20%  
10%  
V = 100%  
194 ns  
10%  
(244 – 50)  
NOMINAL PULSE  
20%  
50%  
244 ns  
219 ns  
(244 – 25)  
10%  
10%  
10%  
10%  
0%  
20%  
488 ns  
(244 + 244)  
5-3145(F)  
Figure 11. ITU-T G.703 Pulse Template  
36  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Transmit (continued)  
During E1 operation, the LIU transmitter TTIP and TRING pins will perform as specified in Table 10.  
Table 10. CEPT Transmitter Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Specification  
Output Pulse Amplitude1:  
ITU-T G.703  
75 Ω  
120 Ω  
2.13  
2.7  
2.37  
3.0  
2.61  
3.3  
V
V
Output Pulse Width at Line Side of  
Transformer1  
219  
244  
269  
ns  
Output Pulse Width at Device Pins TTIP  
and TRING1  
224  
244  
264  
ns  
Positive/Negative Pulse Imbalance:  
Pulse Amplitude  
–4  
–4  
±1.5  
±1  
4
4
%
%
Pulse Width  
Zero Level (percentage of pulse  
amplitude)  
–5  
0
5
%
Return Loss:2 120 Ω  
51 kHz to 102 kHz  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
Return Loss:2 75 Ω  
51 kHz to 102 kHz  
CH-PTT  
9
15  
11  
dB  
dB  
dB  
ETS 300 166:  
1993  
7
9
dB  
dB  
102 kHz to 3.072 MHz  
1. With the line circuitry specified in Table 14, measured at the transformer secondary.  
2. Using Lucent transformer 2795D or 2795C and components in Table 14.  
Jitter Transfer Function  
Line Interface Unit: Jitter Attenuator  
The jitter transfer function describes the amount of jitter  
that is transferred from the input to the output over a  
range of frequencies. The jitter attenuator exhibits a  
single-pole roll-off (20 dB/decade) jitter transfer charac-  
teristic that has no peaking and a nominal filter corner  
frequency (3 dB bandwidth) of less than 4 Hz for DS1  
operation and approximately 10 Hz for CEPT opera-  
tion. Optionally, a lower bandwidth of approximately  
1.25 Hz can be selected in CEPT operation by setting  
JABW0 = 1 (register LIU_REG4, bit 5) for systems  
desiring compliance with ETSI-TBR12 and TBR13 jitter  
attenuation requirements. The reset default is JABW0  
= 0. For a given frequency, different jitter amplitudes will  
cause a slight variation in attenuation because of finite  
quantization effects. Jitter amplitudes of less than  
approximately 0.2 UI will have greater attenuation than  
the single-pole roll-off characteristic. The jitter transfer  
curve is independent of data patterns. Typical jitter  
transfer curves of the jitter attenuator are given in Fig-  
ures 13 and 15.  
A selectable jitter attenuator is provided for narrow-  
bandwidth jitter transfer function applications. When  
placed in the LIU receive path, the jitter attenuator pro-  
vides narrow-bandwidth jitter filtering for line-synchroni-  
zation. The jitter attenuator can also be placed in the  
LIU transmit path to provide clock smoothing for appli-  
cations such as synchronous/asynchronous demulti-  
plexers. In these applications, TLCK-LIU will have an  
instantaneous frequency that is higher than the data  
rate and some TLCK-LIU periods are suppressed  
(gapped) in order to set the average long-term TLCK-  
LIU frequency to within the transmit line rate specifica-  
tion. The jitter attenuator will smooth the gapped clock.  
Generated (Intrinsic) Jitter  
Generated jitter is the amount of jitter appearing on the  
output port when the applied input signal has no jitter.  
The jitter attenuator outputs a maximum of 0.04 UI  
peak-to-peak intrinsic jitter.  
Lucent Technologies Inc.  
37  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Jitter Attenuator (continued)  
Jitter Accommodation  
The minimum jitter accommodation of the jitter attenuator occurs when the SYSCK frequency and the input clock’s  
long-term average frequency are at their extreme frequency tolerances. When the jitter attenuator is used in the  
LIU transmit path, the minimum accommodation is 28 UI peak-to-peak at the highest jitter frequency of  
15 kHz. Typical receiver jitter accommodation curves including the jitter attenuator in the LIU receive path are given  
in Figures 12 and 14.  
When the jitter attenuator is placed in the data path, a difference between the SYSCK/16 frequency and the incom-  
ing line rate for receive applications, or the TCLK rate for transmit applications will result in degraded low-  
frequency jitter accommodation performance. The peak-to-peak jitter accommodation (JApp) for frequencies from  
above the corner frequency of the jitter attenuator (Fc) to approximately 100 Hz is given by the following equation:  
2( ∆fsysclk fdata )fdata  
JApp = 64 ----------------------------------------------------------------- UI  
2πfc  
where:  
fdata = 1.544 MHz for DS1 or 2.048 MHz for E1,  
for JABW0 = 0, fc = 3.8 Hz for DS1 or 10 Hz for E1,  
and for JABW0 = 1, fc = 1.25 Hz for E1,  
ýfsysclk = SYSCK tolerance in ppm,  
ýfdata = data tolerance in ppm.  
Note that for lower corner frequencies the jitter accommodation is more sensitive to clock tolerance than for higher  
corner frequencies. When JABW0 = 1 and the jitter attenuator is used in the receive data path, the tolerance on  
SYSCK should be tightened to ±20 ppm in order to meet the jitter accommodation requirements of TBR12/13 as  
given in G.823 for line data rates of ±50 ppm.  
Jitter Attenuator Enable (Transmit or Receive Path)  
The jitter attenuator is placed in the LIU receive path by setting JAR = 1 (register LIU_REG3, bit 0). The jitter atten-  
uator is selected in the LIU transmit path by setting JAT = 1 (register LIU_REG3, bit 1). When JAR = 1 and JAT = 1  
or when JAR = 0 and JAT = 0, the jitter attenuator is disabled. Note that the power consumption increases slightly  
on a per-channel basis when the jitter attenuator is active. The reset default case is JAR = JAT = 0.  
38  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit: Jitter Attenuator (continued)  
100 UI  
TYPICAL  
28 UI  
(SUBJECT TO DEVICE CHARACTERIZATION)  
T1.408/I.431(DS1)/G.824(DS1)  
10 UI  
GR-499-CORE  
(NON-SONET CAT II INTERFACES)  
I.431(DS1), G.824(DS1)  
1.0 UI  
TR-TSY-000009 (DS1, MUXes)  
GR-499/1244-CORE (CAT I INTERFACES)  
0.1 UI  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
5-5264(F)  
Figure 12. T1/DS1 Receiver Jitter Accommodation with Jitter Attenuator  
0
10  
20  
GR-253-CORE  
TR-TSY-000009  
30  
40  
50  
60  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
1
10  
100  
1 k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5265(F)r.1  
Figure 13. T1/DS1 Jitter Transfer of the Jitter Attenuator  
Lucent Technologies Inc.  
39  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Jitter Attenuator (continued)  
JABW0 = 1  
JABW0 = 0  
100 UI  
G.823  
37 UI  
I.431(CEPT)/ETS-300-011  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10 UI  
G.823,ETS-300-011A1  
I.431(CEPT)/ETS-300-011  
1.0 UI  
0.1 UI  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
5-5266(F)r.9  
Figure 14. CEPT/E1 Receiver Jitter Accommodation with Jitter Attenuator  
G.735-9 AT NATIONAL BOUNDARIES  
0
I.431, G.735-9 WITH JITTER REDUCER  
10  
20  
ETSI-300-011  
ETSI TBR12/13  
30  
40  
50  
60  
JABW0 = 1  
JABW0 = 0  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
1
10  
100  
1 k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5267(Fr.1  
Figure 15. CEPT/E1 Jitter Transfer of the Jitter Attenuator  
40  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Table 11. Loopback Control  
Line Interface Unit: Loopbacks  
Operation  
Normal1  
Symbol LOOPA LOOPB  
The LIU has independent loopback paths that are acti-  
vated using LOOPA and LOOPB control bits (register  
LIU_REG5, bits 2 to 3) as shown in Table 10. The loca-  
tions of these loopbacks are illustrated in Figure 5,  
Block Diagram of Line Interface Unit: Single Channel.  
0
0
1
1
0
1
0
1
Full Local Loopback  
Remote Loopback  
FLLOOP2  
RLOOP3  
Digital Local Loopback DLLOOP  
1. The reset default condition is LOOPA = LOOPB = 0 (no loopback).  
2. During the transmit AIS condition, the looped data will be the  
transmitted data from the framer or system interface and not the all  
ones signal.  
Full Local Loopback (FLLOOP)  
A full local loopback (FLLOOP) connects the LIU trans-  
mit driver input to the receive analog front-end circuitry.  
Valid transmit output data continues to be sent to the  
network. If the LIU transmitter AIS signal (all-ones sig-  
nal) is sent to the network, by setting the XLAIS bit  
(register LIU_REG5, bit 1), the looped data is not  
affected. The ALOS alarm continues to monitor the  
receive line interface signal (RTIP and RRING) while  
the DLOS alarm monitors the looped data.  
3. Transmit AIS request is ignored.  
Line Interface Unit: Other Features  
LIU Powerdown (PWRDN)  
Each LIU channel has an independent powerdown  
mode controlled by PWRDN (register LIU_REG5,  
bit 0). This provides power savings for systems which  
use backup channels. If PWRDN = 1, the correspond-  
ing LIU channel will be in a standby mode consuming  
only a small amount of power. It is recommended that  
the alarm registers for the powered down LIU channel  
be disabled by setting ALOSIE = DLOSIE = TDMIE =  
LOTCIE = 0 (register LIU_REG1, bits 0—3). If an LIU  
channel in powerdown mode needs to be placed back  
into service, the channel should be turned on (PWRDN  
= 0) approximately 5 ms before data is applied.  
See Digital Loss of Signal (DLOS) Alarm section on  
page 26 regarding the behavior of the DLOS alarm  
upon activation of FLLOOP.  
Remote Loopback (RLOOP)  
A remote loopback (RLOOP) connects the recovered  
clock and retimed data to the LIU transmitter at the  
framer interface and sends the data back to the line.  
The LIU receiver front end, clock/data recovery,  
encoder/decoder (if enabled), jitter attenuator (if  
enabled), and LIU transmitter driver circuitry are all  
exercised during this loopback. The transmit clock,  
transmit data, and the transmit AIS inputs are ignored.  
Valid receive output data continues to be sent to RPD-  
LIU and RND-LIU. This loopback mode is very helpful  
in isolating failures between systems.  
Loss of Framer Receive Line Clock (LOFRM-  
RLCK Pin)  
The LOFRMRLCK (pin 2/38) is set when the internal  
framer receive line clock is absent. During this alarm  
condition, the clock recovery and jitter attenuator func-  
tions are automatically disabled. If JAR = 1, the RLCK-  
LIU, RPD-LIU, RND-LIU, and DLOS signals will be  
unknown.  
See Loss of LIU Transmit Clock (LOTC) Alarm section  
and LIU Transmitter Driver Monitor on page 33 regard-  
ing the behavior of the LOTC and TDM alarms upon  
activation and deactivation of RLOOP.  
In-Circuit Testing and Driver High-Imped-  
ance State (3-STATE)  
Digital Local Loopback (DLLOOP)  
A digital local loopback (DLLOOP) connects the trans-  
mit clock and data through the encoder/decoder pair to  
the receive clock and data output pins. This loopback is  
operational regardless of whether the encoder/decoder  
pair is enabled or disabled. The alarm indication signal  
can be transmitted (XLAIS = 1) without any effect on  
the looped signal.  
If 3-STATE (pin 42/140) is activated (3-STATE = 0), the  
outputs TTIP, TRING, RDY_DTACK, INTERRUPT, and  
AD[7:0] are placed in a high-impedance state. The  
TTIP and TRING outputs have a limiting high-imped-  
ance capability of approximately 8 k.  
Lucent Technologies Inc.  
41  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Table 12. SYSCK (16x, CKSEL = 1) Timing  
Specifications  
Line Interface Unit: Other Features  
(continued)  
Parameter  
Value  
Typ  
Unit  
LIU Delay Values  
Min  
Max  
Frequency  
DS1  
CEPT  
Range*,†  
The transmit coder has 5 UI delay whether it is in the  
path or not and whether it is B8ZS or HDB3. Its delay is  
only removed when in single-rail mode. The remainder  
of the transmit path has 4.6 UI delay. The receive  
decoder has five UI delay whether it is in the path or not  
and whether it is B8ZS or HDB3. Its delay is only  
removed when in single-rail mode or CDR = 0. The  
equalizer plus slicer delay is nearly 0 UI delay. The jitter  
attenuator delay is nominally 33 UI but can be 2 UI—  
64 UI depending on state. The digital phase-locked  
loop used for timing recovery has 8 UI delay.  
24.704  
32.768  
MHz  
MHz  
–100  
40  
100  
60  
ppm  
%
Duty Cycle  
* When JABW0 = 1 and the jitter attenuator is used in the receive  
data path, the tolerance on SYSCK should be tightened to ±20 ppm  
in order to meet the jitter accommodation requirements of TBR12/  
13 as given in G.823 for line data rates of ±50 ppm.  
If SYSCK is used as the source for AIS (see LIU Transmitter Alarm  
Indication Signal Generator (XLAIS)), it must meet the nominal  
transmission specifications of 1.544 MHz ± 32 ppm for DS1 (T1) or  
2.048 MHz ± 50 ppm for CEPT (E1).  
SYSCK Reference Clock  
Primary Line Rate SYSCK Reference Clock and  
Internal Reference Clock Synthesizer  
The LIU requires an externally applied clock, SYSCK  
pins 3 and 35, for the clock and data recovery function  
and the jitter attenuation option. SYSCK must be a con-  
tinuously active (i.e., ungapped, unjittered, and  
unswitched) and an independent reference clock such  
as from an external system oscillator or system clock  
for proper operation. It must not be derived from any  
recovered line clock (i.e., from RLCK or any synthe-  
sized frequency of RLCK).  
In some applications, it is more desirable to provide a  
reference clock at the primary data rate. In such cases,  
the LIU can utilize an internal 16x clock synthesizer  
allowing the SYSCK pin to accept a primary data rate  
clock. The specifications for SYSCK using a primary  
rate reference clock are defined in Table 13.  
Table 13. SYSCK (1x, CKSEL = 0) Timing  
Specifications  
SYSCK may be supplied in one of two formats. The for-  
mat is selected for each channel by CKSEL pins 48  
and 133. For CKSEL = 1, a clock at 16x the primary  
line data rate clock (24.704 MHz for DS1 and  
32.768 MHz for CEPT) is applied to SYSCK. For  
CKSEL = 0, a primary line data rate clock (1.544 MHz  
for DS1 and 2.048 MHz for CEPT) is applied to  
SYSCK.  
Parameter  
Value  
Typ  
Unit  
Min  
Max  
Frequency  
DS1  
CEPT  
Range*,†  
1.544  
2.048  
MHz  
MHz  
–100  
40  
100  
60  
5
ppm  
%
The CKSEL pin has an internal pull-up resistor allowing  
the pin to be left open, i.e., a no connect, in applica-  
tions using a 16x reference clock and pulled down to  
ground for applications using a primary line data rate  
clock.  
Duty Cycle  
Rise and Fall Times  
(10%—90%)  
ns  
* When JABW0 = 1 and the jitter attenuator is used in the receive  
data path, the tolerance on SYSCK should be tightened to ±20 ppm  
in order to meet the jitter accommodation requirements of TBR12/  
13 as given in G.823 for line data rates of ±50 ppm.  
16x SYSCK Reference Clock  
† If SYSCK is used as the source for AIS (see LIU Transmitter Alarm  
Indication Signal Generator (XLAIS)), it must meet the nominal  
transmission specifications of 1.544 MHz ± 32 ppm for DS1 (T1), or  
2.048 MHz ± 50 ppm for CEPT (E1).  
The specifications for SYSCK using a 16x reference  
clock are defined in Table 12. The 16x reference clock  
is selected when CKSEL = 1.  
42  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
formed during this period. The device will be opera-  
SYSCK Reference Clock (continued)  
tional 2.7 ms after the deactivation of the hardware  
reset pin. Issuing an LIU software restart (LIU_REG2  
bit 5 (RESTART) = 1) does not impact the clock synthe-  
sizer circuit.  
The data rate reference clock and the internal clock  
synthesizer is selected when CKSEL = 0. In this mode,  
a valid and stable data rate reference clock must be  
applied to the SYSCK pin before and during the time a  
hardware reset is activated (RESET = 0). The reset  
must be held active for a minimum of two data rate  
clock periods to ensure proper resetting of the clock  
synthesizer circuit. Upon the deactivation of the reset  
pin (RESET = 1), the LIU will extend the reset condition  
internally for approximately 1/2(212 – 1) line clock peri-  
ods, or 1.3 ms for DS1 and 1 ms for CEPT after the  
hardware reset pin has become inactive allowing the  
clock synthesizer additional time to settle. No activity  
such as microprocessor read/write should be per-  
Line Interface Unit: Line Interface  
Networks  
The transmit and receive tip and ring connections pro-  
vide a matched interface to the line cable when used  
with a proper matching network. The diagram in Figure  
16 shows the appropriate external components to  
interface to the cable for a single transmit/receive chan-  
nel. The component values are summarized in Table  
14, based on the specific application.  
EQUIPMENT  
INTERFACE  
RECEIVE DATA  
TRANSFORMER  
RR  
RTIP  
CC  
ZEQ  
RP  
RS  
RR  
RRING  
1:N  
DEVICE  
(1 CHANNEL)  
TRANSMIT DATA  
RT  
TTIP  
RL  
CP  
RT  
TRING  
N:1  
5-3693(F).d  
Figure 16. Line Termination Circuitry  
Lucent Technologies Inc.  
43  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Unit: Line Interface Networks (continued)  
Table 14. Termination Components by Application1  
Symbol  
Name  
Cable Type  
Unit  
DS12  
Twisted  
Pair  
CEPT 75 3 Coaxial CEPT 120 5  
Twisted Pair  
Option 14 Option 25  
CC  
RP  
Center Tap Capacitor  
0.1  
200  
71.5  
113  
100  
±4  
0.1  
200  
28.7  
82.5  
75  
0.1  
200  
59  
0.1  
200  
174  
205  
120  
±4  
µF  
Receive Primary Impedance  
Receive Series Impedance  
Receive Secondary Impedance  
Equivalent Line Termination  
Tolerance  
RR  
RS  
102  
75  
ZEQ  
±4  
±4  
%
RT  
RL  
N
Transmit Series Impedance  
Transmit Load Termination6  
Transformer Turns Ratio  
0
26.1  
75  
15.4  
75  
26.1  
120  
1.36  
100  
1.14  
1.08  
1.36  
1. Resistor tolerances are ±1%. Transformer turns ratio tolerances are ±2%.  
2. Use Lucent 2795B transformer.  
3. For CEPT 75 applications, Option 1 is recommended over Option 2 for lower device power dissipation. Option 2 increases power dissipa-  
tion by 13 mW per channel when driving 50% ones data. Option 2 allows for the use of the same transformer as in CEPT 120 applications.  
4. Use Lucent 2795D transformer.  
5. Use Lucent 2795C transformer.  
6. A ±5% tolerance is allowed for the transmit load termination.  
The transmit and receive tip and ring connections should be provided with a matched and protected interface to the  
line (i.e., terminating impedance to match the characteristic impedance of the line cable and secondary line protec-  
tion). For the purpose of line protection and matching network design, the equivalent input impedance of the  
receiver and the equivalent output circuit of the transmitter can be assumed to be as shown in Figure 17.  
44  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit: Line Interface Networks (continued)  
20 kΩ  
3 pF  
2 pF  
RECEIVER  
INPUT*  
47 kΩ  
3 pF  
20 kΩ  
GRNDA  
A. Receiver Input Approximate Equivalent Circuit  
2 —2.5 Ω  
TRANSMITTER  
OUTPUT  
2 —2.5 Ω  
PULSE  
VOLTAGE SOURCE  
B. Transmitter Output Approximate Equivalent Circuit  
5-6232(F).ar.5  
* Approximately 0.3 V—2.0 V peak.  
Approximate pulse voltage source (peak).  
Mode  
DS1  
Peak  
Unit  
3.0  
V
CEPT:  
75 :  
Option 1  
Option 2  
120 Ω  
4.2  
3.4  
4.2  
V
V
V
Figure 17. T7630 Line Interface Unit Approximate Equivalent Analog I/O Circuits  
Lucent Technologies Inc.  
45  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
LIU-Framer Interface  
LIU-Framer Physical Interface  
The transmit framer-LIU interface for the T7630 consists of the TND, TPD, and TLCK pins. In normal operations,  
TND, TPD, and TLCK are directly connected to the transmit line interface and the TPD, TND, and TLCK pins are  
driven from the transmit framer. The receive framer-LIU interface for the T7630 consists of the RPD, RND_BPV,  
and RLCK internal signals. In normal operations, RND, RPD, and RLCK are directly sourced from the internal  
receive line interface unit. In the framer mode, FRAMER = 0, the RPD, RND, and RLCK pins are directly connected  
to the receive framer (the internal receive line interface unit is bypassed). Figure 18 illustrates the interfaces of the  
transmit and receive framer units.  
TRANSMIT  
HDLC  
FACILITY DATA  
LINK  
INTERFACE  
TLCK  
TPD TND  
TFDLCK  
TFDL  
TTIP  
RCHIDATA  
RCHIFS  
TLCK  
TND  
TPD  
RECEIVE  
CONCENTRATION  
HIGHWAY  
TRANSMIT LINE  
INTERFACE  
UNIT  
TRANSMIT  
FRAMER  
(XFRMR)  
INTERFACE  
(RCHI)  
TRING  
(XLIU)  
RCHICK  
PLLCK  
RECEIVE HDLC  
FACILITY DATA  
SYSTEM INTERFACE  
RLCK  
LINK INTERFACE  
LINE INTERFACE  
RFDLCK  
RFDL  
RND_BPV  
RPD  
0
1
FRM_RLCK  
TCHIDATA  
TCHICK  
TCHIFS  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
RECEIVE  
FRAMER  
(RFRMR)  
FRM_RND  
FRM_RPD  
LIU_RLCK  
LIU_RND/BPV  
LIU_RPD  
RTIP  
INTERFACE  
(XCHI)  
RECEIVE LINE  
INTERFACE  
UNIT  
(RLIU)  
RRING  
RFRMCK  
FRAMER  
5-4557(F).br.2  
Figure 18. Block Diagram of Framer Line Interface  
46  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
LIU-Framer Interface (continued)  
Figure 19 shows the timing requirements for the transmit and receive framer interfaces in the LIU-bypass mode.  
FRM_PR45  
BIT 0 (HFLF)  
t1  
HFLF = 0  
648 ns  
HFLF = 1  
162 ns  
t1-DS1  
PLLCK  
t1-CEPT  
488 ns  
122 ns  
t2f-r  
t2r-f: t2f-r: PLLCK TO TLCK DELAY = 50 ns  
t3-DS1 = 648 ns  
t2r-f  
t3  
t3-CEPT = 488 ns  
TLCK  
t4  
t4 = TLCK TO VALID TPD, TND = 30 ns  
TND, TPD  
t5-DS1 = 648 ns  
t5-CEPT = 488 ns  
t5  
RLCK  
RND, RPD  
RFRMCK  
t6 = RPD, RND SETUP TO RISING RLCK = 40 ns  
t7 = RPD, RND HOLD FROM RISING RLCK = 40 ns  
t6  
t7  
t8r-f: t8f-r: RLCK TO RFRMCK DELAY = 50 ns  
t8  
5-4558(F).cr.3  
Figure 19. Transmit Framer TLCK to TND, TPD and Receive Framer RND, RPD to RLCK Timing  
Dual Rail  
Interface Mode and Line Encoding  
Single Rail  
Dual-rail LIU-framer interface mode is selected by set-  
ting LIU_REG3 bit 3 (DUAL) = 1 and by selecting one  
of the dual-rail framer modes of FRM_PR8 bit 5—bit 7.  
The default mode for the LIU-framer interface is single-  
rail, register LIU_REG3 bit 3 (DUAL) = 0 and register  
FRM_PR8 bit 7 = 1, bit 6 = 1, and bit 5 = 0.  
In the dual-rail terminator mode (FRAMER = 1), the  
framer bipolar encoder and decoder are enabled. Sig-  
nals passed on the internal LIU-framer interface are  
data (LIU_RPD, LIU_RND, TPD, and TND), and clock  
(LIU_RLCK and TLCK). When bipolar violations are  
detected by the framer, the BPV counter increments by  
one on the rising edge of LIU_RLCK.  
In the single-rail terminator mode (FRAMER = 1), the  
LIU bipolar encoder and decoder may be enabled by  
setting register LIU_REG3 bit 2 (CODE) to 1. Signals  
passed on the internal LIU-framer interface are data  
(LIU_RPD and TPD), clock (LIU_RLCK and TLCK),  
and received bipolar violations (LIU_RND/BPV). When  
LIU_RND/BPV = 1, the BPV counter increments by one  
on the rising edge of LIU_RLCK.  
In the dual-rail framer mode (FRAMER = 0), external  
signals to and from the framer are data (RTIP_RPD, pin  
11/27; RRING_RND, pin 10/28; TPD, pin 44/138; and  
TND, pin 45/137) and clock (RLCK, pin 47/135 and  
TLCK, pin 46/136). When bipolar violations are  
detected by the framer, the BPV counter increments by  
one on the rising edge of RLCK.  
In the single-rail framer mode (FRAMER = 0), external  
signals to and from the framer are data (RTIP_RPD, pin  
11/27 and TPD, pin 44/138), clock (RLCK, pin 47/135  
and TLCK, pin 46/136), and received bipolar violations  
(RRING_RND, pin 10/28). When RRING_RND = 1, the  
BPV counter increments by one on the rising edge of  
RLCK. In this mode, TND (pin 45/137) is forced to the 0  
state.  
Lucent Technologies Inc.  
47  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
LIU-Framer Interface (continued)  
DS1: Alternate Mark Inversion (AMI)  
The default line code used for T1 is alternate mark inversion (AMI). The coding scheme represents a one with a  
pulse (mark) on the positive or negative rail and a zero with no pulse on either rail. This scheme is shown in  
Table 15.  
Table 15. AMI Encoding  
Input Bit Stream  
AMI Data  
1011  
–0+–  
0000  
0000  
0111  
0+–+  
1010  
–0+0  
The T1 ones density rule states that:  
In every 24 bits of information to be transmitted, there must be at least three pulses, and no more than 15 zeros  
may be transmitted consecutively [AT&T TR62411 (1988), ANSI T1.231 (1997)].  
Receive ones density is monitored by the receive line interface as per T1M1.3/93-005, ITU G.775, or TR-TSY-  
000009.  
The receive framer indicates excessive zeros upon detecting any zero string length greater than 15 contiguous  
zeros (no pulses on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar viola-  
tions.  
DS1: Zero Code Suppression (ZCS)  
Zero code suppression is a technique known as pulse stuffing in which the seventh bit of each time slot is stuffed  
with a one. The line format (shown in Table 16) limits the data rate of each time slot from 64 kbits/s to 56 kbits/s.  
The default ZCS format stuffs the seventh bit of those ALL-ZERO time slots programmed for robbed-bit signaling  
(as defined in the signaling control registers with the F and G bits).  
The receive framer indicates excessive zeros upon detecting any zero string length greater than fifteen contiguous  
zeros (no pulses on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar viola-  
tions.  
Table 16. DS1 ZCS Encoding  
Input Bit Stream  
00000000  
00000010  
00000010  
01010000  
01010010  
01010000  
00000000  
00000010  
00000000  
00000010  
00000010  
ZCS Data (Framer Mode)  
T7630 Default ZCS  
00000000  
(data time slot remains clear)  
DS1: Binary 8 Zero Code Suppression (B8ZS)  
Clear channel transmission can be accomplished using Binary 8 Zero Code Suppression (B8ZS). Eight consecu-  
tive zeros are replaced with the B8ZS code. This code consists of two bipolar violations in bit positions four and  
seven and valid bipolar marks in bit positions five and eight. The receiving end recognizes this code and replaces it  
with the original string of eight zeros.  
The receive framer indicates excessive zeros upon detecting a block of eight or more consecutive zeros (no pulses  
on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar violations.  
48  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
LIU-Framer Interface (continued)  
Table 17 shows the encoding of a string of zeros using B8ZS. B8ZS is recommended when ESF format is used. V  
represents a violation of the bipolar rule, and B represents an inserted pulse conforming to the AMI rule.  
Table 17. DS1 B8ZS Encoding  
Bit Positions  
Before B8ZS  
After B8ZS  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
V
B
V
B
B
B
V
B
V
B
CEPT: High-Density Bipolar of Order 3 (HDB3)  
The line code used for CEPT is described in ITU Rec. G.703 Section 6.1 as high-density bipolar of order 3 (HDB3).  
HDB3 uses a substitution code that acts on strings of four zeros. The substitute HDB3 codes are 000V and B00V,  
where V represents a violation of the bipolar rule and B represents an inserted pulse conforming to the AMI rule  
defined in ITU Rec. G.701, item 9004. The choice of the B00V or 000V is made so that the number of B pulses  
between consecutive V pulses is odd. In other words, successive V pulses are of alternate polarity so that no direct  
current (dc) component is introduced. The substitute codes follow each other if the string of zeros continues. The  
choice of the first substitute code is arbitrary. A line code error consists of two pulses of the same polarity that is not  
defined as one of the two substitute codes. Excessive zeros consist of any zero string length greater than four con-  
tiguous zeros. Both excessive zeros and coding violations are indicated as bipolar violations. An example is shown  
in Table 18.  
Table 18. ITU HDB3 Coding  
Input Bit Stream  
1011  
1011  
–0+–  
–0+–  
0000  
000V  
000–  
–000  
1-BPV  
01  
01  
0+  
0+  
0000  
000V  
000+  
+00+  
0000  
0000 0000  
HDB3-coded Data  
B00V B00V B00V  
HDB3-coded Levels  
HDB3 with 5 Double BPVs  
–00–  
0––  
+00+ –00–  
+00+ –00–  
3-BPV 5-BPV  
Frame Formats  
The supported North American T1 framing formats are superframe (D4, SLC-96, and digital data service-DDS)  
and extended superframe (ESF). The device can be programmed to support the ITU-CEPT-E1 basic format with  
and without CRC-4 multiframe formatting. This section describes these framing formats.  
T1 Framing Structures  
T1 is a digital transmission system which multiplexes twenty-four 64 kbits/s time slots (DS0) onto a serial link. The  
T1 system is the lowest level of hierarchy on the North American T-carrier system, as shown in Figure 20.  
Table 19. T-Carrier Hierarchy  
T Carrier  
DS0 Channels  
Bit Rate (Mbits/s)  
Digital Signal Level  
T1  
T1-C  
T2  
24  
48  
1.544  
3.152  
DS1  
DS1C  
DS2  
96  
6.312  
T3  
672  
4032  
44.736  
274.176  
DS3  
T4  
DS4  
Lucent Technologies Inc.  
49  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
Frame, Superframe, and Extended Superframe Definitions  
Each time slot (DS0) is an assembly of 8 bits sampled every 125 µs. The data rate is 64 kbits/s and the sample rate  
is 8 kHz. Time-division multiplexing 24 DS0 time slots together produces a 192-bit (24 DSzeros) frame. A framing  
bit is added to the beginning of each frame to allow for detection of frame boundaries and the transport of addi-  
tional maintenance information. This 193-bit frame, also referred to as a DS1 frame, is repeated every 125 µs to  
yield the 1.544 Mbits/s T1 data rate. DS1 frames are bundled together to form superframes or extended super-  
frames.  
24-FRAME EXTENDED  
FRAME 1  
FRAME 2  
FRAME 3  
FRAME 23  
FRAME 24  
SUPERFRAME  
ESF = 3.0 ms  
12-FRAME SUPERFRAME  
SF = 1.5 ms  
FRAME 1  
FRAME 2  
FRAME 11  
FRAME 12  
193-bit FRAME  
DS1 = 125 µs  
F BIT  
TIME SLOT 1  
TIME SLOT 2  
TIME SLOT 24  
8-bit TIME SLOT  
DS0 = 5.19 µs  
1
2
3
4
5
6
7
8
5-4559(F).br.1  
Figure 20. T1 Frame Structure  
Transparent Framing Format  
The transmit framer can be programmed to transparently transmit 193 bits of system data to the line. The system  
interface must be programmed such that the stuffed time slots are 1, 5, 9, 13, 17, 21, 25, and 29 (FRM_PR43 bits  
2—0 must be set to 000) and either transparent framing mode one or transparent framing mode two is enabled  
(FRM_PR26 bit 3 or bit 4 must be set to 1).  
In transparent mode one or mode two, the transmit framer extracts from the receive system data bit 8 of time slot 1  
and inserts this bit into the framing bit position of the transmit line data. The other 7 bits of the receive system time  
slot 1 are ignored by the transmit framer. The receive framer will extract the f-bit (or 193rd bit) of the receive line  
data and insert it into bit 7 of time slot one of the system data; the other bits of time slot 1 are set to 0.  
Frame integrity is maintained in both the transmit and receive framer sections.  
50  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT CHI FRAME  
(STUFF TIME SLOT)  
0
0
0
0
0
0
0
F BIT  
TRAMSMIT FRAMER’S  
193-bit FRAME  
F BIT TIME SLOT 1 TIME SLOT 2  
TIME SLOT 24  
DS1 = 125 µs  
5-5989(F).ar.1  
Figure 21. T1 Transparent Frame Structure  
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than  
bipolar violations and unframed AIS monitoring, there is no processing of the receive line data. The receive framer  
will insert the 193rd bit of the receive line data into bit 8 of time slot 1 of the transmit system data.  
In transparent framing mode 2, the receive framer functions normally on receive line data. All normal monitoring of  
receive line data is performed and data is passed to the transmit CHI as programmed. The receive framer will insert  
the extracted framing bit of the receive line data into bit 8 of time slot 1 of the transmit system data. The remaining  
bits in time slot 1 are set to zero.  
Lucent Technologies Inc.  
51  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
D4 Frame Format  
D4 superframe format consists of 12 DS1 frames. Table 20 shows the structure of the D4 superframe.  
Table 20. D4 Superframe Format  
Frame  
Framing Bits  
Terminal  
Bit Used in Each Time Slot  
Signaling Options  
Number1  
Bit  
Signal  
Traffic  
Remote Signaling None4 2-State 4-State  
Number2 Frame FT Frame FS (All Channels) Alarm3  
1
2
0
1
0
0
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
2
2
2
2
2
2
2
2
2
2
2
2
8
A
A
193  
3
386  
0
4
579  
1
5
65  
772  
1
965  
0
7
1158  
1351  
1544  
1737  
1930  
2123  
1
8
A
B
8
1
9
1
10  
11  
125  
0
0
1. Frame 1 is transmitted first.  
2. Following ANSI T1.403, the bits are numbered 0—2315. Bit 0 is transmitted first. Bits in each DS0 time slot are numbered 1 through 8, and bit  
1 of each DS0 is transmitted first.  
3. The remote alarm forces bit 2 of each time slot to a 0-state when enabled. The Japanese remote alarm forces framing bit 12 (bit number  
2123) to a 1-state when enabled.  
4. Signaling option none uses bit 8 for traffic data.  
5. Frames 6 and 12 contain the robbed-bit signaling information in bit 8 of each voice channel, when enabled.  
The receive framer uses both the FT and FS framing bits during its frame alignment procedure.  
Digital Data Service (DDS) Frame Format  
The superframe format for DDS is the same as that given for D4. DDS is intended to be used for data-only traffic,  
and as such, the system should ensure that the framer is in the nonsignaling mode. DDS uses time slot 24 (FAS  
channel) to transmit the remote frame alarm and data link bits. The format for time slot 24 is shown in Table 21. The  
facility data link timing is shown in Figure 22 below.  
Table 21. DDS Channel-24 Format  
Time Slot 24 = 10111YD0  
Y = (bit 6)  
D = (bit 7)  
Remote frame alarm: 1 = no alarm state; 0 = alarm state  
Data link bits (8 kbits/s)  
52  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
t8  
t8: TFDLCK CYCLE = 125 µs (DDS)  
250 µs (ALL OTHER  
MODES)  
TFDLCK  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 125 µs (DDS)  
250 µs (ALL OTHER  
MODES)  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).cr.1  
Figure 22. T7630 Facility Data Link Access Timing of the Transmit and Receive Framer Sections  
SLC-96 Frame Format  
SLC-96 superframe format consists of 12 DS1 frames similar to D4. The FT pattern is exactly the same as D4. The  
Fs pattern uses that same structure as D4 but also incorporates a 24-bit data link word as shown below.  
SLC-96 24-bit DATA LINK WORD  
Fs =  
. . . 000111000111D1DDDDDDDDDDDDDDDDDDDDDDD24000111000111DDD . . .  
FRAME FRAME FRAME FRAME FRAME FRAME  
FRAME FRAME FRAME FRAME  
N –1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6 N + 7  
N + 8  
SLC-96 36-FRAME D-bit SUPERFRAME INTERVAL  
(72 DS1 FRAMES)  
5-6421(F)r.1  
Figure 23. Fs Pattern SLC-96 Superframe Format  
Lucent Technologies Inc.  
53  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
External TFDL Source. Data may be inserted and extracted from the SLC-96 data link from either the external  
facility data link (TFDL) ports or the SLC-96 data stack. Source selection is controlled by FRM_PR21 bit 6 and  
FRM_PR29 bit 5—bit 7.  
The transmit framer synchronizes on TFDL = 000111000111 . . . and forces a superframe boundary based on this  
pattern. When sourcing an external bit stream, it is the system’s responsibility to ensure that TFDL data contain the  
pattern of 000111000111 . . . . The D pattern sequence is shown in Table 22. Table 23 shows the encoding for the  
line switch field.  
Table 22. SLC-96 Data Link Block Format  
Data Link Block  
Bit Definition  
Bit Value  
D1 (leftmost bit)  
C1—concentrator bit  
C2—concentrator bit  
C3—concentrator bit  
C4—concentrator bit  
C5—concentrator bit  
C6—concentrator bit  
C7—concentrator bit  
C8—concentrator bit  
C9—concentrator bit  
C10—concentrator bit  
C11—concentrator bit  
Spoiler bit 1  
0 or 1  
D2  
0 or 1  
D3  
0 or 1  
D4  
0 or 1  
D5  
0 or 1  
D6  
D7  
0 or 1  
0 or 1  
D8  
0 or 1  
D9  
0 or 1  
D10  
0 or 1  
D11  
0 or 1  
D12  
0
D13  
Spoiler bit 2  
1
D14  
Spoiler bit 3  
0
0 or 1  
D15  
M1—maintenance bit  
M2—maintenance bit  
M3—maintenance bit  
A1—alarm bit  
D16  
0 or 1  
D17  
0 or 1  
D18  
0 or 1  
D19  
A2—alarm bit  
0 or 1  
D20  
S1—line-switch bit  
S2—line-switch bit  
S3—line-switch bit  
S4—line-switch bit  
Spoiler bit 4  
Defined in Table 23  
Defined in Table 23  
Defined in Table 23  
Defined in Table 23  
1
D21  
D22  
D23  
D24 (rightmost bit)  
54  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
Table 23. SLC-96 Line Switch Message Codes  
S1 S2 S3 S4  
Code Definition  
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
1
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
Idle  
Switch line A receive  
Switch line B transmit  
Switch line C transmit  
Switch line D transmit  
Switch line B transmit and receive  
Switch line B transmit and receive  
Switch line B transmit and receive  
Internal SLC-96 Stack Source. Optionally, a SLC-96 FDL stack may be used to insert and correspondingly extract  
the FDL information in the SLC-96 frame format.  
The transmit SLC-96 FDL bits are sourced from the transmit framer SLC-96 FDL stack. The SLC-96 FDL stack  
(see FRM_PR31—FRM_PR35) consists of five 8-bit registers that contain the SLC-96 FS and D-bit information as  
shown in Table 24. The transmit stack data is transmitted to the line when the stack enable mode is active in the  
parameter registers FRM_PR21 bit 6 = 1 and FRM_PR29 bit 5—bit 7 = x10 (binary).  
The receive SLC-96 stack data is received when the receive framer is in the superframe alignment state. In the  
SLC-96 mode, while in the loss of superframe alignment (LSFA) state, updating of the receive framer SLC-96 stack  
is halted and neither the receive stack interrupt nor receive stack flag are asserted.  
Table 24. Transmit and Receive SLC-96 Stack Structure  
Register  
Number  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(LSB)  
1 (LSR)  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
2
3
4
5
0
1
C8  
C1  
C9  
M3  
C2  
C10  
A1  
C3  
C11  
A2  
C4  
C5  
C6  
C7  
M1  
S4  
SPB1 = 0 SPB2 = 1 SPB3 = 0  
S1 S2 S3  
M2  
SPB4 = 1  
Bit 5—bit 0 of the first 2 bytes of the SLC-96 FDL stack  
in Table 24 are transmitted to the line as the SLC-96 FS  
sequence. Bit 7 of the third stack register is transmitted  
as the C1 bit of the SLC-96 D sequence. The spoiler  
bits (SPB1, SPB2, SPB3, and SPB4) are taken directly  
from the transmit stack. The protocol for accessing the  
SLC-96 stack information for the transmit and receive  
framer is described below. The transmit SLC-96 stack  
must be written with valid data when transmitting stack  
data.  
the stack is retransmitted to the line. The start of the  
SLC-96 36-frame FS interval of the transmit framer is a  
function of the first 2 bytes of the SLC-96 transmit stack  
registers. These bytes must be programmed as shown  
in Table 24. Programming any other state into these  
two registers disables the proper transmission of the  
SLC-96 D bits. Once programmed correctly, the trans-  
mit SLC-96 D-bit stack is transmitted synchronous to  
the transmit SLC-96 superframe structure.  
On the receive side, the device indicates that it has  
received data in the receive FDL stack (registers  
FRM_SR54—FRM_SR58) by setting bit 4 in register  
FRM_SR4 (SLC-96 receive FDL stack ready) high. The  
system then has about 9 ms to read the content of the  
stack before it is updated again (old data lost). By read-  
ing bit 4 in register FRM_SR4, the system clears this  
bit so that it can indicate the next time the receive stack  
is ready. As explained above, the SLC-96 receive stack  
is not updated when superframe alignment is lost.  
The device indicates that it is ready for an update of its  
transmit stack by setting register FRM_SR4 bit 5 (SLC-  
96 transmit FDL stack ready) high. At this time, the sys-  
tem has about 9 ms to update the stack. Data written to  
the stack during this interval will be transmitted during  
the next SLC-96 superframe D-bit interval. By reading  
bit 5 in register SR4, the system clears this bit so that it  
can indicate the next time the transmit stack is ready. If  
the transmit stack is not updated, then the content of  
55  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
Extended Superframe Format  
The extended superframe format consists of 24 DS1 frames. The F bits are used for frame alignment, superframe  
alignment, error checking, and facility data link transport. Table 25 shows the ESF frame format.  
Table 25. Extended Superframe (ESF) Structure  
Frame  
Bit Use in Each Time  
Slot  
Signaling Option2  
4-State 16-State  
Frame Bit  
Number1  
Bit  
FE  
DL  
CRC-  
64  
Traffic  
Signaling None 2-State  
5
Number3  
1
2
0
0
D
D
C1  
C2  
C3  
C4  
C5  
C6  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
8
A
A
A
193  
3
386  
4
579  
D
5
66  
772  
0
965  
D
7
1158  
1351  
1544  
1737  
1930  
2123  
2316  
2509  
2702  
2895  
3088  
3281  
3474  
3667  
3860  
4053  
4246  
4439  
8
A
B
B
8
D
9
1
10  
11  
126  
13  
14  
15  
16  
17  
186  
19  
20  
21  
22  
23  
246  
D
D
0
8
A
A
C
D
D
1
D
8
A
B
D
D
1
D
1. Frame 1 is transmitted first.  
2. The remote alarm is a repeated 1111111100000000 pattern in the DL when enabled.  
3. Following ANSI T1.403, the bits are numbered 0—4361. Bit 0 is transmitted first. Bits in each DS0 time slot are numbered 1 through 8, and bit  
1 of each DS0 is transmitted first.  
4. The C1 to C6 bits are the cyclic redundancy check-6 (CRC-6) checksum bits calculated over the previous extended superframe.  
5. Signaling option none uses bit 8 for traffic data.  
6. Frames 6, 12, 18, and 24 contain the robbed-bit signaling information in bit 8 of each voice channel, when enabled.  
The ESF format allows for in-service error detection and diagnostics on T1 circuits. ESF format consist of 24 fram-  
ing bits: six for framing synchronization (2 kbits/s); six for error detection (2 kbits/s); and 12 for in-service monitoring  
and diagnostics (4 kbits/s).  
56  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
Cyclic redundancy checking is performed over the entire ESF data payload (4,608 data bits, with all 24 framing bits  
(FE, DL, CRC-6) set to one during calculations). The CRC-6 bits transmitted in ESF will be determined as follows:  
The check bits, c1 through c6, contained in ESF(n + 1) will always be those associated with the contents of  
ESF(n), the immediately preceding ESF. When there is no ESF immediately preceding, the check bits may be  
assigned any value.  
For the purpose of CRC-6 calculation only, every F bit in ESF(n) is set to 1. ESF(n) is altered in no other way.  
The resulting 4632 bits of ESF(n) are used, in order of occurrence, to construct a polynomial in x such that the  
first bit of ESF(n) is the coefficient of the term x4631 and the last bit of ESF(n) is the coefficient of the term x0.  
The polynomial is multiplied by the factor x6, and the result is divided, modulo 2, by the generator polynomial x6  
+ x + 1. The coefficients of the remainder polynomial are used, in order of occurrence, as the ordered set of  
check bits, c1 through c6, that are transmitted in ESF(n + 1). The ordering is such that the coefficient of the term  
x5 in the remainder polynomial is check bit c1 and the coefficient of the term x0 in the remainder polynomial is  
check bit c6.  
The ESF remote frame alarm consists of a repeated eight ones followed by eight zeros transmitted in the data link  
position of the framing bits.  
T1 Loss of Frame Alignment (LFA)  
Loss of frame alignment condition for the superframe or the extended superframe formats is caused by the inability  
of the receive framer to maintain the proper sequence of frame bits. The number of errored framing bits required to  
detect a loss of frame alignment is given is Table 26.  
Table 26. T1 Loss of Frame Alignment Criteria  
Format  
Number of Errored Framing Bits That Will Cause a Loss of Frame Alignment Condition  
D4  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if PRM_PR10 bit 2 = 0.  
SLC-96  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if FRM_PR10 bit 2 = 0.  
DDS: Frame  
ESF  
3 errored frame bits (FT or FS) or channel 24 FAS pattern out of 12 consecutive frame bits.  
2 errored FE bits out of 4 consecutive FE bits or optionally 320 or more CRC-6 errored check-  
sums within a one second interval if loss of frame alignment due to excessive CRC-6 errors is  
enabled in FRM_PR9.  
The receive framer indicates the loss of frame and superframe conditions by setting the LFA and LSFA bits  
(FRM_SR1 bit 0 and bit 1), respectively, in the status registers for the duration of the conditions. The local system  
may give indication of its LFA state to the remote end by transmitting a remote frame alarm (RFA). In addition, in  
the LFA state, the system may transmit an alarm indication signal (AIS) to the system interface.  
Lucent Technologies Inc.  
57  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
T1 Frame Recovery Alignment Algorithms  
When in a loss of frame alignment state, the receive framer searches for a new frame alignment and forces its inter-  
nal circuitry to this new alignment. The receive framer’s synchronization circuit inhibits realignment in T1 framing  
formats when repetitive data patterns emulate the T1 frame alignment patterns. T1 frame synchronization will not  
occur until all frame sequence emulating patterns disappear and only one valid pattern exists. The loss of frame  
alignment state will always force a loss of superframe alignment state. Superframe alignment is established only  
after frame alignment has been determined in the D4 and SLC-96 frame format. Table 27 gives the requirements  
for establishing T1 frame and superframe alignment.  
Table 27. T1 Frame Alignment Procedures  
Frame Format  
D4: Frame  
Alignment Procedure  
Using the FT frame position as the starting point, frame alignment is established  
when 24 consecutive FT and FS frame bits, excluding the twelfth FS bit, (48 total  
frames) are received error-free. Once frame alignment is established, then super-  
frame alignment is determined.  
D4: Superframe  
SLC-96: Frame  
After frame alignment is determined, two valid superframe bit sequences using the  
FS bits must be received error-free to establish superframe alignment.  
Using the FT frame position as the starting point, frame alignment is established  
when 24 consecutive FT frame bits (48 total frames) are received error-free. Once  
frame alignment is established, then superframe alignment is determined.  
SLC-96: Superframe  
DDS: Frame  
After frame alignment is determined, superframe alignment is established on the  
first valid superframe bit sequence 000111000111.  
Using the FT frame position as the starting point, frame alignment is established  
when six consecutive FT/FS frame bits and the DDS FAS in time slot 24 are received  
error-free. In the DDS format, there is no search for a superframe structure.  
ESF  
Frame and superframe alignment is established simultaneously using the FE fram-  
ing bit. Alignment is established when 24 consecutive FE bits are received error-  
free. Once frame/superframe alignment is established, the CRC-6 receive monitor is  
enabled.  
58  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
T1 Robbed-Bit Signaling  
To enable signaling, register FRM_PR44 bit 0 (TSIG) must be set to 0.  
Robbed-bit signaling, used in either ESF or SF framing formats, robs the eighth bit of the voice channels of every  
sixth frame. The signaling bits are designated A, B, C, and D, depending on the signaling format used. The robbed-  
bit signaling format used is defined by the state of the F and G bits in the signaling registers (see DS1: Robbed-Bit  
Signaling). The received channel robbed-bit signaling format is defined by the corresponding transmit signaling F  
and G bits. Table 28 shows the state of the transmitted signaling bits as a function of the F and G bits.  
Table 28. Robbed-Bit Signaling Options  
G
F
Robbed-Bit Signaling Format  
Frame  
6
12  
18  
24  
0
0
ESF: 16-State  
A
B
C
D
SLC*: 9-State, 16-State  
0
1
1
1
0
1
4-State  
Data channel (no signaling)  
2-State  
A
A
B
A
B
A
PAYLOAD DATA  
A
A
* See register FRM_PR43 bit 3 and bit 4.  
The robbed-bit signaling format for each of the 24 T1 transmit channels is programmed on a per-channel basis by  
setting the F and G bits in the transmit signaling direction.  
SLC-96 9-State Signaling  
SLC-96 9-state signaling state is enabled by setting both the F and G bits in the signaling registers to the 0 state,  
setting the SLC-96 signaling control register FRM_PR43 bit 3 to 1, and setting register FRM_PR44 bit 0 to 0. Table  
29 shows the state of the transmitted signaling bits to the line as a function of the A, B, C and D bit settings in the  
transmit signaling registers. In Table 29 below, X indicates either a 1 or a 0 state, and T indicates a toggle, transition  
from either 0 to 1 or 1 to 0, of the transmitted signaling bit.  
In the line receive direction, this signaling mode functions identically to the preceding transmit path description.  
Table 29. SLC-96 9-State Signaling Format  
Transmit Signaling Register Settings  
Transmit to the Line Signal Bits  
SLC-96 Signaling States  
A
B
C
D
A = f(A,C)  
B = f(B,D)  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
X
X
X
0
1
X
0
1
X
0
1
X
0
0
0
T
T
T
1
1
1
0
T
1
0
T
1
0
T
1
Lucent Technologies Inc.  
59  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
16-State Signaling  
The default signaling mode while in SLC-96 framing is 16-state signaling. SLC-96 16-state signaling is enabled by  
setting both the F and G bits in the signaling registers to the 0 state, setting the SLC-96 signaling control register  
FRM_PR43 bit 3 and bit 4 to 0, and setting register FRM_PR44 bit 0 to 0. Table 30 shows the state of the transmit-  
ted signaling bits to the line as a function of the A, B, C, and D bit settings in the transmit signaling registers. In  
Table 30 below, under Transmit to the Line Signal Bits, A and B are transmitted into one SLC-96 12-frame signaling  
superframe, while A’ and B’ are transmitted into the next successive SLC-96 12-frame signaling superframe.  
In the line receive direction, this signaling mode functions identically to the preceding transmit path description.  
The signaling mapping of this 16-state signaling mode is equivalent to the mapping of the SLC-96 9-state signaling  
mode.  
Table 30. 16-State Signaling Format  
Transmit Signaling Register Settings  
Transmit to the Line Signal Bits  
SLC-96 Signaling States  
A
B
C
D
A
B
A’  
B’  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
State 12  
State 13  
State 14  
State 15  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
60  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
CEPT 2.048 Basic Frame, CRC-4 Time Slot 0, and Signaling Time Slot 16 Multiframe Struc-  
tures  
As defined in ITU Rec. G.704, the CEPT 2.048 frame, CRC-4 multiframe, and channel associated signaling multi-  
frame structures are illustrated in Figure 24.  
CRC-4 MULTIFRAME IN  
0
0
0
0
X0 YM X1 X2  
FRAME 0 TIME  
SLOT 16  
TIME SLOT 0  
A1 B1 C1 D1 A16 B16 C16 D16  
A2 B2 C2 D2 A17 B17 C17 D17  
A3 B3 C3 D3 A18 B18 C18 D18  
A4 B4 C4 D4 A19 B19 C19 D19  
A5 B5 C5 D5 A20 B20 C20 D20  
A6 B6 C6 D6 A21 B21 C21 D21  
A7 B7 C7 D7 A22 B22 C22 D22  
A8 B8 C8 D8 A23 B23 C23 D23  
A9 B9 C9 D9 A24 B24 C24 D24  
A10 B10 C10 D10 A25 B25 C25 D25  
A11 B11 C11 D11 A26 B26 C26 D26  
A12 B12 C12 D12 A27 B27 C27 D27  
A13 B13 C13 D13 A28 B28 C28 D28  
A14 B14 C14 D14 A29 B29 C29 D29  
A15 B15 C15 D15 A30 B30 C30 D30  
MULTIFRAME  
FRAME 0 OF CRC-4  
MULTIFRAME  
C1 0  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C2 0 TIME SLOT 1  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C3 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C4 0 TIME SLOT 1  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C1 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C2 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C3 0 TIME SLOT 1  
E 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C4 0 TIME SLOT 1  
E 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
0
1
1
0
1
1
TIME SLOT 1  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
FRAME 15 OF CRC-4  
MULTIFRAME  
FRAME 15  
TIME SLOT 16  
MULTIFRAME  
CHANNEL ASSOCIATED  
SIGNALING MULTIFRAME  
IN TIME SLOT 16  
CHANNEL NUMBERS REFER TO TELEPHONE  
CHANNEL NUMBERS. TIME SLOTS 1 TO 15 AND  
17 TO 31 ARE ASSIGNED TO TELEPHONE  
CHANNELS NUMBERED FROM 1 TO 30.  
FAS FRAME  
Si 0  
0
1
1
0
1
1
TIME SLOT 1  
TIME SLOT 1  
TIME SLOT 31  
PRIMARY BASIC FRAME  
STRUCTURE  
NOT FAS FRAME  
Si 1 A SA4 SA5 SA6 SA7 SA8  
TIME SLOT 31  
256-bit FRAME = 125 µs  
TIME SLOT 0  
TIME SLOT 1  
TIME SLOT 16  
TIME SLOT 31  
1
2
3
4
5
6
7 8  
8-bit TIME SLOT = 3.90625 µs  
5-4548(F).cr.1  
Figure 24. ITU 2.048 Basic Frame, CRC-4 Multiframe, and Channel Associated Signaling Multiframe  
Structures  
Lucent Technologies Inc.  
61  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
CEPT 2.048 Basic Frame Structure  
The ITU Rec. G.704 Section 2.3.1 defined frame length is 256 bits, numbered 1 to 256. The frame repetition rate is  
8 kHz. The allocation of bits numbered 1 to 8 of the frame is shown in Table 31.  
Table 31. Allocation of Bits 1 to 8 of the FAS Frame and the NOT FAS Frame  
Basic Frames  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 8  
(MSB)  
(LSB)  
Frame Alignment Signal (FAS)  
Si  
Si  
0
1
0
1
1
0
1
1
Not Frame Alignment Signal (NOT FAS)  
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
The function of each bit in Table 31 is described below:  
algorithm described in TU Rec. G.706 Annex C. Bits  
Sa4—Sa8, where these are not used, should be set  
to one on links crossing an international border.  
The Si bits are reserved for international use. A spe-  
cific use for these bits is described in Table 32. If no  
use is realized, these bits should be fixed at one on  
digital paths crossing an international border.  
MSB = most significant bit and is transmitted first.  
LSB = least significant bit and is transmitted last.  
Bit 2 of the NOT FAS frames is fixed to one to assist  
in avoiding simulations of the frame alignment signal.  
Transparent Framing Format  
Bit 3 of the NOT FAS is the remote alarm indication  
(A bit). In undisturbed operation, this bit is set to 0; in  
alarm condition, set to one.  
The transmit framer can be programmed to transpar-  
ently transmit 256 bits of system data to the line. The  
transmit framer must be programmed to either trans-  
parent framing mode 1 or transparent framing mode 2  
(see Framer Reset and Transparent Mode Control Reg-  
ister (FRM_PR26) on page 174).  
Bits 4—8 of the NOT FAS (Sa4—Sa8) may be rec-  
ommended by ITU for use in specific point-to-point  
applications. Bit Sa4 may be used as a message-  
based data link for operations, maintenance, and  
performance monitoring. If the data link is accessed  
at intermediate points with consequent alterations to  
the Sa4 bit, the CRC-4 bits must be updated to retain  
the correct end-to-end path termination functions  
associated with the CRC-4 procedure. The receive  
framer does not implement the CRC-4 modifying  
In transparent mode 1 or mode 2, the transmit framer  
transmits all 256 bits of the RCHI payload unmodified  
to the line. Time slot 1 of the RCHI, determined by the  
RCHIFS signal, is inserted into the FAS/NOTFAS time  
slot of the transmit line interface.  
Frame integrity is maintained in both the transmit and  
receive framer sections.  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT CHI FRAME  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT LINE FRAME  
5-5988(F)  
Figure 25. CEPT Transparent Frame Structure  
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than bipo-  
lar violations and unframed AIS monitoring, there is no processing of the receive line data. The entire receive line  
payload is transmitted unmodified to the CHI.  
In transparent framing mode 2, the receive framer functions normally on the receive line data. All normal monitoring  
of receive line data is performed and data is transmitted to the CHI as programmed.  
62  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
If CRC-4 is enabled, loss of CRC-4 multiframe align-  
ment is forced.  
Frame Formats (continued)  
CEPT Loss of Basic Frame Alignment (LFA)  
If CRC-4 is enabled, the monitoring and processing  
of CRC-4 checksum errors is halted.  
Frame alignment is assumed to be lost when:  
If CRC-4 is enabled, all monitoring and processing of  
As described in ITU Rec. G.706 Section 4.1.1, three  
consecutive incorrect frame alignment signals have  
been received.  
received E-bit information is halted.  
If CRC-4 is enabled, the receive continuous E-bit  
alarm is deactivated.  
So as to limit the effect of spurious frame alignment  
signals, when bit 2 in time slot 0 in NOT FAS frames  
have been received with an error on three consecu-  
tive occasions.  
If CRC-4 is enabled, optionally, E bit = 0 is transmit-  
ted to the line for the duration of loss of CRC-4 multi-  
frame alignment if register FRM_PR28 bit 4 is set to  
1.  
Optionally, as described in ITU Rec. G.706 Section  
4.3.2, by exceeding a count of >914 errored CRC-4  
blocks out of 1000, with the understanding that a  
count of 915 errored CRC blocks indicates false  
frame alignment.  
If time slot 16 signaling is enabled, loss of the signal-  
ing multiframe alignment is forced.  
If time slot 16 signaling is enabled, updating of the  
signaling data is halted.  
On demand via the control registers.  
In the LFA state:  
CEPT Loss of Frame Alignment Recovery  
Algorithm  
No additional FAS or NOT FAS errors are processed.  
The received remote frame alarm (received A bit) is  
deactivated.  
The receive framer begins the search for basic frame  
alignment one bit position beyond the position where  
the LFA state was detected. As defined in ITU Rec.  
G.706.4.1.2, frame alignment will be assumed to have  
been recovered when the following sequence is  
detected:  
All NOT-FAS bit (Si bit, A bit, and Sa4 to Sa8 bits)  
processing is halted.  
Receive Sa6 status bits are set to 0.  
Receive Sa6 code monitoring and counting is halted.  
For the first time, the presence of the correct frame  
alignment signal in frame n.  
All receive Sa stack data updates are halted. The  
receive Sa stack ready, register FRM_SR4 bit 6 and  
bit 7, is set to 0. If enabled, the receive Sa stack  
interrupt bit is set to 0.  
The absence of the frame alignment signal in the fol-  
lowing frame detected by verifying that bit 2 of the  
basic frame is a 1 in frame n + 1.  
Receive data link (RFDL) is set to 1 and RFDCLK  
maintains previous alignment.  
For the second time, the presence of the correct  
frame alignment in the next frame, n + 2.  
Optionally, the remote alarm indication (A = 1) may  
be automatically transmitted to the line if register  
FRM_PR27 bit 0 is set to 1.  
Failure to meet the second or third bullet above will ini-  
tiate a new basic frame search in frame n + 2.  
Optionally, the alarm indication signal (AIS) may be  
automatically transmitted to the system if register  
FRM_PR19 bit 0 is set to 1.  
Lucent Technologies Inc.  
63  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
CEPT Time Slot 0 CRC-4 Multiframe Structure  
The CRC-4 multiframe is in bit 1 of each NOT FAS frame. As described in ITU Rec. G.704 Section 2.3.3.1, where  
there is a need to provide additional protection against simulation of the frame alignment signal, and/or where there  
is a need for an enhanced error monitoring capability, then bit 1 of each frame may be used for a cyclic redundancy  
check-4 (CRC-4) procedure as detailed below. The allocation of bits 1—8 of time slot 0 of every frame is shown in  
Table 32 for the complete CRC-4 multiframe.  
Table 32. ITU CRC-4 Multiframe Structure  
Multiframe  
Submultiframe  
(SMF)  
Frame  
Number  
Bits  
1
2
3
4
5
6
7
8
I
0
1
2
3
4
5
6
7
C1  
0
0
1
0
1
0
1
0
1
0
A
0
1
Sa4  
1
1
0
Sa6  
0
1
Sa7  
1
1
Sa8  
1
Sa5  
1
C2  
0
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C4  
0
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
II  
8
C1  
1
0
1
0
1
0
1
0
1
0
A
0
1
Sa4  
1
1
Sa5  
1
0
Sa6  
0
1
Sa7  
1
1
Sa8  
1
9
10  
11  
12  
13  
14  
15  
C2  
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
E
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C4  
E
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
Notes:  
C1 to C4 = cyclic redundancy check-4 (CRC-4) bits.  
E = CRC-4 error indication bits.  
Sa4 to Sa8 = spare bits.  
A = remote frame alarm (RFA) bit (active-high); referred to as the A bit.  
The CRC-4 multiframe consists of 16 frames numbered 0 to 15 and is divided into two eight-frame submultiframes  
(SMF), designated SMF-I and SMF-II that signifies their respective order of occurrence within the CRC-4 multi-  
frame structure. The SMF is the CRC-4 block size (2048 bits). In those frames containing the frame alignment sig-  
nal (FAS), bit 1 is used to transmit the CRC-4 bits. There are four CRC-4 bits, designated C1, C2, C3, and C4 in  
each SMF. In those frames not containing the frame alignment signal (NOT FAS), bit 1 is used to transmit the 6-bit  
CRC-4 multiframe alignment signal and two CRC-4 error indication bits (E). The multiframe alignment signal is  
defined in ITU Rec. G.704 Section 2.3.3.4, as 001011. Transmitted E bits should be set to 0 until both basic frame  
and CRC-4 multiframe alignment are established. Thereafter, the E bits should be used to indicate received errored  
submultiframes by setting the binary state of one E bit from 1 to 0 for each errored submultiframe. The received E  
bits will always be taken into account, by the receive E-bit processor*, even when the SMF that contains them is  
found to be errored. In the case where there exists equipment that does not use the E bits, the state of the E bits  
should be set to a binary 1 state.  
* The receive E-bit processor will halt the monitoring of the received E bit during the loss of CRC-4 multiframe alignment.  
64  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
CEPT Loss of CRC-4 Multiframe Alignment  
(LTS0MFA)  
Frame Formats (continued)  
The CRC-4 word, located in submultiframe N, is the  
remainder after multiplication by x4 and then division  
(modulo 2) by the generator polynomial x4 + x + 1, of  
the polynomial representation of the submultiframe N –  
1. Representing the contents of the submultiframe  
check block as a polynomial, the first bit in the block,  
i.e., frame 0, bit 1 or frame 8, bit 1, is taken as being the  
most significant bit and the least significant bit in the  
check block is frame 7 or frame 15, bit 256. Similarly,  
C1 is defined to be the most significant bit of the  
remainder and C4 the least significant bit of the remain-  
der. The encoding procedure, as described in ITU Rec.  
G.704 Section 2.3.3.5.2, follows:  
Loss of basic frame alignment forces the receive framer  
into a loss of CRC-4 multiframe alignment state. This  
state is reported by way of the status registers  
FRM_SR1 bit 2. Once basic frame alignment is  
achieved, a new search for CRC-4 multiframe align-  
ment is initiated. During a loss of CRC-4 multiframe  
alignment state:  
The CRC-4 error counter is halted.  
The CRC-4 error monitoring circuit for errored sec-  
onds and severely errored seconds is halted.  
The received E-bit counter is halted.  
The CRC-4 bits in the SMF are replaced by binary  
zeros.  
The received E-bit monitoring circuit for errored sec-  
onds and severely errored seconds at the remote  
end interface is halted.  
The SMF is then acted upon the multiplication/divi-  
sion process referred to above.  
Receive continuous E-bit monitoring is halted.  
The remainder resulting from the multiplication/divi-  
sion process is stored, ready for insertion into the  
respective CRC-4 locations of the next SMF.  
All receive Sa6 code monitoring and counting func-  
tions are halted.  
The updating of the receive Sa stack is halted and  
the receive Sa stack interrupt is deactivated.  
The decoding procedure, as described in ITU Rec.  
G.704 Section 2.3.3.5.3, follows:  
Optionally, A = 1 may be automatically transmitted to  
the line if register FRM_PR27 bit 2 is set to 1.  
A received SMF is acted upon by the multiplication/  
division process referred to above, after having its  
CRC-4 bits extracted and replaced by zeros.  
Optionally, E = 0 may be automatically transmitted to  
the line if register FRM_PR28 bit 4 is set to 1.  
The remainder resulting from this division process is  
then stored and subsequently compared on a bit-by-  
bit basis with the CRC bits received in the next SMF.  
Optionally, if LTS0MFA monitoring in the perfor-  
mance counters is enabled, by setting registers  
FRM_PR14 through FRM_PR17 bit 1 to 1, then  
these counts are incremented once per second for  
the duration of the LTS0MFA state.  
If the remainder calculated in the decoder exactly  
corresponds to the CRC-4 bits received in the next  
SMF, it is assumed that the checked SMF is error-  
free.  
Lucent Technologies Inc.  
65  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
CRC-4 Multiframe Alignment Algorithm with  
100 ms Timer  
Frame Formats (continued)  
CEPT Loss of CRC-4 Multiframe Alignment  
Recovery Algorithms  
The CRC-4 multiframe alignment with 100 ms timer  
mode is enabled by setting FRM_PR9 to 0XXXX1X1  
(binary). This CRC-4 multiframe reframe mode starts a  
100 ms timer upon detection of basic frame alignment.  
This is a parallel timer to the 8 ms timer. If CRC-4 multi-  
frame alignment cannot be achieved within the time  
limit of 100 ms due to the CRC-4 procedure not being  
implemented at the transmitting side, then an indication  
is given and actions are taken equivalent to those spec-  
ified for loss of basic frame alignment, namely:  
Several optional algorithms exist in the receive framer.  
These are selected through programming of register  
FRM_PR9.  
CRC-4 Multiframe Alignment Algorithm with 8 ms  
Timer  
The default algorithm is as described in ITU Rec.  
G.706 Section 4.2. The recommendation states that if a  
condition of assumed frame alignment has been  
achieved, CRC-4 multiframe alignment is deemed to  
have occurred if at least two valid CRC-4 multiframe  
alignment signals can be located within 8 ms, the time  
separating two CRC-4 multiframe signals being 2 ms or  
a multiple of 2 ms. The search for the CRC-4 multi-  
frame alignment signal is made only in bit 1 of NOT  
FAS frames. If multiframe alignment cannot be  
Optional automatic transmission of A = 0 to the line if  
register FRM_PR27 bit 3 is set to 1.  
Optional automatic transmission of E = 0 to the line if  
register FRM_PR28 bit 5 is set to 1.  
Optional automatic transmission of AIS to the system  
if register FRM_PR19 bit 1 is set to 1.  
achieved within 8 ms, it is assumed that frame align-  
ment is due to a spurious frame alignment signal and a  
new parallel search for basic frame alignment is initi-  
ated. The new search for the basic frame alignment is  
started at the point just after the location of the  
assumed spurious frame alignment signal. During this  
parallel search for basic frame alignment, there is no  
indication to the system of a receive loss of frame align-  
ment (RLFA) state. During the parallel search for basic  
frame alignment and while in primary basic frame align-  
ment, data will flow through the receive framer to the  
system interface as defined by the current primary  
frame alignment. The receive framer will continuously  
search for CRC-4 multiframe alignment.  
66  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
OUT OF PRIMARY BFA:  
• OPTIONALLY DISABLE TRAFFIC BY TRANSMITTING AIS TO THE SYSTEM  
• OPTIONALLY TRANSMIT A = 1 AND E = 0 TO LINE  
• INHIBIT INCOMING CRC-4 PERFORMANCE MONITORING  
PRIMARY  
NO  
BFA SEARCH?  
YES  
IN PRIMARY BFA:  
• ENABLE TRAFFIC TO THE SYSTEM  
• TRANSMIT A = 0 AND OPTIONALLY E = 0 TO THE LINE  
• START 8 ms AND 100 ms TIMERS  
• ENABLE PRIMARY BFA LOSS CHECKING PROCESS  
YES  
CRC-4 MFA SEARCH (ITU REC. G.706, SECTION 4.2 - NOTE 2)  
PARALLEL  
BFA SEARCH  
GOOD?  
NO  
YES  
NO  
IS  
100 ms  
TIMER  
ELAPSED?  
NO  
CAN CRC-4  
MFA BE FOUND  
IN 8 ms?  
NO  
YES  
INTERNAL  
100 ms TRX = 1  
?
YES  
SET 100 ms TIMER EXPIRATION STATUS BIT TO THE 1 STATE:  
SET INTERNAL 100 ms TIMER EXPIRATION STATUS BIT TO 1:  
• OPTIONALLY TRANSMIT A BIT = 1 TO THE LINE INTERFACE FOR  
THE DURATION OF LTS0MFA = 1  
ASSUME CRC-4 MULTIFRAME ALIGNMENT:  
• CONFIRM PRIMARY BFA ASSOCIATED WITH CRC-4 MFA  
• ADJUST PRIMARY BFA IF NECESSARY  
• OPTIONALLY TRANSMIT AIS TO THE SYSTEM INTERFACE FOR THE  
DURATION OF LTS0MFA = 1  
• OPTIONALLY TRANSMIT E BIT = 0 TO THE LINE INTERFACE FOR  
THE DURATION OF LTSOMFA = 1  
YES  
IS 100 ms TRX = 1  
?
SET INTERNAL 100 ms TIMER EXPIRATION STATUS BIT TO 0:  
• IF TRANSMITTING A BIT = 1 TO THE LINE INTERFACE, TRANSMIT A BIT = 0  
• IF TRANSMITTING AIS TO THE SYSTEM INTERFACE, ENABLE DATA  
TRANSMISSION TO THE SYSTEM INTERFACE  
NO  
• IF TRANSMITTING E = 0 TO THE LINE INTERFACE, TRANSMIT E BIT = 1  
START CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
CRC-4  
YES  
COUNT > 914  
IN 1 SECOND OR  
LFA = 1?  
NO  
CONTINUE CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
5-3909(F).er.2  
Figure 26. Receive CRC-4 Multiframe Search Algorithm Using the 100 ms Internal Timer  
Lucent Technologies Inc.  
67  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
The loss of basic frame alignment checking process  
runs continuously, irrespective of the state of the  
CRC-4 multiframe alignment process below it.  
Frame Formats (continued)  
CRC-4 Multiframe Alignment Search Algorithm with  
400 ms Timer  
A new search for frame alignment is initiated if CRC-  
4 multiframe alignment cannot be achieved in 8 ms,  
as described in ITU Rec. G.706 Section 4.2. This  
new search for basic frame alignment will not reset  
the 400 ms timer or invoke consequent actions asso-  
ciated with loss of the primary basic frame alignment.  
In particular, all searches for basic frame alignment  
are carried out in parallel with, and independent of,  
the primary basic frame loss checking process. All  
subsequent searches for CRC-4 multiframe align-  
ment are associated with each basic framing  
The CRC-4 multiframe alignment with 400 ms timer  
mode is enabled by setting FRM_PR9 to 0XXX1XX1  
(binary). This receive CRC-4 multiframe reframe mode  
is the modified CRC-4 multiframe alignment algorithm  
described in ITU Rec. 706 Annex B, where it is referred  
to as CRC-4-to-Non-CRC-4 equipment interworking. A  
flow diagram of this algorithm is illustrated in  
Figure 27. When the interworking algorithm is enabled,  
it supersedes the 100 ms algorithm described on  
page 66 and in Figure 26. This algorithm assumes that  
a valid basic frame alignment signal is consistently  
present but the CRC-4 multiframe alignment cannot be  
achieved by the end of the total CRC-4 multiframe  
alignment search period of 400 ms, if the distant end is  
a non-CRC-4 equipment. In this mode, the following  
consequent actions are taken:  
sequence found during the parallel search.  
During the search for CRC-4 multiframe alignment,  
traffic is allowed through, upon, and to be synchro-  
nized to, the initially determined primary basic frame  
alignment.  
Upon detection of the CRC-4 multiframe before the  
400 ms timer elapsing, the basic frame alignment  
associated with the CRC-4 multiframe alignment  
replaces, if necessary, the initially determined basic  
frame alignment.  
An indication that there is no incoming CRC-4 multi-  
frame alignment signal.  
All CRC-4 processing on the receive 2.048 Mbits/s  
signal is inhibited.  
If CRC-4 multiframe alignment is not found before  
the 400 ms timer elapses, it is assumed that a condi-  
tion of interworking between equipment with and  
without CRC-4 capability exists and the actions  
described above are taken.  
CRC-4 data is transmitted to the distant end with  
both E bits set to zero.  
This algorithm allows the identification of failure of  
CRC-4 multiframe alignment generation/detection, but  
with correct basic framing, when interworking between  
each piece of equipment having the modified CRC-4  
multiframe alignment algorithm.  
If the 2.048 Mbits/s path is reconfigured at any time,  
then it is assumed that the (new) pair of path termi-  
nating equipment will need to re-establish the com-  
plete framing process, and the algorithm is reset.  
As described in ITU Rec. G.706 Section B.2.3:  
A 400 ms timer is triggered on the initial recovery of  
the primary basic frame alignment.  
The 400 ms timer reset if and only if:  
— The criteria for loss of basic frame alignment as  
described in ITU Rec. G.706 Section 4.1.1 is  
achieved.  
— If 915 out of 1000 errored CRC-4 blocks are  
detected resulting in a loss of basic frame align-  
ment as described in ITU Rec. G.706 Section  
4.3.2.  
— On-demand reframe is requested.  
— The receive framer is programmed to the  
non-CRC-4 mode.  
68  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
OUT OF PRIMARY BFA:  
• OPTIONALLY DISABLE TRAFFIC BY TRANSMITTING AIS TO THE SYSTEM  
• OPTIONALLY TRANSMIT A BIT = 1 AND E BIT = 0 TO LINE  
• INHIBIT INCOMING CRC-4 PERFORMANCE MONITORING  
PRIMARY  
NO  
BFA SEARCH?  
YES  
IN PRIMARY BFA:  
• ENABLE TRAFFIC NOT TRANSMITTING AIS TO THE SYSTEM  
• TRANSMIT A = 0 AND OPTIONALLY E = 0 TO THE LINE  
• START 400 ms TIMER  
• ENABLE PRIMARY BFA LOSS CHECKING PROCESS  
YES  
CRC-4 MFA SEARCH (ITU REC. G.706, SECTION 4.2)  
NO  
PARALLEL  
BFA SEARCH  
?
NO  
400 ms  
TIMER  
ELAPSED?  
NO  
CAN CRC-4  
MFA BE FOUND  
IN 8 ms?  
YES  
YES  
ASSUME CRC-4-TO-CRC-4 INTERWORKING:  
ASSUME CRC-4-TO-NON-CRC-4 INTERWORKING:  
• CONFIRM PRIMARY BFA ASSOCIATED WITH CRC-4 MFA  
• ADJUST PRIMARY BFA IF NECESSARY  
• KEEP A = 0 IN OUTGOING CRC-4 DATA  
• CONFIRM PRIMARY BFA  
• TRANSMIT A BIT = 0 TO THE LINE INTERFACE  
• TRANSMIT E BIT = 0 TO THE LINE INTERFACE  
• STOP INCOMING CRC-4 PROCESSING  
• INDICATE “NO CRC-4 MFA”  
START CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
CRC-4  
COUNT > 914  
IN 1 SECOND OR  
LFA = 1?  
YES  
NO  
CONTINUE CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
5-3909(F).fr.3  
Figure 27. Receive CRC-4 Multiframe Search Algorithm for Automatic, CRC-4/Non-CRC-4 Equipment  
Interworking as Defined by ITU (From ITU Rec. G.706, Annex B.2.2 - 1991)  
Lucent Technologies Inc.  
69  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Frame Formats (continued)  
CEPT Time Slot 16 Multiframe Structure  
The T7630 supports two CEPT signaling modes: channel associated signaling (CAS) or per-channel signaling  
(PCS0 and PCS1).  
Channel Associated Signaling (CAS)  
The channel associated signaling (CAS) mode utilizes time slot 16 of the FAS and NOT FAS frames. The CAS for-  
mat is a multiframe consisting of 16 frames where frame 0 of the multiframe contains the multiframe alignment pat-  
tern of four zeros in bits 1 through 4. Table 33 illustrates the CAS multiframe of time slot 16. The T7630 can be  
programmed to force the transmitted line CAS multiframe alignment pattern to be transmitted in the FAS frame by  
selecting the PCS0 option or in the NOT FAS frame by selecting the PCS1 option. Alignment of the transmitted line  
CAS multiframe to the CRC-4 multiframe is arbitrary.  
Table 33. ITU CEPT Time Slot 16 Channel Associated Signaling Multiframe Structure  
Time Slot 16  
Channel  
Associated  
Signaling  
Multiframe  
Frame  
Number  
Bit  
1
2
3
4
5
6
7
8
0
1
0
0
0
0
X0  
YM  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
X1  
X2  
A1  
B1  
C1  
D1  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
2
A2  
B2  
C2  
D2  
3
A3  
B3  
C3  
D3  
4
A4  
B4  
C4  
D4  
5
A5  
B5  
C5  
D5  
6
A6  
B6  
C6  
D6  
7
A7  
B7  
C7  
D7  
8
A8  
B8  
C8  
D8  
9
A9  
B9  
C9  
D9  
10  
11  
12  
13  
14  
15  
A10  
A11  
A12  
A13  
A14  
A15  
B10  
B11  
B12  
B13  
B14  
B15  
C10  
C11  
C12  
C13  
C14  
C15  
D10  
D11  
D12  
D13  
D14  
D15  
Notes:  
Frame 0 bits 1—4 define the time slot 16 multiframe alignment.  
X0—X2 = time slot 16 spare bits defined in FRM_PR41 bit 0—bit 2.  
YM = yellow alarm, time slot 16 remote multiframe alarm (RMA) bit (1 = alarm condition).  
70  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Frame Formats (continued)  
CEPT Time Slot 0 FAS/NOT FAS Control  
Bits  
CEPT Loss of Time Slot 16 Multiframe Align-  
ment (LTS16MFA)  
FAS/NOT FAS Si- and E-Bit Source  
Loss of basic frame alignment forces the receive framer  
into a loss of time slot 16 signaling multiframe align-  
ment state. In addition, as defined in ITU Rec. G.732  
Section 5.2, time slot 16 signaling multiframe is  
assumed lost when two consecutive time slot 16 multi-  
frame 4-bit all-zero patterns is received with an error.  
Also, the time slot 16 multiframe is assumed lost when,  
for a period of two multiframes, all bits in time slot 16  
are in state 0. This state is reported by way of the sta-  
tus registers FRM_SR1 bit 1. Once basic frame align-  
ment is achieved, the receive framer will initiate a  
search for the time slot 16 multiframe alignment. During  
a loss of time slot 16 multiframe alignment state:  
The Si bit can be used as an 8 kbits/s data link to and  
from the remote end, or in the CRC-4 mode, it can be  
used to provide added protection against false frame  
alignment. The sources for the Si bits that are transmit-  
ted to the line are the following:  
CEPT with no CRC-4 and FRM_PR28 bit 0 = 1: the  
TSiF control bit (FRM_PR28 bit 1) is transmitted in  
bit 1 of all FAS frames and the TSiNF control bit  
(FRM_PR28 bit 2) is transmitted in bit 1 of all NOT  
FAS frames.  
The CHI system interface (CEPT with no CRC-4 and  
FRM_PR28 bit 0 = 0)*.  
The updating of the signaling data is halted.  
This option requires the received system data (RCHI-  
DATA) to maintain a biframe alignment pattern where  
frames containing Si bit information for the NOT FAS  
frames have bit 2 of time slot 0 in the binary 1 state fol-  
lowed by frames containing Si bit information for the  
FAS frames that have bit 2 of time slot 0 in the binary 0  
state. This ensures the proper alignment of the Si  
received system data to the transmit line Si data.  
Whenever this requirement is not met by the system,  
the transmit framer will enter a loss of biframe align-  
ment condition (indication is given in the status regis-  
ters) and then search for the pattern; in the loss of  
biframe alignment state, transmitted line data is cor-  
rupted (only when the system interface is sourcing Sa  
or Si data). When the transmit framer locates a new  
biframe alignment pattern, an indication is given in the  
status registers and the transmit framer resumes nor-  
mal operations.  
The received control bits forced to the binary 1 state.  
The received remote multiframe alarm indication sta-  
tus bit is forced to the binary 0 state.  
Optionally, the transmit framer can transmit to the  
line the time slot 16 signaling remote multiframe  
alarm if register FRM_PR41 bit 4 is set to 1.  
Optionally, the transmit framer can transmit the alarm  
indication signal (AIS) in the system transmit time  
slot 16 data if register FRM_PR44 bit 6 is set to 1.  
CEPT Loss of Time Slot 16 Multiframe Align-  
ment Recovery Algorithm  
The time slot 16 multiframe alignment recovery algo-  
rithm is as described in ITU Rec. G.732 Section 5.2.  
The recommendation states that if a condition of  
assumed frame alignment has been achieved, time slot  
16 multiframe alignment is deemed to have occurred  
when the 4-bit time slot 16 multiframe pattern of 0000  
is found in time slot 16 for the first time, and the preced-  
ing time slot 16 contained at least one bit in the binary  
1 state.  
CEPT with CRC-4: manual transmission of  
E bit = 0:  
— If FRM_PR28 bit 0 = 0, then the TSiF bit  
(FRM_PR28 bit 1) is transmitted in bit 1 of frame  
13 (E bit) and the TSiNF bit (FRM_PR28 bit 2) is  
transmitted in bit 1 of frame 15 (E bit).  
— If FRM_PR28 bit 0 = 1, then each time 0 is written  
into TSiF (FRM_PR28 bit 1) one E bit = 0 is trans-  
mitted in frame 13, and each time 0 is written into  
TSiNF (FRM_PR28 bit 2) one E bit = 0 is transmit-  
ted in frame 15.  
* Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system  
transparently, FRM_PR29 must first be momentarily written to  
001xxxxx (binary). Otherwise, the transmit framer will not be able  
to locate the biframe alignment.  
† The receive E-bit processor will halt the monitoring of received E  
bits during loss of CRC-4 multiframe alignment.  
Lucent Technologies Inc.  
71  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
NOT FAS Sa-Bit Sources6  
CEPT Time Slot 0 FAS/NOT FAS Control  
Bits (continued)  
The Sa bits, Sa4—Sa8, in the NOT FAS frame can be a  
4 kbits/s data link to and from the remote end. The  
sources and value for the Sa bits are:  
CEPT with CRC-41, automatic transmission of  
E bit = 0:  
— Optionally, one transmitted E bit is set to 0 by the  
transmit framer, as described in ITU Rec. G.704  
Section 2.3.3.4, for each received errored CRC-4  
submultiframe detected by the receive framer if  
FRM_PR28 bit 3 = 1.  
— Optionally, as described in ITU Rec. G.704 Sec-  
tion 2.3.3.4, both E bits are set to 0 while in a  
received loss of CRC-4 multiframe alignment  
state2 if FRM_PR28 bit 4 = 1.  
The Sa source register FRM_PR29 bit 0—bit 4 if  
FRM_PR29 bit 7—bit 5 = 000 (binary) and  
FRM_PR30 bit 4—bit 0 = 11111 (binary).  
The facility data link external input (TFDL) if register  
FRM_PR29 bit 7 = 1 and register FRM_PR21  
bit 6 = 1.  
The internal FDL-HDLC if register FRM_PR29  
bit 7 = 1 and register FRM_PR21 bit 6 = 0.  
— Optionally, when the 100 ms or 400 ms timer is  
enabled and the timer has expired, as described  
in ITU Rec. G.706 Section B.2.2, both E bits are  
set to 0 for the duration of the loss of CRC-4 multi-  
frame alignment state2 if FRM_PR28 bit 5 = 1.  
The Sa transmit stack if register FRM_PR29  
bit 7—bit 5 are set to 01x (binary).  
The CHI system interface if register FRM_PR29  
bit 7—bit 5 are set to 001 (binary). This option  
requires the received system data (RCHIDATA) to  
maintain a biframe alignment pattern where (1)  
frames containing Sa bit information have bit 2 of  
time slot 0 in the binary 1 state and (2) these NOT  
FAS frames are followed by frames not containing Sa  
bit information, the FAS frames, which have bit 2 of  
time slot 0 in the binary 0 state. This ensures the  
proper alignment of the Sa received system data to  
the transmit line Sa data. Whenever this requirement  
is not met by the system, the transmit framer will  
enter a loss of biframe alignment condition indicated  
in the status register, FRM_SR1 bit 4, and then  
search for the pattern. In the loss of biframe align-  
ment state, transmitted line data is corrupted (only  
when the system interface is sourcing Sa or Si data).  
When the transmit framer locates a new biframe  
alignment pattern, an indication is given in the status  
registers and the transmit framer resumes normal  
operations.  
Otherwise, the E bits are transmitted to the line in the  
1 state.  
NOT FAS A-Bit (CEPT Remote Frame Alarm)  
Sources  
The A bit, as described in ITU Rec. G.704 Section  
2.3.2 Table 4a/G.704, is the remote alarm indication bit.  
In undisturbed conditions, this bit is set to 0 and trans-  
mitted to the line. In the loss of frame alignment (LFA)  
state, this bit may be set to 1 and transmitted to the line  
as determined by register FRM_PR27. The A bit is set  
to 1 and transmitted to the line for the following condi-  
tions:  
Setting the transmit A bit = 1 control bit by setting  
register FRM_PR27 bit 7 to 1.  
Optionally for the following alarm conditions as  
selected through programming register FRM_PR27.  
— The duration of loss of basic frame alignment as  
described in ITU Rec. G.706 Section 4.1.13, or  
ITU Rec. G.706 Section 4.3.24 if register  
FRM_PR27 bit 0 = 1.  
1. The receive E-bit processor will halt the monitoring of received E  
bits during loss of CRC-4 multiframe alignment.  
2. Whenever loss of frame alignment occurs, then loss of CRC-4  
multiframe alignment is forced. Once frame alignment is estab-  
lished, then and only then, is the search for CRC-4 multiframe  
alignment initiated. The receive framer unit, when programmed for  
CRC-4, can be in a state of LFA and LTS0MFA or in a state of  
LTS0MFA only, but cannot be in a state of LFA only.  
3. LFA is due to framing bit errors.  
4. LFA is due to detecting 915 out of 1000 received CRC-4 errored  
blocks.  
5. See Table 41 Sa6 Bit Coding Recognized by the Receive Framer,  
for a definition of this Sa6 pattern.  
— The duration of loss of CRC-4 multiframe align-  
ment if register FRM_PR27 bit 2 = 1.  
— The duration of loss of signaling time slot 16 multi-  
frame alignment if register FRM_PR27 bit 1 = 1.  
— The duration of loss of CRC-4 multiframe align-  
ment after either the 100 ms or 400 ms timer  
expires if register FRM_PR27 bit 3 = 1.  
— The duration of receive Sa6_8hex5 if register  
FRM_PR27 bit 4 = 1.  
6. Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system  
transparently, FRM_PR29 must first be momentarily written to  
001xxxxx (binary). Otherwise, the transmit framer will not be able  
to locate the biframe alignment.  
— The duration of receive Sa6_Chex5 if register  
FRM_PR27 bit 5 = 1.  
72  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
The receive Sa data is present at:  
The Sa received stack, registers FRM_SR54—FRM_SR63, if the T7630 is programmed in the Sa stack mode.  
The system transmit interface.  
The status of the received Sa bits and the received Sa stack is available in status register FRM_SR4. The transmit  
and receive Sa bit for the FDL can be selected by setting register FRM_PR43 bit 0—bit 2 as shown in Table 166.  
Sa Facility Data Link Access  
The data link interface may be used to source one of the Sa bits. Access is controlled by registers FRM_PR29,  
FRM_PR30, and FRM_PR43, see NOT FAS Sa-Bit Sources page 72. The receive Sa data is always present at the  
receive facility data link output pin, RFDL, along with a valid clock signal at the receive facility clock output pin,  
RFDLCK. During a loss of frame alignment (LFA) state, the RFDL signal is forced to a 1 state while RFDLCK con-  
tinues to toggle on the previous frame alignment. When basic frame alignment is found, RFDL is as received from  
the selected receive Sa bit position and RFDLCK is forced (if necessary) to the new alignment. The data rate for  
this access mode is 4 kHz. The access timing for the transmit and receive facility data is illustrated in Figure 28  
below. During loss of receive clock (LOFRMRLCK), RFDL and RFDLCK are frozen in a state at the point of the  
LOFRMRLCK being asserted.  
t8  
t8: TFDLCK CYCLE = 250 µs  
TFDLCK  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 250 µs  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).dr.1  
Figure 28. Facility Data Link Access Timing of the Transmit and Receive Framer Sections in the CEPT  
Mode  
Lucent Technologies Inc.  
73  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
NOT FAS Sa Stack Source and Destination  
The transmit Sa4 to Sa8 bits may be sourced from the transmit Sa stack, registers FRM_PR31—FRM_PR40. The  
Sa stack consists of ten 8-bit registers that contain 16 NOT FAS frames of Sa information as shown in Table 34.  
The transmit stack data may be transmitted either in non-CRC-4 mode or in CRC-4 mode to the line.  
The receive stack data, registers FRM_SR54—FRM_SR63, is valid in both the non-CRC-4 mode and the CRC-4  
mode. In the non-CRC-4 mode while in the loss of frame alignment (LFA) state, updating of the receive Sa stack is  
halted and the transmit and receive stack interrupts are deactivated. In the CRC-4 mode while in the loss of time  
slot 0 multiframe alignment (LTS0MFA) state, updating of the receive Sa stack is halted and the transmit and  
receive stack interrupts are deactivated.  
Table 34. Transmit and Receive Sa Stack Structure  
Register  
Number  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(LSB)  
1
2
Sa4-1  
Sa4-17  
Sa5-1  
Sa4-3  
Sa4-19  
Sa5-3  
Sa4-5  
Sa4-21  
Sa5-5  
Sa4-7  
Sa4-23  
Sa5-7  
Sa4-9  
Sa4-25  
Sa5-9  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
3
4
Sa5-17  
Sa6-1  
Sa5-19  
Sa6-3  
Sa5-21  
Sa6-5  
Sa5-23  
Sa6-7  
Sa5-25  
Sa6-9  
5
6
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
7
8
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
9
10  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
The most significant bit of the first byte is transmitted to the line in frame 1 of a double CRC-4 multiframe. The least  
significant bit of the second byte is transmitted to the line in frame 31 of the double CRC-4 multiframe. The protocol  
for accessing the Sa Stack information for the transmit and receive Sa4 to Sa8 bits is shown in Figure 29 and  
described briefly below.  
The device indicates that it is ready for an update of its transmit stack by setting register FRM_SR4 bit 7 (CEPT  
transmit Sa stack ready) high. At this time, the system has about 4 ms to update the stack. Data written to the stack  
during this interval will be transmitted during the next double CRC-4 multiframe. By reading register FRM_SR4  
bit 7, the system clears this bit so that it can indicate the next time the transmit stack is ready. If the transmit stack  
is not updated, then the content of the stack is retransmitted to the line. The 32-frame interval of the transmit framer  
in the non-CRC-4 mode is arbitrary. Enabling transmit CRC-4 mode forces the updating of the internal transmit  
stack at the end of the 32-frame CRC-4 double multiframe; the transmit Sa stack is then transmitted synchronous  
to the transmit CRC-4 multiframe structure.  
On the receive side, the T7630 indicates that it has received data in the receive Sa stack, register FRM_SR54—  
FRM_SR63, by setting register FRM_SR4 bit 6 (CEPT receive Sa stack ready) high. The system then has about  
4 ms to read the contents of the stack before it is updated again (old data lost). By reading register FRM_SR4 bit 6,  
the system clears this bit so that it can indicate the next time the receive stack is ready. The receive framer always  
updates the content of the receive stack so unread data will be overwritten. The last 16 valid Sa4 to Sa8 bits are  
always stored in the receive Sa stack on a double-multiframe boundary. The 32-frame interval of the receive framer  
in the non-CRC-4 mode is arbitrary. Enabling the receive CRC-4 mode forces updating of the receive Sa stack at  
the end of the 32-frame CRC-4 double multiframe. The receive Sa stack is received synchronous to the CRC-4  
multiframe structure.  
74  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
SYSTEM ACCESS Sa STACK (SASS) INTERVAL:  
1) TRANSMIT FRAMER UNIT TRANSMITS TO THE LINE  
THE DATA IN THE TRANSMIT Sa STACK WRITTEN DURING  
THE PREVIOUS SASS INTERVAL.  
2) THE SYSTEM CAN UPDATE THE TRANSMIT Sa STACK  
REGISTERS FOR TRANSMISSION IN THE NEXT CRC-4  
DOUBLE MULTIFRAME.  
3) THE SYSTEM CAN READ THE RECEIVE Sa STACK REGISTERS  
TO ACCESS THE Sa BITS EXTRACTED DURING THE PREVIOUS  
VALID (IN MULTIFRAME ALIGNMENT) DOUBLE CRC-4  
MULTIFRAME.  
START OF CRC-4 DOUBLE MULTIFRAME:  
• BASIC FRAME ALIGNMENT FOUND, OR,  
• CRC-4 MULTIFRAME ALIGNMENT FOUND.  
SYSTEM ACCESS Sa STACK INTERVAL  
1-FRAME INTERVAL  
1 FRAME  
31 FRAMES  
CRC-4 DOUBLE MULTIFRAME: 32 FRAMES  
31 FRAMES  
CRC-4 DOUBLE MULTIFRAME  
(DMF): 32 FRAMES  
START FRAME 1 OF 32 IN DMF.  
INTERNAL Sa STACK UPDATE INTERVAL  
SYSTEM ACCESS IS DISABLED DURING THIS INTERVAL:  
1) THE INTERNAL TRANSMIT Sa STACK IS UPDATED  
FROM THE FRAMER UNIT’S 10-byte TRANSMIT STACK CONTROL  
REGISTERS DURING THIS 1-FRAME INTERVAL.  
2) ACCESS TO THE STACK CONTROL REGISTERS IS DISABLED  
DURING THIS 1-FRAME INTERVAL.  
3)  
ONCE LOADED, THE INFORMATION IN THE INTERNAL TRANSMIT  
Sa STACK IS TRANSMITTED TO THE LINE DURING THE NEXT  
CRC-4 DOUBLE MULTIFRAME, ALIGNED TO THE CRC-4 MULTIFRAME.  
4)  
IF THE TRANSMIT Sa STACK IS NOT UPDATED, THEN THE  
CONTENT OF THE TRANSMIT Sa STACKS IS RETRANSMITTED  
TO THE LINE.  
5)  
6)  
THE SYSTEM READ-ONLY RECEIVE STACK IS UPDATED FROM  
THE INTERNAL RECEIVE STACK INFORMATION REGISTERS.  
IN NON-CRC-4 MODE, THE RECEIVE Sa STACK EXTRACTING  
CIRCUITRY ASSUMES AN ARBITRARY DOUBLE 16-FRAME MULTIFRAME STRUCTURE  
(32 FRAMES), AND DATA IS EXTRACTED ONLY IN THE FRAME ALIGNED STATE.  
7)  
IN CRC-4 MODE, THE RECEIVE Sa STACK INFORMATION IS ALIGNED  
TO A CRC-4 DOUBLE MULTIFRAME STRUCTURE (32 FRAMES), AND THE  
DATA IS EXTRACTED ONLY IN CRC-4 MULTIFRAME ALIGNED STATE.  
5-3911(F).c  
Figure 29. Transmit and Receive Sa Stack Accessing Protocol  
Lucent Technologies Inc.  
75  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
The receive-channel robbed-bit signaling mode is  
always defined by the state of the F and G bits in the  
corresponding transmit signaling registers for that  
channel. The received signaling data is stored in the  
receive signaling registers, FRM_RSR0—  
FRM_RSR23, while receive framer is in both the frame  
and superframe alignment states. Updating the receive  
signaling registers can be inhibited on-demand, by set-  
ting register FRM_PR44 bit 3 to 1, or automatically  
when either a framing error event, a loss of frame, or  
superframe alignment state is detected or a controlled  
slip event occurs. The signaling inhibit state is valid for  
at least 32 frames after any one of the following: a  
framing errored event, a loss of frame and/or super-  
frame alignment state, or a controlled slip event.  
CEPT Time Slot 0 FAS/NOT FAS Control  
Bits (continued)  
Interrupts indicating the transmit Sa stack or the  
receive Sa stack are ready for system access are avail-  
able, see register FRM_SR4 bit 6 and bit 7.  
CEPT Time Slot 16 X0—X2 Control Bits  
Each of the three X bits in frame 0 of the time slot 16  
multiframe can be used as a 0.5 kbits/s data link to and  
from the remote end. The transmitted line X bits are  
sourced from control register FRM_PR41 bit 0—bit 2.  
In the loss of TS16 multiframe alignment (LTS16MFA)  
state, receive X bits are set to 1 in status register  
FRM_SR53.  
In the common channel signaling mode, data written in  
the transmit signaling registers is transmitted in chan-  
nel 24 of the transmit line bit stream. The F and G bits  
are ignored in this mode. The received signaling data  
from channel 24 is stored in receive signaling registers  
FRM_RSR0—FRM_RSR23 for T1.  
Signaling Access  
Signaling information can be accessed by three differ-  
ent methods: transparently through the CHI, via the  
control registers, or via the CHI associated signaling  
mode.  
Associated Signaling Mode  
This mode is enabled by setting register FRM_PR44 bit  
2 to 1.  
Signaling information in the associated signaling mode  
(ASM) is allocated an 8-bit system time slot in conjunc-  
tion with the pay load data information for a particular  
channel. The default system data rate in the ASM  
mode is 4.096 Mbits/s. Each system channel consists  
of an 8-bit payload time slot followed by its correspond-  
ing 8-bit signaling time slot. The format of the signaling  
byte is identical to that of the signaling registers.  
Transparent Signaling  
This mode is enabled by setting register FRM_PR44 bit  
0 to 1.  
Data at the received RCHIDATA interface passes  
through the framer undisturbed. The framer generates  
an arbitrary signaling multiframe in the transmit and  
receive directions to facilitate the access of signaling  
information at the system interface.  
In the ASM mode, writing the transmit signaling regis-  
ters will corrupt the transmit signaling data. In the trans-  
mit signaling register ASM (TSR-ASM) format, enabled  
by setting register FRM_PR44 bit 2 and bit 5 to 1, the  
system must write into the F and G bit1 of the transmit  
signaling registers to program the robbed-bit signaling  
state mode of each DS0. The ABCD bits are sourced  
from the RCHI ports when TSR-ASM mode is enabled.  
DS1: Robbed-Bit Signaling  
Microprocessor Control Registers  
To enable signaling, register FRM_PR44 bit 0 must be  
set to 0 (default).  
1. All other bits in the signaling registers are ignored, while the F and  
G bits in the received RCHIDATA stream are ignored.  
The information written into the F and G bits of the  
transmit signaling registers, FRM_TSR0—  
FRM_TSR23, defines the robbed-bit signaling mode for  
each channel for both the transmit and receive direc-  
tions. The per-channel programming allows the system  
to combine voice channels with data channels within  
the same frame.  
76  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Signaling Access (continued)  
Table 35 illustrates the ASM time-slot format for valid channels.  
Table 35. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames  
DS1: ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION*  
P†  
1
2
3
4
5
6
7
8
A
B
C
D
X
F
G
* X indicates bits that are undefined by the framer.  
† The identical sense of the received system P bit in the transmitted signaling data is  
echoed back to the system in the received signaling information.  
The DS1 framing formats require rate adaptation from the line-interface 1.544 Mbits/s bit stream to the system-  
interface 4.096 Mbits/s bit stream. The rate adaptation results in the need for stuffed time slots on the system inter-  
face. Table 36 illustrates the ASM format for T1 stuffed channels used by the T7630. The stuffed data byte contains  
the programmable idle code in register FRM_PR23 (default = 7F (hex)), while the signaling byte is ignored.  
Table 36. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels  
ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION*  
0
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
* X indicates bits which are undefined by the framer.  
CEPT: Time Slot 16 Signaling  
Microprocessor Control Registers  
To enable signaling, register FRM_PR44 bit 0 must be set to 0 (default).  
The information written into transmit signaling control registers FRM_TSR0—FRM_TSR31 define the state of the  
ABCD bits of time slot 16 transmitted to the line.  
The received signaling data from time slot 16 is stored in receive signaling registers FRM_RSR0—FRM_RSR31.  
Associated Signaling Mode  
Signaling information in the associated signaling mode (ASM), register FRM_PR44 bit 2 = 1, is allocated an 8-bit  
system time slot in conjunction with the data information for a particular channel. The default system data rate in  
the ASM mode is 4.096 Mbits/s. Each system channel consists of an 8-bit payload time slot followed by its associ-  
ated 8-bit signaling time slot. The format of the signaling byte is identical to the signaling registers.  
Table 37 illustrates the ASM time-slot format for valid CEPT E1 time slots.  
Table 37. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT  
CEPT ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION  
X* X* P†  
1
2
3
4
5
6
7
8
A
B
C
D
E
* In the CEPT formats, these bits are undefined.  
† The P bit is the parity-sense bit calculated over the 8 data bits, the ABCD  
(and E) bits, and the P bit. The identical sense of the received system P bit in the  
transmitted signaling data is echoed back to the system in the received signaling  
information.  
Lucent Technologies Inc.  
77  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Auxiliary Framer I/O Timing  
Transmit and receive clock and data signals are provided by terminals RFRMCK (receive framer clock), RFRM-  
DATA (receive framer data), RFS (receive frame sync), RSSFS (receive framer signaling superframe sync), RCRC-  
MFS (receive frame CRC-4 multiframe sync), TFS (transmit framer frame sync), TSSFS (transmit framer signaling  
superframe sync), and TCRCMFS (transmit framer CRC-4 multiframe sync).  
The receive signals are synchronized to the internal recovered receive line clock, RFRMCK, and the transmit sig-  
nals are synchronized to the transmit line clock, TLCK. Note that TLCK is derived from the external PLLCK which  
must be phase-locked to the system (CHI) clock, RCHICK, see Table 1, pin 7 and pin 31.  
Detailed timing specifications for these signals are given in Figure 30—Figure 37.  
RFRMCK  
125 µs  
RFS  
RFRMDATA  
BIT 7 BIT 0 BIT 1  
TIME SLOT 1  
TIME SLOT 24  
DATA VALID  
5-6290(F)r.5  
Figure 30. Timing Specification for RFRMCK, RFRMDATA, and RFS in DS1 Mode  
TLCK  
TFS  
125 µs  
TPD  
(SINGLE  
RAIL)  
TS1  
TS2  
TS24  
TS1  
F
BIT 0  
F
BIT 0  
BIT (MSB)  
BIT (MSB)  
5-6292(F)r.6  
Figure 31. Timing Specification for TFS, TLCK, and TPD in DS1 Mode  
78  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Auxiliary Framer I/O Timing (continued)  
RFRMCK  
RFS  
125 µs  
RFRMDATA  
BIT 7 BIT 0 BIT 1  
FAS/NFAS: TIME SLOT 0  
DATA VALID  
TIME SLOT 31  
5-6294(F)r.5  
Figure 32. Timing Specification for RFRMCK, RFRMDATA, and RFS in CEPT Mode  
RFRMCK  
RFS  
125 µs  
2 ms  
RSSFS  
RFRMDATA  
TS0 OF THE FRAME AFTER THE  
FRAME CONTAINING THE  
SIGNALING MULTIFRAME  
PATTERN (0000)  
TS0 OF THE FRAME AFTER THE  
FRAME CONTAINING THE  
SIGNALING MULTIFRAME  
PATTERN (0000)  
5-6295(F)r.7  
Figure 33. Timing Specification for RFRMCK, RFRMDATA, RFS, and RSSFS in CEPT Mode  
Lucent Technologies Inc.  
79  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Auxiliary Framer I/O Timing (continued)  
RFRMCLK  
RFS  
2 ms  
RCRCMFS  
RFRMDATA  
TS0 OF FRAME #0  
OF MULTIFRAME  
TS0 OF FRAME #0  
OF MULTIFRAME  
5-6296(F)r.5  
Figure 34. Timing Specification for RCRCMFS in CEPT Mode  
TLCK  
TFS  
125 µs  
TPD  
(SINGLE  
RAIL)  
TS0 OF FRAME X  
TS0 OF FRAME X + 1  
5-6297(F)r.5  
Figure 35. Timing Specification for TFS, TLCK, and TPD in CEPT Mode  
TFS  
11 CLOCK CYCLES  
TLCK  
2 ms  
TSSFS  
TPD  
(SINGLE  
RAIL)  
TS0 OF THE FRAME  
CONTAINING THE SIGNALING  
MULTIFRAME PATTERN (0000)  
5-6298(F)r.5  
Figure 36. Timing Specification for TFS, TLCK, TPD, and TSSFS in CEPT Mode  
80  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Auxiliary Framer I/O Timing (continued)  
TLCK  
TFS  
1 ms  
1 ms  
TCRCMFS  
TPD  
(SINGLE  
RAIL)  
TS0 OF FRAME #0  
OF MULTIFRAME  
TS0 OF FRAME #8  
OF MULTIFRAME  
TS0 OF FRAME #0  
OF MULTIFRAME  
5-6299(F)r.5  
Figure 37. Timing Specification for TFS, TLCK, TPD, and TCRCMFS in CEPT Mode  
Alarms and Performance Monitoring  
Interrupt Generation  
A global interrupt (pin 99) may be generated if enabled by register GREG1. This interrupt is clocked using channel  
1 framer receive line clock (RLCK1). If RLCK1 is absent, the interrupt is clocked using RLCK2, the receive line  
clock of channel 2. If both RLCK1 and RLCK2 are absent, clocking of interrupts is controlled by an interval  
2.048 MHz clock generated from the CHI clock. Timing of the interrupt is shown in Figure 38 There is no relation  
between MPCK (pin 101) and the interrupt, i.e., MPCK maybe asynchronous with any of the other terminator  
clocks.  
RLCK1  
INTERRUPT  
(PIN 99)  
5-6563(F)  
Figure 38. Relation Between RLCK1 and Interrupt (Pin 99)  
Although the precise method of detecting or generating  
alarm and error signals differs between framing modes,  
the functions are essentially the same. The alarm con-  
ditions monitored on the received line interface are the  
following:  
Alarm Definition  
The receive framer monitors the receive line data for  
alarm conditions and errored events, and then presents  
this information to the system through the microproces-  
sor interface status registers. The transmit framer, to a  
lesser degree, monitors the receive system data and  
presents the information to the system through the  
microprocessor interface status registers. Updating of  
the status registers is controlled by the receive line  
clock signal. When the receive loss of clock monitor  
determines that the receive line clock signal is lost, the  
system clock is used to clock the status registers and  
all status information should be considered corrupted.  
1. Red alarm or the loss of frame alignment indica-  
tion (FRM_SR1 bit 0).  
The red alarm indicates that the receive frame align-  
ment for the line has been lost and the data cannot be  
properly extracted. The red alarm is indicated by the  
loss of frame condition for the various framing formats  
as defined in Table 38.  
Lucent Technologies Inc.  
81  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
Table 38. Red Alarm or Loss of Frame Alignment Conditions  
Framing Format  
D4  
Number of Errored Framing Bits That Will Cause a Red Alarm  
(Loss of Frame Alignment) Condition  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if PRM_PR10 bit 2 = 0.  
SLC-96  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if FRM_PR10 bit 2 = 0.  
DDS: Frame  
ESF  
3 errored frame bits (FT or FS) or channel 24 FAS pattern out of 12 consecutive frame bits.  
2 errored FE bits out of 4 consecutive FE bits or, optionally, 320 or more CRC6 errored  
checksums within a one second interval if loss of frame alignment due to excessive CRC-6  
errors is enabled in FRM_PR9.  
CEPT  
Three consecutive incorrect FAS patterns or three consecutive incorrect NOT FAS patterns;  
or optionally, greater than 914 received CRC-4 checksum errors in a one second interval if  
loss of frame alignment due to excessive CRC-6 errors is enabled in FRM_PR9.  
2. Yellow alarm or the remote frame alarm (FRM_SR1 bit 0).  
This alarm is an indication that the line remote end is in a loss of frame alignment state. Indication of remote frame  
alarm (commonly referred to as a yellow alarm) as for the different framing formats is shown in Table 39.  
Table 39. Remote Frame Alarm Conditions  
Framing Format  
Superframe: D4  
Remote Frame Alarm Format  
Bit 2 of all time slots in the 0 state.  
Superframe: D4-Japanese  
Superframe: DDS  
The twelfth framing bit in the 1 state in two out of three consecutive superframes.  
Bit 6 of time slot 24 in the 0 state.  
Extended Superframe (ESF)  
CEPT: Basic Frame  
An alternating pattern of eight ones followed by eight zeros in the ESF data link.  
Bit 3 of the NOT FAS frame in the 1 state in three consecutive frames.  
Bit 6 of the time slot 16 signaling frame in the 1 state.  
CEPT: Signaling Multiframe  
3. Blue alarm or the alarm indication signal (AIS).  
The alarm indication signal (AIS), sometimes referred to as the blue alarm, is an indication that the remote end is  
out of service. Detection of an incoming alarm indication signal is defined in Table 40.  
Table 40. Alarm Indication Signal Conditions  
Framing Format  
T1  
Remote Frame Alarm Format  
Loss of frame alignment occurs and the incoming signal has two or fewer zeros in each of  
two consecutive double frame periods (386 bits).  
CEPT ETSI  
CEPT ITU  
As described in ETS 300 233:1994 Section 8.2.2.4, loss of frame alignment occurs and  
the framer receives a 512 bit period containing two or less binary zeros. This is enabled  
by setting register FRM_PR10 bit 1 to 0.  
As described in ITU Rec. G.775, the incoming signal has two or fewer zeros in each of  
two consecutive double frame periods (512 bits). AIS is cleared if each of two consecutive  
double frame periods contains three or more zeros or frame alignment signal (FAS) has  
been found. This is enabled by setting register FRM_PR10 bit 1 to 1.  
82  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Alarms and Performance Monitoring (continued)  
4. The SLIP condition (FRM_SR3 bit 6 and bit 7).  
SLIP is defined as the state in which the receive elastic store buffer’s write address pointer from the receive framer  
and the read address pointer from the transmit CHI are equal*.  
The negative slip (Slip-N) alarm indicates that the receive line clock (RLCK) - transmit CHI clock (TCHICK) mon-  
itoring circuit detects a state of overflow caused by RLCK and TCHICK being out of phase-lock and the period of  
the received frame being less than that of the system frame. One system frame is deleted.  
The positive slip (Slip-P) alarm indicates the line clock (RLCK) - transmit CHI clock (TCHICK) monitoring circuit  
detects a state of underflow caused by RLCK and TCHICK being out of phase-lock and the period of the  
received frame being greater than that of the system frame. One system frame is repeated.  
5. The loss of framer receive clock (LOFRMRLCK, pins 2 and 38).  
In the framer mode, FRAMER = 0 (pin 41/141), LOFRMRLCK alarm is asserted high when an interval of  
250 µs has expired with no transition of RLCK (pin 135/47) detected. The alarm is disabled on the first transition of  
RLCK. In the terminator mode, FRAMER = 1 (pin 41/141), LOFRMRLCK is asserted high when SYSCK (pin 3/35)  
does not toggle for 250 µs. The alarm is disabled on the first transition of SYSCK.  
6. The loss of PLL clock (LOPLLCK, pins 39 and 143).  
LOPLLCK alarm is asserted high when an interval of 250 µs has expired with no transition of PLLCK detected. The  
alarm is disabled 250 µs after the first transition of PLLCK. Timing for LOPLLCK is shown in Figure 39.  
PLLCK  
250 µs  
250 µs  
LOPLLCK  
RCHICK  
5-6564(F)r.2  
Figure 39. Timing for Generation of LOPLLCK (Pin 39/143)  
7. Received bipolar violation errors alarm, FRM_SR3 bit 0.  
This alarm indicates any bipolar decoding error or detection of excessive zeros.  
8. Received excessive CRC errors alarm, FRM_SR3 bit 3.  
In ESF, this alarm is asserted when 320 or more CRC-6 checksum errors are detected within a one second inter-  
val. In CEPT, this alarm is asserted when 915 or more CRC-4 checksum errors are detected within a one second  
interval.  
* After a reset, the read and write pointers of the receive path elastic store will be set to a known state.  
Lucent Technologies Inc.  
83  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
11. The 4-bit Sa6 codes (FRM_SR2 bit 3—bit 7).  
Alarms and Performance Monitoring  
(continued)  
Sa6 codes are asserted if three consecutive 4-bit pat-  
terns have been detected. The alarms are disabled  
when three consecutive 4-bit Sa6 codes have been  
detected that are different from the pattern previously  
detected. The receive framer monitors the Sa6 bits for  
special codes described in ETS Draft prETS 300  
233:1992 Section 9.2. The Sa6 codes are defined in  
Tables 41 and 42. The Sa6 codes in Table 41 may be  
recognized as an asynchronous bit stream in either  
non-CRC-4 or CRC-4 modes as long as the receive  
framer is in the basic frame alignment state. In the  
CRC-4 mode, the receive framer can optionally recog-  
nize the received Sa6 codes in Table 41 synchronously  
to the CRC-4 submultiframe structure as long as the  
receive framer is in the CRC-4 multiframe alignment  
state (synchronous Sa6 monitoring can be enabled by  
setting register FRM_PR10 bit 1 to 1). The Sa6 codes  
in Table 42 are only recognized synchronously to the  
CRC-4 submultiframe and when the receive framer is  
in CRC-4 multiframe alignment. The detection of three  
(3) consecutive 4-bit patterns are required to indicate a  
valid received Sa6 code. The detection of Sa6 codes is  
indicated in status register FRM_SR2 bit 3—bit 7.  
Once set, any three-nibble (12-bit) interval that con-  
tains any other Sa6 code will clear the current Sa6 sta-  
tus bit. Interrupts may be generated by the Sa6 codes  
given in Table 41.  
9. The CEPT continuous E-bit alarm (CREBIT)  
(FRM_SR2 bit 2).  
CREBIT is asserted when the receive framer  
detects:  
— Five consecutive seconds where each 1 second  
interval contains 991 received E bits = 0 events.  
— Simultaneously no LFA occurred.  
— Optionally, no remote frame alarm (A bit = 1) was  
detected if register FRM_PR9 bit 0, bit 4, and bit 5  
are set to 1.  
— Optionally, neither Sa6-Fhex nor Sa6-Ehex codes  
were detected if register FRM_PR9 bit 0, bit 4,  
and bit 6 are set to 1.  
— The five second timer is started when:  
— CRC-4 multiframe alignment is achieved.  
— And optionally, A = 0 is detected if register  
FRM_PR9 bit 0, bit 4, and bit 5 are set to 1.  
— And optionally, neither Sa6_Fhex nor Sa6_Ehex is  
detected if register FRM_PR9 bit 0, bit 4, and bit 6  
are set to 1.  
1
*
The five second counter is restarted when:  
— LFA occurs, or  
— ð990 E bit = 0 events occur in 1 second, or  
— Optionally, an A bit = 1 is detected if register  
FRM_PR9 bit 0, bit 4, and bit 5 are set to 1.  
— Optionally, a valid Sa6 pattern 1111 (binary) or  
Sa6 pattern 1110 (binary) code was detected if  
register FRM_PR9 bit 0, bit 4, and bit 6 are  
set to 1.  
Table 41. Sa6 Bit Coding Recognized by the  
Receive Framer-Asynchronous  
Bit Stream  
Code  
FirstReceive  
Bit (MSB)  
Last Received  
Bit (LSB)  
This alarm is disabled during loss of frame alignment  
(LFA) or loss of CRC-4 multiframe alignment  
(LTS0MFA).  
Sa6_8hex  
Sa6_Ahex  
Sa6_Chex  
Sa6_Ehex  
Sa6_Fhex  
1
1
1
1
1
0
0
1
1
1
0
1
0
1
1
0
0
0
0
1
10. Failed state alarm or the unavailable state alarm,  
FRM_SR5 bit 3 and bit 7 and FRM_SR6 bit 3 and  
bit 7.  
This alarm is defined as the unavailable state at the  
onset of ten consecutive severely errored seconds. In  
this state, the receive framer inhibits incrementing of  
the severely errored and errored second counters for  
the duration of the unavailable state. The receive  
framer deasserts the unavailable state condition at the  
onset of ten consecutive errored seconds which were  
not severely errored.  
* See Table 41, Sa6 Bit Coding Recognized by the Receive Framer,  
for a definition of this Sa6 pattern.  
84  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
Table 42 defines the three 4-bit Sa6 codes that are always detected synchronously to the CRC-4 submultiframe  
structure and are only used for counting NT1 events.  
Table 42. Sa6 Bit Coding Recognized by the Receive Frame-Synchronous Bit Stream  
Code  
First Receive Bit  
(MSB)  
Last Received Bit  
(LSB)  
Event at NT1  
Counter Size  
(bits)  
Sa6_1hex  
Sa6_2hex  
Sa6_3hex  
0
0
0
0
0
0
0
1
1
1
0
1
E = 0  
16  
16  
CRC-4 Error  
CRC-4 Error & E = 0  
This code will cause both  
counters to increment.  
The reference points for receive CRC-4, E bit, and Sa6 decoding are illustrated in Figure 40.  
T REFERENCE  
POINT  
V REFERENCE  
POINT  
NT2  
(NT1 REMOTE)  
NT1  
ET  
CRC ERROR  
DETECTED  
CRC ERROR  
DETECTED  
CRC-4 ERRORS AT THE ET,  
E BIT = 0, ERROR EVENT AT THE ET REMOTE  
E BIT = 0  
Sa6  
E BIT = 0  
COUNT:  
1) CRC ERRORS,  
2) E = 0,  
CRC-4 ERRORS DETECTED FROM NT1 REMOTE, THEN SET Sa6 = 001X  
E = 0 DETECTED FROM NT1 REMOTE, THEN SET Sa6 = 00X1  
3) Sa6 = 001X, AND  
4) Sa6 = 00X1  
CRC-4 ERRORS AT THE NT1  
E BIT = 0, ERROR EVENT DETECTED AT THE NT1 REMOTE  
5-3913(F)r.8  
Figure 40. The T and V Reference Points for a Typical CEPT E1 Application  
12. CEPT auxiliary pattern alarm (AUXP) (FRM_SR1 bit 6).  
The received auxiliary alarm, register FRM_SR1 bit 6 (AUXP), is asserted when the receive framer is in the LFA  
state and has detected more than 253 10 (binary) patterns for 512 consecutive bits. In a 512-bit interval, only two  
10 (binary) patterns are allowable for the alarm to be asserted and maintained. The 512-bit interval is a sliding win-  
dow determined by the first 10 (binary) pattern detected. This alarm is disabled when three or more 10 (binary) pat-  
terns are detected in 512 consecutive bits. The search for AUXP is synchronized with the first alternating 10  
(binary) pattern as shown in Table 43.  
Table 43. AUXP Synchronization and Clear Sychronization Process  
00  
10  
10  
01  
11  
11  
00  
00  
0
10  
00  
10  
sync  
clear sync  
sync  
. . .  
. . .  
Lucent Technologies Inc.  
85  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
Event Counters Definition  
The error events monitored in the receive framer’s status registers are defined in Table 44 for the hardwired  
(default) threshold values. The errored second and severely errored second threshold registers can be pro-  
grammed through FRM_PR11—FRM_PR13 such that the errored and severely errored second counters function  
as required by system needs. DS1 errors are reported in the ET error registers, FRM_SR20 through FRM_SR35.  
For the framer to correctly report coding and BPV errors, the LIU/framer interface must ber configured as dual-rail  
mode.  
Table 44. Event Counters Definition  
Error Event  
Functional Mode  
Definition  
Counter Size  
(bits)  
Bipolar Violations  
(BPVs)  
AMI  
Any bipolar violation or 16 or more consecutive zeros.  
16  
B8ZS  
Any BPV, code violation, or any 8-bit interval with no  
one pulse.  
CEPT HDB3  
SF: D4  
Any BPV, code violation, or any 4-bit interval with no  
one pulse.  
Frame Alignment  
Errors (FERs)  
Any FT or FS bit errors (FRM_PR10 bit 2 = 1) or any FT  
bit errors (FRM_PR10 bit 2 = 0).  
16  
SF: SLC-96  
Any FT or FS bit errors (FRM_PR10 bit 2 = 1) or any FT  
bit errors (FRM_PR10 bit 2 = 0).  
SF: DDS  
ESF  
Any FT, FS, or time slot 24 FAS bit error.  
Any FE bit error.  
CEPT  
Any FAS (0011011) or NOT FAS (bit 2) bit error.  
CRC Checksum  
Errors  
ESF or CEPT with Any received checksum in error.  
CRC  
16  
Excessive CRC  
Errors  
ESF  
320 checksum errors in a one second interval.  
NONE  
CEPT with CRC 915 checksum errors in a one second interval.  
CEPT with CRC-4 E bits = 0 in frame 13 and frame 15.  
Received  
E bits = 0  
16  
16  
Errored Second  
Events  
All  
Any one of the relevant error conditions enabled in reg-  
isters FRM_PR14—FRM_PR18 within a one second  
interval.  
DS1: non ESF Any framing bit errors within a one second interval.  
DS1: ESF  
Any CRC-6 errors within a one second interval.  
Any framing errors within a one second interval.  
CEPT without  
CRC-4  
CEPT with CRC-4 Any CRC-4 errors within a one second interval.  
(ET1)  
CEPT with CRC-4 Any E bit = 0 event within a one second interval.  
(ET1 remote)  
CEPT with CRC-4 Any Sa6 = 001x (binary) code event within a one sec-  
(NT1)  
CEPT with CRC-4 Any Sa6 = 00x1 (binary) code event within a one sec-  
(NT1 remote) ond interval.  
ond interval.  
86  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Alarms and Performance Monitoring (continued)  
Table 44. Event Counters Definition (continued)  
Error Event  
Functional Mode  
Definition  
Counter Size  
(bits)  
Bursty Errored  
Second Events  
DS1: non ESF  
DS1: ESF  
Greater than 1 but less than 8 framing bit errors  
within a one second interval.  
16  
Greater than 1 but less than 320 CRC-6 errors within  
a one second interval.  
CEPT without CRC-4 Greater than 1 but less than 16 framing bit errors  
within a one second interval.  
CEPT with CRC-4 (ET1) Greater than 1 but less than 915 CRC-4 errors within  
a one second interval.  
CEPT with CRC-4  
(ET1 remote)  
Greater than 1 but less than 915 E bit = 0 events  
within a one second interval.  
CEPT with CRC-4 (NT1) Greater than 1 but less than 915 Sa6 = 001x (binary)  
code events within a one second interval.  
CEPT with CRC-4  
(NT1 remote)  
Greater than 1 but less than 915 Sa6 = 00x1 (binary)  
code events within a one second interval.  
Severely Errored  
Second Events  
All  
Any one of the relevant error conditions enabled in  
registers FRM_PR14—FRM_PR18 within a one sec-  
ond interval.  
16  
DS1: non ESF  
DS1: ESF  
8 or more framing bit errors within a one second  
interval.  
320 or more CRC-6 errors within a one second inter-  
val.  
CEPT with no CRC-4 16 or more framing bit errors within a one second  
interval.  
CEPT with CRC-4 (ET1) 915 or more CRC-4 errors within a one second inter-  
val.  
CEPT with CRC-4  
(ET1 remote)  
915 or more E bit = 0 events within a one second  
interval.  
CEPT with CRC-4 (NT1) 915 or more Sa6 = 001x (binary) code events within  
a one second interval.  
CEPT with CRC-4  
(NT1 remote)  
915 or more Sa6 = 00x1 (binary) code events within  
a one second interval.  
Unavailable Sec-  
ond Events  
All  
A one second period in the unavailable state.  
16  
The receive framer enters an unavailable state condition at the onset of ten consecutive severely errored second  
events. When in the unavailable state, the receive framer deasserts the unavailable state alarms at the onset of ten  
consecutive seconds which were not severely errored.  
Lucent Technologies Inc.  
87  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
The STSLLB mode loops one and only one received  
line time slot back to the transmit line. The selected  
time-slot data is looped to the line after being pro-  
cessed by the receive framer, and it passes through  
the receive elastic store. The selected time slot has  
the programmable idle code in register FRM_PR22  
transmitted to the system interface one frame before  
implementing the loopback and for the duration of the  
loopback. In CEPT, selecting time slot 0 has the  
effect of deactivating the current loopback mode  
while no other action will be taken (time slot 0 will not  
be looped back to the line and should not be cho-  
sen). This mode can be selected by setting register  
FRM_PR24 to 100A4A3A2A1A0, where A4A3A2A1A0  
is the binary address of the selected time slot.  
Alarms and Performance Monitoring  
(continued)  
Loopback and Transmission Modes  
Primary Loopback Modes  
Framer primary loopback mode is controlled by register  
FRM_PR24. There are seven primary loopback and  
transmission test modes supported:  
Line loopback (LLB).  
Board loopback (BLB).  
Single time-slot system loopback (STSSLB).  
Single time-slot line loopback (STSLLB).  
CEPT nailed-up broadcast transmission (CNUBT).  
Payload loopback (PLLB).  
The CNUBT mode transmits received-line time slot X  
to the system in time slots X and time slot 0 (of the  
next frame). Any time slot can be broadcast. This  
mode can be selected by setting register FRM_PR24  
to 101A4A3A2A1A0 where A4A3A2A1A0 is the binary  
address of the selected time slot.  
CEPT nailed-up connect loopback (CNUCLB).  
The loopback and transmission modes are described in  
detail below:  
The PLLB mode loops the received line data and  
clock back to the transmit line while inserting (replac-  
ing) the facility data link in the looped back data. Two  
variations of the payload loopback are available. In  
the pass through framing/CRC bit mode (chosen by  
setting register FRM_PR24 to 111xxxxx (binary)),  
the framing and CRC bits are looped back to the line  
transmit data. In the regenerated framing/CRC bit  
mode (chosen by setting register FRM_PR24 to  
110xxxxx (binary) and register FRM_PR10 bit 3 to  
0), the framing and CRC bits are regenerated by the  
transmit framer. The payload loopback is only avail-  
able for ESF and CEPT modes.  
The LLB mode loops the receive line data and clock  
back to the transmit line. The received data is pro-  
cessed by the receive framer and transmitted to the  
system interface. This mode can be selected by set-  
ting register FRM_PR24 to 001xxxxx (binary).  
The BLB mode loops the receive system data back  
to the system after:  
— The transmit framer processes the data, and  
— The receive framer processes the data.  
— In the BLB mode, AIS is always transmitted to the  
line interface. This mode can be selected by set-  
ting register FRM_PR24 to 010xxxxx (binary).  
The CNUCLB mode loops received system time slot  
X back to the system in time slot 0. The selected time  
slot is not routed through the receive elastic store  
buffer and therefore will not be affected by system-  
AIS, RLFA conditions, or controlled slips. Any time  
slot can be looped back to the system. Time slot X  
transmitted to the line is not affected by this loopback  
mode. Looping received system time slot 0 has no  
effect on time slot 0 transmitted to the line, i.e., the  
transmit framer will always overwrite the FAS and  
NOT FAS data in time slot 0 transmitted to the line.  
This mode can be selected by setting register  
FRM_PR24 to 110A4A3A2A1A0 and register  
The STSSLB mode loops one and only one received  
system time slot back to the transmit system inter-  
face. The selected looped back time-slot data is not  
processed by either the transmit framer or the  
receive framer. The selected time slot does not pass  
through the receive elastic store buffer and therefore  
will not be affected by system-AIS, RLFA conditions,  
or controlled slips events. Once selected, the desired  
time-slot position has the programmable idle code in  
register FRM_PR22 transmitted to the line interface  
one frame before implementing the loopback and for  
the duration of the loopback. This mode can be  
selected by setting register FRM_PR24 to  
FRM_PR10 bit 3 to 1, where A4A3A2A1A0 is the  
binary address of the selected time slot.  
011A4A3A2A1A0, where A4A3A2A1A0 is the binary  
address of the selected time slot.  
88  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
loopback mode will control that time slot. Once  
Alarms and Performance Monitoring  
(continued)  
selected, the desired time-slot position has the pro-  
grammable line idle code in register FRM_PR22  
transmitted to the line interface one frame before  
implementing the loopback and for the duration of  
the loopback.  
Secondary Loopback Modes  
There are two secondary loopback modes supported:  
Secondary-single time-slot system loopback  
(S-STSSLB)  
The secondary-STSLLB mode loops one and only  
one line time slot back to the line. The selected time  
slot data is looped to the line after being processed  
by the receive framer and it passes through the  
receive elastic store. The selected time slot has the  
programmable idle code in register FRM_PR22  
transmitted to the system interface one frame before  
implementing the loopback and for the duration of  
the loopback. In CEPT, selecting time slot 0 has the  
effect of deactivating the current loopback mode  
while no other action will be taken (time slot 0 will not  
be looped back to the line and should not be chosen  
in this mode).  
Secondary-single time-slot line loopback  
(S-STSLLB)  
The loopbacks are described in detail below:  
The secondary-STSSLB mode loops one and only  
one received system time slot back to the transmit  
system interface. The selected time-slot data looped  
back is not processed by either the transmit framer or  
the receive framer. The selected time slot does not  
pass through the receive elastic store buffer and  
therefore will not be affected by system-AIS, RLFA  
conditions, or controlled slips events. Whenever the  
secondary loopback register is programmed to the  
same time slot as the primary register, the primary  
Table 45 defines the deactivation of the two secondary  
loopback modes as a function of the activation of the  
primary loopback and test transmission modes.  
Table 45. Summary of the Deactivation of SSTSSLB and SSTSLLB Modes as a Function of Activating the  
Primary Loopback Modes  
Primary Loopback Mode  
Deactivation of S-STSSLB  
If primary time slot = secondary  
If primary time slot = secondary  
Always  
Deactivation of S-STSLLB  
If primary time slot = secondary  
If primary time slot = secondary  
Always  
STSSLB  
STSLLB  
BLB  
CNUBT  
If the secondary time slot is TS0 or if the If primary time slot = secondary  
primary time slot = secondary  
LLB  
Always  
Always  
NUCLB  
If the secondary time slot is TS0 or if the If primary time slot = secondary  
primary time slot = secondary  
PLLB  
Always  
Always  
Lucent Technologies Inc.  
89  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
Figure 41 illustrates the various loopback modes implemented by each framer unit.  
FRAMER  
AIS  
RECEIVE SYSTEM DATA  
IS IGNORED  
LINE  
SYSTEM  
LINE  
SYSTEM  
ES  
(2) BOARD LOOPBACK  
(1) LINE LOOPBACK  
TRANSMIT PROGRAMMABLE LINE IDLE CODE  
TRANSMIT PROGRAMMABLE IDLE CODE  
IN REGISTER FRM_PR22  
IN OUTGOING LINE TS-X  
IN REGISTER FRM_PR22  
IN OUTGOING SYSTEM TS-X  
FRAMER  
SYSTEM  
INSERT ONLY TIME SLOT X  
LINE  
LINE  
SYSTEM  
LOOPBACK TS-X  
ES  
ES  
(3) SINGLE TIME-SLOT SYSTEM LOOPBACK  
FRAMER  
(4) SINGLE TIME-SLOT LINE LOOPBACK  
TRANSMIT FRAMER  
LINE  
LINE  
SYSTEM  
SYSTEM  
ES  
TRANSMIT LINE TS-X IN  
SYSTEM TS-X AND SYSTEM TS-0  
(6) PAYLOAD LINE LOOPBACK  
(5) CEPT NAILED-UP BROADCAST TRANSMISSION  
FRAMER  
SYSTEM  
LINE  
ES  
LOOPBACK TS-X IN TS-0  
(7) CEPT NAILED-UP CONNECT LOOPBACK  
5-3914(F).cr.3  
Figure 41. Loopback and Test Transmission Modes  
90  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Alarms and Performance Monitoring (continued)  
Line Test Patterns  
Test patterns may be transmitted to the line through either register FRM_PR20 or register FRM_PR69. Only one of  
these sources may be active at the same time. Signaling must be inhibited while sending these test patterns.  
Transmit Line Test Patterns—Using Register FRM_PR20  
The transmit framer can be programmed through register FRM_PR20 to transmit various test patterns. These test  
patterns, when enabled, overwrite the received CHI data. The test patterns available using register FRM_PR20  
are:  
The unframed-AIS pattern which consists of a continuous bit stream of ones (. . . 111111 . . .) enabled by setting  
register FRM_PR20 bit 0 to 1.  
The unframed-auxiliary pattern which consists of a continuous bit stream of alternating ones and zeros  
(. . . 10101010 . . .) enabled by setting register FRM_PR20 bit 1 to 1.  
The quasi-random test signal, enabled by setting register FRM_PR20 bit 3 to 1, which consists of:  
— A pattern produced by means of a twenty-stage shift register with feedback taken from the 17th and 20th  
stages via an exclusive-OR gate to the first stage. The output is taken from the 20th stage and is forced to a 1  
state whenever the next 14 stages (19 through 6) are all 0. The pattern length is 1,048,575 or  
220 – 1 bits. This pattern is described in detail in AT&T Technical Reference 62411 [5] Appendix and illustrated  
in Figure 42.  
— Valid framing bits.  
— Valid transmit facility data link (TFDL) bit information.  
— Valid CRC bits.  
A
C
D
D
D
D
D
D
B
XOR  
#1  
#2  
D-TYPE FLIP-FLOPS  
#17  
#18  
#19  
#20  
#6  
QUASI-RANDOM TEST OUTPUT  
#19  
OR  
NOR  
#20  
5-3915(F).dr.1  
Figure 42. 20-Stage Shift Register Used to Generate the Quasi-Random Signal  
The pseudorandom test pattern, enabled by setting register FRM_PR20 bit 2 to 1, which consists of:  
— A 215– 1 pattern inserted in the entire payload (time slots 1—24 in DS1 and time slots 1—32 in CEPT), as  
described by ITU Rec. 0.151 and illustrated in Figure 43.  
— Valid framing pattern.  
— Valid transmit facility data link (TFDL) bit data.  
— Valid CRC bits.  
Lucent Technologies Inc.  
91  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
A
C
D
D
D
D
D
D
B
PSEUDORANDOM  
TEST OUTPUT  
#1  
#2  
#3  
#13  
#14  
#15  
XOR  
D-TYPE FLIP-FLOPS  
5-3915(F).er.1  
Figure 43. 15-Stage Shift Register Used to Generate the Pseudorandom Signal  
The idle code test pattern, enabled by setting register FRM_PR20 bit 6 to 1, which consists of:  
— The programmable idle code, programmed through register FRM_PR22, in time slots 1—24 in DS1 and 0—31  
in CEPT.  
— Valid framing pattern.  
— Valid transmit facility data link (TFDL) bit data.  
— Valid CRC bits.  
Transmit Line Test Patterns—Using Register FRM_PR69  
Framed or unframed patterns indicated in Table 46 may be generated and sent to the line by register FRM_PR69  
and by setting register FRM_PR20 to 00 (hex). Selection of transmission of either a framed or unframed test pat-  
tern is made through FRM_PR69 bit 3. If one of the test patterns of register FRM_PR69 is enabled, a single bit  
error can be inserted into the transmitted test pattern by toggling register FRM_PR69 bit 1 from 0 to 1.  
Table 46. Register FRM_PR69 Test Patterns  
Pattern  
Register FRM_PR69  
Bit 7 Bit 6 Bit 5 Bit 4  
MARK (all ones AIS)  
0
0
0
0
0
0
0
1
QRSS (220 – 1 with zero suppression)  
25 – 1  
63 (26 – 1)  
511 (29 – 1)  
511 (29 – 1) reversed  
2047 (211 – 1)  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
2047 (211 – 1) reversed  
215 – 1  
2
20 – 1  
220 – 1  
223 – 1  
1:1 (alternating)  
92  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
To establish lock to the pattern, 256 sequential bits  
Alarms and Performance Monitoring  
must be received without error. When lock to the pat-  
tern is achieved, the appropriate bit of register  
FRM_SR7 is set to a 1. Once pattern lock is estab-  
lished, the monitor can withstand up to 32 single bit  
errors per frame without a loss of lock. Lock will be lost  
if more than 32 errors occur within a single frame.  
When such a condition occurs, the appropriate bit of  
register FRM_SR7 is deasserted. The monitor then  
resumes scanning for pattern candidates.  
(continued)  
Receive Line Pattern Monitor—Using Register  
FRM_SR7  
The receive framer pattern monitor continuously moni-  
tors the received line, detects the following fixed framed  
patterns, and indicates detection in register FRM_SR7  
bit 6 and bit 7.  
Receive Line Pattern Detector—Using Register  
FRM_PR70  
The pseudorandom test pattern as described by ITU  
Rec. O.151 and illustrated in Figure 43. Detection of  
the pattern is indicated by register FRM_SR7 bit  
6 = 1.  
Framed or unframed patterns indicated in Table 47 may  
be detected using register FRM_PR70. Detection of  
the selected test pattern is indicated when register  
FRM_SR7 bit 4 is set to 1. Selection of a framed or  
unframed test pattern is made through FRM_PR70 bit  
3. Bit errors in the received test pattern are indicated  
when register FRM_SR7 bit 5 = 1. The bit errors are  
counted and reported in registers FRM_SR8 and  
FRM_SR9, which are normally the BPV counter regis-  
ters. (In this test mode, the BPV counter registers do  
not count BPVs but count only bit errors in the received  
test pattern.)  
The quasi-random test pattern described in AT&T  
Technical Reference 62411[5] Appendix and illus-  
trated in Figure 42. Detection of the pattern is indi-  
cated by register FRM_SR7 bit 7 = 1.  
In DS1 mode, the received 193 bit frame must consist  
of 192 bits of pattern plus 1 bit of framing information.  
In CEPT mode, the received 256 bit frame must consist  
of 248 bits of pattern plus 8 bits (TS0) of framing infor-  
mation. No signaling, robbed bit in the case of T1 and  
TS16 signaling in the case of CEPT, may be present for  
successful detection of these two test patterns.  
Table 47. Register FRM_PR70 Test Patterns  
Pattern  
Register FRM_PR70  
Bit 7 Bit 6 Bit 5 Bit 4  
MARK (all ones AIS)  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
QRSS (220 – 1 with zero suppression)  
25 – 1  
63 (26 – 1)  
511 (29 – 1)  
511 (29 – 1) reversed  
2047 (211 – 1)  
2047 (211 – 1) reversed  
215 – 1  
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
220 – 1  
2
20 – 1  
223 – 1  
1:1 (alternating)  
Lucent Technologies Inc.  
93  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
The pattern detector continuously monitors the received line for the particular pattern selected in register  
FRM_PR70 bit 7—bit 4 (DPTRN). To establish detector lock to the pattern, 256 sequential bits must be detected.  
Once the detector has locked onto the selected pattern, it will remain locked to the established alignment and count  
all unexpected bits as single bit errors until register FRM_PR70 bit 2 (DBLKSEL) is set to 0.  
To select a pattern or change the pattern to be detected, the following programming sequence must be followed.  
DBLKSEL (register FRM_PR70 bit 2) is set to 0.  
The new pattern to be detected is selected by setting register FRM_PR70 bit 7—bit 4 to the desired value.  
DBLKSEL (register FRM_PR70 bit 2) is set to 1.  
94  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Alarms and Performance Monitoring (continued)  
Automatic and On-Demand Commands  
Various alarms can be transmitted either automatically as a result of various alarm conditions or on demand. After  
reset, all automatic transmissions are disabled. The user can enable the automatic or on-demand actions by set-  
ting the proper bits in the automatic and on-demand action registers as identified below in Table 48. Table 48 shows  
the programmable automatically transmitted signals and the triggering mechanisms for each. Table 49 shows the  
on-demand commands.  
Table 48. Automatic Enable Commands  
Action  
Trigger  
Enabling Register Bit  
FRM_PR27 bit 0 = 1  
Transmit Remote Frame Alarm  
(RFA)  
Loss of frame alignment (RLFA).  
Loss of CEPT time slot 16 multiframe FRM_PR27 bit 1 = 1  
alignment (RTS16LMFA).  
Loss of CEPT time slot 0 multiframe  
alignment (RTS0LMFA).  
FRM_PR27 bit 2 = 1  
Detection of the timer (100 ms or  
400 ms) expiration due to loss of  
CEPT multiframe alignment.  
FRM_PR27 bit 3 = 1  
FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
0xxx1xx1  
Detection of the CEPT RSa6 = 8 (hex) FRM_PR27 bit 4 = 1  
code.  
Detection of the CEPT RSa6 = C (hex) FRM_PR27 bit 5 = 1  
code.  
Transmit CEPT E Bit = 0  
Transmit AIS to System  
Detection of CEPT CRC-4 error.  
RTS0LMFA.  
FRM_PR28 bit 3 = 1  
FRM_PR28 bit 4 = 1  
Detection of the timer (100 ms or  
400 ms) expiration due to loss of  
CEPT multiframe alignment.  
FRM_PR28 bit 5 = 1  
FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
0xxx1xx1  
RLFA.  
FRM_PR19 bit 0 = 1  
Detection of the timer (100 ms or  
400 ms) expiration due to loss of  
CEPT multiframe alignment.  
FRM_PR19 bit 1 = 1  
FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
0xxx1xx1  
Transmit CEPT Time Slot 16  
Remote Multiframe Alarm to  
Line  
RTS16LMFA.  
FRM_PR41 bit 4 = 1  
Transmit CEPT AIS in Time Slot RTS16LMFA.  
16 to System  
FRM_PR44 bit 6 = 1  
FRM_PR19 bit 4 =1  
FRM_PR19 bit 6 =1  
FRM_PR19 bit 7 =1  
Automatic Enabling of DS1 Line Line loopback on/off code.  
Loopback On/Off  
Automatic Enabling of ESF FDL ESF line loopback on/off code.  
Line Loopback On/Off  
Automatic Enabling of ESF FDL ESF payload loopback on/off code.  
Payload Loopback On/Off  
Lucent Technologies Inc.  
95  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Alarms and Performance Monitoring (continued)  
Table 49. On-Demand Commands  
Type  
Frame Format  
Action  
Enabling Register Bit  
Transmit Remote Frame Alarm D4 (Japanese) FS bit in frame 12 = 1.  
FRM_PR27 bit 6 = 1  
FRM_PR27 bit 7 = 1  
D4 (US)  
DDS  
Bit 2 of all time slots = 0.  
Bit 6 in time slot 24 = 0.  
ESF  
Pattern of 1111111100000000 in  
the FDL F-bit position.  
CEPT  
CEPT  
A bit = 1.  
Transmit Time Slot 16 Remote  
Multiframe Alarm to the Line  
Time slot 16 remote alarm bit = 1. FRM_PR41 bit 5 = 1  
Transmit Data Link AIS  
(Squelch)  
SLC-96, ESF Transmit data link bit = 1.  
FRM_PR21 bit 4 = 1  
Transmit Line Test Patterns  
All  
Transmit test patterns to the line  
interface.  
See Line Test Patterns  
section on page 91 and  
Transmit Line Test Pat-  
terns—Using Register  
FRM_PR69 section on  
page 92.  
Transmit System AIS  
All  
T1  
Transmits AIS to the system.  
FRM_PR19 bit 3 = 1  
Transmit System Signaling AIS  
(Squelch)  
Transmit ABCD = 1111 to the sys- FRM_PR44 bit 1 = 1  
tem.  
CEPT  
All  
Transmit AIS in system time slot  
16.  
FRM_PR44 bit 7 = 1  
FRM_PR44 bit 3 = 1  
FRM_PR26 bit 2 = 1  
Receive Signaling Inhibit  
Receive Framer Reframe  
Transmit Line Time Slot 16  
Enable Loopback  
Suspend the updating of the  
receive signaling registers.  
All  
Force the receive framer to  
reframe.  
CEPT  
All  
Transmit AIS in time slot 16 to the FRM_PR41 bit 6 = 1  
line.  
Enables system and line loop-  
backs.  
See Loopback and Trans-  
mission Modes section on  
page 88.  
Framer Software Reset  
Framer Software Restart  
All  
All  
The framer and FDL are placed in FRM_PR26 bit 0 = 1  
the reset state for four RCLK clock  
cycles. The framer parameter reg-  
isters are forced to the default  
value.  
The framer and FDL are placed in FRM_PR26 bit 1 = 1  
the reset state as long as this bit is  
set to 1. The framer parameter reg-  
isters are not changed from their  
programmed values.  
96  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Facility Data Link (FDL)  
Data may be extracted from and inserted into the facility data link in SLC-96, DDS, ESF, and CEPT framing for-  
mats. In CEPT, any one of the Sa bits can be declared as the facility data link by programming register FRM_PR43  
bit 0—bit 2. Access to the FDL is made through:  
The FDL pins (RFDL, RFDLCK, TFDL, and TFDLCK). Figure 28 shows the timing of these signals.  
The 64-byte FIFO of the FDL HDLC block. FDL information passing through the FDL HDLC section may  
beframed in HDLC format or passed through transparently  
.
t8  
t8: TFDLCK CYCLE = 125 µs (DDS)  
TFDLCK  
250 µs (ALL OTHER  
MODES)  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 125 µs (DDS)  
250 µs (ALL OTHER  
MODES)  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).cr.1  
Figure 44. T7630 Facility Data Link Access Timing of the Transmit and Receive Framer Sections  
In the ESF frame format, automatic assembly and transmission of the performance report message (PRM) as  
defined in both ANSI T1.403-1995 and Bellcore’s TR-TSY-000194 Issue 1, 12—87 is managed by the receive  
framer and transmit FDL sections. The ANSI T1.403-1995 bit-oriented data link messages (BOM) can be transmit-  
ted by the transmit FDL section and recognized and stored by the receive FDL section.  
Receive Facility Data Link Interface  
Summary  
A brief summary of the receive facility data link functions is given below:  
Bit-oriented message (BOM) operation. The ANSI T1.403-1995 bit-oriented data link messages are recog-  
nized and stored in register FDL_SR3. The number of times that an ANSI code must be received for detection  
can be programmed from 1 to 10 by writing to register FDL_PR0 bit 4— bit 7. When a valid ANSI code is  
detected, register FDL_SR0 bit 7 (FRANSI) is set.  
HDLC operation. This is the default mode of operation when the FDL receiver is enabled (register FDL_PR1 bit  
2 = 1). The HDLC framer detects the HDLC flags, checks the CRC bytes, and stores the data in the FDL receiver  
FIFO (register FDL_SR4) along with a status of frame (SF) byte.  
HDLC operation with performance report messages (PRM). This mode is enabled by setting register  
FDL_PR1 bit 2 and bit 6 to 1. In this case, the receive FDL will store the 13 bytes of the PRM report field in the  
FDL receive FIFO (register FDL_SR4) along with a status of frame (SF) byte.  
Lucent Technologies Inc.  
97  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Facility Data Link (FDL) (continued)  
Transparent operation. Enabling the FDL and setting register FDL_PR9 bit 6 (FTM) to 1 disables the HDLC  
processing. Incoming data link bits are stored in the FDL receive FIFO (register FDL_SR4).  
Transparent operation with pattern match. Enabling the FDL and setting registers FDL_PR9 bit 5 (FMATCH)  
and FDL_PR9 bit 6 (FTM) to 1 forces the FDL to start storing data in the FDL receive FIFO (register FDL_SR4)  
only after the programmable match character defined in register FDL_PR8 bit 0—bit 7 has been detected. The  
match character and all subsequent bytes are placed into the FDL receive FIFO.  
The FDL interface to the receive framer is illustrated in Figure 45.  
RECEIVE LINE  
DATA  
LOSS OF FRAME  
RECEIVE FDL  
ALIGNMENT  
DATA  
RECEIVE  
EXTRACTER  
FRAMER  
RFDL  
RFDLCK  
RFDL  
RECEIVE  
FACILITY DATA  
RECEIVE FACILITY  
DATA LINK HDLC  
TRANSPARENT  
RFDLCK  
ANSI T1.403-1995  
BIT-ORIENTED DATA  
LINK MESSAGES  
MONITOR  
RECEIVE FACILITY  
DATA LINK FIFO  
ONE 8-bit REGISTER  
IDENTIFYING THE ESF  
BIT-ORIENTED CODE  
64 8-bit LOCATIONS  
MICROPROCESSOR INTERFACE  
5-4560(F).a  
Figure 45. Block Diagram for the Receive Facility Data Link Interface  
Receive ANSI T1.403 Bit-Oriented Messages (BOM)  
The receive FDL monitor will detect any of the ANSI T1.403 ESF bit-oriented messages (BOMs) and generate an  
interrupt, enabled by register FDL_PR6 bit 7, upon detection. Register FDL_SR0 bit 7 (FRANSI) is set to 1 upon  
detection of a valid BOM and then cleared when read.  
The received ESF FDL bit-oriented messages are received in the form 111111110X0X1X2X3X4X50 (the left-most  
bit is received first). The bits designated as X are the defined ANSI ESF FDL code bits. These code bits are writ-  
ten into the received ANSI FDL status register FDL_SR3 when the entire code is received.  
The minimum number of times a valid code must be received before it is reported can be programmed from 1 to  
10 using register FDL_PR0 bit 4—bit 7.  
98  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Facility Data Link (FDL) (continued)  
The received ANSI FDL status byte, register FDL_SR3, has the following format.  
Table 50. Receive ANSI Code  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
X5  
X4  
X3  
X2  
X1  
X0  
Receive ANSI Performance Report Messages (PRM)  
As defined in ANSI T1.403, the performance report messages consist of 15 bytes, starting and ending with an  
HDLC flag. The receive framer status information consists of four pairs of octets, as shown in Table 51. Upon  
detection of the PRM message, the receive FDL extracts the 13 bytes of the PRM report field and stores it in the  
receive FDL FIFO along with the status of frame byte.  
Table 51. Performance Report Message Structure*  
Octet PRM B7 PRM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0  
Number  
1
Flag  
2
SAPI  
C/R  
EA  
EA  
3
TEI  
Control  
U1  
4
5
G3  
FE  
G3  
FE  
G3  
FE  
G3  
FE  
LV  
SE  
LV  
G4  
LB  
G4  
LB  
G4  
LB  
G4  
LB  
U2  
R
G5  
G2  
G5  
G2  
G5  
G2  
G5  
G2  
SL  
Nm  
SL  
G6  
Nl  
6
7
G1  
U1  
G1  
U1  
G1  
U1  
G1  
U2  
R
G6  
Nl  
8
SE  
LV  
Nm  
SL  
9
U2  
R
G6  
Nl  
10  
SE  
LV  
Nm  
SL  
11  
U2  
R
G6  
Nl  
12  
SE  
Nm  
13—14  
15  
FCS  
Flag  
* The rightmost bit (bit 1) is transmitted first for all fields except for the 2 bytes of the FCS that are transmitted leftmost bit (bit 8) first.  
The definition of each PRM field is shown in Table 52, and octet content is shown in Table 53.  
Lucent Technologies Inc.  
99  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Facility Data Link (FDL) (continued)  
Table 52. FDL Performance Report Message Field Definition  
PRM Field  
Definition  
G1 = 1  
G2 = 1  
G3 = 1  
G4 = 1  
G5 = 1  
G6 = 1  
SE = 1  
FE =1  
CRC Error Event = 1  
1 < CRC Error Event 5  
5 < CRC Error Event 10  
10 < CRC Error Event 100  
100 < CRC Error Event 319  
CRC Error Event 320  
Severely Errored Framing Event 1 (FE will = 0)  
Frame Synchronization Bit Error Event 1 (SE will = 0)  
Line Code Violation Event 1  
Slip Event 1  
LV = 1  
SL = 1  
LB = 1  
U1, U2 = 0  
R = 0  
Payload Loopback Activated  
Reserved  
Reserved (default value = 0)  
One-Second Report Modulo 4 Counter  
Nm, Nl = 00,  
01, 10, 11  
Table 53. Octet Contents and Definition  
Octet  
Octet  
Definition  
Number  
Contents  
1
2
01111110  
Opening LAPD Flag  
00111000  
00111010  
From CI: SAPI = 14, C/R = 0, EA = 0  
From Carrier: SAPI = 14, C/R = 1, EA = 0  
3
4
00000001  
00000011  
Variable  
Variable  
Variable  
Variable  
Variable  
01111110  
TEI = 0, EA = 1  
Unacknowledged Frame  
5, 6  
7, 8  
9, 10  
11, 12  
13, 14  
15  
Data for Latest Second (T)  
Data for Previous Second (T – 1)  
Data for Earlier Second (T – 2)  
Data for Earlier Second (T – 3)  
CRC-16 Frame Check Sequence  
Closing LAPD Flag  
100  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Facility Data Link (FDL) (continued)  
Receive HDLC Mode  
This is the default mode of the FDL. The receive FDL receives serial data from the receive framer, identifies HDLC  
frames, reconstructs data bytes, provides bit destuffing as necessary, and loads parallel data in the receive FIFO.  
The receive queue manager forms a status of frame (SF) byte for each HDLC frame and stores the SF byte in the  
receive FDL FIFO (register FDL_SR4) after the last data byte of the associated frame. HDLC frames consisting of  
n bytes will have n + 1 bytes stored in the receive FIFO. The frame check sequence bytes (CRC) of the received  
HDLC frame are not stored in the receive FIFO. When receiving ANSI PRM frames, the frame check sequence  
bytes are stored in the receive FIFO.  
The SF byte has the following format.  
Table 54. Receive Status of Frame Byte  
RSF B7  
RSF B6  
RSF B5  
RSF B4  
RSF B3  
RSF B2  
RSF B1  
RSF B0  
BAD CRC  
ABORT  
RFIFO  
OVERRUN  
BAD BYTE  
COUNT  
0
0
0
0
Bit 7 of the SF status byte is the CRC status bit. A 1  
indicates that an incorrect CRC was detected. A 0 indi-  
cates the CRC is correct. Bit 6 of the SF status byte is  
the abort status. A 1 indicates the frame associated  
with this status byte was aborted (i.e., the abort  
sequence was detected after an opening flag and  
before a subsequent closing flag). An abort can also  
cause bits 7 and/or 4 to be set to 1. An abort is not  
reported when a flag is followed by seven ones. Bit 5 is  
the FIFO overrun bit. A 1 indicates that a receive FIFO  
overrun occurred (the 64-byte FIFO size was  
exceeded). Bit 4 is the FIFO bad byte count that indi-  
cates whether or not the bit count received was a multi-  
ple of eight (i.e., an integer number of bytes). A 1  
indicates that the bit count received after 0-bit deletion  
was not a multiple of eight, and a 0 indicates that the bit  
count was a multiple of eight. When a nonbyte-aligned  
frame is received, all bits received are present in the  
receive FIFO. The byte before the SF status byte con-  
tains less than eight valid data bits. The HDLC block  
provides no indication of how many of the bits in the  
byte are valid. User application programming controls  
processing of nonbyte-aligned frames. Bit 3—bit 0 of  
the SF status byte are not used and are set to 0. A  
good frame is implied when the SF status byte is  
00 (hex).  
Receive FDL FIFO  
Whenever an SF byte is present in the receive FIFO,  
the end of frame registers FDL_SR0 bit 4 (FREOF) and  
FDL_SR2 bit 7 (FEOF) bits are set. The receiver queue  
status (register FDL_SR2 bit 0—bit 6) bits report the  
number of bytes up to and including the first SF byte. If  
no SF byte is present in the receive FIFO, the count  
directly reflects the number of data bytes available to  
be read. Depending on the FDL frame size, it is possi-  
ble for multiple frames to be present in the receive  
FIFO. The receive fill level indicator register FDL_PR6  
bit 0—bit 5 (FRIL) can be programmed to tailor the ser-  
vice time interval to the system. The receive FIFO full  
register FDL_SR0 bit 3 (FRF) interrupt is set in the  
interrupt status register when the receive FIFO reaches  
the preprogrammed full position. An FREOF interrupt is  
also issued when the receiver has identified the end of  
frame and has written the SF byte for that frame. An  
FDL overrun interrupt register FDL_SR0 bit 5  
(FROVERUN) is generated when the receiver needs to  
write either status or data to the receive FIFO while the  
receive FIFO is full. An overrun condition will cause the  
last byte of the receive FIFO to be overwritten with an  
SF byte indicating the overrun status. A receive idle  
register FDL_SR0 bit 6 (FRIDL) interrupt is issued  
whenever 15 or more continuous ones have been  
detected.  
Lucent Technologies Inc.  
101  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Programming Note: Since the receiver writing to the  
receive FIFO and the host reading from the receive  
FIFO are asynchronous events, it is possible for a host  
read to put the number of bytes in the receive FIFO just  
below the programmed FRIL level and a receiver write  
to put it back above the FRIL level. This causes a new  
FRF interrupt and has the potential to cause software  
problems. It is recommended that during service of the  
FRF interrupt, the FRF interrupt be masked FRFIE = 0  
and the interrupt register be read at the end of the  
service routine, discarding any FRF interrupt seen  
before unmasking the FRF interrupt.  
Facility Data Link (FDL) (continued)  
The receive queue status bits, register FDL_SR2 bit  
0—bit 6 (FRQS), are updated as bytes are loaded into  
the receive FIFO. The SF status byte is included in the  
byte count. When the first SF status byte is placed in  
the FIFO, register FDL_SR0 bit 4 (FREOF) is set to 1,  
and the status freezes until the FIFO is read. As bytes  
are read from the FIFO, the queue status decrements  
until it reads 1. The byte read when register FDL_SR2  
bit 0—bit 6 = 0000001 and the FREOF bit is 1 is the SF  
status byte describing the error status of the frame just  
read. Once the first SF status byte is read from the  
FIFO, the FIFO status is updated to report the number  
of bytes to the next SF status byte, if any, or the number  
of additional bytes present. When FREOF is 0, no SF  
status byte is currently present in the FIFO, and the  
FRQS bits report the number of bytes present. As  
bytes are read from the FIFO, the queue status  
Receiver Overrun  
A receiver overrun occurs if the 64-byte limit of the  
receiver FIFO is exceeded, i.e., data has been received  
faster than it has been read out of the receive FIFO.  
Upon overrun, an SF status byte with the overrun bit  
(bit 5) set to 1 replaces the last byte in the FIFO. The  
SF status byte can have other error conditions present.  
For example, it is unlikely the CRC is correct. Thus,  
care should be taken to prioritize the possible frame  
errors in the software service routine. The last byte in  
the FIFO is overwritten with the SF status byte  
regardless of the type of byte (data or SF status) being  
overwritten. The overrun condition is reported in  
register FDL_SR0 bit 5 and causes the interrupt pin to  
be asserted if it is not masked (register FDL_PR2 bit 5  
(FROVIE)). Data is ignored until the condition is  
cleared and a new frame begins. The overrun condition  
is cleared by reading register FDL_SR0 bit 5 and  
reading at least 1 byte from the receive FIFO. Because  
multiple frames can be present in the FIFO, good  
frames as well as the overrun frame can be present.  
The host can determine the overrun frame by looking at  
the SF status byte.  
decrements with each read until it reads 0 when the  
FIFO is totally empty. The FREOF bit is also 0 when the  
FIFO is completely empty. Thus, the FRQS and  
FREOF bits provide a mechanism to recognize the end  
of 1 frame and the beginning of another. Reading the  
FDL receiver status register does not affect the FIFO  
buffers. In the event of a receiver overrun, an SF status  
byte is written to the receive FIFO. Multiple SF status  
bytes can be present in the FIFO. The FRQS reports  
only the number of bytes to the first SF status byte. If  
FRQS is 0, do not read the receive FIFO. A read will  
result in corruption of receive FIFO.  
To allow users to tailor receiver FIFO service intervals  
to their systems, the receiver interrupt level bits in  
register FDL_PR6 bit 0—bit 5 (FRIL) are provided.  
These bits are coded in binary and determine when the  
receiver full interrupt, register FDL_SR0 bit 3 (FRF), is  
asserted. The interrupt pin transition can be masked by  
setting register FDL_PR2 bit 3 (FRFIE) to 0. The value  
programmed in the FRIL bits equals the total number of  
bytes necessary to be present in the FIFO to trigger an  
FRF interrupt. The FRF interrupt alone is not sufficient  
to determine the number of bytes to read, since some  
of the bytes may be SF status bytes. The FRQS bits  
and FREOF bit allow the user to determine the number  
of bytes to read. The FREOF interrupt can be the only  
interrupt for the final frame of a group of frames, since  
the number of bytes received to the end of the frame  
cannot be sufficient to trigger an FRF interrupt.  
102  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Facility Data Link (FDL) (continued)  
Transmit Facility Data Link Interface  
The FDL interface of the transmit framer is shown in Figure 46, indicating the priority of the FDL sources.  
The remote frame alarm, enabled using register FRM_PR27, is given the highest transmission priority by the trans-  
mit framer.  
The ANSI T1.403-1995 bit-oriented data link message transmission is given priority over performance report mes-  
sages, and the automatic transmission of the performance report messages is given priority over FDL HDLC trans-  
mission. Idle code is generated by the FDL unit when no other transmission is enabled.  
The FDL transmitter is enabled by setting register FDL_PR1 bit 3 to 1.  
MICROPROCESSOR INTERFACE  
RECEIVE  
TRANSMIT  
FRAMER  
FDL FIFO  
TRANSPARENT  
TRANSMIT  
TRANSMIT FDL  
PERFORMANCE  
REPORT MESSAGE  
HDLC FRAMER  
TRANSMIT ANSI  
T1.403 FDL BIT  
ASSEMBLER  
CODE  
GENERATOR  
FDL  
IDLE CODE  
GENERATOR  
TFDL  
TFDLCK  
FDL  
YELLOW  
ALARM  
TRANSMIT FDL  
CLOCK GENERATOR  
TFDLCK  
TRANSMIT  
FRAME  
ASSEMBLER  
5-4561(F).a  
Figure 46. Block Diagram for the Transmit Facility Data Link Interface  
Transmit ANSI T1.403 Bit-Oriented Messages (BOM)  
When the ANSI BOM mode is enabled by setting register FDL_PR10 bit 7 to 1, the transmit FDL can send any of  
the ANSI T1.403 ESF bit-oriented messages automatically through the FDL bit in the frame.  
The transmit ESF FDL bit-oriented messages of the form 111111110X0X1X2X3X4X50 are taken from the transmit  
ANSI FDL parameter register FDL_PR10 bit 0—bit 5. The ESF FDL bit-oriented messages will be repeated while  
register FDL_PR10 bit 7 (FTANSI) is set to 1.  
Lucent Technologies Inc.  
103  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Facility Data Link (FDL) (continued)  
Transmit ANSI Performance Report Messages (PRM)  
When the ANSI PRM mode is enabled by setting register FDL_PR1 bit 7 to 1, the transmit FDL assembles and  
transmits the ANSI performance report message once every second.  
After assembling the ANSI PRM message, the receive framer stores the current second of the message in regis-  
ters FRM_SR62 and FRM_SR63 and transfers the data to the FDL transmit FIFO. After accumulating three sec-  
onds (8 bytes) of the message, the FDL transmit block appends the header and the trailer (including the opening  
and closing flags) to the PRM messages and transmits it to the framer for transmission to the line.  
Tables 51—53 show the complete format of the PRM HDLC packet.  
HDLC Operation  
HDLC operation is the default mode of operation. The transmitter accepts parallel data from the transmit FIFO, con-  
verts it to a serial bit stream, provides bit stuffing as necessary, adds the CRC-16 and the opening and closing  
flags, and sends the framed serial bit stream to the transmit framer. HDLC frames on the serial link have the follow-  
ing format.  
Table 55. HDLC Frame Format  
Opening Flag  
User Data Field  
Frame Check  
Closing Flag  
Sequence (CRC)  
01111110  
8 bits  
16 bits  
01111110  
All bits between the opening flag and the CRC are considered user data bits. User data bits such as the address,  
control, and information fields for LAPB or LAPD frames are fetched from the transmit FIFO for transmission. The  
16 bits preceding the closing flag are the frame check sequence, cyclic redundancy check (CRC), bits.  
Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing)  
The HDLC protocol recognizes three special bit patterns: flags, aborts, and idles. These patterns have the common  
characteristic of containing at least six consecutive ones. A user data byte can contain one of these special pat-  
terns. Transmitter zero-bit stuffing is done on user data and CRC fields of the frame to avoid transmitting one of  
these special patterns. Whenever five ones occur between flags, a 0 bit is automatically inserted after the fifth 1,  
prior to transmission of the next bit. On the receive side, if five successive ones are detected followed by a 0, the 0  
is assumed to have been inserted and is deleted (bit destuffing).  
104  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
When receiving a frame, the receiver recognizes the  
Facility Data Link (FDL) (continued)  
abort sequence whenever it receives a 0 followed by  
seven consecutive ones. The receive FDL unit will  
abort a frame whenever the receive framer detects a  
loss of frame alignment. This results in the abort bit,  
and possibly the bad byte count bit and/or bad CRC  
bits, being set in the status of frame status byte (see  
Table 54) which is appended to the receive data queue.  
All subsequent bytes are ignored until a valid opening  
flag is received.  
Flags*  
All flags have the bit pattern 01111110 and are used for  
frame synchronization. The FDL HDLC block automati-  
cally sends two flags between frames. If the chip-con-  
figuration register FDL_PR0 bit 1 (FLAGS) is cleared to  
0, the ones idle byte (11111111) is sent between  
frames if no data is present in the FIFO. If FLAGS is set  
to 1, the FDL HDLC block sends continuous flags when  
the transmit FIFO is empty. The FDL HDLC does not  
transmit consecutive frames with a shared flag; there-  
fore, two successive flags will not share the intermedi-  
ate 0.  
Idles  
In accordance with the HDLC protocol, the HDLC block  
recognizes 15 or more contiguous received ones as  
idle. When the HDLC block receives 15 contiguous  
ones, the receiver idle bit register FDL_SR0 bit 6  
(RIDL) is set.  
An opening flag is generated at the beginning of a  
frame (indicated by the presence of data in the transmit  
FIFO and the transmitter enable register FDL_PR1 bit  
3 = 1). Data is transmitted per the HDLC protocol until  
a byte is read from the FIFO while register FDL_PR3  
bit 7 (FTFC) set to 1. The FDL HDLC block follows this  
last user data byte with the CRC sequence and a clos-  
ing flag.  
For transmission, the ones idle byte is defined as the  
binary pattern 11111111 (FF (hex)). If the FLAGS con-  
trol bit in register FDL_PR0 bit 1 is 0, the ones idle byte  
is sent as the time-fill byte between frames. A time-fill  
byte is sent when the transmit FIFO is empty and the  
transmitter has completed transmission of all previous  
frames. Frames are sent back-to-back otherwise.  
The receiver recognizes the 01111110 pattern as a  
flag. Two successive flags may or may not share the  
intermediate 0 bit and are identified as two flags (i.e.,  
both 011111101111110 and 0111111001111110 are  
recognized as flags by the FDL HDLC block). When the  
second flag is identified, it is treated as the closing flag.  
As mentioned above, a flag sequence in the user data  
or CRC bits is prevented by zero-bit insertion and dele-  
tion. The HDLC receiver recognizes a single flag  
between frames as both a closing and opening flag.  
CRC-16  
For given user data bits, 16 additional bits that consti-  
tute an error-detecting code (CRC-16) are added by  
the transmitter. As called for in the HDLC protocol, the  
frame check sequence bits are transmitted most signifi-  
cant bit first and are bit stuffed. The cyclic redundancy  
check (or frame check sequence) is calculated as a  
function of the transmitted bits by using the ITU-T stan-  
dard polynomial:  
Aborts  
x 16 + x 12 + x 5 + 1  
An abort is indicated by the bit pattern of the sequence  
01111111. A frame can be aborted by writing a 1 to  
register FDL_PR3 bit 6 (FTABT). This causes the last  
byte written to the transmit FIFO to be replaced with  
the abort sequence upon transmission. Once a byte is  
tagged by a write to FTABT, it cannot be cleared by  
subsequent writes to register FDL_PR3. FTABT has  
higher priority than FDL transmit frame complete  
(FTFC), but FTABT and FTFC should never be set to 1  
simultaneously since this causes the transmitter to  
enter an invalid state requiring a transmitter reset to  
clear. A frame should not be aborted in the very first  
byte following the opening flag. An easy way to avoid  
this situation is to first write a dummy byte into the  
queue and then write the abort command to the queue.  
The transmitter can be instructed to transmit a cor-  
rupted CRC by setting register FDL_PR2 bit 7 (FTB-  
CRC) to 1. As long as the FTBCRC bit is set, the CRC  
is corrupted for each frame transmitted by logically flip-  
ping the least significant bit of the transmitted CRC.  
The receiver performs the same calculation on the  
received bits after destuffing and compares the results  
to the received CRC-16 bits. An error indication occurs  
if, and only if, there is a mismatch.  
* Regardless of the time-fill byte used, there always is an opening  
and closing flag with each frame. Back-to-back frames are sepa-  
rated by two flags.  
Lucent Technologies Inc.  
105  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Transmitter Underrun  
Facility Data Link (FDL) (continued)  
After writing a byte to the transmit queue, the user has  
eight TFDLCK cycles in which to write the next byte  
before a transmitter underrun occurs. An underrun  
occurs when the transmitter has finished transmitting  
all the bytes in the queue, but the frame has not yet  
been closed by setting FTFC. When a transmitter  
underrun occurs, the abort sequence is sent at the end  
of the last valid byte transmitted. A FTDONE interrupt  
is generated, and the transmitter reports an underrun  
abort until the interrupt status register is read.  
Transmit FDL FIFO  
Transmit FDL data is loaded into the 64-byte transmit  
FIFO via the transmit FDL data register, FDL_PR4. The  
transmit FDL status register indicates how many addi-  
tional bytes can be added to the transmit FIFO. The  
transmit FDL interrupt trigger level register FDL_PR3  
bit 0—bit 5 (FTIL) can be programmed to tailor service  
time intervals to the system environment. The transmit-  
ter empty interrupt bit is set in the FDL interrupt status  
register FDL_SR0 bit 1 (FTEM) when the transmit  
FIFO has sufficient empty space to add the number of  
bytes specified in register FDL_PR3 bit 0—bit 5. There  
is no interrupt indicated for a transmitter overrun that is  
writing more data than empty spaces exist. Overrun-  
ning the transmitter causes the last valid data byte writ-  
ten to be repeatedly overwritten, resulting in missing  
data in the frame.  
Using the Transmitter Status and Fill Level  
The transmitter-interrupt level bits, register FDL_PR3  
bit 0—bit 5, allow the user to instruct the FDL HDLC  
block to interrupt the host processor whenever the  
transmitter has a predetermined number of empty loca-  
tions. The number of locations selected determines the  
time between transmitter empty, register FRM_SR0 bit  
1 (FTEM), interrupts. The transmitter status bits, regis-  
ter FDL_SR1, report the number of empty locations in  
the FDL transmitter FIFO. The transmitter empty  
dynamic bit, register FDL_SR1 bit 7 (FTED), like the  
FTEM interrupt bit, is set to 1 when the number of  
empty locations is less than or equal to the pro-  
grammed empty level. FTED returns to 0 when the  
transmitter is filled to above the programmed empty  
level. Polled interrupt systems can use FTED to deter-  
mine when they can write to the FDL transmit FIFO.  
Data associated with multiple frames can be written to  
the transmit FIFO by the controlling microprocessor.  
However, all frames must be explicitly tagged with a  
transmit frame complete, register FDL_PR3 bit 7  
(FTFC), or a transmit abort, register FDL_PR3 bit 6  
(FTABT). The FTFC is tagged onto the last byte of a  
frame written into the transmitter FIFO and instructs the  
transmitter to end the frame and attach the CRC and  
closing flag following the tagged byte. Once written, the  
FTFC cannot be changed by another write to register  
FDL_PR3. If FTFC is not written before the last data  
byte is read out for transmission, an underrun occurs  
(FDL_SR0 bit 2). When the transmitter has completed  
a frame, with a closing flag or an abort sequence, reg-  
ister FDL_SR0 bit 0 (FTDONE) is set to 1. An interrupt  
is generated if FDL_PR2 bit 0 (FTDIE) is set to 1.  
Sending 1-Byte Frames  
Sending 1-byte frames with an empty transmit FIFO is  
not recommended. If the FIFO is empty, writing two  
data bytes to the FIFO before setting FTFC provides a  
minimum of eight TFDLCK periods to set FTFC. When  
1 byte is written to the FIFO, FTFC must be written  
within 1 TFDLCK period to guarantee that it is effective.  
Thus, 1-byte frames are subject to underrun aborts.  
One-byte frames cannot be aborted with FTABT. Plac-  
ing the transmitter in ones-idle mode, register  
FDL_PR0 bit 1 (FLAGS) = 0, lessens the frequency of  
underruns. If the transmit FIFO is not empty, then  
1-byte frames present no problems.  
106  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
is set to 1, the receiver does not begin loading data into  
Facility Data Link (FDL) (continued)  
the FIFO until the receiver match character has been  
detected. The search for the receiver match character  
is in a sliding window fashion if register FDL_PR9 bit 4  
(FALOCT) bit is 0 (align to octet), or only on octet  
boundaries if FALOCT is set to 1. The octet boundary  
is aligned relative to the first RFDLCK after the receiver  
has been enabled. The matched character and all sub-  
sequent bytes are placed in the receive FIFO. An FDL  
receiver reset, register FDL_PR1 bit 4 (FRR) = 1,  
causes the receiver to realign to the match character if  
FMATCH is set to 1.  
Transparent Mode  
The FDL HDLC block can be programmed to operate in  
the transparent mode by setting register FDL_PR9 bit 6  
(FTRANS) to 1. In the transparent mode of operation,  
no HDLC processing is performed on user data. The  
transparent mode can be exited at any time by setting  
FDL_PR9 bit 6 (FTRANS) to 0. It is recommended that  
the transmitter be disabled when changing in and out of  
transparent mode. The transmitter should be reset by  
setting FDL_PR1 bit 5 (FTR) to 1 whenever the mode  
is changed.  
The receiver full (FRF) and receiver overrun  
(FROVERUN) interrupts in register FDL_SR0 act as in  
the HDLC mode. The received end of frame (FREOF)  
and receiver idle (FRIDL) interrupts are not used in the  
transparent mode. The match status (FMSTAT) bit is  
set to 1 when the receiver match character is first rec-  
ognized. If the FMATCH bit is 0, the FMSTAT  
(FDL_PR9 bit 3) bit is set to 1 automatically when the  
first bit is received, and the octet offset status bits  
(FDL_PR9 bit 0—bit 2) read 000. If the FMATCH bit is  
programmed to 1, the FMSTAT bit is set to 1 upon rec-  
ognition of the first receiver match character, and the  
octet offset status bits indicate the offset relative to the  
octet boundary at which the receiver match character  
was recognized. The octet offset status bits have no  
meaning until the FMSTAT bit is set to 1. An octet offset  
of 111 indicates byte alignment.  
In the transmit direction, the FDL HDLC takes data  
from the transmit FIFO and transmits that data exactly  
bit-for-bit on the TFDL interface. Transmit data is octet-  
aligned to the first TFDLCK after the transmitter has  
been enabled. The bits are transmitted least significant  
bit first. When there is no data in the transmit FIFO, the  
FDL HDLC either transmits all ones, or transmits the  
programmed HDLC transmitter idle character (register  
FDL_PR5) if register FDL_PR9 bit 6 (FMATCH) is set  
to 1. To cause the transmit idle character to be sent  
first, the character must be programmed before the  
transmitter is enabled.  
The transmitter empty interrupt, register FDL_SR0 bit 1  
(FTEM), acts as in the HDLC mode. The transmitter-  
done interrupt, register FDL_SR0 bit 0 (FTDONE), is  
used to report an empty FDL transmit FIFO. The  
FTDONE interrupt thus provides a way to determine  
transmission end. Register FDL_SR0 bit 2  
(FTUNDABT) interrupt is not active in the transparent  
mode.  
An interrupt for recognition of the match character can  
be generated by setting the FRIL level to 1. Since the  
matched character is the first byte written to the FIFO,  
the FRF interrupt occurs with the writing of the match  
character to the receive FIFO.  
Programming Note: The match bit (FMATCH) affects  
both the transmitter and the receiver. Care should be  
taken to correctly program both the transmit idle char-  
acter and the receive match character before setting  
FMATCH. If the transmit idle character is programmed  
to FF (hex), the FMATCH bit appears to affect only the  
receiver.  
In the receive direction, the FDL HDLC block loads  
received data from the RFDL interface directly into the  
receive FIFO bit-for-bit. The data is assumed to be  
least significant bit first. If FMATCH register FDL_PR9  
bit 6 is 0, the receiver begins loading data into the  
receive FIFO beginning with the first RFDLCK detected  
after the receiver has been enabled. If the FMATCH bit  
Lucent Technologies Inc.  
107  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Facility Data Link (FDL) (continued)  
The operation of the receiver in transparent mode is summarized in Table 56.  
Table 56. Receiver Operation in Transparent Mode  
FALOCT  
FMATCH  
Receiver Operation  
X
0
Serial-to-parallel conversion begins with first RFDLCK after FRE, register  
FDL_PR1 bit 2, is set. Data loaded to receive FIFO immediately.  
0
1
1
1
Match user-defined character using sliding window. Byte aligns once character is  
recognized. No data to receive FIFO until match is detected.  
Match user-defined character, but only on octet boundary. Boundary based on  
first RFDLCK after FRE, register FDL_PR1 bit 2, set. No data to receive FIFO  
until match is detected.  
Diagnostic Modes  
Loopbacks  
The serial link interface can operate in two diagnostic loopback modes: (1) local loopback and (2) remote loopback.  
The local loopback mode is selected when register FDL_PR1 bit 1 (FLLB) is set to 1. The remote loopback is  
selected when register FDL_PR1 bit 0 (FRLB) is set to 1. For normal traffic, i.e., to operate the transmitter and  
receiver independently, the FLLP bit and the FRLB bits should both be cleared to 0. Local and remote loopbacks  
cannot be enabled simultaneously.  
In the local loopback mode:  
TFDLCK clocks both the transmitter and the receiver.  
The transmitter and receiver must both be enabled.  
The transmitter output is internally connected to the receiver input.  
The TFDL is active.  
The RFDL input is ignored.  
The communication between the transmit and receive FIFO buffers and the microprocessor continues normally.  
108  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Facility Data Link (FDL) (continued)  
XMIT HDLC FDL BLOCK  
TFDL  
FDL XMIT  
XMIT HDLC  
XMIT FIFO  
INTERFACE  
TFDLCK  
RFDLCK  
FDL RCVR  
RCVR FIFO  
RCVR HDLC  
INTERFACE  
RFDL  
RCVR HDLC FDL BLOCK  
5-4562(F)r.2  
Figure 47. Local Loopback Mode  
In the remote loopback mode:  
Transmitted data is retimed with a maximum delay of 2 bits.  
Received data is retransmitted on the TFDL.  
The transmitter should be disabled. The receiver can be disabled or enabled. Received data is sent as usual to  
the receive FIFO if the receiver is denabled.  
XMIT HDLC FDL BLOCK  
TFDL  
FDL XMIT  
INTERFACE  
XMIT FIFO  
XMIT HDLC  
TFDLCK  
RFDLCK  
FDL RCVR  
INTERFACE  
RCVR FIFO  
RCVR HDLC  
RFDL  
RCVR HDLC FDL BLOCK  
5-4563(F)r.1  
Figure 48. Remote Loopback Mode  
Lucent Technologies Inc.  
109  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
The system can force TCHICK to be phase-locked to  
RLCK by using RLCK as a reference signal to control a  
VCXO that is sourcing the TCHICK signal. The T7630  
uses the receive line signal (RLCK) as the reference  
and the TCHICK signal as the variable signal. The  
T7630 provides a phase error signal (TCHICK-EPLL)  
that can be used to control the VCXO generating TCH-  
ICK. The TCHICK-EPLL signal is generated by moni-  
toring the divided-down TCHICK signal (DIV-TCHICK)  
and RLCK (DIV-RLCK) signals. The DIV-RLCK signal  
is used as the reference to determine the phase differ-  
ence between DIV-TCHICK and DIV-RLCK. While DIV-  
RLCK and DIV-TCHICK are phase-locked, the TCH-  
ICK-EPLL signal is in a high-impedance state. A phase  
difference between DIV-RLCK and DIV-TCHICK drives  
TCHICK-EPLL to either 5 V or 0 V. An appropriate loop  
filter, for example, an RC circuit with R = 1 kand  
C = 0.1 µF, is used to filter these TCHICK-EPLL pulses  
to control the VCXO. In this mode, the T7630 can be  
programmed to act as a master timing source and is  
capable of generating the system frame synchroniza-  
tion signal through the TCHIFS pin by setting  
Phase-Lock Loop Circuit  
The T7630 allows for independent transmit path and  
receive path clocking. The device provides outputs to  
control variable clock oscillators on both the transmit  
and receive paths. As such, the system may have both  
the transmit and receive paths phase-locked to two  
autonomous clock sources.  
The block diagram of the T7630 phase detector cir-  
cuitry is shown in Figure 49. The T7630 uses elastic  
store buffers (two frames) to accommodate the transfer  
of data from the system interface clock rate of  
2.048 Mbits/s to the line interface clock rate of either  
1.544 Mbits/s or 2.048 Mbits/s. The transmit line side of  
the T7630 does not have any mechanism to monitor  
data overruns or underruns (slips) in its elastic store  
buffer. This interface relies on the requirement that the  
PLLCK clock signal (variable) is phase-locked to the  
RCHICK clock signal (reference). When this require-  
ment is not met, uncontrolled slips may occur in the  
transmit elastic store buffer that would result in corrupt-  
ing data and no indication will be given. Typically, a  
variable clock oscillator (VCXO) is used to drive the  
PLLCK signal. The T7630 provides a phase error sig-  
nal (PLLCK-EPLL) that can be used to control the  
VCXO. The PLLCK-EPLL signal is generated by moni-  
toring the divided-down PLLCK (DIV-PLLCK) and  
RCHICK (DIV-RCHICK) signals. The DIV-RCHICK sig-  
nal is used as the reference to determine the phase dif-  
ference between DIV-RCHICK and DIV-PLLCK. While  
DIV-RCHICK and DIVPLLCK are phase-locked, the  
PLLCK-EPLL signal is in a high-impedance state. A  
phase difference between DIV-RCHICK and DIV-  
PLLCK drives PLLCK-EPLL to either 5 V or 0 V. An  
appropriate loop filter, for example, an RC circuit with  
R = 1 kand C = 0.1 µF) is used to filter these PLLCK-  
EPLL pulses to control the VCXO.  
FRM_PR45 bit 4 to 1.  
110  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Phase-Lock Loop Circuit (continued)  
EXTERNAL CIRCUIT  
VOLTAGE-  
CONTROLLED  
CRYSTAL  
OSCILLATOR  
(VCXO)  
PLLCK  
DIV-PLLCK  
PLLCK-EPLL  
DIV-RCHICK  
RCHICK  
DIVIDER  
CIRCUIT  
PLLCK  
DIVIDER  
CIRCUIT  
DIGITAL  
PHASE  
DETECTOR  
INTERNAL_XLCK  
INTERNAL_RCHICK  
RCHICK  
READ ADDRESS  
TRANSMIT  
2-FRAME  
ELASTIC STORE  
BUFFER  
RECEIVE  
CONCENTRATION  
HIGHWAY  
TLCK  
WRITE ADDRESS  
SYSTEM DATA  
TRANSMIT  
RCHIFS  
FRAMER  
INTERFACE  
RCHIDATA  
FACILITY DATA  
TPD, TND  
BUFFER OVERRUN  
SLIP  
BUFFER UNDERRUN  
MONITOR  
WRITE ADDRESS  
FACILITY DATA  
READ ADDRESS  
SYSTEM DATA  
TCHIDATA  
RPD, RND  
RLCK  
RECEIVE  
2-FRAME  
ELASTIC STORE  
BUFFER  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
RECEIVE  
FRAMER  
TCHIFS  
TCHICK  
INTERFACE  
INTERNAL_TCHICK  
INTERNAL_RLCK  
TCHICK  
DIVIDER  
CIRCUIT  
RLCK  
DIVIDER  
CIRCUIT  
DIGITAL  
PHASE  
DETECTOR  
DIV-TCHICK  
DIV-RLCK  
TCHICK_EPLL  
VOLTAGE-  
CONTROLLED  
CRYSTAL  
OSCILLATOR  
(VCXO)  
EXTERNAL CIRCUIT  
5-5268(F)r.2  
Figure 49. T7630 Phase Detector Circuitry  
Lucent Technologies Inc.  
111  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer-System (CHI) Interface  
Concentration Highway Interface  
Each framer has a dual, high-speed, serial interface to  
the system known as the CHI. This flexible bus archi-  
tecture allows the user to directly interface to other  
Lucent components which use this interface, as well as  
to Mitel* and AMD TDM highway interfaces, with no  
glue logic. Configured via the highway control registers  
FRM_PR45 through FRM_PR66, this interface can be  
set up in a number of different configurations.  
DS1 Modes  
The DS1 framing formats require rate adaptation from  
the 1.544 Mbits/s line interface bit stream to the system  
interface which functions at multiples of a 2.048 Mbits/s  
bit stream. The rate adaptation results in the need for  
eight stuffed time slots on the system interface since  
there are only 24 DS1 (1.544 Mbits/s) payload time  
slots while there are 32 system (2.048 Mbits/s) time  
slots. Placement of the stuffed time slots is defined by  
register FRM_PR43 bit 0—bit 2.  
The following is a list of the CHI features:  
Lucent Technologies standard interface for communi-  
cation devices.  
Two pairs of transmit and receive paths to carry data  
in 8-bit time slots.  
CEPT Modes  
Programmable definition of highways through offset  
and clock-edge options which are independent for  
transmit and receive directions.  
The framer maps the line time slots into the corre-  
sponding system time slot one-to-one. Framing time  
slot 0, the FAS and NFAS bytes, are placed in system  
time slot 0.  
Programmable idle code substitution of received time  
slots.  
Receive Elastic Store  
Programmable 3-state control of each transmit time  
slot.  
The receive interface between the framer and the sys-  
tem (CHI) includes a two-frame elastic store buffer to  
enable rate adaptation. The receive line elastic store  
buffer contains circuitry that monitors the read and  
write pointers for potential data overrun and underrun  
(slips) conditions. Whenever this slip circuitry deter-  
mines that a slip may occur in the receive elastic store  
buffer, it will adjust the read pointer such that a con-  
trolled slip is performed. The controlled slip is imple-  
mented by dropping or repeating a complete frame at  
the frame boundaries. The occurrence of controlled  
slips in the receive elastic store are indicated in the sta-  
tus register FRM_SR3 bit 6 and bit 7.  
Independent transmit and receive framing signals to  
synchronize each direction of data flow.  
An 8 kHz frame synchronization signal internally  
generated from the received line clock.  
Compatible with Mitel and AMD PCM highways.  
Supported is the optional configuration of the CHI  
which presents the signaling information along with the  
data in any framing modes when the device is pro-  
grammed for the associated signaling mode (ASM).  
This mode is discussed in the signaling section.  
Data can be transmitted or received on either one of  
two interface ports, called CHIDATA and CHIDATAB.  
The user-supplied clocks (RCHICLK and TCHICLK)  
control the timing on the transmit or receive paths. Indi-  
vidual time slots are referenced to the frame synchroni-  
zation (RCHIFS and TCHIFS) pulses. Each frame  
consists of 32 time slots at a programmable data rate of  
2.048 Mbits/s, 4.096 Mbits/s, or 8.192 Mbits/s requiring  
a clock (TCHICK and RCHICK) of the same rate. The  
clock and data rates of the transmit and receive high-  
ways are programmed independently.  
Transmit Elastic Store  
The transmit interface between the framer and the sys-  
tem (CHI) includes a two-frame elastic store buffer to  
enable rate adaptation. The line transmit clock applied  
to PLLCK (pins 7/31) must be phase-locked to  
RCHICK. No indication of a slip in the transmit elastic  
store is given.  
* Mitel is a registered trademark of Mitel Corporation.  
AMD is a registered trademark of Advanced Micro Devices, Inc.  
112  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Concentration Highway Interface (continued)  
Rate adaptation is required for all DS1 formats between the 1.544 Mbits/s line rate and 2.048 Mbits/s,  
4.966 Mbits/s, or 8.182 Mbits/s CHI rate. This is achieved by means of stuffing eight idle time slots into the existing  
twenty-four time slots of the T1 frame. Idle time slots can occur every fourth time slot (starting in the first, second,  
third, or fourth time slot) or be grouped together at the end of the CHI frame as described in register FRM_PR43  
bit 0—bit 2. The positioning of the idle time slots is the same for transmit and receive directions. Idle time slots con-  
tain the programmable code of register FRM_PR23. Unused time slots can be disabled by forcing the TCHIDATA  
interface to a high-impedance state for the interval of the disabled time slots.  
CHI Parameters  
The CHI parameters that define the receive and transmit paths are given in Table 57.  
Table 57. Summary of the T7630’s Concentration Highway Interface Parameters  
Name  
Description  
HWYEN  
Highway Enable (FRM_PR45 bit 7). A 1 in this bit enables the transmit and receive  
concentration highway interfaces. This allows the framer to be fully configured before  
transmission to the highway. A 0 forces the idle code as defined in register  
FRM_PR22, to be transmitted to the line in all payload time slots while TCHIDATA is  
forced to a high-impedance state for all CHI transmitted time slots.  
CHIMM  
Concentration Highway Master Mode (PRM_PR45 bit 4). The default mode  
CHIMM = 0 enables an external system frame synchronization signal (TCHIFS) to  
drive the transmit CHI. A 1 enables the transmit CHI to generate a system frame syn-  
chronization signal from the receive line clock. The transmit CHI system frame syn-  
chronization signal is generated on the TCHIFS output pin. Applications using the  
receive line clock as the reference clock signal of the system are recommended to  
enable this mode and use the TCHIFS signal generated by the framer. The receive  
CHI path is not affected by this mode.  
CHIDTS  
CHI Double Time-Slot Mode (FRM_PR65 bit 1 and FRM_PR66 bit 1). CHIDTS  
defines the 4.096 Mbits/s and 8.192 Mbits/s CHI modes. CHIDTS = 0 enables the 32  
contiguous time-slot mode. This is the default mode. CHIDTS = 1 enables the double  
time-slot mode in which the transmit CHI drives TCHIDATA for one time slot and then  
3-states for the subsequent time slot, and the receive CHI latches data from RCHI-  
DATA for one time slot and then ignores the following time slot and so on. CHIDTS = 1  
allows two CHIs to interleave frames on a common bus.  
TFE  
Transmit Frame Edge (FRM_PR46 bit 3). TFE = 0 (or 1), TCHIFS is sampled on the  
falling (or rising) edge of TCHICK. In CHIMM (CHI master mode), the TCHIFS pin  
outputs a transmit frame strobe to provide synchronization for TCHIDATA. When  
TFE = 1 (or 0), TCHIFS is centered around rising (or falling) edge of TCHICK. In this  
mode, TCHIFS can be used for receive data on RCHIDATA. The timing for TCHIFS in  
CHIMM = 1 mode is identical to the timing for TCHIFS in CHIMM = 0 mode.  
RFE  
Receive Frame Edge (FRM_PR46 bit 7). RFE = 0 (or 1), RCHIFS is sampled on the  
falling (or rising) edge of RCHICK.  
CDRS0—CDRS1  
CHI Data Rate (FRM_PR45 bit 2 and bit 3). Two-bit control for selecting the CHI  
data rate. The default state (00) enables the 2.048 Mbits/s.  
CDRS Bit:2 3CHI Data Rate  
0 0 2.048 Mbits/s  
0 1 4.096 Mbits/s  
1 0 8.192 Mbits/s  
1 1 Reserved  
Lucent Technologies Inc.  
113  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Concentration Highway Interface (continued)  
Table 57. Summary of the T7630’s Concentration Highway Interface Parameters (continued)  
Name  
Description  
TCE  
Transmitter Clock Edge (FRM_PR47 bit 6). TCE = 0 (or 1), TCHIDATA is clocked on  
the falling (or rising) edge of TCHICK.  
RCE  
Receiver Clock Edge (FRM_PR48 bit 6). RCE = 0 (or 1), RCHIDATA is latched on  
the falling (or rising) edge of RCHICK.  
TTSE31—TTSE0  
Transmit Time-Slot Enable 31—0 (FRM_PR49—FRM_PR52). These bits define  
which transmit CHI time slots are enabled. A 1 enables the TCHIDATA or TCHIDATAB  
time slot. A 0 forces the CHI transmit highway time slot to be 3-stated.  
RTSE31—RTSE0  
Receive Time-Slot Enable 31—0 (FRM_PR53—FRM_PR56). These bits define  
which receive CHI time slots are enabled. A 1 enables the RCHIDATA or RCHDATAB  
time slots. A 0 disables the time slot and transmits the programmable idle code of reg-  
ister FRM_PR22 to the line interface.  
THS31—THS0  
RHS31—RHS0  
TOFF2—TOFF0  
Transmit Highway Select 31—0 (FRM_PR57—FRM_PR60). These bits define  
which transmit CHI highway, TCHIDATA or TCHIDATAB, contains valid data for the  
active time slot. A 0 enables TCHIDATA; a 1 enables the TCHIDATAB.  
Receive Highway Select 31—0 (FRM_PR61—FRM_PR64). These bits define which  
receive CHI highway, RCHIDATA or RCHIDATAB, contains valid data for the active  
time slot. A 0 enables RCHIDATA; a 1 enables the RCHIDATAB.  
Transmitter Bit Offset (FRM_PR46 bit 0—bit 2). These bits are used in conjunction  
with the transmitter byte offset to define the beginning of the transmit frame. They  
determine the offset relative to TCHIFS, for the first bit of transmit time slot 0. The off-  
set is the number of TCHICK cycles by which the first bit is delayed.  
ROFF2—ROFF0  
Receiver Bit Offset (FRM_PR46 bit 4—bit 6). These bits are used in conjunction  
with the receiver byte offset to define the beginning of the receiver frame. They deter-  
mine the offset relative to the RCHIFS, for the first bit of receive time slot 0. The offset  
is the number of RCHICK cycles by which the first bit is delayed.  
TBYOFF6—TBYOFF0 Transmitter Byte Offset (FRM_PR47 bit 0—bit 5 and FRM_PR65 bit 0). These bits  
determine the offset from the TCHIFS to the beginning of the next frame on the trans-  
mit highway. Note that in the ASM mode, a frame consists of 64 contiguous bytes;  
whereas in other modes, a frame contains 32 contiguous bytes. Allowable offsets:  
2.048 Mbits/s 0—31 bytes.  
4.096 Mbits/s 0—63 bytes.  
8.192 Mbits/s 0—127 bytes.  
RBYOFF6—RBYOFF0 Receiver Byte Offset (FRM_PR48 bit 0—bit 5 and FRM_PR66 bit 0). These bits  
determine the offset from RCHIFS to the beginning of the receive CHI frame. Note  
that in the ASM mode, a frame consists of 64 contiguous bytes; whereas in other  
modes, a frame contains 32 contiguous bytes. Allowable offsets:  
2.048 Mbits/s 0—31 bytes.  
4.096 Mbits/s 0—63 bytes.  
8.192 Mbits/s 0—127 bytes.  
ASM  
Associated Signaling Mode (FRM_PR44 bit 2). When enabled, the associate sig-  
naling mode configures the CHI to carry both payload data and its associated signal-  
ing information. Enabling this mode must be in conjunction with the programming of  
the CHI data rate to either 4.048 Mbits/s or 8.096 Mbits/s. Each time slot consists of  
16 bits where 8 bits are data and the remaining 8 bits are signaling information.  
STS0—STS2  
Stuffed Time Slots (FRM_PR43 bit 0—bit 2). Valid only in T1 framing formats, these  
3 bits define the location of the eight stuffed CHI (unused) time slots.  
114  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Concentration Highway Interface (continued)  
CHI Frame Timing  
CHI Timing with CHIDTS Disabled  
Figure 50 illustrates the CHI frame timing when CHIDTS is disabled (registers FRM_PR65 bit 1 (TCHIDTS) and  
FRM_PR66 bit 1 (RCHDTS) = 0) and the CHI is not in the associated signaling mode (FRM_PR44 bit 2 (ASM) =  
0). The frames are 125 µs long and consist of 32 contiguous time slots.  
In DS1 frame modes, the CHI frame consists of 24 payload time slots and eight stuffed (unused) time slots.  
In CEPT frame modes, the CHI frame consists of 32 payload time slots.  
125 µs  
CHIFS  
DS1 FORMAT  
2.048 Mbits/s CHI:  
FRAME 1  
24 VALID TIME SLOTS  
HIGH IMPEDANCE  
TCHIDATA  
FRAME 2  
FRAME 2  
8 STUFFED  
SLOTS*  
24 VALID TIME SLOTS  
RCHIDATA  
CEPT FORMAT  
2.048 Mbits/s CHI:  
32 VALID TIME SLOTS  
FRAME 1  
TCHIDATA  
or  
FRAME 2  
RCHIDATA  
4.096 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
8.192 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
5-5269(F).ar.2  
* The position of the stuffed time is controlled by register FRM_PR43 bit 0—bit 2.  
Figure 50. Nominal Concentration Highway Interface Timing (for FRM_PR43 bit 0—bit 2 = 100 (Binary))  
Lucent Technologies Inc.  
115  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Concentration Highway Interface (continued)  
CHI Timing with CHIDTS Enabled  
Figure 51 illustrates the CHI frame timing when CHIDTS is enabled (registers FRM_PR65 bit 1 (TCHIDTS) and  
FRM_PR66 bit 1 (RCHIDTS) = 1) and ASM is disabled (register FRM_PR44 bit 2 (ASM) = 0). In the CHIDTS  
mode, valid CHI payload time slots are alternated with high-impedance intervals of one time-slot duration. This  
mode is valid only for 4.096 Mbits/s and 8.192 Mbits/s CHI rates.  
125 µs  
CHIFS  
FRAME 1  
FRAME 2  
4.096 Mbits/s CHI  
TCHIDATA  
TIME TIME  
SLOT SLOT  
TS0  
TS1  
TS2  
TS2  
TS3  
TS3  
TS4  
TS4  
TS30  
T30  
TS31  
TS31  
TS0  
TS0  
8 bits  
TS0  
TS1  
RCHIDATA  
8.192 Mbits/s CHI  
TCHIDATA  
HIGH IMPEDANCE  
TS0  
TS0  
TS1  
TS1  
TS2  
TS2  
TS30  
TS30  
TS31  
TS31  
TS0  
TS0  
RCHIDATA  
5-6454(F)r.3  
Figure 51. CHIDTS Mode Concentration Highway Interface Timing  
116  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Concentration Highway Interface (continued)  
CHI Timing with Associated Signaling Mode Enabled  
Figure 52 illustrates the CHI frame timing when the associated signaling mode is enabled (register FRM_PR44 bit  
2 (ASM) = 1) and the CHIDTS mode is disabled (registers FRM_PR65 bit 1 (TCHIDTS) = 0 and FRM_PR66 bit 1  
(RCHDTS) = 0). The frames are 125 µs long and consist of 32 contiguous 16-bit time slots.  
In DS1 frame formats, each frame consists of 24 time slots and eight stuffed time slots. Each time slot consists of  
two octets.  
In CEPT modes, each frame consists of 32 time slots. Each time slot consists of two octets.  
125 µs  
CHIFS  
4.096 Mbits/s CHI:  
FRAME = 64 bytes: 32 DATA + 32 SIGNALING  
FRAME 1  
TCHIDATA  
or  
FRAME 2  
RCHIDATA  
DATA AND SIGNALING BYTES ARE INTERLEAVED  
DATA 0  
SIGNALING 0  
DATA 31  
SIGNALING 31  
DATA 0  
FRAME  
8.192 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
FRAME 1  
5-5270(F).ar.3  
Figure 52. Associated Signaling Mode Concentration Highway Interface Timing  
CHI Timing with Associated Signaling Mode and CHIDTS Enabled  
Figure 53 illustrates the CHI frame timing in the associated signaling mode (register FRM_PR44 bit 2 (ASM) = 1)  
and CHIDTS enabled (registers FRM_PR65 bit 1 (TCHIDTS) = 1 and FRM_PR66 bit 1 (RCHIDTS) = 1).  
8.192 Mbits/s CHI WITH ASM (ASSOCIATED SIGNALING MODE) ENABLED  
TS0  
TS1  
TS31  
TS0  
TCHIDATA  
OR  
RCHIDATA  
*
*
*
DATA SIGNALING  
DATA SIGNALING  
16 bits  
16 bits  
1 TIME SLOT  
1 TIME SLOT  
5-6454(F).ar.2  
* High-impedance state for TCHIDATA and not received (don’t care) for RCHIDATA.  
Figure 53. CHI Timing with ASM and CHIDTS Enabled  
Lucent Technologies Inc.  
117  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Concentration Highway Interface (continued)  
CHI Offset Programming  
To facilitate bit offset programming, two additional internal parameters are introduced: CEX is defined as the clock  
edge with which the first bit of time slot 0 is transmitted; CER is defined as the clock edge on which bit 0 of time slot  
0 is latched. CEX and CER are counted relative to the edge on which the CHIFS signal is sampled. Values of CEX  
and CER depend upon the values of the parameters described above.  
The following table gives decimal values of CEX and CER for various values of TFE, RFE, TCE, RCE, TOFF[2:0],  
and ROFF[2:0]. The byte (time slot) offsets are assumed to be zero in the following examples.  
Table 58. Programming Values for TOFF[2:0] and ROFF[2:0] when CMS = 0  
RFE/  
TFE  
RCE/  
TCE  
ROFF[2:0] or TOFF[2:0]  
CER  
or  
CEX  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
1
1
0
1
0
1
4
3
3
4
6
5
5
6
8
7
7
8
10  
9
12  
11  
11  
12  
14  
13  
13  
14  
16  
15  
15  
16  
18  
17  
17  
18  
(decimal)  
9
10  
Figure 54 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters:  
CMS = 0, TFE, RFE = 0  
TCE = 1, TOFF[2:0] = 000, TBYOFF[6:0] = 0000000  
RCE = 0, ROFF[2:0] = 000, RBYOFF[6:0] = 0000000  
CHIFS IS SAMPLED ON THIS EDGE: FE = 0  
1
3
5
7
CHICK  
2
4
6
8
TCHIFS, RCHIFS  
CEX = 3  
HIGH IMPEDANCE  
BIT 0, TS 0  
CER = 4  
BIT 0, TS 0  
BIT 1, TS 0  
BIT 1, TS 0  
BIT 2, TS 0  
TCHIDATA: TCE = 1  
RCHIDATA: RCE = 0  
BIT 2, TS 0  
5-2202(F).cr.1  
Figure 54. TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 0 (CEX = 3 and CER = 4, Respectively)  
118  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Concentration Highway Interface (continued)  
Figures 55 and 56 illustrate the CHI timing.  
RCHICLK  
t14S  
t14H  
t14S: RCHIFS SETUP = 30 ns min  
t14H: RCHIFS HOLD = 45 ns min  
RCHIFS  
t15S  
t15H  
t15S: RCHIDATA SETUP = 25 ns min  
t15S: RCHIDATA HOLD = 25 ns min  
RCHIDATA  
5-3916(F).cr.1  
Note: For case illustrated, RFE = 0, and RCE = 0.  
Figure 55. Receive CHI (RCHIDATA) Timing  
TCHICLK  
TCHIFS  
t14S  
t14H  
t14S: TCHIFS SETUP = 35 ns min  
t14H: TCHIFS HOLD = 45 ns min  
t19  
t19: TCHICK TO TCHIDATA DELAY = 25 ns max  
TCHIDATA  
5-3917(F).c  
Note: For case illustrated, TFE = 0 and TCE = 0.  
Figure 56. Transmit CHI (TCHIDATA) Timing  
Lucent Technologies Inc.  
119  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
JTAG Boundary-Scan Specification  
Principle of the Boundary Scan  
The boundary scan (BS) is a test aid for chip, module, and system testing. The key aspects of BS are as follows:  
Testing the connections between ICs on a particular board.  
Observation of signals to the IC pins during normal operating functions.  
Controlling the built-in self-test (BIST) of an IC. T7630 does not support BS-BIST.  
Designed according to the IEEE* Std. 1149.1-1990 standard, the BS test logic consists of a defined interface: the  
test access port (TAP). The TAP is made up of four signal pins assigned solely for test purposes. The fifth test pin  
ensures that the test logic is initialized asynchronously. The BS test logic also comprises a 16-state TAP controller,  
an instruction register with a decoder, and several test data registers (BS register, BYPASS register, and DCODE  
register). The main component is the BS register that links all the chip pins to a shift register by means of special  
logic cells. The test logic is designed in such a way that it is operated independently of the application logic of the  
T7630 (the mode multiplexer of the BS output cells may be shared). Figure 57 illustrates the block diagram of the  
T7630’s BS test logic.  
BOUNDARY-SCAN REGISTER  
CHIP KERNEL  
OUT  
IN  
(UNAFFECTED BY BOUNDARY-SCAN TEST)  
IDCODE REGISTER  
TDO  
MUX  
BYPASS REGISTER  
TDI  
INSTRUCTION REGISTER  
TRST  
TMS  
TCK  
INSTRUCTION  
DECODER  
TAP  
CONTROLLER  
5-3923(F)r.4  
Figure 57. Block Diagram of the T7630's Boundary-Scan Test Logic  
* IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.  
120  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
JTAG Boundary-Scan Specification (continued)  
Test Access Port Controller  
The test access port controller is a synchronous sequence controller with 16 states. The state changes are preset  
by the TMS, TCK, and TRST signals and by the previous state. The state change always take place when the TCK  
edge rises. Figure 58 shows the TAP controller state diagram.  
TRST = 0  
TEST LOGIC  
RESET  
1
0
1
1
RUN TEST/  
IDLE  
SELECT-DR  
SELECT-IR  
0
CAPTURE-DR  
0
0
CAPTURE-IR  
0
0
1
1
SHIFT-DR  
1
SHIFT-IR  
0
1
0
1
1
EXIT1-DR  
EXIT1-IR  
0
PAUSE-DR  
1
0
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
0
0
UPDATE-DR  
UPDATE-IR  
0
1
0
1
5-3924(F)r.8  
Figure 58. BS TAP Controller State Diagram  
The value shown next to each state transition in Figure 58 represents the signal present at TMS at the time of a ris-  
ing edge at TCK.  
The description of the TAP controller states is given in IEEE Std. 1149.1-1990 Section 5.1.2 and is reproduced in  
Tables 59 and 60.  
Lucent Technologies Inc.  
121  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
JTAG Boundary-Scan Specification (continued)  
Table 59. TAP Controller States in the Data Register Branch  
Name  
Description  
TEST LOGIC RESET The BS logic is switched in such a way that normal operation of the ASIC is  
adjusted. The IDCODE instruction is initialized by TEST LOGIC RESET. Irre-  
spective of the initial state, the TAP controller has achieved TEST LOGIC  
RESET after five control pulses at the latest when TMS = 1. The TAP controller  
then remains in this state. This state is also achieved when TRST = 0.  
RUN TEST/IDLE  
Using the appropriate instructions, this state can activate circuit parts or initiate  
a test. All of the registers remain in their present state if other instructions are  
used.  
SELECT DR  
This state is used for branching to the test data register control.  
CAPTURE DR  
The test data is loaded in the test data register parallel to the rising edge of TCK  
in this state.  
SHIFT DR  
The test data is clocked by the test data register serially to the rising edge of  
TCK in the state. The TDO output driver is active.  
EXIT (1/2) DR  
PAUSE DR  
This temporary state causes a branch to a subsequent state.  
The input and output of test data can be interrupted in this state.  
UPDATE DR  
The test data is clocked into the second stage of the test data register parallel to  
the falling edge of TCK in this state.  
Table 60. TAP Controller States in the Instruction Register Branch  
Name  
Description  
SELECT IR  
This state is used for branching to the instruction register control.  
CAPTURE IR  
The instruction code 0001 is loaded in the first stage of the instruction register  
parallel to the rising edge of TCK in this state.  
SHIFT IR  
The instructions are clocked into the instruction register serially to the rising edge  
of TCK in the state. The TDO output driver is active.  
EXIT (1/2) IR  
PAUSE IR  
This temporary state causes a branch to a subsequent state.  
The input and output of instructions can be interrupted in this state.  
UPDATE IR  
The instruction is clocked into the second stage of the instruction register parallel  
to the falling edge of TCK in this state.  
122  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
JTAG Boundary-Scan Specification (continued)  
Instruction Register  
The instruction register (IR) is 4 bits in length. Table 61 shows the BS instructions implemented by the T7630.  
Table 61. T7630’s Boundary-Scan Instructions  
Instruction  
Code  
Act. Register  
Mode  
Function  
Output Defined Via  
TDITDO  
EXTEST  
IDCODE  
0000  
0001  
Boundary Scan  
Identification  
BYPASS  
TEST  
NORMAL  
X
Test external  
connections  
BS Register  
Core Logic  
Read Manuf.  
Register  
HIGHZ  
0100  
0101  
1111  
3-state  
Sample/load  
Min. shift path  
Output—High Impedance  
Core Logic  
SAMPLE/PRELOAD  
BYPASS  
Boundary Scan NORMAL  
BYPASS  
BYPASS  
NORMAL  
X
Core Logic  
EVERYTHING ELSE  
Output—High Impedance  
The instructions not supported in T7630 are INTEST,  
RUNBIST, and TOGGLE. A fixed binary 0001 pattern  
(the 1 into the least significant bit) is loaded into the IR  
in the capture-IR controller state. The IDCODE instruc-  
tion (binary 0001) is loaded into the IR during the test-  
logic-reset controller state and at powerup.  
HIGHZ  
All 3-statable outputs are forced to a high-impedance  
state, and all bidirectional ports to an input state by  
means of the HIGHZ instruction. The impedance of the  
outputs is set to high in the UPDATE-IR state. The func-  
tion outputs are only determined in accordance with  
another instruction if a different instruction becomes  
active in the UPDATE-IR state. The BYPASS register is  
selected as the test data register. The HIGHZ instruc-  
tion is implemented in a similar manner to that used for  
the BYPASS instruction.  
The following is an explanation of the instructions sup-  
ported by T7630 and their effect on the devices' pins.  
EXTEST  
This instruction enables the path cells, the pins of the  
ICs, and the connections between ASICs to be tested  
via the circuit board. The test data can be loaded in the  
chosen position of the BS register by means of the  
SAMPLE/PRELOAD instruction. The EXTEST instruc-  
tion selects the BS register as the test data register.  
The data at the function inputs is clocked into the BS  
register on the rising edge of TCK in the CAPTURE-DR  
state. The contents of the BS register can be clocked  
out via TDO in the SHIFT-DR state. The value of the  
function outputs is solely determined by the contents of  
the data clocked into the BS register and only changes  
in the UPDATE-DR state on the falling edge of TCK.  
SAMPLE/PRELOAD  
The SAMPLE/PRELOAD instruction enables all the  
inputs and outputs pins to be sampled during operation  
(SAMPLE) and the result to be output via the shift  
chain. This instruction does not impair the internal logic  
functions. Defined values can be serially loaded in the  
BS cells via TDI while the data is being output (PRE-  
LOAD).  
IDCODE  
Information regarding the manufacturer’s ID for Lucent,  
the IC number, and the version number can be read out  
serially by means of the IDCODE instruction. The  
IDCODE register is selected, and the BS register is set  
to normal mode in the UPDATE-IR state. The IDCODE  
is loaded at the rising edge of TCK in the CAPTURE-  
DR state. The IDCODE register is read out via TDO in  
the SHIFT-DR state.  
Lucent Technologies Inc.  
123  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
JTAG Boundary-Scan Specification (continued)  
BYPASS  
This instruction selects the BYPASS register. A minimal shift path exists between TDI and TDO. The BYPASS reg-  
ister is selected after the UPDATE-IR. The BS register is in normal mode. A 0 is clocked into the BYPASS register  
during CAPTURE-DR state. Data can be shifted by the BYPASS register during SHIFT-DR. The contents of the BS  
register do not change in the UPDATE-DR state. Please note that a 0 that was loaded during CAPTURE-DR  
appears first when the data is being read out.  
Boundary-Scan Register  
The boundary-scan register is a shift register, whereby one or more BS cells are assigned to every digital T7630  
pin (with the exception of the pins for the BS architecture, analog signals, and supply voltages). The T7630’s  
boundary-scan register bit-to-pin assignment is to be determined.  
BYPASS Register  
The BYPASS register is a one-stage, shift register that enables the shift chain to be reduced to one stage in the  
T7630.  
IDCODE Register  
The IDCODE register identifies the T7630 by means of a parallel, loadable, 32-bit shift register. The code is loaded  
on the rising edge of TCK in the CAPTURE-DR state. The 32-bit data is organized into four sections as follows.  
Table 62. IDCODE Register  
Version  
Part Number  
Manufacturer ID  
1
Bits 31—28  
0001  
Bits 27—12  
Bits 11—1  
Bit 0  
1
0111 011000110000  
0000 0011101  
3-State Procedures  
The 3-state input participates in the boundary scan. It has a BS cell, but buffer blocking via this input is suppressed  
for the EXTEST instruction. The 3-state input is regarded as a signal input that is to participate in the connection  
test during EXTEST. The buffer blocking function should not be active during EXTEST to ensure that the update  
pattern at the T7630 outputs does not become corrupted.  
124  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
registers, the INTERRUPT output will deassert. In the  
polled mode, however, the microprocessor monitors  
the various device alarm status by periodically reading  
the alarm status registers within the line interface unit,  
framer, and HDLC blocks without the use of INTER-  
RUPT. In both interrupt and polled methods of alarm  
servicing, the status registers within an identified block  
will clear on a microprocessor read cycle only when the  
alarm condition within that block no longer exists; oth-  
erwise, the alarm status register bit remains set.  
Microprocessor Interface  
Overview  
The T7630 device is equipped with a microprocessor  
interface that can operate with most commercially avail-  
able microprocessors. The microprocessor interface  
provides access to all the internal registers through a  
12-bit address bus and an 8-bit data bus. Inputs  
MPMODE and MPMUX (pins 74 and 76) are used to  
configure this interface into one of four possible modes,  
as shown in Table 63. The MPMUX setting selects  
either a multiplexed (8-bit address/data bus, AD[7:0]) or  
a demultiplexed (12-bit address bus, A[11:0] and an  
8-bit data bus AD[7:0]) mode of operation. The  
MPMODE setting selects the associated set of control  
signals required to access a set of registers within the  
device.  
The powerup default states for the line interface unit,  
framer, and the HDLC blocks are discussed in their  
respective sections. All read/write registers within  
these blocks must be written by the microprocessor on  
system start-up to guarantee proper device functional-  
ity. Register addresses not defined in this data  
sheet must not be written.  
Details concerning the microprocessor interface con-  
figuration modes, pinout definitions, clock specifica-  
tions, register address map, I/O timing specifications,  
and the I/O timing diagrams are described in the follow-  
ing sections.  
The microprocessor interface can operate at speeds up  
to 33 MHz in interrupt-driven or polled mode without  
requiring any wait-states. For microprocessors operat-  
ing at greater than 33 MHz, the RDY_DTACK output  
(pin 100) may be used to introduce wait-states in the  
read/write cycles.  
Microprocessor Configuration Modes  
In the interrupt-driven mode, one or more device  
alarms will assert the INTERRUPT output (pin 99) once  
per alarm activation. After the microprocessor identifies  
the source(s) of the alarm(s) (by reading the global  
interrupt register) and reads the specific alarm status  
Table 63 highlights the four microprocessor modes  
controlled by the MPMUX and MPMODE inputs (pins  
76 and 74).  
Table 63. Microprocessor Configuration Modes  
Mode  
MPMODE  
MPMUX  
Address/Data Bus Generic Control, Data, and Output Pin Names  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
0
0
1
1
0
1
0
1
DEMUXed*  
MUXed  
CS, AS, DS, R/W, A[11:0], AD[7:0], INT, DTACK†  
CS, AS, DS, R/W, A[11:8], AD[7:0], INT, DTACK†  
CS, ALE, RD, WR, A[11:0], AD[7:0], INT, RDY  
CS, ALE, RD, WR, A[11:8], AD[7:0], INT, RDY  
DEMUXed*  
MUXed  
* ALE_AS may be connected to ground in this mode.  
† The DTACK signal is asynchronous to the MPCLK signal.  
Lucent Technologies Inc.  
125  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Microprocessor Interface (continued)  
Microprocessor Interface Pinout Definitions  
The Mode [1—4] specific pin definitions are given in Table 64. Note that the microprocessor interface uses the  
same set of pins in all modes.  
Table 64. Mode [1—4] Microprocessor Pin Definitions  
Configuration  
Pin Number Device Pin Name  
Generic  
Pin Name  
Pin_Type  
Assertion  
Sense  
Function  
Mode 1  
107  
75  
WR_DS  
RD_R/W  
DS  
Input  
Input  
Active-Low  
Data Strobe  
R/W  
Read/Write  
R/W = 1 => Read  
R/W = 0 => Write  
77  
78  
99  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Active-Low  
Active-Low  
Address Strobe  
Chip Select  
Interrupt  
*
INTERRUPT  
INTERRUPT  
Output  
Active-High/  
Low§  
100  
86—79  
98—87  
101  
RDY_DTACK  
AD[7:0]  
DTACK†  
AD[7:0]  
A[11:0]  
MPCLK  
DS  
Output  
I/O  
Active-Low  
Data Acknowledge  
Data Bus  
A[11:0]  
Input  
Input  
Input  
Input  
Address Bus  
MPCLK  
Active-Low  
Microprocessor Clock  
Data Strobe  
Mode 2  
107  
WR_DS  
RD_R/W  
75  
R/W  
Read/Write  
R/W = 1 => Read  
R/W = 0 => Write  
77  
78  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Output  
Output  
I/O  
Active-Low  
Active-High/Low  
Active-Low  
Address Strobe  
Chip Select  
*
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
DTACK†  
AD[7:0]  
Interrupt  
100  
Data Acknowledge  
Address/Data Bus  
Address/Data Bus  
Microprocessor Clock  
Write  
86—79  
98—87  
101  
A[11:8], AD[7:0]  
MPCLK  
A[11:8], AD[7:0]  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
I/O  
MPCLK  
WR  
Mode 3  
107  
WR_DS  
Active-Low  
Active-Low  
Active-Low  
Active-Low  
Active-High/Low  
Active-High  
75  
RD_R/W  
ALE_AS  
RD  
Read  
77  
ALE  
CS  
Address Latch Enable  
Chip Select  
78  
CS  
*
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
Interrupt  
100  
RDY‡  
AD[7:0]  
A[11:0]  
MPCLK  
WR  
Ready  
86—79  
98—87  
101  
Data Bus  
A[11:0]  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
I/O  
Address Bus  
Microprocessor Clock  
Write  
MPCLK  
Mode 4  
107  
WR_DS  
Active-Low  
Active-Low  
75  
RD_R/W  
ALE_AS  
RD  
Read  
77  
ALE  
Address Latch Enable  
Chip Select  
78  
CS  
CS  
Active-Low  
Active-High/Low  
Active-High  
*
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
Interrupt  
100  
RDY‡  
Ready  
86—79  
98—87  
101  
AD[7:0]  
Address/Data Bus  
Address/Data Bus  
Microprocessor Clock  
A[11:8], AD[7:0]  
MPCLK  
A[11:8], AD[7:0]  
MPCLK  
Input  
Input  
* INTERRUPT output is synchronous to the internal clock source RLCK-LIU. If RLCK_LIU is absent, the reference clock for interrupt timing  
becomes an interval 2.048 MHz clock derived from the CHI clock.  
† The DTACK output is asynchronous to MPCLK.  
‡ MPCLK is needed if RDY output is required to be synchronous to MPCLK.  
§ In the default (reset) mode, INTERRUPT is active-high. It can be made active-low by setting register GREG4 bit 6 to 1.  
126  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Microprocessor Interface (continued)  
Microprocessor Clock (MPCLK) Specifications  
The microprocessor interface is designed to operate at clock speeds up to 33 MHz without requiring any wait-  
states. Wait-states may be needed if higher microprocessor clock speeds are required. The microprocessor clock  
(MPCLK, pin 101) specification is shown in Table 65. This clock must be supplied only if the RDY (MODE 3 and  
MODE 4) is required to be synchronous to MPCLK.  
Table 65. Microprocessor Input Clock Specifications  
Name  
Symbol  
Period and  
Tolerance  
Trise  
Typ  
Tfall  
Typ  
Duty Cycle  
Unit  
Min High  
12  
Min Low  
MPCLK  
t1  
30 to 323  
2
2
12  
ns  
Microprocessor Interface Register Address Map  
The register address space is divided into eight contiguous banks of 512 addressable units each. Each address-  
able unit is an 8-bit register. These register banks are labeled as REGBANK[7:0]. The register address map table  
gives the address range of these register banks and their associated circuit blocks. REGBANK0 contains the global  
registers which are common to all the circuit blocks on T7630. REGBANK1 is reserved and must not be written.  
REGBANK[2, 5] are attached to the LIU circuit blocks. REGBANK[3, 6] are attached to the framer circuit blocks.  
REGBANK[4, 7] are attached to the FDL circuit blocks. The descriptions of the individual register banks can be  
found in the appropriate sections of this document. In these descriptions, all addresses are given in hexadecimal.  
Addresses out of the range specified by Table 66 must not be addressed. If they are written, they must be written to  
0. An inadvertant write to an out-of-range address may be corrected by a device reset.  
Table 66. T7630 Register Address Map  
Register Bank Label Start Address End Address  
Circuit Block Name  
(in Hex)  
(in Hex)  
REGBANK0  
REGBANK1  
REGBANK2  
REGBANK3  
REGBANK4  
REGBANK5  
REGBANK6  
REGBANK7  
000  
007  
T7630 Global Registers*  
Reserved  
400  
406  
Line Interface Unit 1 (LIU1)  
Framer1  
600, 6E0  
800  
6A6, 6FF  
80E  
Facility Data Link 1 (FDL1)  
Line Interface Unit 2 (LIU2)  
Framer2  
A00  
A06  
C00, CE0  
E00  
CA6, CFF  
E0E  
Facility Data Link 2 (FDL2)  
* Core registers are common to all circuit blocks on T7630.  
I/O Timing  
The I/O timing specifications for the microprocessor interface are given in Table 67. The microprocessor interface  
pins are compatible with CMOS/TTL I/O levels. All outputs, except the address/data bus AD[7:0], are rated for a  
capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load.  
Lucent Technologies Inc.  
127  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Microprocessor Interface (continued)  
In modes 1 and 3, asserting ALE_AS signal low is used to enable the internal address bus. In modes 2 and 4, the  
falling edge of ALE_AS signal is used to latch the address bus.  
Table 67. Microprocessor Interface I/O Timing Specifications  
Symbol Configuration  
Parameter  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
(Min)  
(Min)  
(Max)  
t1  
t2  
t3  
t4  
t5  
t6  
Modes 1 & 2  
AS Asserted Width  
Address Valid to AS Deasserted  
AS Deasserted to Address Invalid  
10  
4
10  
10  
R/W Valid to Both CS and DS Asserted  
Address Valid and AS Asserted to DS Asserted  
(Read)  
0
t7  
CS Asserted to DTACK Low Impedance  
DS Asserted to DTACK Asserted  
10  
5
12  
15  
15  
25  
12  
10  
t8  
t9  
DS Asserted to AD Low Impedance (Read)  
DTACK Asserted to Data Valid  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
DS Deasserted to CS Deasserted (Read)  
DS Deasserted to R/W Invalid  
5
DS Deasserted to DTACK Deasserted  
CS Deasserted to DTACK High Impedance  
DS Deasserted to Data Invalid (Read)  
5
Address Valid and AS Asserted to DS Asserted  
(Write)  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
Data Valid to DS Asserted  
DS Deasserted to CS Deasserted (Write)  
DS Deasserted to Data Valid  
10  
10  
0
5
10  
10  
10  
DS Asserted Width (Write)  
Address Valid to AS Falling Edge  
AS Falling Edge to Address Invalid  
AS Falling Edge to DS Asserted (Read)  
AS Falling Edge to DS Asserted (Write)  
CS Asserted to DS Asserted (Write)  
10  
10  
128  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Microprocessor Interface (continued)  
Table 67. Microprocessor Interface I/O Timing Specifications (continued)  
Symbol Configuration  
Parameter  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
(Min)  
(Min)  
(Max)  
t31  
t32  
t33  
t34  
t35  
t36  
t37  
t38  
t39  
t40  
t41  
t42  
t43  
t44  
t45  
t46  
t47  
t48  
t49  
t50  
t51  
t52  
t53  
t54  
t55  
Modes 3 & 4  
ALE Asserted Width  
Address Valid to ALE Deasserted  
ALE Deasserted to Address Invalid  
CS Asserted to RD Asserted  
10  
0
10  
10  
5
12  
15  
15  
40  
15  
10  
15  
Address Valid and ALE Asserted to RD Asserted  
CS Asserted to RDY Low Impedance  
Rising Edge MPCK to RDY Asserted  
RD Asserted to AD Low Impedance  
RD Asserted to Data Valid  
0
0
RD Deasserted to CS Deasserted  
RD Deasserted to RDY Deasserted  
CS Deasserted to RDY High Impedance  
RD Deasserted to Data Invalid (High Impedance)  
CS Asserted to WR Asserted  
5
5
Address Valid and ALE Asserted to WR Asserted  
Data Valid to WR Asserted  
10  
10  
10  
0
WR Deasserted to CS Deasserted  
WR Deasserted to RDY Deasserted  
WR Deasserted to Data Invalid  
10  
50  
10  
10  
RD Asserted Width  
WR Asserted Width  
Address Valid to ALE Falling Edge  
ALE Falling Edge to Address Invalid  
ALE Falling Edge to RD Asserted  
ALE Falling Edge to WR Asserted  
10  
Note: The read and write timing diagrams for all four microprocessor interface modes are shown in Figure 59—Figure 66.  
Lucent Technologies Inc.  
129  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Microprocessor Interface (continued)  
t11  
CS  
t1  
AS  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t12  
t5  
DS  
t6  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t10  
t9  
t15  
VALID DATA  
5-6422(F)r.1  
Figure 59. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)  
t18  
CS  
AS  
t1  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t16  
t20  
DS  
t25  
t7  
t13  
t14  
t8  
DTACK  
AD[0:7]  
t17  
t19  
VALID DATA  
5-6423(F)  
Figure 60. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)  
130  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Microprocessor Interface (continued)  
t11  
CS  
t1  
AS  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
DS  
t23  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t21  
t22  
t10  
t9  
t15  
VALID ADDRESS  
VALID DATA  
5-6424(F)  
Figure 61. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)  
t18  
CS  
AS  
t1  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t25  
t20  
DS  
t24  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t17  
t21  
t22  
t19  
VALID ADDRESS  
VALID DATA  
5-6425(F)  
Figure 62. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)  
131  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Microprocessor Interface (continued)  
t40  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
RD  
VALID ADDRESS  
t34  
t50  
t42  
t35  
t36  
t37  
t41  
RDY  
t39  
t43  
t38  
VALID DATA  
AD[0:7]  
MPCK  
5-6426(F)r.1  
Figure 63. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)  
t47  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
WR  
VALID ADDRESS  
t44  
t51  
t42  
t45  
t36  
t48  
t49  
t37  
RDY  
t46  
VALID DATA  
AD[0:7]  
MPCK  
5-6427(F)  
Figure 64. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)  
132  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Microprocessor Interface (continued)  
t40  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
RD  
VALID ADDRESS  
t34  
t50  
t54  
t41  
t42  
t37  
t36  
RDY  
t39  
t52  
t53  
t43  
VALID DATA  
t38  
AD  
VALID ADDRESS  
MPCK  
5-6428(F)r.1  
Figure 65. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)  
t47  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
WR  
VALID ADDRESS  
t44  
t51  
t55  
t48  
t42  
t37  
t36  
RDY  
t52  
t53  
t46  
t49  
VALID DATA  
VALID ADDRESS  
AD  
MPCK  
5-6429(F)r.1  
Figure 66. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)  
133  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Software Reset/Software Restart  
Reset  
Independent software reset for each functional block of  
the device is available. The LIU may be placed in  
restart through register LIU_REG2 bit 5 (RESTART).  
The framer may be reset through register FRM_PR26  
bit 0 (SWRESET), or placed in restart through  
FRM_PR26 bit 1 (SWRESTART). The FDL receiver  
may be reset through register FDL_PR26 bit 1 (FRR),  
and the FDL transmitter may be reset through  
FDL_PR1 bit 5 (FTR). The reset functions, framer  
SWRESET (framer software reset), FDL FRR (FDL  
receiver reset), and FTR (FDL transmitter reset), reset  
the block and return all parameter/control registers for  
the block to their default values. The restart functions,  
LIU RESTART and framer SWRESTART (framer soft-  
ware restart), reset the block but do not alter the value  
of the parameter/control registers.  
Both hardware and software resets are provided.  
Hardware Reset (Pin 43/139)  
Hardware reset is enabled by asserting RESET to 0.  
Each channel has independent resets, RESET1 (pin  
139) for channel 1 and RESET2 (pin 43) for channel 2.  
The device is in an inactive condition when RESET is  
0, and becomes active when RESET is returned to 1.  
Eight cycles of the LIU receive line clock, i.e., 5.2 µs for  
T1 or 3.9 µs for E1, is required to guarantee a complete  
reset. Upon completion of a reset cycle, the LIU regis-  
ter default values are controlled by the setting of  
DS1/CEPT (pin 40/142), as given in Table 7. Transmit  
Line Interface Short-Haul Equalizer/Rate Control. If  
DS1/CEPT is 1, the defaults are set for DS1 with line  
equalization for a 1 ft. to 131 ft. span. If DS1/CEPT is 0,  
the defaults are set for CEPT with a line equalization for  
120 twisted pair or 75 coax option 1.  
Hardware reset of a single channel returns all LIU,  
framer, and FDL registers of that channel to their  
default values, as listed in the individual register  
descriptions and register maps, Table 197—Table 202.  
Reset of a single channel does not reset the global reg-  
isters. Hardware reset of both channels simultaneously,  
both pin 43 and pin 139 set to 0, results in a complete  
device reset including a reset of the global registers.  
134  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Architecture  
Table 68 is an overview of the register architecture. The table is a summary of the register function and address.  
Complete detail of each register is given in the following sections.  
Table 68. Register Summary  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Global Registers  
GREG0  
GREG1  
GREG2  
GREG3  
GREG4  
GREG5  
GREG6  
GREG7  
Primary Block Interrupt Status  
000  
001  
002  
003  
004  
005  
006  
007  
Primary Block Interrupt Enable  
Global Loopback Control  
Global Loopback Control  
Global Control  
Device ID and Version  
Device ID and Version  
Device ID and Version  
LIU Registers  
LIU_REG0  
LIU_REG1  
LIU_REG2  
LIU_REG3  
LIU_REG4  
LIU_REG5  
LIU_REG6  
LIU Alarm Status  
LIU Alarm Interrupt Enable  
LIU Control  
400  
401  
402  
403  
404  
405  
406  
A00  
A01  
A02  
A03  
A04  
A05  
A06  
LIU Control  
LIU Control  
LIU Configuration  
LIU Configuration  
Framer Registers  
Status Registers  
FRM_SR0  
FRM_SR1  
FRM_SR2  
FRM_SR3  
FRM_SR4  
FRM_SR5  
Interrupt Status  
600  
601  
602  
603  
604  
605  
C00  
C01  
C02  
C03  
C04  
C05  
Facility Alarm Condition  
Remote End Alarm  
Facility Errored Event  
Facility Event  
Exchange Termination and Exchange Termination Remote End  
Interface Status  
FRM_SR6  
Network Termination and Network Termination Remote End Inter-  
face Status  
606  
C06  
FRM_SR7  
Facility Event  
607  
C07  
FRM_SR8,  
FRM_SR9  
Bipolar Violation Counter  
608, 609  
C08, C09  
FRM_SR10, Framing Bit Error Counter  
FRM_SR11  
60A, 60B  
60C, 60D  
60E, 60F  
C0A, C0B  
C0C, C0D  
C0E, C0F  
FRM_SR12, CRC Error Counter  
FRM_SR13  
FRM_SR14, E-bit Counter  
FRM_SR15  
Lucent Technologies Inc.  
135  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Architecture (continued)  
Table 68. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Framer Registers (continued)  
Status Registers (continued)  
FRM_SR16, CRC-4 Error at NT1 from NT2 Counter  
FRM_SR17  
610, 611  
612, 613  
614, 615  
616, 617  
618, 619  
61A, 61B  
61C, 61D  
61E, 61F  
620, 621  
622, 623  
624, 625  
626, 627  
628, 629  
62A, 62B  
62C, 62D  
62E, 62F  
630, 631  
632, 633  
C10, C11  
C12, C13  
C14, C15  
C16, C17  
C18, C19  
C1A, C1B  
C1C, C1D  
C1E, C1F  
C20, C21  
C22, C23  
C24, C25  
C26, C27  
C28, C29  
C2A, C2B  
C2C, C2D  
C2E, C2F  
C30, C31  
C32, C33  
FRM_SR18, E-bit at NT1 from NT2 Counter  
FRM_SR19  
FRM_SR20, ET Errored Seconds Counter  
FRM_SR21  
FRM_SR22, ET Bursty Errored Seconds Counter  
FRM_SR23  
FRM_SR24, ET Severely Errored Seconds Counter  
FRM_SR25  
FRM_SR26, ET Unavailable Seconds Counter  
FRM_SR27  
FRM_SR28, ET-RE Errored Seconds Counter  
FRM_SR29  
FRM_SR30, ET-RE Bursty Errored Seconds Counter  
FRM_SR31  
FRM_SR32, ET-RE Severely Errored Seconds Counter  
FRM_SR33  
FRM_SR34, ET-RE Unavailable Seconds Counter  
FRM_SR35  
FRM_SR36, NT1 Errored Seconds Counter  
FRM_SR37  
FRM_SR38, NT1 Bursty Errored Seconds Counter  
FRM_SR39  
FRM_SR40, NT1 Severely Errored Seconds Counter  
FRM_SR41  
FRM_SR42, NT1 Unavailable Seconds Counter  
FRM_SR43  
FRM_SR44, NT1-RE Errored Seconds Counter  
FRM_SR45  
FRM_SR46, NT1-RE Bursty Errored Seconds Counter  
FRM_SR47  
FRM_SR48, NT1-RE Severely Errored Seconds Counter  
FRM_SR49  
FRM_SR50, NT1-RE Unavailable Seconds Counter  
FRM_SR51  
FRM_SR52 Receive NOT-FAS TS0  
FRM_SR53 Received Sa  
634  
635  
C34  
C35  
FRM_SR54— SLC-96 FDL/CEPT Sa Receive Stack  
FRM_SR63  
636—63F  
C36—C3F  
136  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Architecture (continued)  
Table 68. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Framer Registers (continued)  
Received Signaling Registers  
FRM_RSR0— Received Signaling  
FRM_RSR31  
640—65F  
660—667  
C40—C5F  
C60—C67  
Parameter/Control Registers  
FRM_PR0— Interrupt Group Enable  
FRM_PR7  
FRM_PR8  
FRM_PR9  
Framer Mode Option  
Framer CRC Control Option  
668  
669  
C68  
C69  
FRM_PR10 Alarm Filter  
66A  
C6A  
FRM_PR11 Errored Second Threshold  
66B  
C6B  
FRM_PR12, Severely Errored Second Threshold  
FRM_PR13  
66C. 66D  
C6C, C6D  
FRM_PR14 Errored Event Enable  
66E  
66F  
C6E  
C6F  
FRM_PR15 ET Remote End Errored Event Enable  
FRM_PR16 NT1 Errored Event Enable  
670  
C70  
FRM_PR17, NT1 Remote End Errored Event Enable  
FRM_PR18  
671, 672  
C71, C72  
FRM_PR19 Automatic AIS to the System and Automatic Loopback Enable  
FRM_PR20 Transmit to the Line Command  
673  
674  
675  
676  
677  
678  
679  
67A  
67B  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C7A  
C7B  
FRM_PR21 Framer FDL Loopback Transmission Codes Command  
FRM_PR22 Framer Transmit Line Idle Code  
FRM_PR23 Framer Transmit System Idle Code  
FRM_PR24 Primary Loopback Control  
FRM_PR25 Secondary Loopback Control  
FRM_PR26 System Frame Sync Mask Source  
FRM_PR27 Transmission of Remote Frame Alarm and CEPT Automatic  
Transmission of A bit = 1 Control  
FRM_PR28 CEPT Automatic Transmission of E bit = 0  
FRM_PR29 Sa4—Sa8 Source  
67C  
67D  
C7C  
C7D  
FRM_PR30 Sa4—Sa8 Control  
67E  
C7E  
FRM_PR31— Sa Transmit Stack/SLC-96 Transmit Stack  
FRM_PR40  
67F—688  
C7F—C88  
FRM_PR41 Si-bit Source  
689  
68A  
68B  
68C  
68D  
68E  
68F  
690  
C89  
C8A  
C8B  
C8C  
C8D  
C8E  
C8F  
C90  
FRM_PR42 Frame Exercise  
FRM_PR43 System Interface Control  
FRM_PR44 Signaling Mode  
FRM_PR45 CHI Common Control  
FRM_PR46 CHI Common Control  
FRM_PR47 CHI Transmit Control  
FRM_PR48 CHI Receive Control  
Lucent Technologies Inc.  
137  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Architecture (continued)  
Table 68. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Framer Registers (continued)  
Parameter/Control Registers (continued)  
FRM_PR49— Transmit CHI Time-Slot Enable  
FRM_PR52  
691—694  
695—698  
699—69C  
69D—6A0  
C91—C94  
C95—C98  
C99—C9C  
C9D—CA0  
FRM_PR53— Receive CHI Time-Sot Enable  
FRM_PR56  
FRM_PR57— CHI Transmit Highway Select  
FRM_PR60  
FRM_PR61— CHI Receive Highway Select  
FRM_PR64  
FRM_PR65 CHI Transmit Control  
6A1  
6A2  
6A5  
6A6  
CA1  
CA2  
CA5  
CA6  
FRM_PR66 CHI Receive Control  
FRM_PR69 Auxiliary Pattern Generator Control  
FRM_PR70 Auxiliary Pattern Detector Control  
Transmit Signaling Registers  
FRM_TSR0— Transmit Signaling  
FRM_TSR31  
6E0—6F7  
CE0—CF7  
Facility Data Link Registers  
FDL Parameter/Control Registers  
FDL_PR0  
FDL_PR1  
FDL_PR2  
FDL_PR3  
FDL_PR4  
FDL_PR5  
FDL_PR6  
FDL_PR7  
FDL_PR8  
FDL_PR9  
FDL_PR10  
FDL Configuration Control  
800  
801  
802  
803  
804  
805  
806  
E00  
E01  
E02  
E03  
E04  
E05  
E06  
FDL Control  
FDL Interrupt Mask Control  
FDL Transmitter Configuration Control  
FDL Transmitter FIFO  
FDL Transmitter Mask  
FDL Receive Interrupt Level Control  
Not Assigned  
FDL Receive Match Character  
FDL Transparent Control  
FDL Transmit ANSI ESF Bit Codes  
808  
809  
80A  
E08  
E09  
E0A  
FDL Status Registers  
FDL_SR0  
FDL_SR1  
FDL_SR2  
FDL_SR3  
FDL_SR4  
FDL Interrupt Status  
80B  
80C  
80D  
80E  
807  
E0B  
E0C  
E0D  
E0E  
E07  
FDL Transmitter Status  
FDL Receiver Status  
FDL ANSI Bit Codes Status  
FDL Receive FIFO  
138  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Global Register Architecture  
REGBANK0 contains the status and programmable control registers for all global functions. The address of these  
registers is 000 (hex) to 007 (hex). These registers control both channels of the terminator.  
The register bank architecture is shown in Table 69. The register bank consists of 8-bit registers classified as pri-  
mary block interrupt status register, primary block interrupt enable register, global loopback control register, global  
terminal control register, device identification register, and global internal interface control register.  
GREG0 is a clear on read (COR) register. This register is cleared by the framer internal received line clock  
(LIU_RLCK of Figure 18 Block Diagram of Framer Line Interface on page 46). At least two RFRMCK cycles  
(1.3 µs for DS1 and 1.0 µs for CEPT) must be allowed between successive reads of the same COR register to  
allow it to properly clear.  
The default values are shown in parentheses.  
Table 69. Global Register Set (0x000—0x008)  
Global  
Register  
[Address  
(hex)]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GREG0[000]  
GREG1[001]  
GREG2[002]  
GREG3[003]  
GREG4[004]  
Reserved  
(0)  
FDL2INT  
(0)  
FRMR2INT  
(0)  
LIU2INT  
(0)  
Reserved  
(0)  
FDL1INT FRMR1INT  
LIU1INT  
(0)  
(0)  
(0)  
Reserved  
(0)  
FDL2IE  
(0)  
FRMR2IE  
(0)  
LIU2IE  
(0)  
Reserved  
(0)  
FDL1IE  
(0)  
FRMR1IE  
(0)  
LIU1IE  
(0)  
TID2-RSD1 TSD2-RSD1 TID1-RSD1 TSD1-RSD1 TSD2-RID1 TID2-RID1 TSD1-RID1 TID1-RID1  
(0) (0) (0) (0) (0) (0) (0) (0)  
TID1-RSD2 TSD1-RSD2 TID2-RSD2 TSD2-RSD2 TSD1-RID2 TID1-RID2 TSD2-RID2 TID2-RID2  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Reserved  
(0)  
ALIE  
(0)  
SECCTRL  
(0)  
Reserved  
(0)  
T1-R2  
(0)  
T2-R1  
(0)  
Reserved  
(0)  
Reserved  
(0)  
GREG5[005]  
GREG6[006]  
GREG7[007]  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
0
1
0
0
0
The following section describes the global registers in Tables 70—75.  
Lucent Technologies Inc.  
139  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Global Register Structure  
Primary Block Interrupt Status Register (GREG0)  
A bit set to 1 indicates the block has recently generated an interrupt. This register is cleared on read.  
Table 70. Primary Block Interrupt Status Register (GREG0) (000)  
Bit  
Symbol  
Description  
0
1
2
3
4
5
6
7
LIU1INT  
Line Interface Unit 1 Interrupt. A 1 indicates LIU1 generated an interrupt.  
FRMR1INT Framer 1 Interrupt. A 1 indicates framer 1 generated an interrupt.  
FDL1INT  
Facility Data Link 1 Interrupt. A 1 indicates FDL1 generated an interrupt.  
Reserved.  
LIU2INT  
Line Interface Unit 2 Interrupt. A 1 indicates LIU2 generated an interrupt.  
FRMR2INT Framer 2 Interrupt. A 1 indicates framer 2 generated an interrupt.  
FDL2INT  
Facility Data Link 2 Interrupt. A 1 indicates FDL2 generated an interrupt.  
Reserved.  
Primary Block Interrupt Enable Register (GREG1)  
This register enables the individual blocks to assert the interrupt pin.  
Table 71. Primary Block Interrupt Enable Register (GREG1) (001)  
Bit  
Symbol  
Description  
0
1
2
3
4
5
6
7
LIU1IE  
FRMR1IE  
FDL1IE  
Line Interface 1 Interrupt Enable. A 1 enables LIU1 interrupts.  
Framer 1 Interrupt Enable. A 1 enables framer 1 interrupts.  
Facility Data Link 1 Interrupt Enable. A 1 enables FDL1 interrupts.  
Reserved. Write to 0.  
LIU2IE  
FRMR2IE  
FDL2IE  
Line Interface 2 Interrupt Enable. A 1 enables LIU2 interrupts.  
Framer 2 Interrupt Enable. A 1 enables framer 2 interrupts.  
Facility Data Link 2 Interrupt Enable. A 1 enables FDL2 interrupts.  
Reserved. Write to 0.  
140  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Global Register Structure (continued)  
Global Loopback Control Register (GREG2)  
This register enables the framer inputs RCHIDATA1 and RCHIDATAB1 to be driven by various internal sources.  
A 1 enables the specified loopback. The default of the register 00 (hex) disables all loopbacks and enables external  
sources to drive these inputs.  
Table 72. Global Loopback Control Register (GREG2) (002)  
Bit  
Symbol  
Description  
0
1
2
3
4
5
6
7
TID1—RID1 TCHIDATA1 to RCHIDATA1 Connection.  
TSD1—RID1 TCHIDATAB1 to RCHIDATA1 Connection.  
TID2—RID1 TCHIDATA2 to RCHIDATA1 Connection.  
TSD2—RID1 TCHIDATAB2 to RCHIDATA1 Connection.  
TSD1—RSD1 TCHIDATAB1 to RCHIDATAB1 Connection.  
TID1—RSD1 TCHIDATA1 to RCHIDATAB1 Connection.  
TSD2—RSD1 TCHIDATAB2 to RCHIDATAB1 Connection.  
TID2—RSD1 TCHIDATA2 to RCHIDATAB1 Connection.  
Global Loopback Control Register (GREG3)  
This register enables the framer inputs RCHIDATA2 and RCHIDATAB2 to be driven by various internal sources.  
A 1 enables the specified loopback. The default of the register 00 (hex) disables all loopbacks and enables external  
sources to drive these inputs.  
Table 73. Global Loopback Control Register (GREG3) (003)  
Bit  
Symbol  
Description  
0
1
2
3
4
5
6
7
TID2—RID2 TCHIDATA2 to RCHIDATA2 Connection.  
TSD2—RID2 TCHIDATAB2 to RCHIDATA2 Connection.  
TID1—RID2 TCHIDATA1 to RCHIDATA2 Connection.  
TSD1—RID2 TCHIDATAB1 to RCHIDATA2 Connection.  
TSD2—RSD2 TCHIDATAB2 to RCHIDATAB2 Connection.  
TID2—RSD2 TCHIDATA2 to RCHIDATAB2 Connection.  
TSD1—RSD2 TCHIDATAB1 to RCHIDATAB2 Connection.  
TID1—RSD2 TCHIDATA1 to RCHIDATAB2 Connection.  
Lucent Technologies Inc.  
141  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Global Register Structure (continued)  
Global Control Register (GREG4)  
This register enables LIU1 to LIU2 loopbacks (bit 2 and bit 3), source of the output second pulse (bit 5), interrupt  
polarity (bit 6), and source of framer resets (bit 7).  
Table 74. Global Control Register (GREG4) (004)  
Bit  
Symbol  
Description  
0
1
2
Reserved. Write to zero.  
Reserved. Write to zero.  
T2-R1  
TLCK2, TPD2, and TND2 to RLCK1, RPD1, and RND1 Connection. A 1 makes the  
indicated loopback.  
3
T1-R2  
TLCK1, TPD1, and TND1 to RLCK2, RPD2, and RND2 Connection. A 1 makes the  
indicated loopback.  
4
5
Reserved. Write to zero.  
SECCTRL  
SECOND Pulse Source Control. A 0 enables framer 1 to source the output second  
pulse (SECOND). A 1 enables framer 2 to source the output second pulse.  
6
7
ALIE  
Active-Low Interrupt Enable. A 1 enables active-low interrupt.  
Reserved. Write to zero.  
Device ID and Version Registers (GREG5GREG7)  
These bits define the device and version number.  
Table 75. Device ID and Version Registers (GREG5GREG7) (005—007)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Device Code  
Device Code  
Version #  
GREG5  
GREG6  
GREG7  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
0
1
0
0
0
142  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Unit (LIU) Register Architecture  
REGBANK2 and REGBANK5 contain the status and programmable registers for the line interface unit channels  
LIU1 and LIU2 respectively. The base address for REGBANK2 is 400(hex) and for REGBANK5 is A00(hex). Within  
these register banks, the bit map is identical for both LIU1 and LIU2.  
The register bank architecture for LIU1 and LIU2 is shown in Table 76. The register bank consists of 8-bit registers  
classified as alarm status register, alarm mask register, status register, status interrupt mask register, control regis-  
ters, and configuration registers.  
Register LIU_REG0 is the alarm status register used for storing the various LIU alarms and status. It is a read-only,  
clear-on-read (COR) register. This register is cleared on the rising edge of MPCLK, if present, or on the rising edge  
of the internally generated 2.048 MHz clock derived from the CHI clock if MPCLK is not present. Register  
LIU_REG1 contains the individual interrupt enable bits for the alarms in LIU_REG0.  
Register LIU_REG2, LIU_REG3, and LIU_REG4 are designated as control registers while LIU_REG5 and  
LIU_REG6 are configuration registers. These are used to set up the individual LIU channel functions and parame-  
ters.  
The default values are shown in parentheses.  
The following sections describe the LIU registers in more detail.  
Table 76. Line Interface Units Register Set* ((400—40F); (A00—A0F))  
LIU  
LIU  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Register  
[Address  
(HEX)]  
Alarm Register (Read Only) (Latches Alarm, Clear On Read)  
LIU_REG0 400; A00  
LIU_REG1 401; A01  
0
0
0
0
LOTC  
TDM  
DLOS  
ALOS  
Alarm Interrupt Enable Register (Read/Write)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOTCIE  
(0)  
TDMIE  
(0)  
DLOSIE ALOSIE  
(0) (0)  
Control Registers (Read/Write)  
LIU_REG2 402; A02  
Reserved  
(0)  
Reserved  
(0)  
RESTART  
(0)  
HIGHZ  
(0)  
Reserved  
(0)  
LOSST  
(0)  
Reserved Reserved  
(0)  
(0)  
LIU_REG3 403; A03 Reserved†  
ReservedReserved†  
LOSSD  
(0)  
DUAL  
(0)  
CODE  
(1)  
JAT  
(0)  
JAR  
(0)  
(1)  
(1)  
(1)  
LIU_REG4 404; A04  
Reserved  
(0)  
Reserved  
(0)  
JABW0  
(0)  
PHIZALM  
(0)  
PRLALM  
(0)  
PFLALM RCVAIS ALTIMER  
(0)  
(0)  
(0)  
Configuration Registers (Read/Write)  
LIU_REG5 405; A05  
LIU_REG6 406; A06  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOOPA  
(0)  
LOOPB  
(0)  
XLAIS  
(1)  
PWRDN  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
EQ2  
(0,DS1)  
EQ1  
(0,DS1)  
EQ0  
(0)  
(0)  
0
(1,CEPT) (1,CEPT)  
*
The logic value, in parentheses below each bit definition, is the default state upon completion of hardware reset.  
† These bits must be written to 1.  
Lucent Technologies Inc.  
143  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Alarm Register  
Alarm Status Register (LIU_REG0)  
Bits 0—3 of this register represent the status of the line interface receiver and transmitter alarms ALOS, DLOS,  
TDM, and LOTC. The alarm indicators are active-high and automatically clear on a microprocessor read if the cor-  
responding alarm conditions no longer exist.* However, persistent alarm conditions will cause these bits to remain  
set even after a microprocessor read. This is a read-only register.  
Table 77. LIU Alarm Status Register (LIU_REG0) (400, A00)  
Bit  
Description  
Symbol  
0
ALOS  
Receive Analog Loss of Signal. A 1 indicates the LIU receive channel has detected  
an analog loss of signal condition/event.  
1
2
DLOS  
TDM  
LOTC  
Receive Digital Loss of Signal. A 1 indicates the LIU receive channel has detected a  
digital loss of signal condition/event.  
Transmit Driver Monitor Alarm. A 1 indicates the LIU transmit channel has detected  
a transmit driver monitor alarm condition/event.  
3
Transmit Loss of Transmit Clock Alarm. A 1 indicates the LIU transmit channel has  
detected a loss of transmit clock condition/event.  
4—7  
Reserved.  
Line Interface Alarm Interrupt Enable Register  
Alarm Interrupt Enable Register (LIU_REG1)  
The bits in the alarm interrupt enable register allow the user to selectively enable generation of an interrupt by each  
channel alarm. The enable bits correspond to their associated alarm status bits in the alarm status register, LIU-  
REG0. The interrupt enable function is active-high. When an enable bit is set, the corresponding alarm is enabled  
to generate an interrupt. Otherwise, the alarm is disabled from generating an interrupt.  
The enable function only impacts the ability to generate an interrupt signal. The proper alarm status will be  
reflected in LIU_REG0 even when the corresponding enable bit is set to zero. Any other LIU behavior associated  
with an alarm event will operate normally even if the interrupt is not enabled.  
This is a read/write register  
Table 78. LIU Alarm Interrupt Enable Register (LIU_REG1) (401, A01)  
Bit  
Symbol  
Description  
0
ALOSIE  
Enable Analog Loss of Signal Interrupt. A 1 enables an interrupt in response to  
ALOS alarm.  
1
2
DLOSIE  
TDMIE  
LOTCIE  
Enable Digital Loss of Signal Interrupt. A 1 enables an interrupt in response to  
DLOS alarm.  
Enable Transmit Driver Monitor Interrupt. A 1 enables an interrupt in response to  
TDM alarm.  
3
Enable loss of Transmit Clock Interrupt. A 1 enables an interrupt in response to  
LOTC alarm.  
4—7  
Reserved. Write to 0.  
* See T7630 Device Advisory for signal timing requirements.  
144  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Control Registers  
The bits in the control registers allow the user to configure the various device functions for the individual line inter-  
face channels 1 and 2. All the control bits (with the exception of LOSSTD) are active-high.  
LIU Control Register (LIU_REG2)  
Table 79. LIU Control Register (LIU_REG2) (402, A02)  
Bit  
Symbol  
Description  
0
1
2
Reserved. Write to 0.  
Reserved. Write to 0.  
LOSSTD  
The LOSSTD bit selects the conformance protocol for the DLOS receiver alarm  
function. LOSSTD = 0 selects standards T1M1.3/93-005, ITU-T G.755 for DS1  
mode and ITU-T G.755 for CEPT mode. LOSSTD = 1 selects standards TR-TSY-  
000009 for DS1 and ITU-T G.775 for CEPT.  
3
4
Reserved. Write to 0.  
HIGHZ  
The HIGHZ bit places the LIU in a high-impedance state. When HIGHZ = 1, the  
TTIP and TRING transmit drivers for the specified channel are placed in a high-  
impedance state.  
5
RESTART  
The RESTART bit is used for device initialization through the microprocessor inter-  
face. RESTART = 1 resets the data path circuits. Data path circuits will be reset, but  
the microprocessor registers state will not be altered by a restart action.  
6—7  
Reserved. Write to 0.  
LIU Control Register (LIU_REG3)  
The default value of this register is E4 (hex)  
Table 80. LIU Control Register (LIU_REG3) (403, A03).  
Bit  
Symbol  
Description  
0
JAR  
The JAR bit is used to enable and disable the jitter attenuator function in the receive  
path. The JAR and JAT control bits are mutually exclusive, i.e., either JAR or the JAT  
control bit can be set, but not both. JAR = 1 places jitter attenuator in the receive path.  
1
2
JAT  
The JAT bit is used to enable and disable the jitter attenuator function in the transmit  
path. The JAT and JAR control bits are mutually exclusive, i.e., either JAT or the JAR  
control bit can be set, but not both. JAT = 1 places jitter attenuator in the transmit path.  
CODE  
The CODE bit is used to enable and disable the B8ZS/HDB3 zero substitution coding  
in the transmit and decoding in the receive path. CODE is used in conjunction with the  
DUAL bit and is valid only for single-rail operation. CODE = 1 activates the coding/  
decoding functions. The default value is CODE = 1.  
3
4
DUAL  
The DUAL bit is used to select single- or dual-rail mode of operation. DUAL = 1 selects  
the dual-rail mode.  
LOSSD  
The LOSSD bit selects the shutdown function for the receiver during DLOS. LOSSD  
operates in conjunction with the RCVAIS bit (see Table 4, LOSSD and RCVAIS Control  
Configurations (Not Valid During Loopback Modes), repeated below for reference)  
5—7  
Reserved. Write to 1.  
Note: These registers must be written to 1 for the LIU-to-framer interface to be functional.  
Lucent Technologies Inc.  
145  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Control Registers (continued)  
Table 81. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes) (from Table 4)  
LOSSD  
RCVAIS  
ALARM  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
RPD/RND  
RLCK  
Free Runs  
Recovered Clock  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
Normal Data  
0
0
AIS (all ones)  
AIS (all ones)  
0
0
LIU Control Register (LIU_REG4)  
Table 82. LIU Register (LIU_REG4) (404, A04)  
Bit  
Symbol  
Description  
0
ALTIMER  
The ALTIMER bit is used to select the time required to declare ALOS. ALTIMER = 0  
selects 1 ms—2.6 ms. ALTIMER = 1 selects 10 bit to 255 bit periods.  
1
RCVAIS  
The RCVAIS bit selects the shut down function for the receiver during ALOS alarm  
(ALOS). RCVAIS operates in conjunction with the LOSSD bit. See LIU-REG3.  
2
3
4
5
PFLALM  
PRLALM  
PHIZALM  
JABW0  
PFLALM prevents the DLOS alarm from occurring during FLLOOP activation.  
PFLALM = 1 activates the PFLALM function.  
PRLALM prevents the LOTC alarm from occurring during RLOOP activation/deacti-  
vation. PRLALM = 1 activates the PRLALM function.  
PHIZALM prevents the TDM alarm from occurring when the driver are in a high-  
impedance state. PHIZALM = 1 activates the PHIZALM function.  
JABW0 = 1 selects the lower bandwidth jitter attenuator option in CEPT mode.  
146  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Line Interface Control Registers (continued)  
LIU Configuration Register (LIU_REG5)  
The control bits in the channel configuration register 5 are used to select powerdown mode, AIS generation, and  
loopbacks for the LIU. The PWRDN and XLAIS bits are active-high. This is a read/write register. The default value  
of this register is 02 (hex).  
Table 83. LIU Configuration Register (LIU_REG5) (405, A05)  
Bit  
Symbol  
Description  
0
1
PWRDN  
XLAIS  
PWRDN = 1 activates powerdown.  
XLAIS = 1 enables transmission of an all ones signal to the line interface. XLAIS = 1  
after a reset allowing immediate generation of alarm signal as long as a clock  
source is present. The default value is XLAIS = 1.  
2
3
LOOPB  
LOOPA  
The LOOPA bit is used in conjunction with LOOPB to select the channel loopback  
modes. See Table 11, repeated below for reference.  
4—7  
Reserved. Write to 0.  
Table 84. Loopback Control (from Table 11)  
Operation  
Normal*  
Symbol  
LOOPA  
LOOPB  
0
0
1
1
0
1
0
1
Full Local Loopback  
Remote Loopback  
FLLOOP†  
RLOOP‡  
DLLOOP  
Digital Local Loopback  
* The reset default condition is LOOPA = LOOPB = 0 (no loopback).  
† During the transmit AIS condition, the looped data will be the transmitted data from the framer or system interface and not the all ones signal.  
Transmit AIS request is ignored.  
LIU Configuration Register (LIU_REG6)  
The control bits in the channel configuration register 6 are used to select LIU transmit equalization settings. This is  
a read/write register. The default value of this register is 00 (hex) in DS1 when DS1/CEPT (pin 40/142) is set to 1,  
and 06 (hex) in CEPT when DS1/CEPT (pin 40/142) is set to 0.  
Table 85. LIU Configuration Register (LIU_REG6) (406, A06)  
Bit  
Symbol  
Description  
0
1
2
EQ0  
EQ1  
EQ2  
The EQ0, EQ1, and EQ2 bits select the type of service (DS1 or CEPT) and the  
associated transmitter cable equalization/line build out/termination impedances.  
See Table 7, Transmit Line Interface Short-Haul Equalizer/Rate Control, repeated  
below for reference.  
3—7  
Reserved. Write to 0.  
Lucent Technologies Inc.  
147  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Line Interface Control Registers (continued)  
Table 86. Transmit Line Interface Short-Haul Equalizer/Rate Control (from Table 7)  
Short-Haul Applications  
EQ2  
EQ1  
EQ0 Service  
Clock Rate  
Transmitter Equalization*†  
Maximum  
Cable Loss  
to DSX‡  
Feet  
Meters  
dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DSX-1  
CEPT§  
1.544 MHz  
0 to 131  
0 to 40  
40 to 80  
0.6  
1.2  
1.8  
2.4  
3.0  
131 to 262  
262 to 393  
393 to 524  
524 to 655  
80 to 120  
120 to 160  
160 to 200  
2.048 MHz  
75 (Option 2)  
120 or 75 (Option 1)  
Not Used  
* In DS1 mode, the distance to the DSX for 22-Gauge PIC (ABAM) cable is specified. Use the maximum cable loss figures for other cable types.  
In CEPT mode, equalization is specified for coaxial or twisted-pair cable.  
† Reset default state is EQ2, EQ1, and EQ0 = 000 when pin DS1_CEPT = 1 and EQ2, EQ1, and EQ0 = 110 when pin DS1_CEPT = 0.  
‡ Loss measured at 772 kHz.  
§ In 75 applications, Option 1 is recommended over Option 2 for lower LIU power dissipation. Option 2 allows for the use of the same trans-  
former as in CEPT 120 applications (see Line Interface Unit: Line Circuitry section).  
Framer Register Architecture  
REGBANK3 and REGBANK6 contain the status and programmable control registers for the framer and system  
(CHI) interface channels FRM1 and FRM2. The base address for REGBANK3 is 600 (hex) and for REGBANK6 is  
C00 (hex). Within these register banks, the bit map is identical for both FRM1 and FRM2.  
The framer registers are structures as shown in Table 87. Default values are given in the individual register defini-  
tion tables.  
Table 87. Framer Status and Control Blocks Address Range (Hexadecimal)  
Framer Register Block  
Status Registers (COR) ((600—63F); (C00—C3F))  
Receive Signaling Registers ((640—65F); (C40—C5F))  
Parameter (Configuration) Registers ((660—6A6); (C60—CA6))  
Transmit Signaling Registers ((6E0—6FF); (CE0—CFF))  
The complete register map for the framer is given in Table 201 to Table 203.  
All status registers are clocked with the internal framer receive line clock (RFRMCK).  
Bits in status registers FRM_SR1 and FRM_SR7 are set at the onset of the condition and are cleared on read  
when the given condition is no longer present. These registers can generate interrupts if the corresponding register  
bits are enabled in interrupt enable registers FRM_PR0—FRM_PR7.  
148  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
On all 16-bit counter registers (FRM_SR8—FRM_SR51), both bytes are cleared only after reading both bytes.  
These status registers are two byte register pairs. These register pairs must be read in succession, with the lower  
byte read first followed by a read of higher byte. Once a read is initiated on one of the bytes, the updating of that  
counter is disabled and remains disabled until both bytes are read. All events during this interval are lost. Updating  
of the counter registers is stopped when all of the bits are set to 1. Updating resumes after the registers are cleared  
on read. These register pairs may be read in any order, but they must be read in pairs, i.e., a read of 1 byte must be  
followed immediately by a read of the remaining byte of the pair.  
Status registers FRM_SR0—FRM_SR63 are clear-on-read (COR) registers. These registers are cleared by the  
framer internal received line clock (RFRMCK). At least two RFRMCK cycles (1.3 µs for DS1 and 1.0 µs for CEPT)  
must be allowed between successive reads of the same COR register to allow it to properly clear.  
Framer Status/Counter Registers  
Registers FRM_SR0—FRM_SR63 report the status of each framer. All are clear-on-read, read only registers.  
Interrupt Status Register (FRM_SR0)  
The interrupt pin (INTERRUPT) goes active when a bit in this register and its associated interrupt enable bit in reg-  
isters FRM_PR0—FRM_PR7 are set, and the interrupt for the framer block is enabled in register GREG1.  
Table 88. Interrupt Status Register (FRM_SR0) (600; C00)  
Bit  
Symbol  
Description  
0
1
2
FAC  
RAC  
FAE  
Facility Alarm Condition. A 1 indicates a facility alarm occurred (go read FRM_SR1).  
Remote Alarm Condition. A 1 indicates a remote alarm occurred (go read FRM_SR2).  
Facility Alarm Event. A 1 indicates a facility alarm occurred (go read FRM_SR3 and  
FRM_SR4).  
3
4
5
ESE  
Errored Second Event. A 1 indicates an errored second event occurred (go read  
FRM_SR5, FRM_SR6, and FRM_SR7).  
TSSFE  
RSSFE  
Transmit Signaling Superframe Event. A 1 indicates that a MOS superframe block  
has been transmitted and the transmit signaling data buffers are ready for new data.  
Receive Signaling Superframe Event. A 1 indicates that a MOS superframe block has  
been received and the receive signaling data buffers must be read.  
6
7
Reserved.  
S96SR  
SLC-96 Stack Ready. A 1 indicates that either the transmit framer SLC-96 stack is  
ready for more data or the receive framer SLC-96 stack contains new data.  
Lucent Technologies Inc.  
149  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Facility Alarm Condition Register (FRM_SR1)  
The bits in the facility alarm condition register (FRM_SR1) indicate alarm state of the receive framer section. Inter-  
rupts from this register are generated once at the onset of the alarm condition. If the alarm condition is still present  
at the time of the read, the bit will remain in the 1 state for the duration of the alarm condition. If the alarm condition  
is no longer present at the time of the read, then the bit is cleared on read.  
Table 89. Facility Alarm Condition Register (FRM_SR1) (601; C01)  
Bit  
Symbol  
Description  
0
LFA  
Loss of Frame Alignment. A 1 indicates the receive framer is in a loss of frame align-  
ment and is currently searching for a new alignment.  
1
LSFA  
Loss of Signaling Superframe Alignment. A 1 indicates the receive framer is in a loss  
of signaling superframe alignment in the DS1 framing formats. A search for a new sig-  
naling superframe alignment starts once frame alignment is established.  
LTS16MFA Loss of Time Slot 16 Signaling Multiframe Alignment. A 1 indicates the receive  
framer is in a loss of time slot 16 signaling multiframe alignment in the CEPT mode. A  
search for a new time slot 16 signaling multiframe alignment starts once frame alignment  
is established. This bit is 0 when the T7630 is programmed for the transparent signaling  
mode, register FRM_PR44 bit 0 (TSIG) = 1.  
2
LTSFA  
Loss of Transmit Superframe Alignment. A 1 indicates superframe alignment pattern  
in the transmit facility data link as defined for SLC-96 is lost. Only valid for SLC-96 mode.  
This bit is 0 in all other DS1 modes.  
LTS0MFA  
Loss of Time Slot 0 CRC-4 Multiframe Alignment. A 1 indicates an absence of CRC-  
4 multiframe alignment after initial basic frame alignment is established. A 0 indicates  
either CRC-4 checking is disabled or CRC-4 multiframe alignment has been success-  
fully detected.  
3
4
LFALR  
LBFA  
Loss of Frame Alignment Since Last Read. A 1 indicates that the LFA state indicated  
in bit 0 of this register is the same LFA state as the previous read.  
Loss of Biframe Alignment. A 1 indicates that the CEPT biframe alignment pattern  
(alternating 10 in bit 2 of time slot 0 of each frame) in the receive system data is errored.  
This alignment pattern is required when transmitting the Si or Sa bits transparently. Only  
valid in the CEPT mode. This bit is 0 in all other modes.  
5
6
7
RTS16AIS  
AUXP  
Receive Time Slot 16 Alarm Indication Signal. A 1 indicates the receive framer  
detected time slot 16 AIS in the CEPT mode. This bit is 0 in the DS1 modes.  
Auxiliary Pattern. A 1 indicates the detection of a valid AUXP (unframed 1010 . . . pat-  
tern) in the CEPT mode. This bit is 0 in the DS1 modes.  
AIS  
Alarm Indication Signal. A 1 indicates the receive framer is currently receiving an AIS  
pattern from its remote line end.  
150  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Remote End Alarm Register (FRM_SR2)  
A bit set to 1 indicates the receive framer has recently received the given alarm. Interrupts from this register are  
generated once at the beginning of the alarm condition. If the alarm is still present at the time of the read, the bit  
will remain in the 1 state for the duration of the alarm condition. If the alarm condition is no longer present at the  
time of the read, then the bit is cleared on read.  
Table 90. Remote End Alarm Register (FRM_SR2) (602; C02)  
Bit  
Symbol  
Description  
0
RFA  
Remote Framer Alarm. A 1 indicates the receive framer detected a remote frame  
(yellow) alarm.  
1
RJYA  
Remote Japanese Yellow Alarm. A 1 indicates the receive framer detected the Japa-  
nese format remote frame alarm.  
RTS16MFA Remote Multiframe Alarm. A 1 indicates the receive framer detected a time slot 16  
remote frame alarm in the CEPT mode.  
2
3
4
5
6
7
CREBIT  
Sa6 = 8  
Sa6 = A  
Sa6 = C  
Sa6 = E  
Sa6 = F  
Continuous Received E Bits. A 1 indicates the detection of a five-second interval  
containing 991 E bit = 0 events in each second. This bit is 0 in the DS1 mode.  
Received Sa6 = 8. A 1 indicates the receive framer detected a Sa6 code equal to 1000.  
This bit is 0 in the DS1 mode.  
Received Sa6 = A. A 1 indicates the receive framer detected a Sa6 code equal to 1010.  
This bit is 0 in the DS1 mode.  
Received Sa6 = C. A 1 indicates the receive framer detected a Sa6 code equal to 1100.  
This bit is 0 in the DS1 mode.  
Received Sa6 = E. A 1 indicates the receive framer detected a Sa6 code equal to 1110.  
This bit is 0 in the DS1 mode.  
Received Sa6 = F. A 1 indicates the receive framer detected a Sa6 code equal to 1111.  
This bit is 0 in the DS1 mode.  
Lucent Technologies Inc.  
151  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Facility Errored Event Register (FRM_SR3)  
A bit set to 1 indicates the receive framer has recently received the given errored event.  
Table 91. Facility Errored Event Register-1 (FRM_SR3) (603; C03)  
Bit  
Symbol  
Description  
0
LFV  
Line Format Violation. A 1 indicates the receive framer detected a bipolar line coding or  
excessive zeros violation.  
1
FBE  
Frame-Bit Errored. A 1 indicates the receive framer detected a frame-bit or frame align-  
ment pattern error.  
2
3
CRCE  
ECE  
CRC Errored. A 1 indicates the receive framer detected CRC errors.  
Excessive CRC Errors. A 1 indicates the receive framer detected an excessive CRC  
errored condition. This bit is only valid in the ESF and CEPT with CRC-4 modes; other-  
wise, it is 0.  
4
5
REBIT  
Received E Bit = 0. A 1 indicates the receive framer detected a E bit = 0 in either frame  
13 or 15 of the time slot 0 of CRC-4 multiframe. This bit is 0 in the DS1 modes.  
LCRCATMX Lack of CRC-4 Multiframe Alignment Timer Expire Indication. A 1 indicates that  
either the 100 ms or the 400 ms CRC-4 interworking timer expired. Active only immedi-  
ately after establishment of the initial basic frame alignment. This bit is 0 in the DS1  
modes.  
6
7
SLIPO  
Receive Elastic Store Slip: Buffer Overflow. A 1 indicates the receive elastic store per-  
formed a control slip due to an elastic buffer overflow condition.  
SLIPU  
Receive Elastic Store Slip: Buffer Underflow. A 1 indicates the receive elastic store  
performed a control slip due to an elastic buffer underflow condition.  
152  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Table 92. Facility Event Register-2 (FRM_SR4) (604; C04)  
Bit  
Symbol  
Description  
0
NFA  
New Frame Alignment. A 1 indicates the receive framer established a new frame align-  
ment which differs from the previous alignment.  
1
2
SSFA  
LLBOFF  
BFA  
Signaling Superframe Alignment. A 1 indicates the receive framer has established the  
signaling superframe alignment. In the SF modes (D4 and SLC-96) and CEPT modes,  
this alignment is established only after primary frame alignment is determined.  
T1 Line Loopback Off Code Detect. A 1 indicates the receive framer detected the DS1  
line loopback disable code in the payload. This code is defined in AT&T Technical Refer-  
ence 62411 as a framed 001 pattern where the frame bit is inserted into the pattern.  
New Biframe Alignment Established. A 1 indicates the transmit framer has established  
a biframe alignment for the transmission of transparent Si and or Sa bits from the system  
data in the CEPT mode.  
3
4
LLBON  
CMA  
T1 Line Loopback On Code Detect. A 1 indicates the receive framer detected the line  
loopback enable code in the payload. This code is defined in AT&T Technical Reference  
62411 as a framed 00001 pattern where the frame bit is inserted into the pattern.  
New CEPT CRC-4 Multiframe Alignment. A 1 indicates the CEPT CRC-4 multiframe  
alignment in the receive framer has been established.  
FDL-PLBON ESF FDL Payload Loopback On Code Detect. A 1 indicates the receive framer  
detected the line loopback enable code in the payload. This code is defined in ANSI  
T1.403-1995 as a 1111111100101000 pattern in the facility data link, where the leftmost  
bit is the MSB.  
SLCRFSR  
SLC-96 Receive FDL Stack Ready. A 1 indicates that the receive FDL stack should be  
read. This bit is cleared on read. Data in the receive FIFO must be read within 9 ms of  
this interrupt. This bit is not updated during loss of frame or signaling superframe align-  
ment.  
5
6
FDL-PLBOF ESF FDL Payload Loopback Off Code Detect. A 1 indicates the receive framer  
detected the line loopback disable code in the payload. This code is defined in ANSI  
T1.403-1995 as a 1111111101001100 pattern in the facility data link, where the leftmost  
bit is the MSB.  
SLCTFSR  
SLC-96 Transmit FDL Stack Ready. A 1 indicates that the transmit FDL stack is ready  
for new data. This bit is cleared on read. Data written within 9 ms of this interrupt will be  
transmitted in the next SLC-96 D-bit superframe interval.  
FDL-LLBON ESF FDL Line Loopback On Code Detect. A 1 indicates the receive framer detected  
the line loopback enable code in the payload. This code is defined in ANSI T1.403-1995  
as a 1111111101110000 pattern in the facility data link, where the leftmost bit is the  
MSB.  
RSaSR  
CEPT Receive Sa Stack Ready. A 1 indicates that the receive Sa6 stack should be  
read. This bit is clear on the first access to the Sa receive stack or at the beginning of  
frame 0 of the CRC-4 double-multiframe. Data in the receive FIFO must be read within  
4 ms of this interrupt. This bit is not updated during LFA.  
7
FDL-LLBOFF ESF FDL Line Loopback Off Code Detect. A 1 indicates the receive framer detected  
the line loopback disable code in the payload. This code is defined in ANSI T1.403-1995  
as a 1111111100011100 pattern in the facility data link, where the leftmost bit is the  
MSB.  
TSaSR  
CEPT Transmit Sa Stack Ready. A 1 indicates that the transmit Sa stack is ready for  
new data. This bit is cleared on the first access to the Sa transmit stack or at the begin-  
ning of frame 0 of the CRC-4 double multiframe. Data written within 4 ms of this interrupt  
will be transmitted in the next CRC-4 double multiframe interval.  
Lucent Technologies Inc.  
153  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
The following registers are dedicated to the exchange termination and its remote end interface. The alarm condi-  
tions to trigger errored seconds and severely errored seconds are defined in Table 44, Event Counters Definition  
and the ET and ET-RE enable registers, FRM_PR14 and FRM_PR15. The thresholds are defined in registers  
FRM_PR11—FRM_PR13.  
Table 93. Exchange Termination and Exchange Termination Remote End Interface Status Register  
(FRM_SR5) (605; C05)  
Bit  
Symbol  
Description  
0
ETES  
ET Errored Second. A 1 indicates the receive framer detected an errored second at the  
exchange termination (ET).  
1
2
3
ETBES  
ETSES  
ETUAS  
ET Bursty Errored Second. A 1 indicates the receive framer detected a bursty errored  
second at the ET.  
ET Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the ET.  
ET Unavailable State. A 1 indicates the receive framer has detected at least ten con-  
secutive severely errored seconds. Upon detecting ten consecutive nonseverely errored  
seconds, the receive framer will clear this bit. ITU Recommendation G.826 is used  
resulting in a ten-second delay in the reporting of this condition.  
4
5
6
7
ETREES  
ETREBES  
ETRESES  
ETREUAS  
ET-RE Errored Second. A 1 indicates the receive framer detected an errored second at  
the exchange termination remote end (ET-RE).  
ET-RE Bursty Errored Second. A 1 indicates the receive framer detected a bursty  
errored second at the ET-RE.  
ET-RE Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the ET-RE.  
ET-RE Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is  
used resulting in a ten-second delay in the reporting of this condition.  
154  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
The following status registers are dedicated to the NT1 and the NT1 remote end (NT1-RE) interface. The alarm  
conditions to evaluate errored seconds and severely errored seconds are defined in Table 44, Event Counters Def-  
inition and the NT1 and NT1-RE enable registers, FRM_PR16—FRM_PR18. The thresholds are defined in regis-  
ters FRM_PR11—FRM_PR13.  
Table 94. Network Termination and Network Termination Remote End Interface Status  
Register (FRM_SR6) (606; C06)  
Bit  
Symbol  
Description  
0
NTES  
NT Errored Second. A 1 indicates the receive framer detected an errored second at the  
network termination (NT).  
1
2
3
NTBES  
NTSES  
NTUAS  
NT Bursty Errored Second. A 1 indicates the receive framer detected a bursty errored  
second at the NT.  
NT Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the NT.  
NT Unavailable State. A 1 indicates the receive framer has detected at least ten consec-  
utive severely errored seconds. Upon detecting ten consecutive nonseverely errored sec-  
onds, the receive framer will clear this bit. ITU Recommendation G.826 is used resulting  
in a ten-second delay in the reporting of this condition.  
4
5
6
7
NTREES  
NT-RE Errored Second. A 1 indicates the receive framer detected an errored second at  
the exchange termination remote end (ET-RE).  
NTREBES NT-RE Bursty Errored Second. A 1 indicates the receive framer detected a bursty  
errored second at the ET-RE.  
NTRESES NT-RE Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the NT-RE.  
NTREUAS NT-RE Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is  
used resulting in a ten-second delay in the reporting of this condition.  
Lucent Technologies Inc.  
155  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Bit 0—bit 4 in this register are set high when the receive framer comes out of the unavailable state, while bit 4—  
bit 7 report detection of the receive test patterns. Bits 4 and 5 are cleared only after register FRM_PR70 bit 2 is set  
to 0.  
Table 95. Facility Event Register (FRM_SR7) (607; C07)  
Bit  
Symbol  
Description  
0
OUAS  
Out of Unavailable State. A 1 indicates the receive framer detected ten consecutive sec-  
onds that were not severely errored while in the unavailable state at the ET.  
1
2
3
4
5
6
7
EROUAS Out of Unavailable State at the ET-RE. A 1 indicates the receive framer detected ten con-  
secutive seconds that were not severely errored while in the unavailable state at the ET-RE.  
NT1OUAS Out of Unavailable State at the NT1. A 1 indicates the receive framer detected ten consec-  
utive seconds that were not severely errored while in the unavailable state at the NT.  
NROUAS Out of Unavailable State NT1-RE. A 1 indicates the receive framer detected ten consecu-  
tive seconds that were not severely errored while in the unavailable state at the NT-RE.  
DETECT  
Test Pattern Detected. A 1 indicates the pattern detector has locked onto the pattern spec-  
ified by the PTRN configuration bits defined in register FRM_PR70.  
PTRNBER Test Pattern Bit Error. A 1 indicates the pattern detector has found one or more single bit  
errors in the pattern that it is currently locked onto.  
RPSUEDO Receiving Pseudorandom Pattern. A 1 indicates the receive framer pattern monitor circuit  
is currently detecting the 215 – 1 pseudorandom pattern*.  
RQUASI  
Receiving Quasi-Random Pattern. A 1 indicates the receive framer pattern monitor circuit  
is currently detecting the 220 – 1 quasi-random pattern*.  
* It is possible for one of these bits to be set to 1, if the received line data is all zeros.  
Bipolar Violation Counter Register (FRM_SR8—FRM_SR9)  
This register contains the 16-bit count of received bipolar violations, line code violations, or excessive zeros.  
Table 96. Bipolar Violation Counter Registers (FRM_SR8—FRM_SR9) ((608—609); (C08—C09))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR8  
FRM_SR9  
MSB  
LSB  
7—0  
7—0  
BPV15—BPV8 BPVs Counter.  
BPV7—BPV0 BPVs Counter.  
Frame Bit Errored Counter Register (FRM_SR10—FRM_SR11)  
This register contains the 16-bit count of framing bit errors. Framing bit errors are not counted during loss of frame  
alignment.  
Table 97. Framing Bit Error Counter Registers (FRM_SR10—FRM_SR11) ((60A—60B); (C0A—C0B))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR10  
FRM_SR11  
MSB  
LSB  
7—0  
7—0  
FBE15—FBE8 Frame Bit Errored Counter.  
FBE7—FBE0 Frame Bit Errored Counter.  
156  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
CRC Error Counter Register (FRM_SR12—FRM_SR13)  
This register contains the 16-bit count of CRC errors. CRC errors are not counted during loss of CRC multiframe  
alignment.  
Table 98. CRC Error Counter Registers (FRM_SR12—FRM_SR13) ((60C—60D); (C0C—C0D))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR12  
FRM_SR13  
MSB  
LSB  
7—0  
7—0  
CEC15—CEC8 CRC Errored Counter.  
CEC7—CEC0 CRC Errored Counter.  
E-Bit Counter Register (FRM_SR14—FRM_SR15)  
This register contains the 16-bit count of received E bit = 0 events. E bits are not counted during loss of CEPT  
CRC-4 multiframe alignment.  
Table 99. E-Bit Counter Registers (FRM_SR14—FRM_SR15) ((60E—60F); (C0E—C0F))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR14  
FRM_SR15  
MSB  
LSB  
7—0  
7—0  
REC15—REC8 E-Bit Counter.  
REC7—REC0 E-Bit Counter.  
CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17)  
This register contains the 16-bit count of each occurrence of Sa6 code 001X, detected synchronously to the CEPT  
CRC-4 multiframe.  
Table 100. CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17) ((610—611);  
(C10—C11))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR16  
FRM_SR17  
MSB  
LSB  
7—0  
7—0  
CNT15—CNT8 CRC-4 Errors at NT1 Counter.  
CNT7—CNT0 CRC-4 Errors at NT1 Counter.  
E Bit at NT1 from NT2 Counter Registers (FRM_SR18—FRM_SR19)  
This register contains the 16-bit count of each occurrence of Sa6 code 00X1, detected synchronously to the CEPT  
CRC-4 multiframe. E bits are not counted during loss of CEPT CRC-4 multiframe alignment.  
Table 101. E Bit at NT1 from NT2 Counter (FRM_SR18—FRM_SR19) ((612—613); (C12—C13))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR18  
FRM_SR19  
MSB  
LSB  
7—0  
7—0  
ENT15—ENT8 E Bit at NT1 Counter.  
ENT7—ENT0 E Bit at NT1 Counter.  
Lucent Technologies Inc.  
157  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
The following status registers, FRM_SR20—FRM_SR51, contain the 16-bit count of errored seconds, bursty  
errored seconds, severely errored seconds, and unavailable seconds at the ET, ET-RE, NT1, and NT1-RE termi-  
nals. DS1 error conditions are reported in the ET errored registers FRM _SR20—FRM_SR35.  
Table 102. ET Errored Seconds Counter (FRM_SR20—FRM_SR21) ((614—615); (C14—C15))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR20  
FRM_SR21  
MSB  
LSB  
7—0  
7—0  
ETES15—ETES8  
ETES7—ETES0  
ET Errored Seconds Counter.  
ET Errored Seconds Counter.  
Table 103. ET Bursty Errored Seconds Counter (FRM_SR22—FRM_SR23) ((616—617); (C16—C17))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR22  
FRM_SR23  
MSB  
LSB  
7—0  
7—0  
ETBES15—ETBES8 ET Bursty Errored Seconds Counter.  
ETBES7—ETBES0 ET Bursty Errored Seconds Counter.  
Table 104. ET Severely Errored Seconds Counter (FRM_SR24—FRM_SR25) ((618—619); (C18—C19))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR24  
FRM_SR25  
MSB  
LSB  
7—0  
7—0  
ETSES15—ETSES8 ET Severely Errored Seconds Counter.  
ETSES7—ETSES0 ET Severely Errored Seconds Counter.  
Table 105. ET Unavailable Seconds Counter (FRM_SR26—FRM_SR27) ((61A—61B); (C1A—C1B))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR26  
FRM_SR27  
MSB  
LSB  
7—0  
7—0  
ETUS15—ETUS8  
ETUS7—ETUS0  
ET Unavailable Seconds Counter Bits.  
ET Unavailable Seconds Counter Bits.  
Table 106. ET-RE Errored Seconds Counter (FRM_SR28—FRM_SR29) ((61C—61D); (C1C—C1D))  
Register  
Byte  
Bit  
7—0 ETREES15—ETREES8 ET-RE Errored Seconds Counter.  
7—0 ETREES7—ETREES0 ET-RE Errored Seconds Counter.  
Symbol  
Description  
FRM_SR28  
FRM_SR29  
MSB  
LSB  
Table 107. ET-RE Bursty Errored Seconds Counter (FRM_SR30—FRM_SR31) ((61E—61F); (C1E—C1F))  
Register Byte Bit Symbol Description  
FRM_SR30 MSB 7—0 ETREBES15—ETREBES8 ET-RE Bursty Errored Seconds Counter.  
FRM_SR31 LSB 7—0 ETREBES7—ETREBES0 ET-RE Bursty Errored Seconds Counter.  
Table 108. ET-RE Severely Errored Seconds Counter (FRM_SR32—FRM_SR33) ((620—621); (C20—C21))  
Register Byte Bit Symbol Description  
FRM_SR32 MSB 7—0 ETRESES15—ETRESES8 ET-RE Severely Errored Seconds Counter.  
FRM_SR33 LSB 7—0 ETRESES7—ETRESES0 ET-RE Severely Errored Seconds Counter.  
158  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Table 109. ET-RE Unavailable Seconds Counter (FRM_SR34—FRM_SR35) ((622—623); (C22—C23))  
Register  
FRM_SR34 MSB  
FRM_SR35 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
ETREUS15—ETRESES8 ET-RE Unavailable Seconds Counter.  
ETRESES7—ETRESES0 ET-RE Unavailable Seconds Counter.  
Table 110. NT1 Errored Seconds Counter (FRM_SR36—FRM_SR37) ((624—625); (C24—C25))  
Register  
FRM_SR36 MSB  
FRM_SR37 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTES15—NTES8  
NTES7—NTES0  
NT1 Errored Seconds Counter.  
NT1 Errored Seconds Counter.  
Table 111. NT1 Bursty Errored Seconds Counter (FRM_SR38—FRM_SR39) ((626—627); (C26—C27))  
Register  
Byte  
Bit  
Symbol  
Description  
FRM_SR38  
FRM_SR39  
MSB  
LSB  
7—0  
7—0  
NTBES15—NTBES8  
NTBES7—NTBES0  
NT1 Bursty Errored Seconds Counter.  
NT1 Bursty Errored Seconds Counter.  
Table 112. NT1 Severely Errored Seconds Counter (FRM_SR40—FRM_SR41) ((628—629); (C28—C29))  
Register  
FRM_SR40 MSB  
FRM_SR41 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTSES15—NTSES8  
NTSES7—NTSES0  
NT1 Severely Errored Seconds Counter.  
NT1 Severely Errored Seconds Counter.  
Table 113. NT1 Unavailable Seconds Counter (FRM_SR42—FRM_SR43) ((62A—62B); (C2A—C2B))  
Register  
FRM_SR42 MSB  
FRM_SR43 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTUS15—NTUS8  
NTUS7—NTUS0  
NT1 Unavailable Seconds Counter Bits.  
NT1 Unavailable Seconds Counter Bits.  
Table 114. NT1-RE Errored Seconds Counter (FRM_SR44—FRM_SR45) ((62C—62D); (C2C—C2D))  
Register  
FRM_SR44 MSB  
FRM_SR45 LSB  
Byte  
Bit  
Symbol  
NTREES15—NTREES8 NT1-RE Errored Seconds Counter.  
NTREES7—NTREES0  
NT1-RE Errored Seconds Counter.  
Description  
7—0  
7—0  
Table 115. NT1-RE Bursty Errored Seconds Counter (FRM_SR46—FRM_SR47) ((62E—62F); (C2E—C2F))  
Register Byte Bit Symbol Description  
FRM_SR46 MSB 7—0 NTREBES15—NTREBES8 NT1-RE Bursty Errored Seconds Counter.  
FRM_SR47 LSB 7—0 NTREBES7—NTREBES0 NT1-RE Bursty Errored Seconds Counter.  
Lucent Technologies Inc.  
159  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Table 116. NT1-RE Severely Errored Seconds Counter (FRM_SR48—FRM_SR49) ((630—631); (C30—C31))  
Register Byte Bit Symbol Description  
FRM_SR48 MSB 7—0 NTRESES15—NTRESES8 NT1-RE Severely Errored Seconds Counter.  
FRM_SR49 LSB 7—0 NTRESES7—NTRESES0 NT1-RE Severely Errored Seconds Counter.  
Table 117. NT1-RE Unavailable Seconds Counter (FRM_SR50—FRM_SR51) ((632—633); (C32—C33))  
Register  
FRM_SR50 MSB  
FRM_SR51 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTREUS15—NTREUS8 NT1-RE Unavailable Seconds Counter Bits.  
NTREUS7—NTREUS0 NT1-RE Unavailable Seconds Counter Bits.  
Received NOT-FAS TS0 RSa Register (FRM_SR52)  
This register contains the last (since last read) valid received RSa8—RSa4 bits, A bit, and Si bit of NOT-FAS time  
slot 0 and the Si bit of FAS time slot 0 while the receive framer was in basic frame alignment.  
Table 118. Receive NOT-FAS TS0 Register (FRM_SR52) (634; C34)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NOT-FAS bit 1  
FAS bit 1  
A bit  
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
(CEPT without CRC-4) (CEPT without CRC-4)  
or  
or  
frame 15 E bit  
(CEPT with CRC-4)  
frame 13 E bit  
(CEPT with CRC-4)  
Received Sa Register (FRM_SR53)  
This register contains the last (since last read) valid time slot 16 spare bits of the frame containing the time slot 16  
signaling multiframe alignment. These bits are updated only when the receive framer is in signaling multiframe  
alignment.  
Table 119. Receive Sa Register (FRM_SR53) (635; C35)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
X2  
X1  
X0  
160  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
SLC-96 FDL/CEPT Sa Receive Stack (FRM_SR54—FRM_SR63)  
In the SLC-96 frame format, FRM_SR54 through FRM_SR58 contain the received SLC-96 facility data link data  
block. When the framer is in a loss of frame alignment or loss of signaling superframe alignment, these registers  
are not updated.  
Note: The RSP[1:4] are the received spoiler bits.  
Table 120. SLC-96 FDL Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
0
0
0
0
R-0  
R-0  
RC3  
RC11  
RA2  
0
R-0  
R-0  
RC4  
R-0  
R-0  
RC5  
R-1  
R-1  
RC6  
R-1  
R-1  
RC7  
RM1  
RS4  
0
R-1  
R-1  
RC1  
RC9  
RM3  
0
RC2  
RC10  
RA1  
0
RC8  
RSPB1 = 0 RSPB2 = 1 RSPB3 = 0  
RM2  
RS1  
0
RS2  
0
RS3  
0
RSPB4 = 1  
0
FRM_SR59—  
FRM_SR61  
In the CEPT frame format, FRM_SR54 through FRM_SR63 contain the received Sa4 through Sa8 from the last  
valid CRC-4 double-multiframe. In non-CRC-4 mode, these registers are only updated during a basic frame-aligned  
state. In CRC-4 mode, these registers are only updated during the CRC-4 multiframe alignment state.  
Table 121. CEPT Sa Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
FRM_SR59  
FRM_SR60  
FRM_SR61  
FRM_SR62  
FRM_SR63  
Sa4-1  
Sa4-17  
Sa5-1  
Sa4-3  
Sa4-19  
Sa5-3  
Sa4-5  
Sa4-21  
Sa5-5  
Sa4-7  
Sa4-23  
Sa5-7  
Sa4-9  
Sa4-25  
Sa5-9  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
Sa5-17  
Sa6-1  
Sa5-19  
Sa6-3  
Sa5-21  
Sa6-5  
Sa5-23  
Sa6-7  
Sa5-25  
Sa6-9  
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
Lucent Technologies Inc.  
161  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
The receive framer stores the current second of the ANSI Performance Report Message transmitted to the  
remote end in registers FRM_SR62 and FRM_SR63. The structure of the PRM status registers is shown in  
Table 122.  
Table 122. Transmit Framer ANSI Performance Report Message Status Register Structure  
Transmit  
Framer  
TSPRM  
B7  
TSPRM  
B6  
TSPRM  
B5  
TSPRM  
B4  
TSPRM  
B3  
TSPRM  
B2  
TSPRM  
B1  
TSPRM B0  
PRMStatus  
Bytes  
FRM_SR62  
FRM_SR63  
G3  
FE  
LV  
G4  
LB  
U1  
G1  
U2  
R
G5  
G2  
SL  
G6  
Nl  
SE  
Nm  
Received Signaling Registers: DS1 Format  
Table 123. Received Signaling Registers: DS1 Format (FRM_RSR0—FRM_RSR23) ((640—658); (C40—C58))  
Received Signal Registers  
Bit 7 Bit 61 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
DS1 Received Signaling Registers (0—23)  
Voice Channel with 16-State Signaling  
Voice Channel with 4-State Signaling  
Voice Channel with 2-State Signaling  
Data Channel  
P
X
X
X
X
G
0
0
1
1
F
0
1
1
0
X
X
X
X
X
D
D
X
X
X
C
C
X
X
X
B
B
B
X
X
A
A
A
A
X
1. Bit 6 and Bit 5 of the DS1 receive signaling registers are copied from bit 6 and bit 5 of the DS1 transmit signaling registers.  
Receive Signaling Registers: CEPT Format  
Table 124. Receive Signaling Registers: CEPT Format (FRM_RSR0—FRM_RSR31) ((640—65F); (C40—C5F))  
Receive Signal Registers  
Bit 7 Bit 6—5  
Bit 41  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_RSR1—FRM_RSR15  
FRM_RSR[17:31]  
P
P
X
X
E[1:15]  
D[1:15]  
C[1:15]  
B[1:15]  
A[1:15]  
E[17:31]  
D[17:31]  
C[17:31]  
B[17:31]  
A[17:31]  
1. In PCS0 or PCS1 signaling mode, this bit is undefined.  
162  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Registers FRM_PR0—FRM_PR70 define the mode configuration of each framer. All are read/write registers.  
These registers are initially set to a default value upon a hardware reset, which is indicated in the register definition.  
Interrupt Group Enable Registers (FRM_PR0—FRM_PR7)  
The bits in this register group enable the status registers FRM_SR0—FRM_SR7 to assert the interrupt pin. The  
default value of these registers is 00 (hex).  
FRM_PR0 is the primary interrupt group enable register which enables the event groups in interrupt status register  
FRM_SR0. A bit set to 1 in this register enables the corresponding bit in the interrupt status register FRM_SR0 to  
assert the interrupt pin.  
FRM_PR1—FRM_PR7 are the secondary interrupt enable registers. A bit set to 1 in these registers enables the  
corresponding bit in the status register to assert the interrupt pin.  
Table 125. Summary of Interrupt Group Enable Registers (FRM_PR0—FRM_PR7) ((660—667); (C60—C67))  
Parameter  
/Control  
Register  
Status  
Register  
Enabled  
Status  
Register  
Bit 7  
Status  
Register  
Bit 6  
Status  
Register  
Bit 5  
Status  
Register  
Bit 4  
Status  
Register  
Bit 3  
Status  
Register  
Bit 2  
Status  
Register  
Bit 1  
Status  
Register  
Bit 0  
FRM_PR0 FRM_SR0  
S96SR  
Reserved  
RSSFE  
TSSFE  
ESE  
(read  
FAE  
(read  
RAC  
(read  
FAC  
(read  
FRM_SR5, FRM_SR3  
FRM_SR2)  
FRM_SR1)  
FRM_SR6,  
and  
and  
FRM_SR4)  
FRM_SR7)  
FRM_PR1 FRM_SR1  
FRM_PR2 FRM_SR2  
FRM_PR3 FRM_SR3  
AIS  
AUXP  
RSa6 = E  
SLIPO  
RTS16AIS  
RSa6 = C  
LBFA  
RSa6 = A  
REBIT  
LFALR  
RSa6 = 8  
ECE  
LTSFA  
LSFA  
LFA  
RFA  
(LTS0MFA) (LTS16MFA)  
RSa6 = F  
SLIPU  
CREBIT  
RJYA  
(RTS16MFA)  
LCRCATMX  
CRCE  
FBE  
LFV  
CFA  
FRM_PR4 FRM_SR4 FDL_LLBOFF FDL_LLBON FDL_PLBOFF FDL_PLBON  
LLBON  
(CMA)  
LLBOFF  
(BFA)  
SSFA  
(TSaSR)  
ETREUAS  
NTREUAS  
RQUASI  
(RSaSR)  
ETRESES  
NTRESES  
RPSUEDO  
(SLCTFSR)  
ETREBES  
NTREBES  
PTRNBER  
(SLCRFSR)  
ETREES  
NTREES  
DETECT  
FRM_PR5 FRM_SR5  
FRM_PR6 FRM_SR6  
FRM_PR7 FRM_SR7  
ETUAS  
NTUAS  
ETSES  
NTSES  
ETBES  
NTBES  
ETES  
NTES  
OUAS  
NROUAS  
NT1OUAS  
EROUAS  
Lucent Technologies Inc.  
163  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Primary Interrupt Enable Register (FRM_PR0)  
The default value of this register is 00 (hex).  
Table 126. Primary Interrupt Group Enable Register (FRM_PR0) (660; C60)  
Bit  
Symbol  
Description  
0
1
2
SR1IE  
SR2IE  
Status Register 1 Interrupt Enable Bit. A 1 enables register FRM_SR1 event interrupts.  
Status Register 2 Interrupt Enable Bit. A 1 enables register FRM_SR2 event interrupts.  
SR34IE Status Registers 3 and 4 Interrupt Enable Bit. A 1 enables registers FRM_SR3 and  
FRM_SR4 event interrupts.  
3
4
5
SR567IE Status Registers 5, 6, and 7 Interrupt Enable Bit. A 1 enables registers FRM_SR5,  
FRM_SR6, and FRM_SR7 event interrupts.  
TSRIE  
RSRIE  
Transmit Signaling Ready Interrupt Enable Bit. A 1 enables interrupts when transmit  
signaling buffers are ready (MOS mode).  
Receive Signaling Ready Interrupt Enable Bit. A 1 enables interrupts when receive sig-  
naling buffers are ready (MOS mode).  
6
7
Reserved. Write to 0.  
SLCIE  
SLC-96 Interrupt Enable Bit. A 1 enables interrupts when SLC-96 receive or transmit  
stacks are ready.  
164  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Secondary Interrupt Enable Registers (FRM_PR1—FRM_PR7)  
A bit set to 1 in registers FRM_PR1—FRM_PR7 enables the generation of interrupts whenever the corresponding  
bit in registers FRM_SR1—FRM_SR7 is set. The default value of these registers is 00 (hex).  
Table 127. Interrupt Enable Register (FRM_PR1) (661; C61)  
Bit  
Symbol  
Description  
0—7  
SR1B0IE— Status Register 1 Interrupt Enable. A 1 enables events monitored in register  
SR1B7IE  
FRM_SR1 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 128. Interrupt Enable Register (FRM_PR2) (662; C62)  
Bit  
Symbol  
Description  
0—7  
SR2B0IE— Status Register 2 Interrupt Enable. A 1 enables events monitored in register  
SR2B7IE  
FRM_SR2 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 129. Interrupt Enable Register (FRM_PR3) (663; C63)  
Bit  
Symbol  
Description  
0—7  
SR3B0IE— Status Register 3 Interrupt Enable. A 1 enables events monitored in register  
SR3B7IE  
FRM_SR3 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 130. Interrupt Enable Register (FRM_PR4) (664; C64)  
Bit  
Symbol  
Description  
0—7  
SR4B0IE— Status Register 4 Interrupt Enable. A 1 enables events monitored in register  
SR4B7IE  
FRM_SR4 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 131. Interrupt Enable Register (FRM_PR5) (665; C65)  
Bit  
Symbol  
Description  
0—7  
SR5B0IE— Status Register 5 Interrupt Enable. A 1 enables events monitored in register  
SR5B7IE  
FRM_SR5 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 132. Interrupt Enable Register (FRM_PR6) (666; C66)  
Bit  
Symbol  
Description  
0—7  
SR6B0IE— Status Register 6 Interrupt Enable. A 1 enables events monitored in register  
SR6B7IE  
FRM_SR6 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Table 133. Interrupt Enable Register (FRM_PR7) (667; C67)  
Bit  
Symbol  
Description  
0—7  
SR7B0IE— Status Register 7 Interrupt Enable. A 1 enables events monitored in register  
SR7B7IE  
FRM_SR7 to generate interrupts. Each bit position in this enable register corresponds to  
the same bit position in the status register.  
Lucent Technologies Inc.  
165  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Framer Mode Option Register (FRM_PR8)  
The default value of this register is C0 (hex).  
Table 134. Framer Mode Bits Decoding (FRM_PR8) (668; C68)  
FRM_PR8 Frame Format  
ESF  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FMODE4 FMODE3 FMODE2 FMODE1 FMODE0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
1
0
1
0
D4  
DDS  
DDS with FDL  
SLC-96  
Transmit ESF Receive D4  
Transmit D4 Receive ESF  
CEPT  
PCS Mode 0  
with No CRC-4  
PCS Mode 1  
PCS Mode 0  
PCS Mode 1  
CEPT  
with CRC-4  
Table 135. Line Code Option Bits Decoding (FRM_PR8) (668; C68)  
Line Code Format  
Bit 7  
LC2  
Bit 6  
LC1  
Bit 5  
LC0  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
B8ZS (T/R)  
0
0
0
1
0
1
1
1
0
0
1
1
1
0
0
1
0
1
0
0
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ZCS (T/R)  
HDB3 (T/R)  
Single Rail (DEFAULT)  
AMI (T/R)  
B8ZS (T), AMI (R)  
ZCS (T), B8ZS (R)  
AMI (T), B8ZS (R)  
166  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Framer CRC Control Option Register (FRM_PR9)  
This register defines the CRC options for the framer. The default setting is 00 (hex).  
Table 136. CRC Option Bits Decoding (FRM_PR9) (669, C69)  
FRM_PR9 CRC Options  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Loss of Frame Alignment Due to Excessive CRC  
Errors (ESF 320, CEPT 915 in a one-second  
interval)  
0
X
X
X
X
X
1
1
CRC-4 with 100 ms Timer  
0
0
0
0
0
X
X
X
X
1
X
X
X
1
X
X
1
1
1
X
1
1
X
X
X
X
X
X
X
X
X
1
1
1
1
1
CRC-4 Interworking Search with 400 ms Timer  
CRC-4 with 990 REB Counter  
X
X
X
CRC-4 with 990 REB Counter: A Bit = 1 Restart  
CRC-4 with 990 REB Counter: Sa6-F or Sa6-E  
Restart  
X
XCRC-4/R-NO CRC-4  
X-NOCRC-4/RCRC4  
1
1
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
0
1
0
CRC Default Mode (No CRC)  
Alarm Filter Register (FRM_PR10)  
The bits in this register enable various control options. The default setting is 00 (hex).  
Table 137. Alarm Filter Register (FRM_PR10) (66A; C6A)  
Bit  
Symbol  
Description  
0
SSa6M  
Synchronous Sa6 Monitoring. A 0 enables the asynchronous monitoring of the Sa6  
codes relative to the receive CRC-4 submultiframe. A 1 enables synchronous monitoring  
of the Sa6 pattern relative to the receive CRC-4 submultiframe.  
1
AISM  
AIS Detection Mode. A 0 enables the detection of received line AIS as described in  
ETSI Draft prETS 300 233:1992. A 1 enables the detection of received line AIS as  
described in ITU Rec. G.775.  
2
3
FEREN  
FER Enable. A 0 enables only the detection of FT framing bit errors in D4 and SLC-96  
modes. A 1 enables the detection of FT and FS framing bit errors.  
CNUCLBEN CNUCLB Enable. A 0 enables payload loopback with regenerated/CRC bits in register  
FRM_PR24. A 1 enables CEPT nailed-up connect loopback in register FRM_PR24.  
4—5  
Reserved. Set to 0.  
Lucent Technologies Inc.  
167  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Bit 6 and bit 7 of FRM_PR10 control the evaluation of the bursty errored parameter as defined in Table 138 below.  
The EST parameter refers to the errored second threshold defined in register FRM_PR11. The SEST parameter  
refers to the severely errored second threshold defined in registers FRM_PR12 and FRM_PR13.  
Table 138. Errored Event Threshold Definition  
Bit 7,  
FRM_PR10  
ESM1  
Bit 6,  
FRM_PR10  
ESM0  
Errored Second (ES) Bursty Errored Second  
Definition (BES) Definition  
Severely Errored  
Second (SES)  
Definition  
0
0
0
1
Default values in Table 44. Event Counters Definition.  
ES = 1 when:  
BES = 0  
SES = 1 when:  
Errored events > EST  
Errored events > SEST  
Other Combinations  
Reserved.  
Errored Second Threshold Register (FRM_PR11)  
This register defines the errored event threshold for an errored second (ES). A one-second interval with errors less  
than the ES threshold value will not be detected as an errored second. Programming 00 (hex) into this register dis-  
ables the errored second threshold monitor circuitry if register FRM_PR10 bit 6 = 1 and bit 7 = 0. The default value  
of this register is 00 (hex).  
Table 139. Errored Second Threshold Register (FRM_PR11) (66B; C6B)  
Register  
Symbol  
Description  
FRM_PR11  
EST7—EST0  
ES Threshold Register.  
Severely Errored Second Threshold Register (FRM_PR12—FRM_PR13)  
This 16-bit register defines the errored event threshold for a severely errored second (SES). A one-second interval  
with errors less than the SES threshold value is not a severely errored second. Programming 00 (hex) into these  
two registers disables the severely errored second threshold monitor circuitry if register FRM_PR10 bit 6 = 1 and  
bit 7 = 0. The default value of these registers is 00 (hex).  
Table 140. Severely Errored Second Threshold Registers (FRM_PR12—FRM_PR13) ((66C—66D;  
C6C—C6D))  
Register  
FRM_PR12 SEST15—SEST8 SES MSB Threshold Register.  
FRM_PR13  
SEST7—SEST0 SES LSB Threshold Register.  
Symbol  
Description  
168  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
ET1 Errored Event Enable Register* (FRM_PR14)  
These bits enable the errored events used to determine errored and severely errored seconds at the local ET inter-  
face. ETSLIP, ETAIS, ETLMFA, and ETLFA are the SLIP, AIS, LMFA, and LFA errored events, respectively, as  
referred to the local ET interface. A 1 in the bit position enables the corresponding errored event. The default value  
of this register is 00 (hex).  
Table 141. ET1 Errored Event Enable Register (FRM_PR14) (66E; C6E)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR14  
0
0
0
0
ETSLIP  
ETAIS  
ETLMFA  
ETLFA  
ET1 Remote End Errored Event Enable Register* (FRM_PR15)  
These bits enable the errored events used to determine errored and severely errored seconds at the ET's remote  
end interface. ETRESa6-F, ETRESa6-E, ETRESa6-8, ETRERFA, ETRESLIP, ETREAIS, ETRELMFA, and  
ETRELFA are the Sa6-F, Sa6-E, Sa6-8, RFA, SLIP, AIS, LMFA, and LFA errored events, respectively, as referred to  
the ET remote end interface. A 1 in the bit position enables the corresponding errored event. The default value of  
this register is 00 (hex).  
Table 142. ET1 Remote End Errored Event Enable Register (FRM_PR15) (66F; C6F)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ETRESa6-F ETRESa6-E ETRESa6-8 ETRERFA ETRESLIP ETREAIS ETRELMFA ETRELFA  
FRM_PR15  
NT1 Errored Event Enable Register* (FRM_PR16)  
These bits enable the errored events used to determine errored and severely errored seconds at the network termi-  
nation-1 interface. NTSa6-C, NTSa6-8, NTSLIP, NTAIS, NTLMFA, and NTLFA are the Sa6-C, Sa6-8, SLIP, AIS,  
LMFA, and LFA errored events, respectively, as referred to the NT1 interface. A 1 in the bit position enables the cor-  
responding errored event. The default value of this register is 00 (hex).  
Table 143. NT1 Errored Event Enable Register (FRM_PR16) (670; C70)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR16 NTSa6-C  
0
NTSa6-8  
0
NTSLIP  
NTAIS  
NTLMFA  
NTLFA  
NT1 Remote End Errored Event Enable Register* (FRM_PR17—FRM_PR18)  
These bits enable the errored events used to determine errored and severely errored seconds at the network termi-  
nation-1 remote end interface. NTRERFA, NTRESLIP, NTREAIS, NTRELMFA, NTRELFA, NTRESa6-C,  
NTRESa6-F, NTRESa6-E, and NTRESa6-8 are the RFA, SLIP, AIS, LMFA, LFA, Sa6-C, Sa6-F, Sa6-E, and Sa6-8  
errored events, respectively, as referred to the NT-1 remote end interface. The default value of this register is 00  
(hex).  
Table 144. NT1 Remote End Errored Event Enable Registers (FRM_PR17—FRM_PR18) ((671—672);  
(C71—C72))  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR17  
FRM_PR18  
0
0
0
0
0
0
NTRERFA NTRESLIP  
NTREAIS NTRELMFA  
NTRELFA  
0
NTRESa6-C NTRESa6-F NTRESa6-E NTRESa6-8  
* One occurrence of any one of these events causes an errored second count increment and a severely errored second count increment.  
Lucent Technologies Inc.  
169  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Automatic AIS to the System and Automatic Loopback Enable Register  
The default value of this register is 00 (hex).  
Table 145. Automatic AIS to the System and Automatic Loopback Enable Register (FRM_PR19) (673; C73)  
Bit  
Symbol  
Description  
0
ASAIS  
Automatic System AIS. A 1 transmits AIS to the system whenever the receive framer is  
in the loss of receive frame alignment (RLFA) state.  
1
ASAISTMX Automatic System AIS CEPT CRC-4 Timer Expiration. A 1 transmits AIS to the sys-  
tem after the CRC-4 100 ms or 400 ms timer expires. AIS is transmitted for the duration  
of the loss of CRC-4 multiframe alignment state.  
2
3
4
Reserved. Set to 0.  
TSAIS  
ALLBE  
Transmit System AIS. A 1 transmits AIS to the system.  
Automatic Line Loopback Enable. A 1 enables the framer section to execute the DS1  
line loopback on or off commands without system intervention.  
5
6
Reserved. Set to 0.  
AFDLLBE  
Automatic FDL Line Loopback Enable. A 1 enables the framer section to execute a  
line ESF FDL loopback on or off command without system intervention.  
7
AFDPLBE  
Automatic FDL Payload Loopback Enable. A 1 enables the framer section to execute  
a payload ESF FDL loopback on or off command without system intervention.  
Transmit Test Pattern to the Line Enable Register*  
This register enables the transmit framer to transmit various test signals to the line interface. The default value of  
this register is 00 (hex). Note that between enabling the transmission of line loopback on and off codes this register  
must be set to 00 (hex) (i.e., to enable transmission of line loopback on code and then off code, write into this reg-  
ister 10 (hex), then 00 (hex), and finally 20 (hex)).  
Table 146. Transmit Test Pattern to the Line Enable Register (FRM_PR20) (674; C74)  
Bit  
Symbol  
Description  
0
1
TUFAIS  
Unframed AIS to Line Interface (All Ones Pattern).  
TUFAUXP  
Unframed AUXP to Line Interface in CEPT Mode (Alternating 010101 Unframed  
Pattern).  
2
3
4
5
6
TPRS  
TQRS  
Transmit Pseudorandom Signal to Line Interface (215 – 1).  
Transmit Quasi-Random Signal to Line Interface (220 – 1) (ANSI T1.403).  
Transmit Framed Payload Line Loopback On Code: 00001.  
Transmit Framed Payload Line Loopback Off Code: 001.  
TLLBON  
TLLBOFF  
TLIC  
Transmit Line Idle Code of FRM_PR22. When this bit = 1, the line idle code of  
FRM_PR22 is transmitted to the line in all time slots.  
7
TICRC  
Transmit Inverted CRC.  
* To transmit test signals using this register, registers FRM_PR69 and FRM_PR70 must be set to 00 (hex).  
170  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Framer FDL Control Command Register (FRM_PR21)  
The default value of this register is 00 (hex).  
Table 147. Framer FDL Control Command Register (FRM_PR21) (675; C75)  
Bit  
Symbol  
Description  
0
1
2
3
4
5
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
TFDLLAIS  
Transmit Facility Data Link AIS to the Line. A 1 sends AIS in the line side data link.  
TFDLSAIS Transmit Facility Data Link AIS to the System. A 1 sends AIS in the system data link  
side.  
6
TFDLC  
Transmit FDL Control Bit. A 0 enables the transmission of the FDL bit from the internal  
FDL-HDLC unit (default). A 1 enables the transmission of the FDL bit from either TFDL  
input (pin 67 and 115) or from the internal transmit stack depending on the state of  
FRM_PR29 bit 5—bit 7. When the SLC-96 stack transmission is enabled (register  
FRM_PR26 bit 5—bit 7 = x10 (binary), the FDL bit is sourced from the SLC-96 transmit  
stack (register FRM_PR31—FRM_PR35). Otherwise, it is sourced from TFDL  
(pins 67/115).  
7
TC/R = 1  
Transmit ESF_PRM C/R = 1 (TC/R = 1). A 0 transmits the ESF performance report mes-  
sage with the C/R bit = 0. (See ANSI T1.403-1995 for the PRM structure and content.) A  
1 transmits the ESF performance report message with the C/R bit = 1.  
Framer Transmit Line Idle Code Register (FRM_PR22)  
The value programmed in this register is transmitted as the line idle code. The default value is 7F (hex).  
Table 148. Framer Transmit Line Idle Code Register (FRM_PR22) (676; C76)  
Bit  
Symbol  
Description  
0—7  
TLIC0—TLIC7 Transmit Line Idle Code 0—7. These 8 bits define the idle code transmitted to the  
line.  
Framer System Stuffed Time-Slot Code Register (FRM_PR23)  
The value programmed in this register is transmitted in the stuffed time slots on the CHI in the DS1 modes. The  
default value is 7F (hex).  
Table 149. Framer System Stuffed Time-Slot Code Register (FRM_PR23) (677; C77)  
Bit  
Symbol  
Description  
0—7  
SSTSC0—  
SSTSC7  
System Stuffed Time-Slot Code 0—7. These 8 bits define the idle code transmitted  
in the stuffed time slots to the system (CHI).  
Lucent Technologies Inc.  
171  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Primary Loopback Mode Control and Time-Slot Address (FRM_PR24)  
This register contains the loopback mode control and the 5-bit address of the line or system time slot to be looped  
back. The default value is 00 (hex) (no loopback).  
Table 150. Primary Time-Slot Loopback Address Register (FRM_PR24) (678; C78)  
Bit  
Symbol  
Description  
0—4  
TSLBA0—  
TSLBA4  
Time-Slot Loopback Address.  
Loopback Control Bits[2:0].  
5—7  
LBC0—LBC2  
Table 151. Loopback Decoding of Bits LBC[2:0] in FRM_PR24, Bits 7—5  
LBC2 LBC1 LBC0 Function  
0
0
0
0
0
1
0
1
0
No Loopback.  
Line Loopback (LLB). The received line data is looped back to the transmit line data.  
Board Loopback (BLB). The received system data is looped back to the transmit  
system data, and AIS is sent as the line transmit data.  
0
1
1
0
1
0
Single Time-Slot System Loopback (STSSLB). System (CHI) loopback of the time  
slot selected by bit 4—bit 0. Idle code selected by FRM_PR22 is inserted in the line  
payload in place of the looped back time slot.  
Single Time-Slot Line Loopback (STSSLB). Line loopback of time slot selected by  
bit 4—bit 0. Idle code selected by FRM_PR22 is inserted in the system (CHI) payload  
in place of the looped back time slot.  
1
1
0
1
1
0
CEPT Nailed-Up Broadcast Transmission (CNUBT). Time slot selected by bit 4—  
bit 0 is transmitted normally and also placed into time slot 0.  
Payload Line Loopback with Regenerated Framing and CRC Bits. This mode is  
selected if FRM_PR10 bit 3 = 0. The received channelized-payload data is looped  
backed to the line. The framing bits are generated within the transmit framer. The  
regenerated framing information includes the F-bit pattern, the CRC checksum bit,  
and the system’s facility data link bit stream. This loopback mode can be used with the  
CEPT framing mode. The entire time slot 0 data (FAS and NOT FAS) is regenerated  
by the transmit framer. The receive framer processes and monitors the incoming line  
data normally in this loopback mode and transmits the formatted data to the system in  
the normal format via the CHI.  
CEPT Nailed-Up Connect Loopback (CNUCLB). The received system time slot  
selected by this register bit 4—bit 0 is looped back to the system in time slot 0. This  
mode is selected if FRM_PR10 bit 3 = 1.  
1
1
1
Payload Line Loopback with Passthrough Framing and CRC Bits. The received  
channelized/payload data, the CRC bits, and the frame alignment bits are looped back  
to the line. The system’s facility data link bit stream is inserted into the looped back  
data and transmitted to the line. In ESF, the FDL bits are ignored when calculating the  
CRC-6 checksum. In CEPT, the FDL bits are included when calculating the CRC-4  
checksum, and as such, this loopback mode generates CRC-4 errors back at the  
remote end.  
172  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Secondary Loopback Control and ID and Address (FRM_PR25)  
This register allows for a second single-time-slot loopback mode. This loopback is valid if the secondary time-slot  
loopback address is different from the primary loopback address and the device is not in a line, board, or payload  
loopback, see FRM_PR24. This register contains the secondary loopback mode control and the 5-bit address for  
the secondary line or system time slot to be looped back to the line or system. The default value is 00 (hex) (no  
loopback).  
Table 152. Secondary Time-Slot Loopback Address Register (FRM_PR25) (679; C79)  
Bit  
Symbol  
Description  
0—4  
5—6  
7
STSLBA0—STSLBA4 Secondary Time-Slot Loopback Address.  
SLBC0—SLBC1  
Secondary Loopback Control Bits[1:0].  
Reserved. Write to 0.  
Table 153. Loopback Decoding of Bits LBC[1:0] in FRM_PR25, Bits 6—5  
LBC1  
LBC0  
Function  
0
0
1
1
0
1
0
1
No Loopback.  
Secondary Single Time-Slot System Loopback.  
Secondary Single Time-Slot Line Loopback.  
Reserved.  
Lucent Technologies Inc.  
173  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Framer Reset and Transparent Mode Control Register (FRM_PR26)  
The default value of this register is 00 (hex).  
Table 154. Framer Reset and Transparent Mode Control Register (FRM_PR26) (67A, C7A)  
Bits  
Symbol  
Description  
0
SWRESET Framer Software Reset. The framer and FDL sections are placed in the reset state for  
four clock cycles of the frame internal line clock (RFRMCK). The parameter registers are  
forced to the default values. This bit is self-cleared.  
1
SWRESTART Framer Software Restart. The framer and FDL sections are placed in the reset state as  
long as this bit is set to 1. The framer’s parameter registers are not changed from their  
programmed state. The FDL parameter registers are changed from their programmed  
state. This bit must be cleared.  
2
3
FRFRM  
Framer Reframe. A 0-to-1 transition of this bit forces the receive framer into the loss of  
frame alignment (LFA) state which forces a search of frame alignment. Subsequent  
reframe commands must have this bit in the 0 state first.  
TFM1  
Transparent Framing Mode 1. A 1 forces the transmit framer to pass system data  
unmodified to the line and the receive framer to pass line data unmodified to the system.  
The receive framer is forced not to align to the input receive data.  
DS1: register FRM_PR43 bit 2—bit 0 must be set to 000. The F bit is located in time slot  
0, bit 7. The transmit framer extracts bit 7 of time slot 0 from RCHIDATA and places this  
bit in the F-bit position of the transmit line data. The receive framer inserts the bit in the  
F-bit position of the receive line data into time slot 0, bit 7 of the TCHIDATA.  
CEPT: RCHIDATA time slot 0 is inserted into time slot 0 of the transmit line data. Receive  
line time slot 0 is inserted into time slot 0 of TCHIDATA.  
4
TFM2  
Transparent Framing Mode 2. A 1 forces the transmit framer to pass system data  
unmodified to the line. The receive framer functions normally as programmed.  
DS1: register FRM_PR43 bit 2—bit 0 must be set to 000. The F bit is located in  
time slot 0, bit 7. The transmit framer extracts bit 7 of time slot 0 from RCHIDATA and  
places this bit in the F-bit position of the transmit line data.  
CEPT: RCHIDATA time slot 0 is inserted into time slot 0 of the transmit line data.  
5
SYSFSM  
System Frame Sync Mask. A 1 masks the system frame synchronization signal in the  
transmit framer section.  
Note: The transmit framer must see at least one valid system synchronization pulse to  
initialize its counts; afterwards, this bit may be set. For those applications that have jitter  
on the transmit clock signal relative to the system clock signal, enable this bit so that the  
jitter is isolated from the transmit framer.  
6—7  
Reserved. Write to 0.  
174  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Automatic and Manual Transmission of the Remote Frame Alarm Control Register (FRM_PR27)  
The default value of this register is 00 (hex).  
Table 155. Transmission of Remote Frame Alarm and CEPT Automatic Transmission of A Bit = 1  
Control Register (FRM_PR27) (67B, C7B)  
Bit  
Symbol  
Description  
0
ARLFA  
Automatic Remote Frame Alarm on LFA (ARLFA). A 1 transmits the remote frame  
alarm to the line whenever the receive framer detects loss of frame alignment (RLFA).  
1
AAB16LMFA Automatic A Bit on LMFA (CEPT Only). A 1 transmits A = 1 to the line whenever the  
receive framer detects loss of time slot 16 signaling multiframe alignment  
(RTS16LMFA).  
2
3
AAB0LMFA Automatic A Bit on LMFA (CEPT Only). A 1 transmits A = 1 to the line whenever the  
receive framer detects loss of time slot 0 multiframe alignment (RTS0LMFA).  
ATMRX  
Automatic A Bit on CRC-4 Multiframe Reframer Timer Expiration (CEPT Only). A 1  
transmits A = 1 to the line when the receive framer detects the expiration of either the  
100 ms or 400 ms timers due to loss of multiframe alignment.  
4
5
6
7
AARSa6_8 Automatic A Bit on RSa6_8 (CEPT Only). A 1 transmits A = 1 to the line whenever the  
receive framer detects the Sa6 = 1000 pattern.  
AARSa6_C Automatic A Bit on RSa6_C (CEPT Only). A 1 transmits A = 1 to the line whenever the  
receive framer detects the Sa6 = 1100 pattern.  
TJRFA  
TRFA  
Transmit D4 Japanese Remote Frame Alarm. A 1 transmits a valid Japanese remote  
frame alarm for the D4 frame format.  
Transmit Remote Frame Alarm. A 1 transmits a valid remote frame alarm for the corre-  
sponding frame format.  
Lucent Technologies Inc.  
175  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Automatic and Manual Transmission of E Bit = 0 Control Register  
The default value of this register is 00 (hex).  
Table 156. CEPT Automatic Transmission of E Bit = 0 Control Register (FRM_PR28) (67C; C7C)  
Bit  
Symbol  
Description  
0
SIS  
Si-Bit Source. In CEPT with NO CRC-4 mode, a 1 transmits TSiF and TSiNF in the Si  
bit position to the line in FAS and NOT FAS, respectively. A 0, in non-CRC-4 mode, trans-  
mits system Si data to the line transparently*.  
T1E  
Transmit One E = 0. In CEPT with CRC-4 mode, a 0 transmits E = TSiF in frame 13 and  
E = TSiNF in frame 15. A 1 transmits one E bit = 0 for each write access to TSiF = 0 or  
TSiNF = 0.  
1
2
3
4
TSiF  
Transmit Bit 1 in FAS. In CEPT with no CRC-4, this bit can be transmitted to the line in  
bit 1 of the FAS. In CRC-4 mode, this bit is used for E-bit data in frame 13.  
TSiNF  
Transmit Bit 1 in NOT FAS. In CEPT with no CRC-4, this bit can be transmitted to the  
line in bit 1 of the NOT FAS. In CRC-4 mode, this bit is used for E-bit data in frame 15.  
ATERCRCE Automatic Transmit E Bit = 0 for Received CRC-4 Errored Events. A 1 transmits  
E = 0 to the line whenever the receive framer detects a CRC-4 errored checksum.  
ATELTS0MFA Automatic Transmit E Bit = 0 for Received Loss of CRC-4 Multiframe Alignment. A  
1 transmits E = 0 to the line whenever the receive framer detects a loss of CRC-4 multi-  
frame alignment condition.  
5
ATERTX  
Automatic Transmit E Bit = 0 on Expiration of CEPT CRC-4 Loss of Multiframe  
Timer. A 1 transmits E = 0 to the line whenever the receive framer detects the expiration  
of either the 100 ms or 400 ms timer due to the loss of CRC-4 multiframe alignment.  
6—7  
These Bits Are Zero.  
* Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001XXXXX  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
176  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Sa4—Sa8 Source Register (FRM_PR29)  
These bits contain the fixed transmit Sa bits and define the source of the Sa bits. The default value of this register  
is 00 (hex).  
Table 157. Sa4—Sa8 Source Register (FRM_PR29) (67D; C7D)  
Bit  
Symbol  
Description  
0—4  
5—7  
TSa4—TSa8  
SaS5—SaS7  
Transmit Sa4—Sa8 Bit.  
Sa Source Control Bits[2:0].  
Table 158. Sa Bits Source Control for Bit 5—Bit 7 in FRM_PR29  
SaS7  
SaS6  
SaS5  
Function  
1
0
0
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are sourced by this register  
bit 0—bit 4 if enabled in register FRM_PR30, or transparently from the system inter-  
face*.  
1
1
0
1
1
x
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are transmitted transpar-  
ently from the system interface*.  
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are sourced from the trans-  
mit Sa stack registers (FRM_PR31—FRM_PR40) if enabled in register FRM_PR30, or  
transparently from the system interface*.  
0
1
x
SLC-96 Mode. Transmit SLC-96 stack and the SLC-96 interrupts are enabled. The  
SLC-96 FDL bits are sourced from the transmit SLC-96 stack, registers FRM_PR31—  
FRM_PR40.  
CEPT Mode. Transmit Sa stack and the Sa interrupts are enabled. The Sa bits are  
sourced from the transmit Sa stack (FRM_PR31—FRM_PR40) if enabled in register  
FRM_PR30, or transparently from the system interface*.  
0
0
0
0
1
0
Sa[4:8] bits are transmitted from the system interface transparently through the  
framer*.  
Sa[4:8] bits are sourced by bit 0—bit 4 of this register if enabled in register  
FRM_PR30, or transparently from the system interface*.  
* Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001XXXXX  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
Lucent Technologies Inc.  
177  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Sa4—Sa8 Control Register (FRM_PR30)  
In conjunction with FRM_PR29 bit 5—bit 7, these bits define the source of the individual Sa4—Sa8 bits. The  
default value of this register is 00 (hex).  
Table 159. Sa4—Sa8 Control Register (FRM_PR30) (67E; C7E)  
Bit  
Symbol  
Description  
0—4  
TESa4—TESa8 Transparent Enable Sa4—Sa8 Bit Mask. A 1 enables the transmission of the cor-  
responding Sa bits from the Sa source register (FRM_PR29 bit 0—bit 4) or from the  
transmit Sa stack. A 0 allows the corresponding Sa bit to be transmitted transpar-  
ently from the system interface.  
5—6  
7
Reserved. Write to 0.  
TDNF  
Transmit Double NOTFAS System Time Slot. A 0 enables the transmission of the  
FAS and NOTFAS on the TCHIDATA interface. A 1 enables the NOTFAS to be trans-  
mitted twice on the TCHIDATA interface, and the received time slot 0 from the RCHI-  
DATA is assumed to carry NOTFAS data that is repeated twice.  
Sa Transmit Stack Register (FRM_PR31—FRM_PR40)  
In CEPT frame format, registers FRM_PR31—FRM_PR40 are used to program the Sa bits in the CEPT multiframe  
NOT-FAS words. If CRC-4 is enabled, this data is transmitted to the line synchronously to the CRC-4 multiframe.  
The default value of these registers is 00 (hex).  
Table 160. Sa Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
FRM_PR36  
FRM_PR37  
FRM_PR38  
FRM_PR39  
FRM_PR40  
Sa4-1  
Sa4-17  
Sa5-1  
Sa4-3  
Sa4-19  
Sa5-3  
Sa4-5  
Sa4-21  
Sa5-5  
Sa4-7  
Sa4-23  
Sa5-7  
Sa4-9  
Sa4-25  
Sa5-9  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
Sa5-17  
Sa6-1  
Sa5-19  
Sa6-3  
Sa5-21  
Sa6-5  
Sa5-23  
Sa6-7  
Sa5-25  
Sa6-9  
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
178  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Architecture (continued)  
SLC-96 Transmit Stack (FRM_PR31—FRM_PR40)  
In SLC-96 frame format, registers FRM_PR31—FRM_PR35 are used to source the transmit facility data link bits in  
the FS bit positions. The default value of these registers is 00 (hex).  
Table 161. SLC-96 Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
0
0
0
0
X-0  
X-0  
XC3  
XC11  
XA2  
0
X-0  
X-0  
XC4  
X-0  
X-0  
XC5  
X-1  
X-1  
XC6  
X-1  
X-1  
XC7  
XM1  
XS4  
0
X-1  
X-1  
XC1  
XC9  
XM3  
0
XC2  
XC10  
XA1  
0
XC8  
XSPB1 = 0 XSPB2 = 1 XSPB3 = 0  
XM2  
XS1  
0
XS2  
0
XS3  
0
XSPB4 = 1  
0
FRM_PR36—  
FRM_PR40  
In SLC-96 frame format, the bits in registers FRM_PR31—FRM_PR35 are transmitted using the format shown in  
Table 164.  
Table 162. Transmit SLC-96 FDL Format  
FS = 000111000111 XC1 XC2 XC3 XC4 XC5 XC6 XC7 XC8 XC9 XC10 XC11 XSPB1 XSPB2 XSPB3 XM1 XM2 XM3 XA1 XA2 XS1 XS2 XS3 XS4 XSPB4  
CEPT Time Slot 16 X-Bit Remote Multiframe Alarm and AIS Control Register (FRM_PR41)  
The default value of this register is 00 (hex).  
Table 163. CEPT Time Slot 16 X-Bit Remote Multiframe Alarm and AIS Control Register (FRM_PR41)  
(689; C89)  
Bit  
Symbol  
Description  
0—2 TTS16X0—TTS16X2 Transmit Time Slot 16 X0—X2 Bits. The content of these bits are written into  
CEPT signaling multiframe time slot 16 X bits.  
3
4
XS  
X-Bit Source. A 1 enables the TTS16X[2:0] bits to be written into CEPT time slot  
16 signaling multiframe frame. A 0 transmits the X bits transparently.  
ALTTS16RMFA  
Automatic Line Transmit Time Slot 16 Remote Multiframe Alarm. A 1  
enables the transmission of CEPT time slot 16 signaling remote multiframe alarm  
when the receive framer is in the loss of CEPT signaling (RTS16LMFA) state.  
5
6
7
TLTS16RMFA  
TLTS16AIS  
Transmit Line Time Slot 16 Remote Multiframe Alarm. A 1 enables the trans-  
mission of CEPT time slot 16 signaling remote multiframe alarm.  
Transmit Line Time Slot 16 AIS. A 1 enables the transmission of CEPT time slot  
16 alarm indication signal.  
Reserved. Write to 0.  
Lucent Technologies Inc.  
179  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Framer Exercise Register (FRM_PR42)  
This register is used for exercising the device in a test mode. In normal operation, it and should be set to 00 (hex).  
The default value of this register is 00 (hex).  
Table 164. Framer Exercise Register (FRM_PR42) (68A; C8A)  
Bit  
Description  
FEX0—FEX5  
Framer Exercise Bits 0—5 (FEX0—FEX5). See Table 167.  
FEX6  
FEX7 Second Pulse Interval.  
0
0
1
1
0
1
0
1
1 Second Pulse.  
500 ms Pulse.  
100 ms Pulse.  
Reserved.  
Table 165. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A)  
Exercise FEX5 FEX4 FEX3 FEX2 FEX1 FEX0  
Type  
Exercise  
Line format violation  
Framing  
Format  
Facility  
Status  
0
0
1
0
0
0
All  
CRC checksum error  
ESF or CEPT  
D4 or ESF  
All  
Receive remote frame alarm  
Alarm indication signal detection  
Loss of frame alignment  
Receive remote frame alarm  
Time slot 0 1-bit shift  
0
0
1
0
0
1
CEPT  
Japanese D4  
CEPT  
0
0
0
0
1
1
0
0
1
1
0
1
Transmit corrupt CRC  
ESF & CEPT  
Frame-bit error & loss of frame align- All  
ment  
Loss of time slot 16 multiframe align- CEPT  
ment  
Remote frame alarm  
CRC bit errors  
D4 & DDS  
ESF & CEPT  
0
0
0
0
1
1
1
1
0
0
0
1
Frame-bit errors  
All  
All  
Frame-bit errors & loss of frame  
alignment  
Loss of time slot 16 multiframe align- CEPT  
ment  
0
0
1
1
1
0
Frame-bit error & loss of frame align- All  
ment  
Change of frame alignment  
ESF, DDS &  
CEPT  
Loss of time slot 16 multiframe align- CEPT  
ment  
0
0
0
0
1
0
1
0
1
0
1
0
Excessive CRC checksum errors  
No test mode activated  
ESF & CEPT  
180  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Table 165. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A) (continued)  
Exercise Type FEX5 FEX4 FEX3 FEX2 FEX1 FEX0  
Exercise  
Framing  
Format  
Performance  
Status  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Errored second  
All  
Bursty errored second  
Severely errored second  
Severely errored second count  
Unavailable state  
Factory test  
Increment status counters  
SR6—SR14  
0
1
0
1
1
1
Increment status counters  
SR6—SR14  
Status Counters  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
CRC error counter  
All  
Errored event counter  
Errored second counter  
Severely errored second counter  
Unavailable second counter  
Line format violation counter  
Frame bit error counter  
Reserved  
All other combinations  
DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43)  
The default value of this register is 00 (hex).  
Table 166. DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43) (68B; C8B)  
Bit Symbol Description  
0—2 STS0—STS2 In DS1 mode, bit 0—bit 2 program the positions of the stuffed time slots on the CHI. The  
content of the stuffed time slot can be programmed using register FRM_PR23.  
Bits  
210  
000 = SDDDSDDDSDDDSDDDSDDDSDDDSDDDSDDD  
001 = DSDDDSDDDSDDDSDDDSDDDSDDDSDDDSDD  
010 = DDSDDDSDDDSDDDSDDDSDDDSDDDSDDDSD  
011 = DDDSDDDSDDDSDDDSDDDSDDDSDDDSDDDS  
100 = DDDDDDDDDDDDDDDDDDDDDDDDSSSSSSSS  
SaFDL0—  
SaFDL2  
In CEPT mode, bit 0—bit 2 program the Sa bit source of the facility data link.  
Bits  
210  
000: Sa4 = FDL  
001: Sa5 = FDL  
010: Sa6 = FDL  
011: Sa7 = FDL  
100: Sa8 = FDL  
In both DS1 and CEPT modes, only the bit values shown above may be selected.  
3
SSC  
SLC-96 Signaling Control (DS1 Only). A 1 enables the SLC-96 9-state signaling mode.  
A 0 enables 16-state signaling in the SLC-96 framing mode.  
4—7  
Reserved. Write to 0.  
Lucent Technologies Inc.  
181  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Signaling Mode Register (FRM_PR44)  
This register programs various signaling modes. The default value is 00 (hex).  
Table 167. Signaling Mode Register (FRM_PR44) (68C; C8C)  
Bit  
Symbol  
Description  
0
TSIG  
Transparent Signaling. A 0 enables signaling information to be inserted into and  
extracted from the data stream. The signaling source is either the signaling registers or  
the system data (in the associated signaling mode). In DS1 modes, the choice of data or  
voice channels assignment for each channel is a function of the programming of the F  
and G bits in the transmit signaling registers. A 1 enables data to pass through the  
device transparently. All channels are treated as data channels.  
1
2
STOMP  
ASM  
Stomp Mode. A 0 allows the received signaling bits to pass through the receive signal-  
ing circuit unmodified. In DS1 robbed-bit signaling modes, a 1 enables the receive sig-  
naling circuit to replace (in those time slots programmed for signaling) all signaling bits  
(in the receive line bit stream) with a 1, after extracting the valid signaling information. In  
CEPT time slot 16 signaling modes, a 1 enables the received signaling circuit substitute  
of the signaling combination of ABCD = 0000 to ABCD = 1111.  
Associated Signaling Mode. A 1 enables the associate signaling mode which config-  
ures the CHI to carry both data and its associated signaling information. Enabling this  
mode must be in conjunction with the programming of the CHI data rate to 4.096 Mbits/s  
or 8.192 Mbit/s. Each channel consists of 16 bits where 8 bits are data and the remaining  
8 bits are signaling information.  
3
4
RSI  
Receive Signaling Inhibit. A 1 inhibits updating of the receive signaling buffer.  
MOS  
Message-Oriented Signaling. DS1: A 1 enables the channel 24 message-oriented sig-  
naling mode.  
5
TSR-ASM  
TSR-ASM Mode (DS1 Only). In the DS1 mode, setting this bit and FRM_PR44 bit 2  
(ASM) to 1 enables the transmit signaling register F and G bits to define the robbed-bit  
signaling format while the ABCD bit information is extracted from the CHI interface. The  
F and G bits are copied to the receive signaling block and are used to extract the signal-  
ing information from the receive line.  
6
7
ASTSAIS  
TCSS  
Automatic System Transmit Signaling AIS (CEPT Only). A 1 transmits AIS in system  
time slot 16 during receive loss of time slot 16 signaling multiframe alignment state.  
Transmit CEPT System Signaling Squelch (CEPT Only). AIS is transmitted in time  
slot 16 of the transmit system data.  
182  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
CHI Common Control Register (FRM_PR45)  
These bits define the common attributes of the CHI for TCHIDATA, TCHIDATAB, RCHIDATA, and RCHDATAB. The  
default value of this register is 00 (hex).  
Table 168. CHI Common Control Register (FRM_PR45) (68D; C8D)  
Bit  
Symbol  
Description  
0
HFLF  
High-Frequency/Low-Frequency PLLCK Clock Mode. A 0 enables the low-frequency  
PLLCK mode for the divide down circuit in the internal phase-lock loop section (DS1  
PLLCK = 1.544 MHz; CEPT PLLCK = 2.048 MHz). The divide down circuit will produce  
an 8 kHz signal on DIV-PLLCK, pin 6 and pin 32. A 1 enables the high-frequency PLLCK  
mode for the divide down circuit in the internal phase-lock loop section (DS1: PLLCK =  
6.176 (4 x 1.544) MHz; CEPT: 8.192 (4 x 2.048) MHz). The divide down circuit will pro-  
duce a 32 kHz signal on DIV-PLLCK.  
1
CMS  
Concentration Highway Clock Mode. A 0 enables the CHI clock frequency and CHI  
data rate to be equal. Function fo CMS =1 is reserved. This control bit affects both the  
transmit and receive interfaces.  
2—3  
CDRS0—  
CDRS1  
Concentration Highway Interface Data Rate Select.  
Bits  
2 3  
0 0  
0 1  
1 0  
1 1  
CHI Data Rate  
2.048 Mbits/s  
4.096 Mbits/s  
8.192 Mbits/s  
Reserved  
4
CHIMM  
Concentration Highway Master Mode. A 0 enables external system’s frame synchroni-  
zation signal (TCHIFS) to drive the transmit path of the framer’s concentration highway  
interface. A 1 enables the framer’s transmit concentration interface to generate a system  
frame synchronization signal derived from the receive line interface. The framer’s system  
frame synchronization signal is generated on the TCHIFS output pin. Applications using  
the receive line clock as the reference clock signal of the system are recommended to  
enable this mode and use the TCHIFS signal generated by the framer. The receive CHI  
path is not affected by this mode.  
5—6  
7
Reserved. Write to 0.  
HWYEN  
Highway Enable. A 1 in this bit position enables transmission to the concentration high-  
way. This allows the T7630 to be fully configured before transmission to the highway. A 0  
forces the idle code as defined in register FRM_PR22 to be transmitted to the line in all  
payload time slots and the transmit CHI pin is forced to a high-impedance state for all  
CHI transmitted time slots.  
Lucent Technologies Inc.  
183  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
CHI Common Control Register (FRM_PR46)  
This register defines the common attributes of the transmit and receive CHI. The default value is 00 (hex).  
Table 169. CHI Common Control Register (FRM_PR46) (68E; C8E)  
Bit  
Symbol  
Description  
0—2  
TOFF0—  
TOFF2  
Transmit CHI Bit Offset. These 3 bits define the bit offset from TCHIFS for each trans-  
mit time slot. The offset is the number of TCHICK clock periods by which the first bit is  
delayed from TCHIFS.  
3
TFE  
Transmit Frame Clock Edge. A 0 (1) enables the falling (rising) edge of TCHICK to  
latch in the frame synchronization signal, TCHIFS.  
4—6  
ROFF0—  
ROFF2  
Receive CHI Bit Offset. These 3 bits define the bit offset from RCHIFS for each  
received time slot. The offset is the number of RCHICK clock periods by which the first  
bit is delayed from RCHIFS.  
7
RFE  
Received Frame Clock Edge. A 0 (1) enables the falling (rising) edge of RCHICK to  
latch in the frame synchronization signal, RCHIFS.  
CHI Transmit Control Register (FRM_PR47)  
The default value of this register is 00 (hex).  
Table 170. CHI Transmit Control Register (FRM_PR47) (68F; C8F)  
Bit  
Symbol  
Description  
0—5  
TBYOFF0— Transmit Byte Offset. Combined with FRM_PR65 bit 0 (TBYOFF6), these 6 bits define  
TBYOFF5  
TCE  
the byte offset from TCHIFS to the beginning of the next transmit CHI frame on TCHI-  
DATA.  
6
7
Transmitter Clock Edge. A 1 (0) enables the rising (falling) edge of TCHICK to clock out  
data on TCHIDATA.  
Reserved. Write to 0.  
CHI Receive Control Register (FRM_PR48)  
The default value of this register is 00 (hex).  
Table 171. CHI Receive Control Register (FRM_PR48) (690; C90)  
Bit  
Symbol  
Description  
0—5  
RBYOFF0— Receiver Byte Offset. Combined with FRM_PR66 bit 0 (RBYOFF6), these 6 bits define  
RBYOFF5  
RCE  
the byte offset from RCHIFS to the beginning of the next receive CHI frame on RCHI-  
DATA.  
6
7
Receiver Clock Edge. A 1 (0) enables the rising (falling) edge of RCHICK to latch  
data on RCHIDATA.  
Reserved. Write to 0.  
184  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52)  
These four registers define which transmit CHI time slots are enabled. A 1 enables the TCHIDATA or TCHIDATAB  
time slot. A 0 forces the CHI transmit highway time slot to be 3-stated. The default value of this register is 00 (hex).  
Table 172. CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52) ((691—694); (C91—C94))  
Register  
Bit  
Symbol  
Description  
FRM_PR49  
FRM_PR50  
FRM_PR51  
FRM_PR52  
7—0 TTSE31—TTSE24 Transmit Time-Slot Enable Bits 31—24.  
7—0 TTSE23—TTSE16 Transmit Time-Slot Enable Bits 23—16.  
7—0  
7—0  
TTSE15—TTSE8 Transmit Time-Slot Enable Bits 15—8.  
TTSE7—TTSE0 Transmit Time-Slot Enable Bits 7—0.  
CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56)  
These four registers define which receive CHI time slots are enabled. A 1 enables the RCHIDATA or RCHIDATAB  
time slots. A 0 disables the time slot and transmits the programmable idle code of register FRM_PR22 to the line in  
the corresponding time slot. The default value of this register is FF (hex).  
Table 173. CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56) ((695—698); (C95—C98))  
Register  
Bit  
Symbol  
Description  
FRM_PR53  
FRM_PR54  
FRM_PR55  
FRM_PR56  
7—0 RTSE31—RTSE24 Receive Time-Slot Enable Bits 31—24.  
7—0 RTSE23—RTSE16 Receive Time-Slot Enable Bits 23—16.  
7—0 RTSE15—RTSE8 Receive Time-Slot Enable Bits 15—8.  
7—0  
RTSE7—RTSE0 Receive Time-Slot Enable Bits 7—0.  
CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60)  
These four registers define which transmit CHI highway TCHIDATA or TCHIDATAB contains valid data for the active  
time slot. A 0 enables TCHIDATA, and a 1 enables TCHIDATAB. The default value of this register is  
00 (hex).  
Table 174. CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60) ((699—69C); (C99—C9C))  
Register  
Bit  
Symbol  
Description  
FRM_PR57  
FRM_PR58  
FRM_PR59  
FRM_PR60  
7—0  
7—0  
7—0  
7—0  
THS31—THS24 Transmit Highway Select Bits 31—24.  
THS23—THS16 Transmit Highway Select Bits 23—16.  
THS15—THS8  
THS7—THS0  
Transmit Highway Select Bits 15—8.  
Transmit Highway Select Bits 7—0.  
Lucent Technologies Inc.  
185  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64)  
These four registers define which receive CHI highway RCHIDATA or RCHIDATAB contains valid data for the active  
time slot. A 0 enables RCHIDATA, and a 1 enables RCHIDATAB. The default value of these registers is 00 (hex).  
Table 175. CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64) ((69D—6A0); (C9D—CA0))  
Register  
Bit  
Symbol  
Description  
FRM_PR61  
FRM_PR62  
FRM_PR63  
FRM_PR64  
7—0  
7—0  
7—0  
7—0  
RHS31—RHS24 Receive Highway Select Bits 31—24.  
RHS23—RHS16 Receive Highway Select Bits 23—16.  
RHS15—RHS8 Receive Highway Select Bits 15—8.  
RHS7—RHS0  
Receive Highway Select Bits 7—0.  
CHI Transmit Control Register (FRM_PR65)  
The default value of this register is 00 (hex).  
Table 176. CHI Transmit Control Register (FRM_PR65) (6A1; CA1)  
Bit  
Symbol  
Description  
0
TBYOFF6  
Transmit CHI 64-Byte Offset. A 1 enables a 64-byte offset from TCHIFS to the begin-  
ning of the next transmit CHI frame on TCHIDATA. A 0 enables a 0-byte offset (if bit 0—  
bit 5 of FRM_PR47 = 0). Combing bit 0—bit 5 of FRM_PR47 with this bit allows program-  
ming the byte offset from 0—127.  
1
TCHIDTS  
Transmit CHI Double Time-Slot Mode. A 1 enables the transmit CHI double time-slot  
mode. In this mode, the TCHI clock runs at twice the rate of TCHIDATA.  
2—7  
Reserved. Write to 0.  
CHI Receive Control Register (FRM_PR66)  
The default value of this register is 00 (hex).  
Table 177. CHI Receive Control Register (FRM_PR66) (6A2; CA2)  
Bit  
Symbol  
Description  
0
RBYOFF6  
Receive CHI 64-Byte Offset. A 1 enables a 64-byte offset from RCHIFS to the begin-  
ning of the next receive CHI frame on RCHIDATA. A 0 enables a 0-byte offset (if bit 0—  
bit 5 of FRM_PR48 = 0). Combing bit 0—bit 5 of FRM_PR48 with this bit allows program-  
ming the byte offset from 0—127.  
1
RCHIDTS  
Receive CHI Double Time-Slot Mode. A 1 enables the transmit CHI double time-slot  
mode. In this mode, the RCHI clock runs at twice the rate of RCHIDATA.  
2—7  
Reserved. Write to 0.  
Reserved Parameter/Control Registers  
Registers FRM_PR67 and FRM_PR68, addresses 6A3 and 6A4 or CA3 and CA4, are reserved. Write these regis-  
ters to 0.  
186  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Auxiliary Pattern Generator Control Register (FRM_PR69)  
The following register programs the auxiliary pattern generator in the transmit framer. The default value of this reg-  
ister is 00 (hex).  
Table 178. Auxiliary Pattern Generator Control Register (FRM_PR69) (6A5; CA5)*  
Bit  
Symbol  
Description  
0
1
ITD  
Invert Transmit Data. Setting this bit to 1 inverts the transmitted pattern.  
TPEI  
Test Pattern Error Insertion. Toggling this bit from a 0 to a 1 inserts a single bit error in the  
transmitted test pattern.  
2
3
GBLKSEL Generator Block Select. Setting this bit to 1 enables the generation of test patterns in this reg-  
ister.  
GFRMSEL Generator Frame Test Pattern. Setting this bit to 1 results in the generation of an unframed  
pattern. A 0 results in a framed pattern (T1 and CEPT).  
4— GPTRN0— Generator Pattern Select. These 4 bits select which random pattern is to be transmitted.  
7
GPTRN3  
Bits  
Description  
Generator  
Polynomial  
Standard  
7
0
0
6
0
0
5
0
0
4
0
1
MARK (all ones) (AIS)  
QRSS (220 – 1 with zero  
suppression)  
25 – 1  
O.151  
1+x–17+x–20  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1+x–3+x–5  
1+x–1+x–6  
1+x–5+x–9  
1+x–4+x–9  
1+x–9+x–11  
1+x–2+x–11  
1+x–14+x–15  
1+x–3+x–20  
1+x–17+x–20  
1+x–18+x–23  
O.153  
O.152  
63 (26 – 1)  
511 (29 – 1)  
511 (29 – 1) reversed  
2047 (211 – 1)  
2047 (211 – 1) reversed  
215 – 1  
O.151  
O.153  
CB113/CB114  
O.151  
220 – 1  
220 – 1  
223 – 1  
1:1 (alternating)  
* To generate test pattern signals using this register, register FRM_PR20 must be set to 00 (hex).  
Lucent Technologies Inc.  
187  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Framer Register Architecture (continued)  
Pattern Detector Control Register (FRM_PR70)  
The following register programs the pattern detector in the receive framer. The default value of this register is 00  
(hex).  
Table 179. Pattern Detector Control Register (FRM_PR70) (6A6; CA6)*  
Bit  
Symbol  
Description  
0
IRD  
Invert Receive Data. Setting this bit to 1 enables the pattern detector to detect the inverse of  
the selected pattern.  
1
2
Reserved. Write to 0.  
DBLKSEL Detector Block Select. Setting this bit to 1 enables the detection of test patterns in this regis-  
ter.  
3
DUFTP Detect Unframed Test Pattern. Setting this bit to 1 results in the search for an unframed pat-  
tern. A 0 results in a search for a framed pattern (T1 and CEPT).  
4— DPTRN0— Detector Pattern Select. These 4 bits select which random pattern is to be transmitted.  
7
DPTRN3  
Bits  
Description  
Generator  
Polynomial  
Standard  
7
0
0
6
0
0
5
0
0
4
0
1
MARK (all ones) (AIS)  
QRSS (220 – 1 with zero  
suppression)  
25 – 1  
O.151  
1+x–17+x–20  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1+x–3+x–5  
1+x–1+x–6  
1+x–5+x–9  
1+x–4+x–9  
1+x–9+x–11  
1+x–2+x–11  
1+x–14+x–15  
1+x–3+x–20  
1+x–17+x–20  
1+x–18+x–23  
O.153  
O.152  
63 (26 – 1)  
511 (29 – 1)  
511 (29 – 1) reversed  
2047 (211 – 1)  
2047 (211 – 1) reversed  
215 – 1  
O.151  
O.153  
CB113/CB114  
O.151  
220 – 1  
220 – 1  
223 – 1  
1:1 (alternating)  
* To generate/detect test pattern signals using this register, register FRM_PR20 must be set to 00 (hex).  
188  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Framer Register Architecture (continued)  
Transmit Signaling Registers: DS1 Format (FRM_TSR0—FRM_TSR23)  
These registers program the transmit signaling registers for the DS1 and CEPT mode. The default value of these  
registers is 00 (hex).  
Table 180. Transmit Signaling Registers: DS1 Format (FRM_TSR0—FRM_TSR23) ((6E0—6F7); (CE0—CF7))  
Transmit Signal Registers  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
DS1 Transmit Signaling Registers (0—23)  
P
X
G
0
F
0
X
X
D
D
C
C
B
B
A
A
ESF Format: Voice Channel with 16-State Signaling  
SLC-96: 9-State Signaling (depending on the setting in  
register FRM_PR43)  
Voice Channel with 4-State Signaling  
Voice Channel with 2-State Signaling  
Data Channel (no signaling)  
X
X
X
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
B
A
X
A
A
X
Transmit Signaling Registers: CEPT Format (FRM_TSR0—FRM_TSR31)  
Table 181. Transmit Signaling Registers: CEPT Format (FRM_TSR0—FRM_TSR31) ((6E0—6FF);  
(CE0—CFF))  
Transmit Signal Registers  
Bit 7  
Bit 6—5  
Bit 4*  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_TSR1—FRM_TSR15  
FRM_TSR17—FRM_TSR31  
P
P
X
X
E[1:15]  
D[1:15]  
C[1:15]  
B[1:15]  
A[1:15]  
E[17:31]  
D[17:31]  
C[17:31]  
B[17:31]  
A[17:31]  
* In PCS0 or PCS1 signaling mode, this bit is undefined.  
Lucent Technologies Inc.  
189  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
FDL Register Architecture  
REGBANK4 and REGBANK7 contain the status and programmable control registers for the facility data link chan-  
nels FDL1 and FDL2, respectively. The base address for REGBANK4 is 800 (hex) and for REGBANK7 is  
E00 (hex). Within these register banks, the bit map is identical for both FDL1 and FDL2.  
The register bank architecture for FDL1 and FDL2 is shown in Table 184. The register bank consists of 8-bit regis-  
ters classified as either (programmable) parameter registers or status registers. Default values are shown in paren-  
theses.  
Table 182. FDL Register Set (800—80E); (E00—E0E)  
FDL Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
[Address (hex)]  
FDL_PR0[800;E00] FRANSIT3 FRANSIT2 FRANSIT1 FRANSIT0 Reserved Reserved  
FLAGS  
(0)  
FDINT  
(0)  
(1)  
(0)  
(1)  
(0)  
(0)  
(0)  
FDL_PR1[801;E01]  
FDL_PR2[802;E02]  
FDL_PR3[803;E03]  
FDL_PR4[804;E04]  
FDL_PR5[805;E05]  
FDL_PR6[806;E06]  
FDL_PR8[808;E08]  
FDL_PR9[809;E09]  
FDL_PR10[80A;E0A]  
FTPRM  
(0)  
FRPF  
(0)  
FTR  
(0)  
FRR  
(0)  
FTE  
(0)  
FRE  
(0)  
FLLB  
(0)  
FRLB  
(0)  
FTBCRC  
(0)  
FRIIE  
(0)  
FROVIE  
(0)  
FREOFIE  
(0)  
FRFIE  
(0)  
FTUNDIE  
(0)  
FTEIE  
(0)  
FTDIE  
(0)  
FTFC  
(0)  
FTABT  
(0)  
FTIL5  
(0)  
FTIL4  
(0)  
FTIL3  
(0)  
FTIL2  
(0)  
FTIL1  
(0)  
FTIL0  
(0)  
FTD7  
(0)  
FTD6  
(0)  
FTD5  
(0)  
FTD4  
(0)  
FTD3  
(0)  
FTD2  
(0)  
FTD1  
(0)  
FTD0  
(0)  
FTIC7  
(0)  
FTIC6  
(0)  
FTIC5  
(0)  
FTIC4  
(0)  
FTIC3  
(0)  
FTIC2  
(0)  
FTIC1  
(0)  
FTIC0  
(0)  
FRANSIE AFDLBPM  
FRIL5  
(0)  
FRIL4  
(0)  
FRIL3  
(0)  
FRIL2  
(0)  
FRIL1  
(0)  
FRIL0  
(0)  
(0)  
(0)  
FRMC7  
(0)  
FRMC6  
(0)  
FRMC5  
(0)  
FRMC4  
(0)  
FRMC3  
(0)  
FRMC2  
(0)  
FRMC1  
(0)  
FRMC0  
(0)  
Reserved  
(0)  
FTM  
(0)  
FMATCH  
(0)  
FALOCT  
(0)  
FMSTAT  
(0)  
FOCTOF2 FOCTOF1 FOCTOF0  
(0)  
(0)  
(0)  
FTANSI  
(0)  
Reserved  
(0)  
FTANSI5  
(0)  
FTANSI4 FTANSI3  
FTANSI2  
(0)  
FTANSI1 FTANSI0  
(0)  
(0)  
(0)  
(0)  
FTDONE  
FTQS0  
FRQS0  
X0  
FDL_SR0[80B;E0B]  
FDL_SR1[80C;E0C]  
FDL_SR2[80D;E0D]  
FDL_SR3[80E;E0E]  
FDL_SR4[807;E0F]  
FRANSI  
FTED  
FREOF  
0
FRIDL  
FTQS6  
FRQS6  
0
FROUERUN FREOF  
FRF  
FTUNDABT  
FTQS2  
FRQS2  
X2  
FTEM  
FTQS1  
FRQS1  
X1  
FTQS5  
FRQS5  
X5  
FTQS4  
FRQS4  
X4  
FTQS3  
FRQS3  
X3  
FRD7  
FRD6  
FRD5  
FRD4  
FRD3  
FRD2  
FRD1  
FRD0  
190  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
FDL Parameter/Control Registers (800—80E; E00—E0E)  
These registers define the mode configuration of each framer unit. These registers are initially set to a default value  
upon a hardware reset. These registers are all read/write registers.  
Default states of all bits in this register group are also indicated in the parameter/control register map.  
Table 183. FDL Configuration Control Register (FDL_PR0) (800; E00)  
Bit  
Symbol  
Description  
0
FDINT  
Dynamic Interrupt. FDINT = 0 causes multiple occurrences of the same event to gener-  
ate a single interrupt before the interrupt bit is cleared by reading register FDL_SR0.  
FDINT = 1 causes multiple interrupts to be generated. This bit should normally be set to  
0.  
1
FLAGS  
Flags. FLAGS = 0 forces the transmission of the idle pattern (11111111) in the absence  
of transmit FDL information. FLAGS = 1 forces the transmission of the flag pattern  
(01111110) in the absence of transmit FDL information. This bit resets to 0.  
2—3  
Reserved. Write to 0.  
4—7 FRANSIT0— Receive ANSI Bit Code Threshold. These bits define the number of ESF ANSI bit  
FRANSIT3 codes needed for indicating a valid code. The default is ten (1010 (binary))*.  
* The FRANSIT bits (FDL_PR0 bits 4—7) must be changed only following an FDL reset or when the FDL is idle.  
Table 184. FDL Control Register (FDL_PR1) (801; E01)  
Bit  
Symbol  
Description  
0
FRLB  
Remote Loopback. FRLB = 1 loops the received facility data back to the transmit facility  
data interface. This bit resets to 0.  
1
FLLB  
Local Loopback. FLLB = 1 loops transmit facility data back to the receive facility data  
link interface. The receive facility data link information from the framer interface is  
ignored. This bit resets to 0.  
2
3
4
FRE  
FTE  
FRR  
FDL Receiver Enable. FRE = 1 activates the FDL receiver. FRE = 0 forces the FDL  
receiver into an inactive state. This bit resets to 0.  
FDL Transmitter Enable. FTE = 1 activates the FDL transmitter. FTE = 0 forces the FDL  
transmitter into an inactive state. This bit resets to 0.  
FDL Receiver Reset. FRR = 1 generates an internal pulse that resets the FDL receiver.  
The FDL receiver FIFO and related circuitry are cleared. The FREOF, FRF, FRIDL, and  
OVERRUN interrupts are cleared. This bit resets to 0.  
5
FTR  
FDL Transmitter Reset. FTR = 1 generates an internal pulse that resets the FDL trans-  
mitter. The FDL transmit FIFO and related circuitry are cleared. The FTUNDABT bit is  
cleared, and the FTEM interrupt is set; the FTDONE bit is forced to 0 in the HDLC mode  
and forced to 1 in the transparent mode. This bit resets to 0.  
6
7
FRPF  
FDL Receive PRM Frames. FRPF = 1 allows the receive FDL unit to write the entire  
receive performance report message including the frame header and CRC data into the  
receive FDL FIFO. This bit resets to 0.  
FTPRM  
Transmit PRM Enable. When this bit is set, the receive framer will write into the transmit  
FDL FIFO its performance report message data. The current second of this data is  
stored in the receive framer’s status registers. The receive framer’s PRM is transmitted  
once per second. The PRM is followed by either idles or flags transmitted after the PRM.  
When this bit is 0, the transmit FDL expects data from the microprocessor interface.  
Lucent Technologies Inc.  
191  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 185. FDL Interrupt Mask Control Register (FDL_PR2) (802; E02)  
Bit  
Symbol  
Description  
0
FTDIE  
FDL Transmit-Done Interrupt Enable. When this interrupt enable bit is set, an  
INTERRUPT pin transition is generated after the last bit of the closing flag or abort  
sequence is sent. In the transparent mode (register FDL_PR9 bit 6 = 1), an INTERRUPT  
pin transition is generated when the transmit FIFO is completely empty. FTDIE is cleared  
upon reset.  
1
2
3
4
5
6
7
FTEIE  
FTUNDIE  
FRFIE  
FDL Transmitter-Empty Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the transmit FIFO has reached the pro-  
grammed empty level (see register FDL_PR3). FTEIE is cleared upon reset.  
FDL Transmit Underrun Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the transmit FIFO has underrun. FTUNDIE  
is cleared upon reset and is not used in the transparent mode.  
FDL Receiver-Full Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receive FIFO has reached the pro-  
grammed full level (see register FDL_PR6). FRFIE is cleared upon reset.  
FREOFIE  
FROVIE  
FRIIE  
FDL Receive End-of-Frame Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when an end-of-frame is detected by the FDL  
receiver. FREOFIE is cleared upon reset and is not used in the transparent mode.  
FDL Receiver Overrun Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receive FIFO overruns. FROVIE is  
cleared upon reset.  
FDL Receiver Idle-Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receiver enters the idle state. FRIIR is  
cleared upon reset and is not used in the transparent mode.  
FTBCRC  
FDL Transmit Bad CRC. Setting this bit to 1 forces bad CRCs to be sent on all transmit-  
ted frames (for test purposes) until the FTBCRC bit is cleared to 0.  
192  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 186. FDL Transmitter Configuration Control Register (FDL_PR3) (803; E03)  
Bit  
Symbol  
Description  
0—5 FTIL0—FTIL5 FDL Transmitter Interrupt Level. These bits specify the minimum number of empty  
positions in the transmit FIFO which triggers a transmitter-empty (FTEM) interrupt.  
Encoding is in binary; bit 0 is the least significant bit. A code of 001010 will generate an  
interrupt when the transmit FIFO has ten or more empty locations. The code 000000  
generates an interrupt when the transmit FIFO is empty. The number of empty transmit  
FIFO locations is obtained by reading the transmit FDL status register FDL_SR1.  
61  
FTABT  
FDL Transmitter Abort. FTABT = 1 forces the transmit FDL unit to abort the frame at the  
last user data byte waiting for transmission. When the transmitter reads the byte tagged  
with FTABT, the abort sequence (01111111) is transmitted in its place. A full byte is guar-  
anteed to be transmitted. Once set for a specific data byte, the internal FTABT status  
cannot be cleared by writing to this bit. Clearing this bit has no effect on a previously writ-  
ten FTABT. The last value written to FTABT is available for reading.  
71  
FTFC  
FDL Transmitter Frame Complete. FTFC = 1 forces the transmit FDL unit to terminate  
the frame normally after the last user data byte is written to the transmit FIFO. The CRC  
sequence and a closing flag are appended. FTFC should be set to 1 within 1 ms of writ-  
ing the last byte of the frame in the transmit FIFO. When the transmit FIFO is empty, writ-  
ing two data bytes to the FIFO before setting FTCF provides a minimum of 1 ms to write  
FTFC = 1. Once set for a specific data byte, the internal FTFC status bit cannot be  
cleared by writing to this bit. Clearing this bit has no effect on a previously written FTFC.  
The last value written to FTFC is available for reading.  
1. Do not set FTABT = 1 and FTFC = 1 at the same time.  
Table 187. FDL Transmitter FIFO Register (FDL_PR4) (804; E04)  
Bit  
Symbol  
Description  
0—7 FTD0—FTD7 FDL Transmit Data. The user data to be transmitted via the FDL block are loaded  
through this register.  
Table 188. FDL Transmitter Idle Character Register (FDL_PR5) (805; E05)  
Bit  
Symbol  
Description  
0—7  
FTIC0—  
FTIC7  
FDL Transmitter Idle Character. This character is used only in transparent mode (regis-  
ter FDL_PR9 bit 6 = 1). When the pattern match bit (register FDL_PR9 bit 5) is set to 1,  
the FDL transmit unit sends this character whenever the transmit FIFO is empty. The  
default is to send the ones idle character, but any character can be programmed by the  
user.  
Lucent Technologies Inc.  
193  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 189. FDL Receiver Interrupt Level Control Register (FDL_PR6) (806; E06)  
Bit  
Symbol  
Description  
0—5 FRIL0—FRIL5 FDL Receive Interrupt Level. Bit 0—bit 5 define receiver FIFO full threshold value that  
will generate the corresponding FRF interrupt. FRIL = 000000 forces the receive FDL  
FIFO to generate an interrupt when the receive FIFO is completely full. FRIL = 001111  
will force the receive FDL FIFO to generate an interrupt when the receive FIFO contains  
15 or more bytes.  
6
7
Reserved. Write to 0.  
FRANSIE  
FDL Receiver ANSI Bit Codes Interrupt Enable. If this bit is set to 1, an interrupt pin  
condition is generated whenever a valid ANSI code is received.  
Table 190. FDL Register FDL_PR7  
Bit  
Symbol  
Description  
0—7  
Reserved.  
Table 191. FDL Receiver Match Character Register (FDL_PR8) (808; E08)  
Bit  
Symbol  
Description  
0—7  
FRMC0—  
FRMC7  
Receiver FDL Match Character. This character is used only in transparent mode (regis-  
ter FDL_PR9 bit 6 = 1). When the pattern match bit (register FDL_PR9 bit 5) is set to 1,  
the receive FDL unit searches the incoming bit stream for the receiver match character.  
Data is loaded into the receive FIFO only after this character has been identified. The  
byte identified as matching the receiver match character is the first byte loaded into the  
receive FIFO. The default is to search for a flag, but any character can be programmed  
by the user. The search for the receiver match character can be in a sliding window fash-  
ion (register FDL_PR9 bit 4 = 0) or only on byte boundaries (register FDL_PR9 bit 4 = 1).  
194  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 192. FDL Transparent Control Register (FDL_PR9) (809; E09)  
Bit  
Symbol  
Description  
0—2  
FOCTOF0— FDL Octet Offset (Read Only). These bits record the offset relative to the octet bound-  
FOCTOF2  
FMSTAT  
ary when the receive character was matched. The FOCTOF bits are valid when register  
FDL_PR9 bit 3 (FMSTAT) is set to 1. A value of 111 (binary) indicates byte alignment.  
3
Match Status (Read Only). When this bit is set to 1 by the receive FDL unit, the receiver  
match character has been recognized. The octet offset status bits (FDL_PR9 bit[2:0])  
indicates the offset relative to the octet boundary* at which the receive character was  
matched. If no match is being performed (register FDL_PR9 bit 5 = 0), the FMSTAT bit is  
set to 1 automatically when the first byte is received, and the octet offset status bits (reg-  
ister FDL_PR9 bit 0—bit 2) are set to 111 (binary).  
4
5
FALOCT  
FMATCH  
Frame-Sync Align. When this bit is set to 1, the receive FDL unit searches for the  
receive match character (FDL-PR8) only on an octet boundary. When this bit is 0, the  
receive FDL unit searches for the receive match character in a sliding window fashion.  
Pattern Match. FMATCH affects both the transmitter and receiver. When this bit is set to  
1, the FDL does not load data into the receive FIFO until the receive match character  
programmed in register FDL_PR8 has been detected. The search for the receive match  
character is in a sliding window fashion if register FDL_PR9 bit 4 is 0, or only on octet  
boundaries if register FDL_PR9 bit 4 is set to 1. When this bit is 0, the receive FDL unit  
loads the matched byte and all subsequent data directly into the receive FIFO. On the  
transmit side, when this bit is set to 1 the transmitter sends the transmit idle character  
programmed into register FDL_PR5 when the transmit FIFO has no user data. The  
default idle is to transmit the HDLC ones idle character (FF hexadecimal); however, any  
value can be used by programming the transmit idle character register FDL_PR5. If this  
bit is 0, the transmitter sends ones idle characters when the transmit FIFO is empty.  
6
7
FTM  
FDL Transparent Mode. When this bit is set to 1, the FDL unit performs no HDLC pro-  
cessing on incoming or outgoing data.  
Reserved. Write to 0.  
* The octet boundary is relative the first receive clock edge after the receiver has been enabled (ENR, FDL_PR1 bit 2 = 1).  
Table 193. FDL Transmit ANSI ESF Bit Codes (FDL_PR10) (80A; E0A)  
Bit  
Symbol  
Description  
0—5  
FTANSI0— FDL ESF Bit-Oriented Message Data. The transmit ESF FDL bit messages are in the  
FTANSI5  
form 111111110X0X1X2X3X4X50, where the order of transmission is from left to right.  
6
7
Reserved. Write to 0.  
FTANSI  
Transmit ANSI Bit Codes. When this bit is set to 1, the FDL unit will continuously trans-  
mit the ANSI code defined using register FDL_PR10 bit 0—bit 5 as the ESF bit code  
messages. This bit must stay high long enough to ensure the ANSI code is sent at least  
10 times.  
Lucent Technologies Inc.  
195  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 194. FDL Interrupt Status Register (Clear on Read) (FDL_SR0) (80B; E0B)  
Bit  
Symbol  
Description  
0
FTDONE  
Transmit Done. This status bit is set to 1 when transmission of the current FDL frame  
has been completed, either after the last bit of the closing flag or after the last bit of an  
abort sequence. In the transparent mode (FDL_PR9 bit 6 = 1), this status bit is set when  
the transmit FIFO is completely empty. A hardware interrupt is generated only if the cor-  
responding interrupt-enable bit (FDL_PR2 bit 0) is set. This status bit is cleared to 0 by a  
read of this register.  
1
FTEM  
Transmitter Empty. If this bit is set to 1, the FDL transmit FIFO is at or below the pro-  
grammed depth. A hardware interrupt is generated only if the corresponding interrupt-  
enable bit (FDL_PR2 bit 1) is set. If DINT (FDL_PR0 bit 0) is 0, this status bit is cleared  
by a read of this register. If FDINT (FDL_PR0 bit 0) is set to 1, this bit actually represents  
the dynamic transmit empty condition, and is cleared to 0 only when the transmit FIFO is  
loaded above the programmed empty level.  
2
3
FTUNDABT FDL Transmit Underrun Abort. A 1 indicates that an abort was transmitted because of  
a transmit FIFO underrun. A hardware interrupt is generated only if the corresponding  
interrupt-enable bit (FDL_PR2 bit 2) is set. This status bit is cleared to 0 by a read of this  
register. This bit must be cleared to 0 before further transmission of data is allowed. This  
interrupt is not generated in the transparent mode.  
FRF  
FDL Receiver Full. This bit is set to 1 when the receive FIFO is at or above the pro-  
grammed full level (FDL_PR6). A hardware interrupt is generated if the corresponding  
interrupt-enable bit (FDL_PR2 bit 3) is set. If FDINT (FDL_PR0 bit 0) is 0, this status bit  
is cleared to 0 by a read of this register. If FDINT (FDL_PR0 bit 0) is set to 1, then this bit  
is cleared only when the receive FIFO is read (or emptied) below the programmed full  
level*.  
4
FREOF  
FDL Receive End of Frame. This bit is set to 1 when the receiver has finished receiving  
a frame. It becomes 1 upon reception of the last bit of the closing flag of a frame or the  
last bit of an abort sequence. A hardware interrupt is generated only if the corresponding  
interrupt-enable bit (FDL_PR2 bit 4) is set. This status bit is cleared to 0 by a read of this  
register. This interrupt is not generated in the transparent mode.  
5
6
FROVERUN FDL Receiver Overrun. This bit is set to 1 when the receive FIFO has overrun its  
capacity. A hardware interrupt is generated only if the corresponding interrupt-enable bit  
(FDL_PR2 bit 5) is set. This status bit is cleared to 0 by a read of this register*.  
FRIDL  
FDL Receiver Idle. This bit is set to 1 when the FDL receiver is idle (i.e., 15 or more  
consecutive ones have been received). A hardware interrupt is generated only if the cor-  
responding interrupt-enable bit (FDL_PR2 bit 6) is set. This status bit is cleared to 0 by a  
read of this register. This interrupt is not generated in the transparent mode.  
7
FRANSI  
FDL Receive ANSI Bit Codes. This bit is set to 1 when the FDL receiver recognizes a  
valid T1.403 ESF FDL bit code. The receive ANSI bit code is stored in register  
FDL_SR3. An interrupt is generated only if the corresponding interrupt enable of register  
FDL_PR6 bit 7 = 1. This status bit is cleared to 0 by a read this register.  
* If an FDL receive FIFO overrun occurs, as indicated by register FDL_SR0 bit 5 (FROVERUN) = 1, the FDL must be reset to restore proper  
operation of the FIFO. Following an FDL receive FIFO overrun, data extracted prior to the required reset may be corrupted.  
196  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 195. FDL Transmitter Status Register (FDL_SR1) (80C; E0C)  
Bit  
Symbol  
Description  
0—6  
FTQS0—  
FTQS6  
FDL Transmit Queue Status. Bit 0—bit 6 indicate how many bytes can be added to the  
transmit FIFO*. The bits are encoded in binary where bit 0 is the least significant bit.  
7
FTED  
FDL Transmitter Empty Dynamic. FTED = 1 indicates that the number of empty loca-  
tions available in the transmit FIFO is greater than or equal to the value programmed in  
the FTIL bits (FDL_PR3).  
* The count of FDL_SR1 bits 0—6 includes SF byte.  
Table 196. FDL Receiver Status Register (FDL_SR2) (80D; E0D)  
Bit  
Symbol  
Description  
0—6  
FRQS0—  
FRQS6  
FDL Receive Queue Status. Bit 0—bit 6 indicate how many bytes are in the receive  
FIFO, including the first status of Frame (SF) byte. The bits are encoded in binary where  
bit 0 is the least significant bit*.  
7
FEOF  
FDL End of Frame. When FEOF = 1, the receive queue status indicates the number of  
bytes up to and including the first SF byte.  
* Immediately following an FDL reset, the value in bit 0—bit 6 of this status register is 0. After the initial read of the FDL receive FIFO, the value  
in bit 0—bit 6 of this status register is the number of bytes including SF byte that may be read from the FIFO.  
Received FDL ANSI Bit Codes Status Register (FDL_SR3)  
The 6-bit code extracted from the ANSI code 111111110X0X1X2X3X4X50 is stored in this register.  
Table 197. Receive ANSI FDL Status Register (FDL_SR3) (80E; E0E)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
X5  
X4  
X3  
X2  
X1  
X0  
Receive FDL FIFO Register (FDL_SR4)  
This FIFO stores the received FDL data. Only valid FIFO bytes indicated in register FDL_SR2 may be read. Read-  
ing nonvalid FIFO locations or reading the FIFO when it is empty will corrupt the FIFO pointer and will require an  
FDL reset to restore proper FDL operation.  
Table 198. FDL Receiver FIFO Register (FDL_SR4) (807; E07)  
Bit  
Symbol  
Description  
0—7 FRD0—FRD7 FDL Receive Data. The user data received via the FDL block are read through this register.  
Lucent Technologies Inc.  
197  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Maps  
Global Registers  
Table 199. Global Register Set  
REG  
Clear-On-  
Read  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(COR)  
(hexadecimal)  
Read (R)  
Write (W)  
COR  
R/W  
R/W  
R/W  
R/W  
Reserved  
(0)  
FDL2INT  
(0)  
FRMR2INT  
(0)  
LIU2INT  
(0)  
Reserved  
(0)  
FDL1INT  
(0)  
FRMR1INT  
(0)  
LIU1INT  
(0)  
GREG0  
GREG1  
GREG2  
GREG3  
GREG4  
000  
001  
002  
003  
004  
Reserved  
(0)  
FDL2IE  
(0)  
FRMR2IE  
(0)  
LIU2IE  
(0)  
Reserved  
(0)  
FDL1IE  
(0)  
FRMR1IE  
(0)  
LIU1IE  
(0)  
TID2-RSD1 TSD2-RSD1 TID1-RSD1 TSD1-RSD1 TSD2-RID1 TID2-RID1  
(0) (0) (0) (0) (0) (0)  
TSD1-RID1 TID1-RID1  
(0) (0)  
TID1-RSD2 TSD1-RSD2 TID2-RSD2 TSD2-RSD2 TSD1-RID2 TID1-RID2  
TSD2-RID2 TID2-RID2  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Reserved  
(0)  
ALIE  
(0)  
SECCTRL  
(0)  
Reserved  
(0)  
T1-R2  
(0)  
T2-R1  
(0)  
Reserved  
(0)  
Reserved  
(0)  
R
R
R
GREG5  
GREG6  
GREG7  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
0
1
0
0
0
005  
006  
007  
Line Interface Unit Parameter/Control and Status Registers  
Table 200. Line Interface Unit Register Set*  
LIU_REG  
Clear-On-  
Read  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Address  
(hexadecimal)  
(COR)  
Read (R)  
Write (W)  
Framer 1  
Framer 2  
LIU_REG0  
LIU_REG1  
COR  
R/W  
Reserved  
Reserved  
Reserved  
Reserved  
LOTC  
TDM  
DLOS  
ALOS  
400  
401  
A00  
A01  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOTCIE  
(0)  
TDMIE  
(0)  
DLOSIE  
(0)  
ALOSIE  
(0)  
LIU_REG2  
LIU_REG3  
LIU_REG4  
LIU_REG5  
LIU_REG6  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
(0)  
ReservedReservedReserved†  
Reserved  
(0)  
RESTART  
(0)  
HIGHZ  
(0)  
Reserved  
(0)  
LOSSTD  
(0)  
Reserved  
(0)  
Reserved  
(0)  
402  
403  
404  
405  
A02  
A03  
A04  
A05  
LOSSD  
(0)  
DUAL  
(0)  
CODE  
(1)  
JAT  
(0)  
JAR  
(0)  
(1)  
(1)  
(1)  
Reserved  
(0)  
Reserved  
(0)  
JABW0  
(0)  
PHIZALM  
(0)  
PRLALM  
(0)  
PFLALM  
(0)  
RCVAIS  
(0)  
ALTIMER  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOOPA  
(0)  
LOOPB  
(0)  
XLAIS  
(1)  
PWRDN  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
EQ2  
(0,DS1)  
(1,CEPT)  
EQ1  
(0,DS1)  
(1,CEPT)  
EQ0  
(0)  
406  
A06  
* The logic value in parentheses below each bit definition is the default state upon completion of hardware reset.  
† These bits must be written to 1.  
198  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Maps (continued)  
Framer Parameter/Control Registers (Read-Write)  
Table 201. Framer Unit Status Register Map  
Framer  
Status  
Clear-On-  
Read  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(COR)  
(hexadecimal)  
Framer Framer  
1
2
FRM_SR0  
FRM_SR1  
COR  
COR  
S96SR  
AIS  
0
RSSFE  
TSSFE  
LBFA  
ESE  
FAE  
RAC  
FAC  
LFA  
600  
C00  
AUXP  
RTS16AIS  
LFALR  
LTSFA  
LTS0MFA  
LSFA  
LTS16MFA  
601  
C01  
FRM_SR2  
COR  
RSa6 = F  
SLIPU  
RSa6 = E  
SLIPO  
RSa6 = C  
RSa6 = A  
REBIT  
RSa6 = 8  
ECE  
CREBIT  
RJYA  
RTS16MFA  
RFA  
602  
603  
604  
C02  
C03  
C04  
FRM_SR3  
FRM_SR4  
COR  
COR  
LCRCATMX  
CRCE  
FBE  
LFV  
NFA  
FDL-LLBOFF FDL-LLBON FDL-PLBOFF FDL-PLBON  
LLBON  
CMA  
LLBOFF  
BFA  
SSFA  
TSaSR  
ETREUAS  
NTREUAS  
RQUASI  
BPV15  
RSaSR  
ETRESES  
NTRESES  
RPSEUDO  
BPV14  
FRM_SR5  
FRM_SR6  
FRM_SR7  
FRM_SR8  
FRM_SR9  
FRM_SR10  
FRM_SR11  
FRM_SR12  
FRM_SR13  
FRM_SR14  
FRM_SR15  
FRM_SR16  
FRM_SR17  
FRM_SR18  
FRM_SR19  
FRM_SR20  
FRM_SR21  
FRM_SR22  
FRM_SR23  
FRM_SR24  
FRM_SR25  
FRM_SR26  
FRM_SR27  
FRM_SR28  
FRM_SR29  
FRM_SR30  
FRM_SR31  
FRM_SR32  
FRM_SR33  
FRM_SR34  
FRM_SR35  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
ETREBES  
NTREBES  
PTRNBER  
BPV13  
ETREES  
NTREES  
DETECT  
BPV12  
BPV4  
ETUAS  
NTUAS  
NROUAS  
BPV11  
BPV3  
ETSES  
NTSES  
NT1OUAS  
BPV10  
BPV2  
ETBES  
NTBES  
EROUAS  
BPV9  
ETES  
NTES  
605  
606  
607  
608  
609  
60A  
60B  
60C  
60D  
60E  
60F  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
61A  
61B  
61C  
61D  
61E  
61F  
620  
621  
622  
623  
C05  
C06  
C07  
C08  
C09  
C0A  
C0B  
C0C  
C0D  
C0E  
C0F  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C1A  
C1B  
C1C  
C1D  
C1E  
C1F  
C20  
C21  
C22  
C23  
OUAS  
BPV8  
BPV7  
BPV6  
BPV5  
BPV1  
BPV0  
FE15  
FE14  
FE13  
FE12  
FE11  
FE10  
FE9  
FE8  
FE7  
FE6  
FE5  
FE4  
FE3  
FE2  
FE1  
FE0  
CEC15  
CEC7  
CEC14  
CEC6  
CEC13  
CEC5  
CEC12  
CEC4  
CEC11  
CEC3  
CEC10  
CEC2  
CEC9  
CEC8  
CEC1  
CEC0  
REC15  
REC7  
REC14  
REC6  
REC13  
REC5  
REC12  
REC4  
REC11  
REC3  
REC10  
REC2  
REC9  
REC8  
REC1  
REC0  
CNT15  
CNT7  
CNT14  
CNT13  
CNT12  
CNT4  
CNT11  
CNT3  
CNT10  
CNT2  
CNT9  
CNT8  
CNT6  
CNT5  
CNT1  
CNT0  
ENT15  
ENT14  
ENT13  
ENT12  
ENT4  
ENT11  
ENT3  
ENT10  
ENT2  
ENT9  
ENT8  
ENT7  
ENT6  
ENT5  
ENT1  
ENT0  
ETES15  
ETES7  
ETBES15  
ETBES7  
ETSES15  
ETSES7  
ETUS15  
ETUS7  
ETREES15  
ETREES7  
ETES14  
ETES6  
ETES13  
ETES5  
ETES12  
ETES4  
ETBES12  
ETBES4  
ETSES12  
ETSES4  
ETUS12  
ETUS4  
ETREES12  
ETREES4  
ETES11  
ETES3  
ETBES11  
ETBES3  
ETSES11  
ETSES3  
ETUS11  
ETUS3  
ETREES11  
ETREES3  
ETES10  
ETES2  
ETBES10  
ETBES2  
ETSES10  
ETSES2  
ETUS10  
ETUS2  
ETREES10  
ETREES2  
ETES9  
ETES1  
ETBES9  
ETBES1  
ETSES9  
ETSES1  
ETUS9  
ETUS1  
ETREES9  
ETREES1  
ETES8  
ETES0  
ETBES8  
ETBES0  
ETSES8  
ETSES0  
ETUS8  
ETUS0  
ETREES8  
ETREES0  
ETBES14  
ETBES6  
ETSES14  
ETSES6  
ETUS14  
ETUS6  
ETREES14  
ETREES6  
ETBES13  
ETBES5  
ETSES13  
ETSES5  
ETUS13  
ETUS5  
ETREES13  
ETREES5  
ETREBES15 ETREBES14 ETREBES13 ETREBES12 ETREBES11 ETREBES10 ETREBES9 ETREBES8  
ETREBES7 ETREBES6 ETREBES5 ETREBES4 ETREBES3 ETREBES2 ETREBES1 ETREBES0  
ETRESES15 ETRESES14 ETRESES13 ETRESES12 ETRESES11 ETRESES10 ETRESES9 ETRESES8  
ETRESES7  
ETREUS15  
ETREUS7  
ETRESES6  
ETREUS14  
ETREUS6  
ETRESES5  
ETREUS13  
ETREUS5  
ETRESES4  
ETREUS12  
ETREUS4  
ETRESES3  
ETREUS11  
ETREUS3  
ETRESES2 ETRESES1 ETRESES0  
ETREUS10  
ETREUS2  
ETREUS9  
ETREUS1  
ETREUS8  
ETREUS0  
* Unbracketed contents are valid for DS1 modes. Bracketed contents, [], are valid for CEPT mode.  
Lucent Technologies Inc.  
199  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Maps (continued)  
Table 201. Framer Unit Status Register Map (continued)  
Framer  
Status  
Clear-On-  
Read  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(COR)  
(hexadecimal)  
Framer Framer  
1
2
FRM_SR36  
FRM_SR37  
FRM_SR38  
FRM_SR39  
FRM_SR40  
FRM_SR41  
FRM_SR42  
FRM_SR43  
FRM_SR44  
FRM_SR45  
FRM_SR46  
FRM_SR47  
FRM_SR48  
FRM_SR49  
FRM_SR50  
FRM_SR51  
FRM_SR52  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
NTES15  
NTES7  
NTES14  
NTES6  
NTES13  
NTES5  
NTES12  
NTES4  
NTES11  
NTES3  
NTES10  
NTES2  
NTES9  
NTES1  
NTES8  
NTES0  
624  
625  
626  
627  
628  
629  
62A  
62B  
62C  
62D  
62E  
62F  
630  
631  
632  
633  
C24  
C25  
C26  
C27  
C28  
C29  
C2A  
C2B  
C2C  
C2D  
C2E  
C2F  
C30  
C31  
C32  
C33  
NTBES15  
NTBES7  
NTSES15  
NTSES7  
NTUS15  
NTUS7  
NTBES14  
NTBES6  
NTSES14  
NTSES6  
NTUS14  
NTUS6  
NTBES13  
NTBES5  
NTSES13  
NTSES5  
NTUS13  
NTUS5  
NTBES12  
NTBES4  
NTSES12  
NTSES4  
NTUS12  
NTUS4  
NTBES11  
NTBES3  
NTSES11  
NTSES3  
NTUS11  
NTUS3  
NTBES10  
NTBES2  
NTSES10  
NTSES2  
NTUS10  
NTUS2  
NTBES9  
NTBES1  
NTSES9  
NTSES1  
NTUS9  
NTBES8  
NTBES0  
NTSES8  
NTSES0  
NTUS8  
NTUS1  
NTUS0  
NTREES15  
NTREES7  
NTREES14  
NTREES6  
NTREES13  
NTREES5  
NTREES12  
NTREES4  
NTREES11  
NTREES3  
NTREES10  
NTREES2  
NTREES9  
NTREES1  
NTREES8  
NTREES0  
NTREBES15 NTREBES14 NTREBES13 NTREBES12 NTREBES11 NTREBES10 NTREBES9 NTREBES8  
NTREBES7 NTREBES6 NTREBES5 NTREBES4 NTREBES3 NTREBES2 NTREBES1 NTREBES0  
NTRESES15 NTRESES14 NTRESES13 NTRESES12 NTRESES11 NTRESES10 NTRESES9 NTRESES8  
NTRESES7  
NTREUS15  
NTREUS7  
NTRESES6  
NTREUS14  
NTREUS6  
NTRESES5  
NTREUS13  
NTREUS5  
A bit  
NTRESES4  
NTREUS12  
NTREUS4  
Sa4  
NTRESES3  
NTREUS11  
NTREUS3  
Sa5  
NTRESES2 NTRESES1 NTRESES0  
NTREUS10  
NTREUS2  
Sa6  
NTREUS9  
NTREUS1  
Sa7  
NTREUS8  
NTREUS0  
Sa8  
NFB1  
[FI5E]  
FBI  
[FI3E]  
634  
635  
636  
C34  
C35  
C36  
FRM_SR53  
COR  
COR  
0
0
0
0
0
RX2  
RX1  
RX0  
*
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
FRM_SR59  
FRM_SR60  
FRM_SR61  
FRM_SR62  
FRM_SR63  
0
0
R-0  
[Sa4-5]  
R-0  
[Sa4-7]  
R-0  
[Sa4-9]  
R-1  
[Sa4-11]  
R-1  
[Sa4-13]  
R-1  
[Sa4-15]  
[Sa4-1]  
[Sa4-3]  
*
*
*
*
*
*
*
*
*
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
0
0
R-0  
[Sa4-21]  
R-0  
[Sa4-23]  
R-0  
[Sa4-25]  
R-1  
[Sa4-27]  
R-1  
[Sa4-29]  
R-1  
[Sa4-31]  
637  
638  
639  
63A  
63B  
63C  
63D  
63E  
63F  
C37  
C38  
C39  
C3A  
C3B  
C3C  
C3D  
C3E  
C3F  
[Sa4-17]  
[Sa4-19]  
RC1  
[Sa5-1]  
RC2  
[Sa5-3]  
RC3  
[Sa5-5]  
RC4  
[Sa5-7]  
RC5  
[Sa5-9]  
RC6  
[Sa5-11]  
RC7  
[Sa5-13]  
RC8  
[Sa5-15]  
RC9  
[Sa5-17]  
RC10  
[Sa5-19]  
RC11  
[Sa5-21]  
RSPB1 = 0  
[Sa5-23]  
RSPB2 = 1  
[Sa5-25]  
RSPB3 = 0  
[Sa5-27]  
RM1  
[Sa5-29]  
RM2  
[Sa5-31]  
RM3  
[Sa6-1]  
RA1  
[Sa6-3]  
RA2  
[Sa6-5]  
RS1  
[Sa6-7]  
RS2  
[Sa6-9]  
RS3  
[Sa6-11]  
RS4  
[Sa613]  
RSPB4 = 1  
[Sa6-15]  
0
0
0
0
0
0
0
0
[Sa6-17]  
[Sa6-19]  
[Sa6-21]  
[Sa6-23]  
[Sa6-25]  
[Sa6-27]  
[Sa6-29]  
[Sa6-31]  
0
0
0
0
0
0
0
0
[Sa7-1]  
[Sa7-3]  
[Sa7-5]  
[Sa7-7]  
[Sa7-9]  
[Sa7-11]  
[Sa7-13]  
[Sa7-15]  
0
0
0
0
0
0
0
0
[Sa7-17]  
[Sa7-19]  
[Sa7-21]  
[Sa7-23]  
[Sa7-25]  
[Sa7-27]  
[Sa7-29]  
[Sa7-31]  
G3  
[Sa8-1]  
LV  
[Sa8-3]  
G4  
[Sa8-5]  
U1  
[Sa8-7]  
U2  
[Sa8-9]  
G5  
[Sa8-11]  
SL  
[Sa8-13]  
G6  
[Sa8-15]  
FE  
[Sa8-17]  
SE  
[Sa8-19]  
LB  
[Sa8-21]  
G1  
[Sa8-23]  
R
G2  
[Sa8-27]  
Nm  
[Sa8-29]  
Nl  
[Sa8-25]  
[Sa8-31]  
* Unbracketed contents are valid for DS1 modes. Bracketed contents, [], are valid for CEPT mode.  
200  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Maps (continued)  
Receive Framer Signaling Registers (Read-Only)  
Table 202. Receive Signaling Registers Map  
Receive  
Signaling  
Read (R)  
Bit 7  
Bit 6*  
Bit 5*  
Bit 4†  
Bit 3‡  
Bit 2‡  
Bit 1§  
Bit 0  
Register  
Address  
(hexadecimal)  
Framer Framer  
1
2
FRM_RSR0**  
FRM_RSR1  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
G_0  
G_1  
F_0  
F_1  
F_2  
F_3  
F_4  
F_5  
F_6  
F_7  
F_8  
F_8  
F_10  
F_11  
F_12  
F_13  
F_14  
F_15  
F_16  
F_17  
F_18  
F_19  
F_20  
F_21  
F_22  
F_23  
X
E_0  
E_1  
D_0  
D_1  
C_0  
C_1  
B_0  
B_1  
A_0  
A_1  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
64A  
64B  
64C  
64D  
64E  
64F  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
65A  
65B  
65C  
65D  
65E  
65F  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C4A  
C4B  
C4C  
C4D  
C4E  
C4F  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C5A  
C5B  
C5C  
C5D  
C5E  
C5F  
FRM_RSR2  
G_2  
E_2  
D_2  
C_2  
B_2  
A_2  
FRM_RSR3  
G_3  
E_3  
D_3  
C_3  
B_3  
A_3  
FRM_RSR4  
G_4  
E_4  
D_4  
C_4  
B_4  
A_4  
FRM_RSR5  
G_5  
E_5  
D_5  
C_5  
B_5  
A_5  
FRM_RSR6  
G_6  
E_6  
D_6  
C_6  
B_6  
A_6  
FRM_RSR7  
G_7  
E_7  
D_7  
C_7  
B_7  
A_7  
FRM_RSR8  
G_8  
E_8  
D_8  
C_8  
B_8  
A_8  
FRM_RSR9  
G_9  
E_8  
D_8  
C_8  
B_8  
A_8  
FRM_RSR10  
FRM_RSR11  
FRM_RSR12  
FRM_RSR13  
FRM_RSR14  
FRM_RSR15  
FRM_RSR16††  
FRM_RSR17  
FRM_RSR18  
FRM_RSR19  
FRM_RSR20  
FRM_RSR21  
FRM_RSR22  
FRM_RSR23  
FRM_RSR24‡  
FRM_RSR25‡  
FRM_RSR26‡  
FRM_RSR27‡  
FRM_RSR28‡  
FRM_RSR29‡  
FRM_RSR30‡  
FRM_RSR31‡  
G_10  
G_11  
G_12  
G_13  
G_14  
G_15  
G_16  
G_17  
G_18  
G_19  
G_20  
G_21  
G_22  
G_23  
E_10  
E_11  
E_12  
E_13  
E_14  
E_15  
E_16  
E_17  
E_18  
E_19  
E_20  
E_21  
E_22  
E_23  
E_24  
E_25  
E_26  
E_27  
E_28  
E_29  
E_30  
E_31  
D_10  
D_11  
D_12  
D_13  
D_14  
D_15  
D_16  
D_17  
D_18  
D_19  
D_20  
D_21  
D_22  
D_23  
D_24  
D_25  
D_26  
D_27  
D_28  
D_29  
D_30  
D_31  
C_10  
C_11  
C_12  
C_13  
C_14  
C_15  
C_16  
C_17  
C_18  
C_19  
C_20  
C_21  
C_22  
C_23  
C_24  
C_25  
C_26  
C_27  
C_28  
C_29  
C_30  
C_31  
B_10  
B_11  
B_12  
B_13  
B_14  
B_15  
B_16  
B_17  
B_18  
B_19  
B_20  
B_21  
B_22  
B_23  
B_24  
B_25  
B_26  
B_27  
B_28  
B_29  
B_30  
B_31  
A_10  
A_11  
A_12  
A_13  
A_14  
A_15  
A_16  
A_17  
A_18  
A_19  
A_20  
A_21  
A_22  
A_23  
A_24  
A_25  
A_26  
A_27  
A_28  
A_29  
A_30  
A_31  
††  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*
In the DS1 robbed-bit signaling modes, these bits are copied from the corresponding transmit signaling registers. In the CEPT signaling  
modes, these bits are in the 0 state and should be ignored.  
§
In the DS1 signaling modes, these registers contain unknown data.  
In DS1 4-state and 2-state signaling, these bits contain unknown data.  
In DS1 2-state signaling, these bits contain unknown data.  
** In the CEPT signaling modes, the A-, B-, C-, D-, and P-bit information of these registers contains unknown data.  
†† Signifies unknown data.  
Lucent Technologies Inc.  
201  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Maps (continued)  
Framer Unit Parameter Register Map  
Table 203. Framer Unit Parameter Register Map  
Framer  
Control  
Read (R)  
Write (W)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(hexadecimal)  
Framer Framer  
1
2
FRM_PR0  
FRM_PR1  
FRM_PR2  
FRM_PR3  
FRM_PR4  
FRM_PR5  
FRM_PR6  
FRM_PR7  
FRM_PR8  
FRM_PR9  
FRM_PR10  
FRM_PR11  
FRM_PR12  
FRM_PR13  
FRM_PR14  
FRM_PR15  
FRM_PR16  
FRM_PR17  
FRM_PR18  
FRM_PR19  
FRM_PR20  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SLCIE  
(0)  
Reserved  
(0)  
RSRIE  
(0)  
TSRIE  
(0)  
SR567IE  
(0)  
SR34IE  
(0)  
SR2IE  
(0)  
SR1IE  
(0)  
660  
C60  
SR1B7IE  
(0)  
SR1B6IE  
(0)  
SR1B5IE  
(0)  
SR1B4IE  
(0)  
SR1B3IE  
(0)  
SR1B2IE  
(0)  
SR1B1IE  
(0)  
SR1B0IE  
(0)  
661  
662  
663  
664  
665  
666  
667  
668  
669  
66A  
66B  
66C  
66D  
66E  
66F  
670  
671  
672  
673  
674  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C6A  
C6B  
C6C  
C6D  
C6E  
C6F  
C70  
C71  
C72  
C73  
C74  
SR2B7IE  
(0)  
SR2B6IE  
(0)  
SR2B5IE  
(0)  
SR2B4IE  
(0)  
SR2B3IE  
(0)  
SR2B2IE  
(0)  
SR2B1IE  
(0)  
SR2B0IE  
(0)  
SR3B7IE  
(0)  
SR3B6IE  
(0)  
SR3B5IE  
(0)  
SR3B4IE  
(0)  
SR3B3IE  
(0)  
SR3B2IE  
(0)  
SR3B1IE  
(0)  
SR3B0IE  
(0)  
SR4B7IE  
(0)  
SR4B6IE  
(0)  
SR4B5IE  
(0)  
SR4B4IE  
(0)  
SR4B3IE  
(0)  
SR4B2IE  
(0)  
SR4B1IE  
(0)  
SR4B0IE  
(0)  
SR5B7IE  
(0)  
SR5B6IE  
(0)  
SR5B5IE  
(0)  
SR5B4IE  
(0)  
SR5B3IE  
(0)  
SR5B2IE  
(0)  
SR5B1IE  
(0)  
SR5B0IE  
(0)  
SR6B7IE  
(0)  
SR6B6IE  
(0)  
SR6B5IE  
(0)  
SR6B4IE  
(0)  
SR6B3IE  
(0)  
SR6B2IE  
(0)  
SR6B1IE  
(0)  
SR6B0IE  
(0)  
SR7B7IE  
(0)  
SR7B6IE  
(0)  
SR7B5IE  
(0)  
SR7B4IE  
(0)  
SR7B3IE  
(0)  
SR7B2IE  
(0)  
SR7B1IE  
(0)  
SR7B0IE  
(0)  
LC2  
(1)  
LC1  
(1)  
LC0  
(0)  
FMODE4  
(0)  
FMODE3  
(0)  
FMODE2  
(0)  
FMODE1  
(0)  
FMODE0  
(0)  
CRCO7  
(0)  
CRCO6  
(0)  
CRCO5  
(0)  
CRCO4  
(0)  
CRCO3  
(0)  
CRCO2  
(0)  
CRCO1  
(0)  
CRCO0  
(0)  
ESM1  
(0)  
ESM0  
(0)  
Reserved  
(0)  
Reserved CNUCLBEN  
FEREN  
(0)  
AISM  
(0)  
SSa6M  
(0)  
(0)  
(0)  
EST7  
(0)  
EST6  
(0)  
EST5  
(0)  
EST4  
(0)  
EST3  
(0)  
EST2  
(0)  
EST1  
(0)  
EST0  
(0)  
SEST15  
(0)  
SEST14  
(0)  
SEST13  
(0)  
SEST12  
(0)  
SEST11  
(0)  
SEST10  
(0)  
SEST9  
(0)  
SEST8  
(0)  
SEST7  
(0)  
SEST6  
(0)  
SEST5  
(0)  
SEST4  
(0)  
SEST3  
(0)  
SEST2  
(0)  
SEST1  
(0)  
SEST0  
(0)  
0
0
0
0
ETSLIP  
(0)  
ETAIS  
(0)  
ETLMFA  
(0)  
ETLFA  
(0)  
ETRESa6-F ETRESa6-E  
ETRESa6-8  
(0)  
ETRERFA  
(0)  
ETRESLIP  
(0)  
ETREAIS  
(0)  
ETRELMFA  
(0)  
ETRELFA  
(0)  
(0)  
(0)  
NTSa6-C  
(0)  
0
NTSa6-8  
(0)  
0
NTSLIP  
(0)  
NTAIS  
(0)  
NTLMFA  
(0)  
NTLFA  
(0)  
0
0
0
0
NTRERFA  
(0)  
NTRESLIP  
(0)  
NTREAIS  
(0)  
NTRELMFA  
(0)  
NTRELFA  
(0)  
0
0
0
NTRESa6-C NTRESa6-F NTRESa6-E NTRESa6-8  
(0)  
(0)  
(0)  
(0)  
AFDPLBE  
(0)  
AFDLLBE  
(0)  
Reserved  
(0)  
ALLBE  
(0)  
TSAIS  
(0)  
Reserved  
(0)  
ASAISTMX  
(0)  
ASAIS  
(0)  
TICRC  
(0)  
TLIC  
(0)  
TLLBOFF  
(0)  
TLLBON  
(0)  
TQRS  
(0)  
TPRS  
(0)  
TUFAUXP  
(0)  
TUFAIS  
(0)  
202  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Maps (continued)  
Table 203. Framer Unit Parameter Register Map (continued)  
Framer  
Control  
Read (R)  
Write (W)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(hexadecimal)  
Framer Framer  
1
2
FRM_PR21  
FRM_PR22  
FRM_PR23  
FRM_PR24  
FRM_PR25  
FRM_PR26  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TC/R = 1  
(0)  
TFDLC  
(0)  
TFDLSAIS  
(0)  
TFDLLAIS  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
675  
C75  
TLIC7  
(0)  
TLIC6  
(1)  
TLIC5  
(1)  
TLIC4  
(1)  
TLIC3  
(1)  
TLIC2  
(1)  
TLIC1  
(1)  
TLIC0  
(1)  
676  
677  
678  
679  
67A  
C76  
C77  
C78  
C79  
C7A  
SSTSC7  
(0)  
SSTSC6  
(1)  
SSTSC5  
(1)  
SSTSC4  
(1)  
SSTSC3  
(1)  
SSTSC2  
(1)  
SSTSC1  
(1)  
SSTSC0  
(1)  
LBC2  
(0)  
LBC1  
(0)  
LBC0  
(0)  
TSLBA4  
(0)  
TSLBA3  
(0)  
TSLBA2  
(0)  
TSLBA1  
(0)  
TSLBA0  
(0)  
Reserved  
(0)  
SLBC1  
(0)  
SLBC0  
(0)  
STSLBA4  
(0)  
STSLBA3  
(0)  
STSLBA2  
(0)  
STSLBA1  
(0)  
STSLBA0  
(0)  
Reserved  
(0)  
Reserved  
(0)  
SYSFSM  
(0)  
TFM2  
(0)  
TFM1  
(0)  
FRFRM  
(0)  
SWRE-  
START  
(0)  
SWRESET  
(0)  
FRM_PR27  
FRM_PR28  
FRM_PR29  
FRM_PR30  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TRFA  
(0)  
TJRFA  
(0)  
AARSa6_C  
(0)  
AARSa6_8  
(0)  
ATMX  
(0)  
AAB0LMFA AAB16LMFA  
ARLFA  
(0)  
67B  
67C  
67D  
67E  
67F  
680  
681  
682  
683  
C7B  
C7C  
C7D  
C7E  
C7F  
C80  
C81  
C82  
C83  
(0)  
(0)  
0
0
ATERTX  
(0)  
ATELTS0MFA ATECRCE  
TSiNF  
(0)  
TSiF  
(0)  
SIS, T1E  
(0)  
(0)  
(0)  
SaS7  
(0)  
SaS6  
(0)  
SaS5  
(0)  
TSa8  
(0)  
TSa7  
(0)  
TSa6  
(0)  
TSa5  
(0)  
TSa4  
(0)  
TDNF  
(0)  
Reserved  
(0)  
Reserved  
(0)  
TESa8  
(0)  
TESa7  
(0)  
TESa6  
(0)  
TESa5  
(0)  
TESa4  
(0)  
0
0
X-0  
Sa4-5  
X-0  
Sa4-7  
X-0  
Sa4-9  
X-1  
X-1  
X-1  
Sa4-15  
Sa4-1  
Sa4-3  
Sa4-11  
Sa4-13  
0
0
X-0  
Sa4-21  
X-0  
Sa4-23  
X-0  
Sa4-25  
X-1  
X-1  
X-1  
Sa4-31  
Sa4-17  
Sa4-19  
Sa4-27  
Sa4-29  
XC1  
Sa5-1  
XC2  
Sa5-3  
XC3  
Sa5-5  
XC4  
Sa5-7  
XC5  
Sa5-9  
XC6  
XC7  
XC8  
Sa5-15  
Sa5-11  
Sa5-13  
XC9  
Sa5-17  
XC10  
Sa5-19  
XC11  
Sa5-21  
XSPB1 = 0  
Sa5-23  
XSPB2 = 1 XSPB3 = 0  
Sa5-25  
XM1  
XM2  
Sa5-31  
Sa5-27  
Sa5-29  
XM3  
Sa6-1  
XA1  
Sa6-3  
XA2  
Sa6-5  
XS1  
Sa6-7  
XS2  
Sa6-9  
XS3  
XS4  
XSPB4 = 1  
Sa6-15  
Sa6-11  
Sa613  
FRM_PR36  
FRM_PR37  
FRM_PR38  
FRM_PR39  
FRM_PR40  
FRM_PR41  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
684  
685  
686  
687  
688  
689  
C84  
C85  
C86  
C87  
C88  
C89  
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
Reserved TLTS16AIS TLTS16RMFA ALTTS16RMFA  
(0) (0) (0) (0)  
XS  
(0)  
TTS16X2  
(0)  
TTS16X1  
(0)  
TTS16X0  
(0)  
Lucent Technologies Inc.  
203  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Maps (continued)  
Table 203. Framer Unit Parameter Register Map (continued)  
Framer  
Control  
Read (R)  
Write (W)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(hexadecimal)  
Framer Framer  
1
2
FRM_PR42  
FRM_PR43  
R/W  
R/W  
FEX7  
(0)  
FEX6  
(0)  
FEX5  
(0)  
FEX4  
(0)  
FEX3  
(0)  
FEX2  
(0)  
FEX1  
(0)  
FEX0  
(0)  
68A  
C8A  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
SSC  
(0)  
STS2  
[SaFDL2]  
(0)  
STS1  
[SaFDL1]  
(0)  
STS0  
[SaFDL0]  
(1)  
68B  
C8B  
FRM_PR44  
FRM_PR45  
FRM_PR46  
FRM_PR47  
FRM_PR48  
FRM_PR49  
FRM_PR50  
FRM_PR51  
FRM_PR52  
FRM_PR53  
FRM_PR54  
FRM_PR55  
FRM_PR56  
FRM_PR57  
FRM_PR58  
FRM_PR59  
FRM_PR60  
FRM_PR61  
FRM_PR62  
FRM_PR63  
FRM_PR64  
FRM_PR65  
FRM_PR66  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TCSS  
(0)  
ASTSAIS  
(0)  
TSR-ASM  
(0)  
MOS  
(0)  
RSI  
(0)  
ASM  
(0)  
STOMP  
(0)  
TSIG  
(0)  
68C  
68D  
68E  
68F  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
69A  
69B  
69C  
69D  
69E  
69F  
6A0  
6A1  
6A2  
C8C  
C8D  
C8E  
C8F  
C90  
C91  
C92  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
C9A  
C9B  
C9C  
C9D  
C9E  
C9F  
CA0  
CA1  
CA2  
HWYEN  
(0)  
Reserved  
(0)  
Reserved  
(0)  
CHIMM  
(0)  
CDRS1  
(0)  
CDRS0  
(0)  
CMS  
(0)  
HFLF  
(0)  
RFE  
(0)  
ROFF2  
(0)  
ROFF1  
(0)  
ROFF0  
(0)  
TFE  
(0)  
TOFF2  
(0)  
TOFF1  
(0)  
TOFF0  
(0)  
Reserved  
(0)  
TCE  
(0)  
TBYOFF5  
(0)  
TBYOFF4  
(0)  
TBYOFF3  
(0)  
TBYOFF2  
(0)  
TBYOFF1  
(0)  
TBYOFF0  
(0)  
Reserved  
(0)  
RCE  
(0)  
RBYOFF5  
(0)  
RBYOFF4  
(0)  
RBYOFF3  
(0)  
RBYOFF2  
(0)  
RBYOFF1  
(0)  
RBYOFF0  
(0)  
TTSE31  
(0)  
TTSE30  
(0)  
TTSE29  
(0)  
TTSE28  
(0)  
TTSE27  
(0)  
TTSE26  
(0)  
TTSE25  
(0)  
TTSE24  
(0)  
TTSE23  
(0)  
TTSE22  
(0)  
TTSE21  
(0)  
TTSE20  
(0)  
TTSE19  
(0)  
TTSE18  
(0)  
TTSE17  
(0)  
TTSE16  
(0)  
TTSE15  
(0)  
TTSE14  
(0)  
TTSE13  
(0)  
TTSE12  
(0)  
TTSE11  
(0)  
TTSE10  
(0)  
TTSE9  
(0)  
TTSE8  
(0)  
TTSE7  
(0)  
TTSE6  
(0)  
TTSE5  
(0)  
TTSE4  
(0)  
TTSE3  
(0)  
TTSE2  
(0)  
TTSE1  
(0)  
TTSE0  
(0)  
RTSE31  
(0)  
RTSE30  
(0)  
RTSE29  
(0)  
RTSE28  
(0)  
RTSE27  
(0)  
RTSE26  
(0)  
RTSE25  
(0)  
RTSE24  
(0)  
RTSE23  
(0)  
RTSE22  
(0)  
RTSE21  
(0)  
RTSE20  
(0)  
RTSE19  
(0)  
RTSE18  
(0)  
RTSE17  
(0)  
RTSE16  
(0)  
RTSE15  
(0)  
RTSE14  
(0)  
RTSE13  
(0)  
RTSE12  
(0)  
RTSE11  
(0)  
RTSE10  
(0)  
RTSE9  
(0)  
RTSE8  
(0)  
RTSE7  
(0)  
RTSE6  
(0)  
RTSE5  
(0)  
RTSE4  
(0)  
RTSE3  
(0)  
RTSE2  
(0)  
RTSE1  
(0)  
RTSE0  
(0)  
THS31  
(0)  
THS30  
(0)  
THS29  
(0)  
THS28  
(0)  
THS27  
(0)  
THS26  
(0)  
THS25  
(0)  
THS24  
(0)  
THS23  
(0)  
THS22  
(0)  
THS21  
(0)  
THS20  
(0)  
THS19  
(0)  
THS18  
(0)  
THS17  
(0)  
THS16  
(0)  
THS15  
(0)  
THS14  
(0)  
THS13  
(0)  
THS12  
(0)  
THS11  
(0)  
THS10  
(0)  
THS9  
(0)  
THS8  
(0)  
THS7  
(0)  
THS6  
(0)  
THS5  
(0)  
THS4  
(0)  
THS3  
(0)  
THS2  
(0)  
THS1  
(0)  
THS0  
(0)  
RHS31  
(0)  
RHS30  
(0)  
RHS29  
(0)  
RHS28  
(0)  
RHS27  
(0)  
RHS26  
(0)  
RHS25  
(0)  
RHS24  
(0)  
RHS23  
(0)  
RHS22  
(0)  
RHS21  
(0)  
RHS20  
(0)  
RHS19  
(0)  
RHS18  
(0)  
RHS17  
(0)  
RHS16  
(0)  
RHS15  
(0)  
RHS14  
(0)  
RHS13  
(0)  
RHS12  
(0)  
RHS11  
(0)  
RHS10  
(0)  
RHS9  
(0)  
RHS8  
(0)  
RHS7  
(0)  
RHS6  
(0)  
RHS5  
(0)  
RHS4  
(0)  
RHS3  
(0)  
RHS2  
(0)  
RHS1  
(0)  
RHS0  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
TCHIDTS  
(0)  
TBYOFF6  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
RCHIDTS  
(0)  
RBYOFF6  
(0)  
FRM_PR67  
FRM_PR68  
FRM_PR69  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6A3  
6A4  
6A5  
CA3  
CA4  
CA5  
R/W  
GPTRN3  
(0)  
GPTRN2  
(0)  
GPTRN1  
(0)  
GPTRN0  
(0)  
GFRMSEL  
(0)  
GBLKSEL  
(0)  
TPEI  
(0)  
ITD  
(0)  
FRM_PR70  
R/W  
DPTRN3  
(0)  
DPTRN2  
(0)  
DPTRN1  
(0)  
DPTRN0  
(0)  
DUFTP  
(0)  
DBLKSEL  
(0)  
reserved  
(0)  
IRD  
(0)  
6A6  
CA6  
204  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Register Maps (continued)  
Transmit Signaling Registers (Read/Write)  
Table 204. Transmit Signaling Registers Map  
*
*
§
Transmit  
Signaling  
Read (R)  
Write (W)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register Address  
(hexadecimal)  
Framer Framer  
1
2
**  
FRM_TSR0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
G_0  
G_1  
G_2  
G_3  
G_4  
G_5  
G_6  
G_7  
G_8  
G_9  
F_0  
F_1  
F_2  
F_3  
F_4  
F_5  
F_6  
F_7  
F_8  
F_8  
D_0  
D_1  
C_0  
C_1  
B_0  
B_1  
B_2  
B_3  
B_4  
B_5  
B_6  
B_7  
B_8  
B_8  
A_0  
A_1  
6E0  
6E1  
6E2  
6E3  
6E4  
6E5  
6E6  
6E7  
6E8  
6E9  
6EA  
6EB  
6EC  
6ED  
6EE  
6EF  
6F0  
6F1  
6F2  
6F3  
6F4  
6F5  
6F6  
6F7  
6F8  
6F9  
6FA  
6FB  
6FC  
6FD  
6FE  
6FF  
CE0  
CE1  
CE2  
CE3  
CE4  
CE5  
CE6  
CE7  
CE8  
CE9  
CEA  
CEB  
CEC  
CED  
CEE  
CEF  
CF0  
CF1  
CF2  
CF3  
CF4  
CF5  
CF6  
CF7  
CF8  
CF9  
CFA  
CFB  
CFC  
CFD  
CFE  
CFF  
FRM_TSR1  
FRM_TSR2  
FRM_TSR3  
FRM_TSR4  
FRM_TSR5  
FRM_TSR6  
FRM_TSR7  
FRM_TSR8  
FRM_TSR9  
FRM_TSR10  
FRM_TSR11  
FRM_TSR12  
FRM_TSR13  
FRM_TSR14  
FRM_TSR15  
D_2  
C_2  
A_2  
D_3  
C_3  
A_3  
D_4  
C_4  
A_4  
D_5  
C_5  
A_5  
D_6  
C_6  
A_6  
D_7  
C_7  
A_7  
D_8  
C_8  
A_8  
D_8  
C_8  
A_8  
G_10  
G_11  
G_12  
G_13  
G_14  
G_15  
G_16  
G_17  
G_18  
G_19  
G_20  
G_21  
G_22  
G_23  
F_10  
F_11  
F_12  
F_13  
F_14  
F_15  
F_16  
F_17  
F_18  
F_19  
F_20  
F_21  
F_22  
F_23  
X
D_10  
D_11  
D_12  
D_13  
D_14  
D_15  
D_16  
D_17  
D_18  
D_19  
D_20  
D_21  
D_22  
D_23  
D_24  
D_25  
D_26  
D_27  
D_28  
D_29  
D_30  
D_31  
C_10  
C_11  
C_12  
C_13  
C_14  
C_15  
C_16  
C_17  
C_18  
C_19  
C_20  
C_21  
C_22  
C_23  
C_24  
C_25  
C_26  
C_27  
C_28  
C_29  
C_30  
C_31  
B_10  
B_11  
B_12  
B_13  
B_14  
B_15  
B_16  
B_17  
B_18  
B_19  
B_20  
B_21  
B_22  
B_23  
B_24  
B_25  
B_26  
B_27  
B_28  
B_29  
B_30  
B_31  
A_10  
A_11  
A_12  
A_13  
A_14  
A_15  
A_16  
A_17  
A_18  
A_19  
A_20  
A_21  
A_22  
A_23  
A_24  
A_25  
A_26  
A_27  
A_28  
A_29  
A_30  
A_31  
**  
FRM_TSR16  
FRM_TSR17  
FRM_TSR18  
FRM_TSR19  
FRM_TSR20  
FRM_TSR21  
FRM_TSR22  
FRM_TSR23  
††  
‡‡  
FRM_TSR24  
FRM_TSR25  
FRM_TSR26  
FRM_TSR27  
FRM_TSR28  
FRM_TSR29  
FRM_TSR30  
FRM_TSR31  
X
††  
††  
††  
††  
††  
††  
††  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
*
In the normal DS1 robbed-bit signaling modes, these bits define the corresponding receive channel signaling mode and are copied into the  
received signaling registers. In the CEPT signaling modes, these bits are ignored.  
These bits contain unknown data.  
In DS1 4-state and 2-state signaling modes, these bits contain unknown data.  
In DS1 2-state signaling mode, these bits contain unknown data.  
§
** In the CEPT signaling modes, the A-, B-, C-, D-, and P-bit information of these registers contains unknown data.  
†† In the DS1 signaling modes, these registers contain unknown data.  
‡‡ Signifies known data.  
Lucent Technologies Inc.  
205  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Register Maps (continued)  
Facility Data Link Parameter/Control and Status Registers (Read-Write)  
Table 205. Facility Data Link Register Map  
Transmit  
Signaling On-Read  
(COR)  
Clear-  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Address  
(hexadecimal)  
Read (R)  
Write (W)  
Framer Framer  
1
2
FDL_PR0  
FDL_PR1  
FDL_PR2  
FDL_PR3  
FDL_PR4  
FDL_PR5  
FDL_PR6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FRANSIT3 FRANSIT2 FRANSIT1 FRANSIT0 Reserved Reserved  
FLAGS  
(0)  
FDINT  
(0)  
800  
E00  
(1)  
(0)  
(1)  
(0)  
(0)  
(0)  
FTPRM  
(0)  
FRPF  
(0)  
FTR  
(0)  
FRR  
(0)  
FTE  
(0)  
FRE  
(0)  
FLLB  
(0)  
FRLB  
(0)  
801  
802  
803  
804  
805  
806  
E01  
E02  
E03  
E04  
E05  
E06  
FTBCRC  
(0)  
FRIIE  
(0)  
FROVIE  
(0)  
FREOFIE  
(0)  
FRFIE  
(0)  
FTUNDIE  
(0)  
FTEIE  
(0)  
FTDIE  
(0)  
FTFC  
(0)  
FTABT  
(0)  
FTIL5  
(0)  
FTIL4  
(0)  
FTIL3  
(0)  
FTIL2  
(0)  
FTIL1  
(0)  
FTIL0  
(0)  
FTD7  
(0)  
FTD6  
(0)  
FTD5  
(0)  
FTD4  
(0)  
FTD3  
(0)  
FTD2  
(0)  
FTD1  
(0)  
FTD0  
(0)  
FTIC7  
(0)  
FTIC6  
(0)  
FTIC5  
(0)  
FTIC4  
(0)  
FTIC3  
(0)  
FTIC2  
(0)  
FTIC1  
(0)  
FTIC0  
(0)  
FRANSIE Reserved  
(0) (0)  
FRIL5  
(0)  
FRIL4  
(0)  
FRIL3  
(0)  
FRIL2  
(0)  
FRIL1  
(0)  
FRIL0  
(0)  
FDL_PR7 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved  
FDL_PR8  
R/W  
FRMC7  
(0)  
FRMC6  
(0)  
FRMC5  
(0)  
FRMC4  
(0)  
FRMC3  
(0)  
FRMC2  
(0)  
FRMC1  
(0)  
FRMC0  
(0)  
808  
E08  
FDL_PR9  
R/W  
Reserved  
(0)  
FTM  
(0)  
FMATCH  
(0)  
FALOCT  
(0)  
FMSTAT FOCTOF2 FOCTOF FOCTOF0  
809  
E09  
(0)  
(0)  
1
(0)  
(0)  
FDL_PR10  
FDL_SR0  
R/W  
FTANSI  
(0)  
Reserved  
(0)  
FTANSI5  
(0)  
FTANSI4 FTANSI3 FTANSI2 FTANSI1 FTANSI0  
80A  
80B  
E0A  
E0B  
(0)  
(0)  
(0)  
(0)  
(0)  
COR  
FRANSI  
FRIDL  
FROVERU  
N
FREOF  
FRF  
FTUNDA  
BT  
FTEM  
FTDONE  
FDL_SR1  
FDL_SR2  
FDL_SR3  
FDL_SR4  
R
R
R
R
FTED  
FREOF  
0
FTQS6  
FRQS6  
0
FTQS5  
FRQS5  
X5  
FTQS4  
FRQS4  
X4  
FTQS3  
FRQS3  
X3  
FTQS2  
FRQS2  
X2  
FTQS1  
FRQS1  
X1  
FTQS0  
FRQS0  
X0  
80C  
80D  
80E  
807  
E0C  
E0D  
E0E  
E07  
FRD7  
(0)  
FRD6  
(0)  
FRD5  
(0)  
FRD4  
(0)  
FRD3  
(0)  
FRD2  
(0)  
FRD1  
(0)  
FRD0  
(0)  
206  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
VDD Supply Voltage Range  
Symbol  
Min  
Max  
Unit  
VDD  
–0.5  
7
V
V
V
V
Maximum Voltage (digital pins) with Respect to VDD  
Minimum Voltage (digital pins) with Respect to GRND  
0.3  
–0.3  
Maximum Allowable Voltages (RTIP, RRING) with  
Respect to VDD  
0.5  
Minimum Allowable Voltages (RTIP, RRING) with  
Respect to GRND  
–0.5  
–65  
V
Storage Temperature Range  
Tstg  
125  
°C  
Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply  
VDD  
PD  
4.75  
5.0  
500  
5.25  
750  
85  
V
Power Dissipation  
mW  
°C  
Ambient Temperature  
TA  
–40  
Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-  
sure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM)  
and charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage  
thresholds are dependent on the circuit parameters used in the defined model. No industry wide standard has been  
adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used and,  
therefore, can be used for comparison purposes. The HBM ESD threshold presented here was obtained by using  
these circuit parameters.  
Table 206. ESD Threshold Voltage  
Device  
Voltage  
T7630  
>1000 V  
Lucent Technologies Inc.  
207  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Electrical Characteristics  
Logic Interface Characteristics  
Table 207. Logic Interface Characteristics (TA = –40 °C to +85 °C, VDD = 5.0 V ± 5%, VSS = 0)  
Parameter  
Input Voltage:  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Low  
High  
VIL  
VIH  
IIL = –70 µA*  
IIH = 10 µA†  
0
2.1  
0.8  
VDD  
V
V
Input Leakage  
IL  
10  
µA  
Output Voltage:  
Low  
High  
VOL  
VOH  
IOL = –5.0 mA*  
IOH = 5.0 mA†  
0
0.4  
VDD  
V
V
VDD – 0.5  
Input Capacitance  
Load Capacitance‡  
CI  
3.0  
50  
pF  
pF  
CL  
* Sinking.  
† Sourcing.  
‡ 100 pF allowed for AD[7:0] (pins 86 to 79) and A[11:0] (pins 98 to 87).  
Notes:  
All buffers use TTL levels.  
All inputs are driven between 2.4 V and 0.4 V.  
An internal 50 kpull-up is provided on the 3-STATE, RESET, DS1/CEPT, FRAMER, SYSCLK, CKSEL, MPMODE, MPMUX, CS, MPCLK,  
JTAGTDI, JTAGTCK, and JTAGTMS pins.  
An internal 50 kpull-down is provided on the JTAGRST pin.  
Power Supply Bypassing  
External bypassing is required for each channel. A 1.0 µF capacitor must be connected between VDDX and  
GRNDX. In addition, a 0.1 µF capacitor must be connected between VDD and GRND, and a 0.1 µF capacitor must  
be connected between VDDA and GRNDA. Ground plane connections are required for GRNDX, GRND, and  
GRNDA. Power plane connections are also required for VDDX and VDD. The need to reduce high-frequency cou-  
pling into the analog supply (VDDA) may require an inductive bead to be inserted between the power plane and the  
VDDA pin of each channel.  
Capacitors used for power supply bypassing should be placed as close as possible to the device pins for maximum  
effectiveness.  
208  
Lucent Technologies Inc.  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator-II)  
Outline Diagram  
144-Pin TQFP  
Dimensions are in millimeters.  
22.00 ± 0.20  
20.00 ± 0.20  
PIN #1 IDENTIFIER ZONE  
144  
109  
1
108  
20.00  
± 0.20  
22.00  
± 0.20  
36  
73  
37  
72  
DETAIL A  
DETAIL B  
1.40 ± 0.05  
1.60 MAX  
SEATING PLANE  
0.08  
0.05/0.15  
0.50 TYP  
1.00 REF  
0.25  
0.106/0.200  
GAGE PLANE  
0.19/0.27  
SEATING PLANE  
0.45/0.75  
0.08  
M
DETAIL B  
DETAIL A  
5-3815(F)r.6  
Lucent Technologies Inc.  
209  
Preliminary Data Sheet  
October 2000  
T7630 Dual T1/E1 5.0 V Short-Haul Terminator (Terminator II)  
Ordering Information  
Device Code  
Package  
Temperature  
Comcode  
(Ordering Number)  
T - 7630 - - - TL - DB  
144-Pin TQFP  
–40 °C to +85 °C  
107913337  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro, or for FPGA information, http://www.lucent.com/orca  
docmaster@micro.lucent.com  
N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai  
200233 P. R. China Tel. (86) 21 6440 0468, ext. 325, FAX (86) 21 6440 0652  
JAPAN:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information. SLC is a registered trademark of Lucent Technologies.  
Copyright © 2000 Lucent Technologies Inc.  
All Rights Reserved  
October 2000  
DS00-191TIC (Replaces DS98-234TIC)  

相关型号:

T7633

Dual T1/E1 3.3 V Short-Haul Terminator
AGERE

T76651B

766.5 MHz SAW Filter
ITF

T77-G37-10.0MHZ

Clipped Sine Output Oscillator, 10MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-12.0MHZ

Clipped Sine Output Oscillator,
EUROQUARTZ

T77-G37-20.0MHZ

Clipped Sine Output Oscillator, 20MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-50.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 50MHz Nom,
EUROQUARTZ

T77-G37-50.0MHZ

Clipped Sine Output Oscillator, 50MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-FREQ

Clipped Sine Output Oscillator, 10MHz Min, 50MHz Max, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-10.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 10MHz Nom,
EUROQUARTZ

T77-N57-10.0MHZ

Clipped Sine Output Oscillator, 10MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-20.0MHZ

Clipped Sine Output Oscillator, 20MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-50.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 50MHz Nom,
EUROQUARTZ