TDAT04622 [AGERE]

TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces; TDAT SONET / SDH 155/622/2488 Mb / s的数据接口
TDAT04622
型号: TDAT04622
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

TDAT SONET/SDH 155/622/2488 Mbits/s Data Interfaces
TDAT SONET / SDH 155/622/2488 Mb / s的数据接口

文件: 总310页 (文件大小:4317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Addendum  
May 2001  
TDAT SONET/SDH  
155/622/2488 Mbits/s Data Interfaces  
Introduction  
The TDAT data interface is available in three different configurations as summarized in Table 1.  
TDAT04622  
The TDAT04622 device contains a subset of the TDAT042G5 device. The TDAT04622 device functions as  
described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet  
(DS98-193SONT-4) with the following limitations:  
Quad OC-3 operation only or single OC-12 operation only.  
Single UTOPIA port.  
TDAT021G2  
The TDAT021G2 device contains a subset of the TDAT042G5 device. The TDAT021G2 device functions as  
described in the TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Data Sheet  
(DS98-193SONT-4) with the following limitations:  
Quad OC-3 operation only or dual OC-12 operation only.  
Two UTOPIA ports.  
TDAT042G5  
The TDAT042G5 device contains all functionality as described in the TDAT042G5 SONET/SDH 155/622/2488  
Mbits/s Data Interface Data Sheet (DS98-193SONT-4).  
Table 1. TDAT Device Product Line  
Device  
Line Ports  
OC-12  
UTOPIA Ports  
OC-3  
OC-48  
Ports Present  
Modes  
TDAT04622  
4
1
(A)  
NA  
1
(A)  
U2, U2+, U3, U3+  
8-bit  
(A, B, C, D)  
16-bit  
TDAT021G2  
TDAT042G5  
4
2
NA  
2
U2, U2+, U3, U3+  
8-bit  
16-bit  
(A, B, C, D)  
(A, B)  
(A, B)  
32-bit  
4
4
1
4
U2, U2+, U3, U3+  
8-bit  
16-bit  
(A, B, C, D)  
(A, B, C, D)  
(16-bit parallel  
multiplexed/  
demultiplexed)  
(A, B, C, D)  
32-bit  
TDAT SONET/SDH  
155/622/2488 Mbits/s Data Interfaces  
Data Addendum  
May 2001  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@micro.lucent.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC  
Tel. (86) 21 50471212, FAX (86) 21 50472266  
JAPAN:  
Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Copyright © 2001 Agere Systems Inc.  
All Rights Reserved  
Printed in U.S.A.  
May 2001  
DA01-010SONT (Replaces DA00-001SONT and must accompany DS98-193SONT-4)  
Advisory  
May 2001  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
System Programming (SP)  
SP1. Required Provisioning Sequence and Clocks  
The core registers must be written prior to provisioning any other registers (1) to establish the internal clock  
rates for the device, and (2) because writing to certain core registers resets the remainder of the device. Cer-  
tain clocks must be present to read/write registers prior to provisioning the device.  
One of the following clocks must be present prior to provisioning to enable register access:  
I TxCKP and TxCKN  
I MPU clock (microprocessor interface synchronous mode only)  
Provisioning must be implemented in the following sequence:  
I Core register 0x0010 (mode) must be provisioned first  
I Core register 0x0011 (channel [A—D] control) second  
I Remainder of the core registers must then be provisioned (order does not matter)  
It is recommended, but not required, that the remainder of the device be provisioned in the following order:  
I OHP, PT, and DE blocks (order does not matter)  
I UT block to turn on the data source to the master and slave  
Workaround  
Provisioning must be implemented in the following sequence:  
I Apply either TxCKP and TxCKN or MPU clock.  
I Provision core:  
— Mode, register 0x0010  
— Channel [A—D] control, register 0x0011  
— Remainder of the core  
Corrective Action  
Not applicable. Use above procedure in provisioning the device.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
System Programming (SP)  
SP2. Behavior During Loss of Receive Line Clock  
All state and counter values will be held at their current values when Rx line clock has been lost. The device will not  
automatically multiplex in the Tx line clock when the Rx line clock is lost.  
Workaround  
System software should monitor loss of line clock bits in the receive/transmit state register (addresses 0x040A—  
0x040D) and ignore all other alarms. This condition must be serviced as a major failure event.  
Corrective Action  
This is informational only. No corrective action is required for this condition.  
SP3. PT Register Addressing  
Addresses for the PT error counter registers are as follows:  
I Channel A: 0x09B3 to 0x09E3  
I Channel B: 0x09EF to 0x0A20  
I Channel C: 0x0A2C to 0x0A5C  
I Channel D: 0x0A68 to 0x0A98  
The reserved address space between the error counter registers is not symmetric. (The reserved space  
between channels B and C is 0x003D, and the reserved space between channels A and B and channels  
C and D is 0x003C.)  
Note:  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
No corrective action is required for this condition.  
2
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Microprocessor Interface (MPU)  
MPU1. Interface to Motorola* MC68360 Processor Is Not Glueless  
The interface between the Motorola MC68360 processor and TDAT042G5 requires intervening logic because of  
the following incompatibilities in the specifications of these two devices. For a 33 MHz microprocessor clock rate,  
the Motorola MC68360 series processors can be interfaced to TDAT042G5 without intervening glue logic, if used  
without DT and if programmed for six wait-states. If a user wishes not to use the wait-states, then the chip select  
applied to TDAT042G5 must be held low until the address changes. Details are given below.  
Chip Select Timing  
The TDAT042G5 CS input signal requirements are not compatible with the Motorola MC68360 series processor  
CSx output signals. TDAT042G5 timing does not allow simultaneous deassertion of CS and ADS signals. Chip  
select applied to TDAT042G5 must be held low for at least 5 ns after the MC68360 deasserts ADS.  
Use external glue logic to decode the address to generate CS, or provide microprocessor interface  
Workaround:  
signals meeting the requirements of TDAT042G5.  
DT Timing  
If the Motorola MC68360 processor CSx signal is used to drive the TDAT042G5 CS, then TDAT042G5 DT output  
does not satisfy the MC68360 processor DSACK timing requirement. DT is not pulled to 1 before it is placed in a  
high-impedance state. This causes the next MPU cycle to be terminated early.  
Place a 1 kresistor from DT to VDDD.  
Workaround:  
Corrective Action  
Corrective action for MPU1 has not been determined.  
MPU2. Synchronous Microprocessor Interface Mode Is Nonfunctional  
The synchronous microprocessor interface mode, MPMODE = 1 (pin D8), functions as described in the advance  
data sheet, but causes data errors. Placing TDAT042G5 in the synchronous mode and placing a clock on MPCLK  
(pin C8) will cause the data passing through the device to be corrupted. Data errors are generated at a rate of 1%  
or less of corrupted packets.  
Workaround  
Use the TDAT042G5 in the asynchronous microprocessor mode, MPMODE = 0, with no clock applied to MPCLK.  
Corrective Action  
This condition will be resolved in version 1A of the device.  
Motorola  
*
is a registered trademark of Motorola, Inc.  
Agere Systems Inc.  
3
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Core Registers (CR)  
CR1. Clear on Read/Clear on Write Behavior  
Bit 6 of line provisioning register 0x0010 sets the functionality of the COR/W registers.  
Table 1. COR/W Settings of Register 0x0010, Bit 6  
Bit 6  
Mode  
Bit Clear Behavior of Accessed Registers  
1
COR After COR has been set (address 0x0010, bit 6 = 1), all registers that are accessed  
are cleared when read.  
0
COW After COW has been set (address 0x0010, bit 6 = 0), a 1 must be written to a given bit  
in a given register to clear that bit. Writing a 0 to a bit in a given register does not clear  
that bit.  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
This condition will be described in revision 4 of the advance data sheet.  
Line Interface (LI)  
LI1. STS-48/STM-16 Mode Lacks Facility Loopback  
There is no facility loopback function (line input to line output) available in STS-48/STM-16 mode. Facility loopback  
is available only in STS-12/STM-4 and STS-3/STM-1 modes as described in the advance data sheet.  
Workaround  
This function is not a feature of TDAT042G5.  
Corrective Action  
No corrective action is required for this condition.  
4
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Path Terminator (PT)  
PT1. Signal Degrade (SD) and Signal Fail (SF) Bit Behavior  
Receive signal degrade and receive signal fail bits in the PT state registers (addresses 0x0838, 0x088A, 0x08DC,  
and 0x092E, bits [1:0]) do not function as described. Until the signal degrade (SD) and signal fail (SF) thresholds  
are programmed, the SD and SF bits will toggle on a frame-by-frame basis.  
Workaround  
Program thresholds during system software initialization.  
Corrective Action  
This functionality will be retained in its current state in future versions of the device. The advance data sheet will be  
corrected to reflect the actual function of the registers.  
PT2. Clear-After-Write Behavior of Signal Degrade Clear Bits  
Signal degrade clear (bits 15—12) of the PT one-shot control parameters register (address 0x0AA4) are described  
as one-shot, clear-after-write bits. Writing these bits should automatically set and then clear the bits. This one-shot  
behavior is not observed.  
Workaround  
The bits must be set to 1 and then explicitly set to 0 to clear these signal degrade bits.  
Corrective Action  
This functionality will be retained in its current state in future versions of the device. The advance data sheet will be  
corrected to reflect the actual function of the registers.  
Agere Systems Inc.  
5
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Path Terminator (PT)  
PT3. Remote Defect Indicator (RDI) Behavior  
The SONET standards require that when an RDI changes value, it should hold the value for a minimum of  
20 frames. This applies to a state, which should be maintained for at least 20 consecutive frames.  
no error  
However, it is also intended by the SONET standard that the occurrence of an  
immediately.  
state should be reported  
error  
*
TDAT042G5 responds to error conditions within 100 ms (ANSI T1.105 which states only that RDI-L must be gen-  
erated or removed within 100 ms of detecting or terminating an incoming defect), in which case the two require-  
ments become functionally the same.  
Single-bit and enhanced RDI behave differently under the following conditions:  
I Transition from error state to no error state.  
I While in the error state, a subsequent error occurs.  
The single-bit error RDI does not hold the no error state for 20 frames. However, the enhanced RDI does hold the  
no error state for 20 consecutive frames.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
The enhanced RDI indicator in future versions of the device will behave the same as the single-bit error indicator.  
PT4. SS Pointer Interpretation Algorithm  
The SDH standards do not require that the SS bits are set to binary 10 for SDH equipment. The SS bit values are  
not used in determining a valid pointer value. Because of this, the SS pointer interpretation algorithm is not imple-  
mented in the device. Bit 5 (RSSPTRNORM[A—D]) of PT control registers 0x0AA6, 0xAAE, 0x0AB6, and 0x0ABE  
is not used. Bits 1 and 0 (RSSEXP[1:0]) of PT provisioning register 0x0AC7 are not used.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
These bits will be removed from the PT registers in future revisions of the advance data sheet.  
ANSI  
*
is a registered trademark of American National Standards Institute, Inc.  
6
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Path Terminator (PT)  
PT5. Delta/Event Registers in COR Mode  
Because there is a one-cycle delay before the PT delta event registers (0x802, 0x080F, 0x081C, 0x0829) are  
cleared after being read in COR mode, new interrupts may be lost.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
Data Engine (DE)  
DE1. SDL Mode—Header Error Correction in LSB  
In SDL mode, the header error correction process is susceptible to single-bit errors in the least significant bit (LSB)  
of the special payload.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation  
Currently, the LCD is implemented in the same way that out of cell delineation (OCD) is implemented. This is not in  
accordance with the ITU-TI.432-2 February 1999 standard.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
A software workaround will be available with version 1A of the device.  
Agere Systems Inc.  
7
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Data Engine (DE)  
DE3. ATM Transmit Count of Idle Cells  
For ATM mode in the transmit direction, all cells are currently counted, including the idle cells. Only the cells con-  
taining data should be counted.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in version 1A of the device.  
DE4. Channel Provisioning  
When using the device in STS-3/STM-1 and STS-12/STM-4 modes with either PPP, CRC, or HDLC, egress config-  
uration registers 0x1016, 0x1017, 0x1018, and sequencer cell state register 0x1036 of all four channels must be  
provisioned, even if a channel is not being used.  
Workaround  
Provision all four transmit DE channels. Set DE egress configuration registers and the sequencer cell state register  
as shown in Table 2.  
Table 2. Transmit DE Egress and Sequencer Cell State Registers  
Address  
Value  
STS-12/STM-4  
STS-3/STM-1  
0x1016  
0x1017  
0x4567  
0x4567  
0x4567  
0x4567  
0x4567  
0x4567  
0x4567  
0x0000  
0x1018  
0x1019—0x1021  
0x1036  
0x0000  
Corrective Action  
This condition will be addressed in future versions of the device.  
8
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Data Engine (DE)  
DE5. Packet Behavior in POS/SDL Mode—Dry Mode  
When the device is configured in POS mode with dry mode enabled, the following conditions may persist:  
I PPP mode; STS-48/STS-12/STS-3.  
When running in PPP mode, the PPP header—0xFF03 0x0021 (provisionable)—may be incorrectly inserted at  
any point in a packet within the outgoing data stream when the FIFO runs dry, thereby corrupting the packet.  
Packets being sent are corrupted if the FIFO runs dry.  
I PPP and CRC modes; STS-48/STS-12/STS-3.  
CRC, PPP, and HDLC modes; STS-48/STS-12/STS-3.  
In PPP, CRC, and HDLC dry modes, some of the packet data may be corrupted when the packet length is above  
a certain size where size is dependent upon UT clock rate and low watermark setting. Either sections of the  
packet may be lost or additional packets may be inserted.  
Workaround  
Several workarounds are possible:  
I Do not provision dry mode for this device.  
I If dry mode is provisioned:  
— Do not allow the FIFO to be emptied.  
— Run the UTOPIA clock fast enough, as shown in Table 3, so that the FIFO is never empty.  
— Use a larger external FIFO to buffer the data.  
— Do not allow the packet size to exceed the low watermark.  
Table 3. Required UTOPIA Clock (TxCLK) Rates  
Mode  
TxCLK and Rate  
STS-48/STM-16 TxCLK > 77 MHz (U3+, 32-bit mode)  
STS-12/STM-4  
STS-3/STM-1  
TxCLK > 40 MHz  
TxCLK > 10 MHz  
Corrective Action  
This condition will be corrected in version 1A of the device.  
Agere Systems Inc.  
9
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Data Engine (DE)  
DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation  
In ATM mode, the OCD reporting for channels B, C, and D is incorrect. The OCD state of channel A is reported for  
channels B, C, and D. The OCD reporting is correct for channel A.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be corrected in version 1A of the device.  
DE7. Incorrect Frame State of ATM Data Streams  
When sending a single ATM data stream to channel A, the frame states of channels B, C, and D are incorrectly set  
to sync mode. This prevents LCD errors from being reported on channel A as well. In addition, when sending a sin-  
gle ATM data stream to channels B, C, or D, the frame states always remain in hunt mode. This results in LCD  
errors on those channels.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
A software workaround will be available with version 1A of the device.  
10  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Data Engine (DE)  
DE8. Clearing DE Interrupt Register (0x1002)  
DE interrupt register 0x1002 is incorrectly defined in the revision 3 of the data sheet as RO. DE interrupt register  
0x1002 is correctly defined as a COR/W register. However, register 0x1002 must be used in the COR mode (regis-  
ter 0x0010 bit 6 set to 1). The bits of register 0x1002 are explained in detail in Table 4.  
Table 4. Register 0x1002: DE Interrupt (COR/W)  
Bits  
Mode  
Clear Behavior of Register 0x1002  
15—12  
RO  
To clear these SDL Rx frame state interrupt bits, read and  
clear their associated interrupt source registers  
(addresses 0x14E0—0x14E3).  
11—0  
COR or COW  
To properly clear these bits, device must be in COR mode  
(address 0x0010, bit 6) (address 0x0010, bit 6 = 1).  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
This behavior will be described in future revisions of the advance data sheet.  
DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes  
When receiving in either PPP or CRC mode, a single packet may not pass through the device. This occurs when  
the end of packet (which contains the CRC) never reaches the UT FIFO. The ingress channel suspends transfer to  
the UT when there is no end of packet in the FIFO. These bytes are transferred to the UT when the next packet is  
received. This problem will affect HDLC-CRC, SDL-CRC, and PPP modes.  
Workaround  
There are two possible workarounds:  
I Set ingress payload type and mode control registers (0x1040—0x1043) to CRC strip mode. However, in CRC-16  
mode, single packets may still get stuck if CRC ends on bytes A or B.  
I Send a minimum 4-byte dummy packet after each packet.  
Corrective Action  
This condition will be addressed in future versions of the device.  
Agere Systems Inc.  
11  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Data Engine (DE)  
DE10. Excessive HDLC Flag Characters  
The following three issues refer to HDLC flag character (0x7E) problems in the data engine:  
I An excessive number of HDLC flag characters (0x7Es) may be inserted between packets on the transmit side if  
the UTOPIA low watermark value is set above 2. This will have the effect of reducing the bandwidth of the device.  
I The data engine operates on 32-bit boundaries. Egress packets that are not multiples of four will be filled with  
0x7Es.  
I Egress packets consisting of all 0x7Es as data will be corrupted.  
Workaround  
Set the UTOPIA egress low watermark value in the UTOPIA egress provisioning registers (0x0212, 0x0216,  
0x021A, 0x021E) to either 1 or 2 to prevent excessive 0x7Es from being inserted between packets.  
Corrective Action  
This condition will be addressed in future versions of the device.  
UTOPIA (UT)  
UT1. Polling in Multidevice MPHY Mode  
When the TDAT042G5 is polled and responds, the data bus becomes enabled. In a multidevice MPHY configura-  
tion, if the data bus is active from a different PHY device, response to a poll from the device will corrupt a data  
transfer already in progress. TDAT042G5 MPHY always functions without data corruption in a single-device  
(slave), multiple-channel configuration (point-to-point).  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
12  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
UTOPIA (UT)  
UT2. UTOPIA Clock Limitations  
The maximum speed of the UTOPIA interface is 104 MHz. When operating at clock speeds greater than 52 MHz,  
RxCLK[D:A] must be placed in source mode and will use the same external clock as the corresponding  
TxCLK[D:A] clock. RxCLK[D:A] source mode is set by provisioning bit 6 (CLOCK_MODE_Rx) for channel A of the  
UTOPIA receive provisioning registers (address 0x020F).  
When operating at speeds less than 52 MHz, separate external clocks for RxCLK[D:A] and TxCLK[D:A] may be  
used.  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device. Design modifications will be directed towards  
allowing a maximum interface speed of 104 MHz in all cases. Note that UTOPIA Level 3 clock architecture has  
changed in the ATM Forum’s UTOPIA Level 3 specification as of the July 1998 version.  
UT3. PMRST Register Value Invalid After Reset  
The value in PMRST_PECTx[A—D] (addresses 0x020B through 0x020E) is invalid after reset until the second  
PMRST clock period is completed. After the second PMRST, the register value is valid.  
Workaround  
Always have the system software execute a read of PMRST_PECTx as part of the system initialization following a  
reset.  
Corrective Action  
This condition will be addressed in future versions of the device.  
Agere Systems Inc.  
13  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
UTOPIA (UT)  
UT4. FIFO Overflow and Error Reporting  
If the RxFIFO overflows, RxEOP is not asserted as expected. Therefore, when errors occur, two packets will be  
corrupted instead of one because two start of packets (SOPs) occurred without an end of packet (EOP). RxERR is  
not asserted when the above overflow condition occurs. No effect is noticeable in the ATM mode. Channel A works  
as expected; this problem occurs in channels B, C, and D.  
Workaround  
This error is detectable in the status registers. No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
UT5. Timing Difference Between Direct and Polled Status Modes  
In the receive direction of the MPHY mode, RxPA[A] shows the polled packet (or ATM) available status for all four  
slices, while the RxPA[B], RxPA[C], and RxPA[D] show the direct status states of their respective FIFOs. In some  
cases, the status of RxPA[A] does not agree with the status of RxPA[D:B]. The direct status indication has one  
additional cycle of pipeline delay from that of the polled status.  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
No corrective action is required for this condition.  
UT6. UTOPIA Interface D Nonfunctional in Some Mixed MPHY and Point-to-Point  
Configurations  
When TDAT042G5 is configured with slice D in a point-to-point mode, slice D is nonfunctional in one special case.  
If UTOPIA interfaces A and B are configured for 32-bit MPHY operation with slice C as part of the polled channels,  
interface D will be nonfunctional and cannot be independently configured in a UTOPIA Level 2 point-to-point mode.  
This condition does not occur in 16-bit MPHY operation.  
Workaround  
For mixed MPHY and point-to-point configuration, use UTOPIA slice D for MPHY mode instead of slice C.  
UTOPIA slice C will then be available for normal point-to point mode.  
Corrective Action  
This condition will be addressed in future versions of the device.  
14  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
UTOPIA (UT)  
UT7. Response to 0x1F MPHY Address  
TDAT042G5 MPHY currently generates a polled status response to the address 0x1F (the null address), which is  
not compliant with the UTOPIA Level 2 standard. The address 0x1F is valid for UTOPIA Level 3 operation.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
UT8. Far-End Loopback Bandwidth Limitations  
In the STS-48/STM-16 mode (U3, U3+), looping back data at the far end (UTOPIA interface) can only be accom-  
plished without cell/packet corruption at rates below the following, as shown in Table 5.  
Table 5. Cell/Packet Corruption Rates  
Mode  
ATM  
Packet  
STS-48/STM-16  
STS-12/STM-4  
STS-3/STM-1  
300 Mbits/s  
70 Mbits/s  
30 Mbits/s  
Rate not yet determined  
Rate not yet determined  
Rate not yet determined  
When cell/packet corruption occurs, the device reports transmit FIFO underflow.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This condition will be addressed in future versions of the device.  
Agere Systems Inc.  
15  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
UTOPIA (UT)  
UT9. Clock Requirements for MPHY Modes  
When using the TDAT042G5 in MPHY mode, receive and transmit clocks must be provided for all channels (A, B,  
C, and D). Also, the packet available (PA) signal for each channel must be provided on each channel’s associated  
PA pin.  
Workaround  
It is possible to place RxCLK[D:A] into source mode by provisioning bit 6 (CLOCK_MODE_Rx) of the UTOPIA  
receive provisioning registers (addresses 0x020F, 0x0213, 0x0217, 0x021B). This will eliminate the need to supply  
separate receive and transmit clocks.  
Corrective Action  
This is informational only. No corrective action is required for this condition.  
UT10. Egress Packet Mode Overflows  
In the UTOPIA modes listed below, the device will report transmit packet overflow errors when no overflows have  
occurred. This occurs when the egress high watermark is set for the UTOPIA modes as shown in Table 6.  
Table 6. Settings at Which Overflows Reported in Error  
UTOPIA Modes  
Egress High Watermark Thresholds  
8-bit, U3+  
16-bit, U2+  
32-bit, U3+  
0x3D  
0x3B  
0x37  
Workaround  
Set the egress high watermark threshold as shown in Table 7. If there is a delay between TxPA deassertion and  
TxENB deassertion, the additional cycles should also be accounted for when setting the threshold.  
Table 7. Settings to Prevent Overflows Reported in Error  
UTOPIA Modes  
Egress High Watermark Thresholds  
8-bit, U3+  
16-bit, U2+  
32-bit, U3+  
<0x3D  
<0x3B  
<0x37  
Corrective Action  
This condition will be addressed in future versions of the device.  
16  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
UTOPIA (UT) (continued)  
UT11. Clearing UT Interrupt Register  
When a UT interrupt event occurs and COW mode is enabled, writing to UT interrupt register 0x0201 does not  
clear the register (this register is read-only). The interrupt is cleared by writing to the UT delta and event registers  
(addresses 0x0202—0x0205).  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
No corrective action is required for this condition.  
UT12. Incorrect Implementation of POS Multi-PHY Mode  
Because the TDAT042G5 lacks a selected PA signal (SPA), the status of a channel that is transmitting data in POS  
MPHY mode is not known during polling. Therefore, the PA signal cannot be used as a data valid signal. If the  
channel transmitting data runs dry, the master side may receive invalid data.  
Workaround  
Use direct status polling mode only and ensure that the address of channel A is applied to the address bus at all  
times, except during the clock cycle when another channel is being selected.  
Corrective Action  
No corrective action is required for this condition.  
UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode  
When using the device in CRC-16 or CRC-32 mode, there is always an extra cycle between the end of packet  
(EOP) of the previous packet and the start of packet (SOP) of the following packet.  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
This is condition will be addressed in the future version of the device.  
Agere Systems Inc.  
17  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
UTOPIA (UT) (continued)  
UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode  
When using MPHY direct status for all operational modes (8-bit, 16-bit, and 32-bit), the RxPA signal for channels B  
and D is not functional. The RxPA signal is functional only for channels A and C.  
Workaround  
The TDAT UTOPIA interface currently has nonfunctioning RxPAB and RxPAD output signals when used in four-  
channel Multi-PHY mode as shown in Figure 1. The result of this problem is the unavailability of direct status polling  
on the receive-side UTOPIA interface. To work around this problem, the following analysis is done to aid the user in  
doing a round-robin data extraction procedure.  
RXPAA  
32-bit INTERFACE (A AND B)  
RXPAB  
INGRESS CHANNEL A FIFO  
256 bytes DEEP  
A
B
C
D
INGRESS CHANNEL B FIFO  
256 bytes DEEP  
X
INGRESS CHANNEL C FIFO  
256 bytes DEEP  
RXPAC  
INGRESS CHANNEL D FIFO  
256 bytes DEEP  
X
RXPAD  
1664 (F)  
Figure 1. Receive-Side UTOPIA Interface and Channel FIFOs  
The rate at which data fills and drains the receive-side UTOPIA FIFOs is calculated as follows:  
I The data enters each UTOPIA FIFO from the data engine bytewise running on a 77.76 MHz system clock.  
I If we assume each channel (worst case) is filled with an STS-12c rate signal, then the amount of data (excluding  
SONET overhead, both section/line, path, and three stuff columns) per second is  
(87 x12 x 9 x 8000) – (4 x 9 x 8000) = 74.88 Mbytes/STS-12c/s or 599.040 Mbits/STS-12c/s.  
I Since each FIFO contains a maximum of 256 bytes/FIFO, it takes on average  
(256/74,880,000) = 3.4188 µs to fill a FIFO, and with a clock cycle of 77.76 MHz, it requires as a worst case,  
3.2922 µs to fill the FIFO.  
I Since there are four FIFOs all receiving data at 74.88 Mbytes/s, then the total bandwidth requirements of all four  
channels combined is (4 x 74,880,000) = 299.52 Mbytes/s.  
I The servicing rate on each FIFO is based on the UTOPIA interface width and frequency. If we assume a  
32-bit A/B UTOPIA interface operating at 100 MHz, then the service rate is 400 Mbytes/s to service all the  
channels.  
18  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
UTOPIA (UT) (continued)  
I The interface can drain an entire FIFO at a rate of 400 Mbytes/s. To drain 256 bytes, it requires a maximum of  
(256 / 400,000,000) = 0.64 µs to drain a FIFO that is completely full. To drain all four FIFOs, it requires  
(0.64 x 4) = 2.56 µs total.  
For data to be efficiently removed from each of the Rx FIFOs, a round-robin extraction method must be employed  
since the RxPAB and RxPAD signals are not available for direct status polling. Since it requires a worst case total of  
3.2922 µs to fill a FIFO, the master must service all FIFOs in a manner such that it does not allow any particular  
FIFO to fill and hence overflow. Assuming equal servicing of each FIFO, the master must therefore not service any  
particular FIFO for longer than (3.2922 / 4) = 0.8231 µs. This also must account for any dead cycles in a cycling  
between channels and any dead cycles on a particular channel (single dead cycle between EOP and SOP).  
When servicing four FIFOs, there is a maximum clock cycle penalty for switching between channels. For two-cycle  
mode, this penalty is a maximum of four UTOPIA master clock cycles; so to switch between all four channels, a  
total of up to sixteen master clock cycles may be required to perform all the switching. The value of four is worst  
case, and in some cases this can be as low as one cycle. The value of four results from the case where the FIFO  
drains while servicing that channel, which will be common when draining at the 100 MHz frequency. In that case,  
the master must first see that the FIFO has drained by observing that RxPAA is invalid on the last cycle while drain-  
ing the FIFO (best case is one cycle lost). It must then deactivate RxENB and place a new channel address on the  
address bus on the following cycle (best case is one cycle lost). It must then activate RxENB for the new channel  
on the following cycle and have TDAT sample RxENB low (best case is one cycle lost). The TDAT will then output  
data two cycles later when using a PA response mode of two cycles (one cycle lost with data output on second  
cycle). Any additional delays by the master must be added to these to calculate a worst-case condition. The best-  
case condition occurs when the master stops the data flow when there are still more than two data items contained  
within the FIFO. In this case, the master deactivates RxENB at some predetermined maximum 32-bit word drain  
value, where the PA response on the cycle prior to deactivation had valid data. For two-cycle mode, two additional  
data items will be output from the FIFO for that particular channel, if available. The master deactivates RxENB,  
places the new channel address on the FIFO, and activates RxENB. On the cycle where RxENB is activated, the  
last valid data item from the previous channel may be output (best case), and one dead cycle will follow this before  
data for the following selected channel is output.  
Given the information above, assume the worst case of four cycles between channel switching. Also assume the  
FIFOs are filling at a worst-case rate, 3.2922 µs/FIFO. Assume the master is draining each FIFO using the 32-bit,  
100 MHz, A/B, UTOPIA interface. Assume the master extracts a maximum of thirty 32-bit words (120 bytes) from  
each FIFO before switching to an alternate channel. This requires (30 x 10) = 300 ns/FIFO, and assume that it  
takes the worst-case four clock cycles to switch to alternate channels. Therefore, the total servicing time per FIFO  
is (300 + 4 x 10) = 340 ns/channel, and the total servicing time per four channels is (4 x 340) = 1.36 µs per round  
robin servicing of all four channels. At this round-robin rate, a maximum of 120 bytes are serviced per channel per  
1.360 µs interval; so to service the total bytes per channel (74.88 Mbytes/s), it requires a total of 0.849 seconds,  
which is sufficient bandwidth to service all channels.  
Since the FIFOs fill at the maximum rate of 1 byte/13.355 ns, each FIFO will fill to a depth of 102 bytes in the  
1.360 µs interval between channel servicing. This is well below the overflow threshold, which is set by the user to a  
value near the top of the FIFO (high watermark, 0x36 (216 bytes) default) and is below the number of bytes ser-  
viced by the master per channel per round-robin servicing (120 bytes). Each customer’s servicing characteristics  
will depend on the master’s behavior and how fast it performs the channel switching. If it cannot switch in the worst-  
case, four-cycle manner described above, performance will degrade.  
One item not accounted for in the above analysis is the fact that TDAT may place a dead cycle between packets (in  
CRC and PPP modes, not in HDLC mode). In this case, there can be a maximum of three dead cycles per FIFO  
(assuming 40-byte packets worst case and 102 bytes in FIFO between round-robin cycle). This will be taken up by  
the slack provided above, where (102 bytes + 4 bytes/dead cycle x 3 dead cycles) = 114 bytes, which still falls  
below the servicing rate of 120 bytes per round-robin servicing.  
Agere Systems Inc.  
19  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
UTOPIA (UT) (continued)  
The logical flow of the above procedure is shown in Figure 2 below:  
SELECT NEXT  
CHANNEL  
HOLD ADDRESS OF SELECTED  
CHANNEL ON ADDRESS BUS  
NO  
PA = 1  
YES  
YES  
COUNT < 30  
NO  
DEACTIVATE  
X
R
ENB  
1665 (F)  
Figure 2. Master Control Flow Chart  
Select channel  
If PA = 1 continue  
If count = 30 words, then deactivate RxENB and switch to new channel  
Else continue with current channel  
Else deactivate RxENB and switch to next channel  
Return to selection of new channel  
Corrective Action  
This is condition will be addressed in the future version of the device.  
20  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Overhead Processor (OHP)  
OHP1. Maximum BER Count  
The maximum number of errors the device can report is limited to 5.00E-04 in STS-12/STM-4 mode and 1.00E-04  
in STS-48/STM-16 mode. This applies to the SDLSET, SDLCLEAR, SFLSET, and SFLCLEAR bits of the signal  
degrade and signal fail BER algorithm OHP registers. These bits are shown in Table 8.  
Table 8. Signal Degrade and Signal Fail Algorithm OHP Registers [6:3]  
OHP Bits*  
Addresses  
OHP_SDLSET[A—D][3:0]  
OHP_SDLCLEAR[A—D][3:0]  
OHP_SFLSET[A—D][3:0]  
OHP_SFLCLEAR[A—D][3:0]  
0x043B, 0x043D, 0x043F, 0x0441  
0x0447, 0x0449, 0x044B, 0x044D  
0x0453, 0x0455, 0x0457, 0x0459  
0x045F, 0x0461, 0x0463, 0x0465  
* The OHP prefix shown here will be added to the current bit names in revision 4 of the advance data  
sheet.  
Workaround  
This is informational only. No workaround is available for this condition.  
Corrective Action  
No corrective action is required for this condition.  
OHP2. RDI-L Reporting  
When the device is initially powered up, it defaults to STS-48/STM-16 mode. This locks a counter value into trans-  
mit control registers for channels B, C, and D. When the device is configured for STS-3/STM-1 mode, the counter  
does not automatically clear.  
Workaround  
During STS-3/STM-1 OHP configuration in the system code, manually clear transmit control registers 0x0431,  
0x0433, and 0x0435 for channels B, C, and D. In order to clear these transmit control registers, the bits must be  
toggled. The following pseudocode shows how to clear the bits on channels B, C, and D:  
Set address 0x0431 to 0x007F # set bits on channel B  
Set address 0x0431 to 0x0000 # clear bits on channel B  
Set address 0x0433 to 0x007F # set bits on channel C  
Set address 0x0433 to 0x0000 # clear bits on channel C  
Set address 0x0435 to 0x007F # set bits on channel D  
Set address 0x0435 to 0x0000 # clear bits on channel D  
Corrective Action  
This is informational only. No corrective action is required for this condition.  
Agere Systems Inc.  
21  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Overhead Processor (OHP)  
OHP3. M1 Error Counter in STS-48/STM-16 Mode  
When the device receives REI-L errors in the STS-48/STM-16 mode, no M1 errors are reported.  
Workaround  
There are several workarounds for this problem:  
I Pass the B2 error count value to the far end through system software.  
I Process the M1 byte from the receive TOAC with an external FPGA.  
I Pass the B2 error count from the receive to the transmit direction using transmit TOAC capability. The error count  
must be inserted into the eleventh Z2 byte in an STS-48/STM-16 transmit signal. The transmit TOAC signal is  
driven by an external device with software insert capability.  
I Pass the B2 error count from the receive to the transmit direction in the section overhead byte. The device has F1  
and S1 monitor capability; the protocol for sending the error message to the far end with F1 or S1 bytes is user-  
defined.  
Corrective Action  
This condition will be addressed in future versions of the device.  
Packaging and Pinouts (P)  
P1. Pin F5 (Previously JTEST) Is No Connect (NC)  
Item deleted. Corrected in the advance data sheet.  
P2. Modified Pinout and Power Supply Configuration—Future Versions  
Item deleted. No modifications to the power supply configuration will be made.  
P3. Change to TDAT042G5 Version 1 Pinout  
Item deleted. All devices conform to power pin assignments as listed in the advance data sheet.  
22  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
(continued)  
Packaging and Pinouts (P)  
P4. Power Dissipation  
The worst-case power dissipation of TDAT042G5 is currently estimated to be 7.5 W. The minimum and maximum  
power dissipation is listed in Table 9, as well as the relative package thermal characteristics.  
Table 9. Power Dissipation and Relative Package Thermal Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Power Dissipation:  
Minimum  
PD  
STS-3/STM-1 line rate  
STS-12/STM-4 and STS-48/  
STM-16 line rates  
3
6
W
W
Maximum  
Thermal Performance  
(JEDEC standard  
conditions)*  
θJA  
Standard JEDEC 4-layer PWB:  
I Standard natural convection  
I 200 LFPM airflow  
9
6.5  
5
°C/W  
°C/W  
°C/W  
I 800 LFPM airflow  
Correlation Factor  
ψJC  
Standard JEDEC 4-layer PWB:  
I Standard natural convection  
I 200 LFPM airflow  
Between Die and Case  
0.3  
0.4  
0.5  
°C/W  
°C/W  
°C/W  
Temperatures  
I 800 LFPM airflow  
* θJA = (TJ – TA)/PD: TJ = junction temperature, TA = ambient temperature of medium surrounding the package, PD = electrical power dissipated  
by the device.  
ψJC = (TJ – TC)/PD: TJ = junction temperature, TC = package temperature (top, dead-center), PD = electrical power dissipated by the device.  
Maximum junction temperature of TDAT042G5 is 125 °C. Therefore, maximum case temperature under natural  
convection conditions must be less than approximately 50 °C, and in this case, an external heat sink is required.  
References  
Jeff Weiss, 600 LBGA Thermal Test Report, February 25, 1999.  
HL250C 3.3 Volt 0.25 µm CMOS Standard-Cell Library (MN98-060ASIC-02), pages 2-2 and 2-3.  
Workaround  
An external heat sink is required.  
Corrective Action  
Power consumption will be addressed in future versions of the device.  
Agere Systems Inc.  
23  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Data Addenda  
DA1. Incorrect PT Control Register Mapping  
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface Advance Data Sheet, Rev. 3 lists the following bit  
mapping for PT control registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2:  
bit #9 TRDIP_PLMPINH[A—D]  
bit #8 TRDIP_UNEQUIPINH[A—D]  
bit #7 TRDIP_LCDINH[A—D]  
The correct bit mapping is the following:  
bit #9 TRDIP_LCDINH[A—D]  
bit #8 TRDIP_PLMPINH[A—D]  
bit #7 TRDIP_UNEQUIPINH[A—D]  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This correct bit mapping will be included in July 2000 of the advance data sheet.  
DA2. Variable Change  
TDAT042G5 SONET/SDH 155/622/2488 Mbits/s Data Interface  
Advance Data Sheet, Rev. 3 lists the variable  
TRD_LCDINH[A—D], which has been changed to TRD_LCD[A—D] in the January 2001 revision.  
Workaround  
No workaround is available for this condition.  
Corrective Action  
This correction will be included in January 2001 of the advance data sheet.  
24  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
AY99-013SONT-2 Replaces AY99-013SONT to Incorporate the Following Updates  
1. Page 1, SP1. Required Provisioning Sequence and Clocks, added new issue.  
2. Page 8, DE4. Channel Provisioning, added new issue.  
3. Page 9, DE5. Packet Behavior in POS/SDL Mode—Dry Mode, added new issue.  
4. Page 15, UT8. Far-End Loopback Bandwidth Limitations, added new issue.  
5. Page 16, advance data sheet document number corrected.  
AY99-013SONT-3 Replaces AY99-013SONT-2 to Incorporate the Following Updates  
1. Page 1, notice that the advisory issues still apply to the advance data sheet which has just been updated.  
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates  
1. Replaced OC- designation with STS- and STM- throughout advisory.  
2. Page 2, SP2. Behavior During Loss of Receive Line Clock, added new issue.  
3. Page 2, SP3. PT Register Addressing, added new issue.  
4. Page 4, CR1. Clear on Read/Clear on Write Behavior, added new issue.  
5. Page 5, PT2. Clear-After-Write Behavior of Signal Degrade Clear Bits, corrected description.  
6. Page 6, PT4. SS Pointer Interpretation Algorithm, added new issue.  
7. Page 7, PT5. Delta/Event Registers in COR Mode, added new issue.  
8. Page 7, DE2. Incorrect ATM Loss of Cell Delineation (LCD) Implementation, identified the specific ITU stan-  
dard with which the LCD implementation does not comply.  
9. Page 8, DE4. Channel Provisioning, Table Transmit DE Egress and Sequencer Cell State Registers, corrected  
register 0x102D to 0x1021.  
10. Page 9, DE5. Packet Behavior in POS/SDL Mode—Dry Mode, identified dry mode issues.  
11. Page 10, DE6. Incorrect ATM Out of Cell Delineation (OCD) Implementation, added new issue.  
12. Page 10, DE7. Incorrect Frame State of ATM Data Streams, added new issue.  
13. Page 11, DE8. Clearing DE Interrupt Register (0x1002), added new issue.  
14. Page 11, DE9. Single Packet Transmission in HDLC-CRC, SDL-CRC, and PPP Modes, added new issue.  
15. Page 12, DE10. Excessive HDLC Flag Characters, added new issue.  
16. Page 13, UT2. UTOPIA Clock Limitations, clarified wording.  
17. Page 14, UT4. FIFO Overflow and Error Reporting, clarified wording.  
18. Page 16, UT9. Clock Requirements for MPHY Modes, added new issue.  
19. Page 16, UT10. Egress Packet Mode Overflows, added new issue.  
20. Page 17, UT11. Clearing UT Interrupt Register, added new issue.  
21. Page 17, UT12. Incorrect Implementation of POS Multi-PHY Mode, added new issue.  
22. Page 21, OHP1. Maximum BER Count, added new issue. In addition, differentiated OHP bits from PT bits with  
the same name; the names will be corrected in revision 4 of the advance data sheet.  
Agere Systems Inc.  
25  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
AY99-013SONT-4 Replaces AY99-013SONT-3 to Incorporate the Following Updates  
(continued)  
23. Page 21, OHP2. RDI-L Reporting, added new issue.  
24. Page 22, OHP3. M1 Error Counter in STS-48/STM-16 Mode, added new issue.  
25. Page 22, removed issue P1. Pin 5 (Previously JTEST) Is No Connect (NC). Pin F5 was corrected to NC in the  
accompanying advance data sheet, DS98-193SONT-3.  
26. Page 22, removed issue P2. Modified Pinout and Power Supply Configuration—Future Versions. Plans for 2.5 V  
power ring implementation considered, but no schedule available at this time.  
27. Page 22, removed issue P3. Change to TDAT042G5 Version 1 Pinout. Listed pins have been corrected to NC in  
the accompanying advance data sheet, DS98-193SONT-3.  
28. Page 24, DA1. Incorrect PT Control Register Mapping, added new issue.  
AY01-015SONT (Replaces AY99-013SONT-4 and Must Accompany  
DS98-193SONT-4) Replaces AY99-013SONT-4 to Incorporate the Following  
Updates  
Change List  
This change list summarizes changes across the various versions of this document starting with the version dated  
1/25/01.  
1/25/01  
1. Page 6, PT3. Remote Defect Indicator (RDI) Behavior, clarified wording.  
2. Page 12, DE 11. ATM Header Error Correction (HEC) Behavior, added entire section to document.  
1/29/01  
1. Page 24, DA1. Incorrect PT Control Register Mapping, changed corrective action description to include the July  
2000 date.  
2. Page 24, DA2. Variable Change, added entire section to document.  
2/13/01  
1. Page 12, updated issue on DE 11. ATM Header Error Correction (HEC) Behavior, to include more information.  
2. Page 17, added issue UT13. Invalid Extra Cycle Between EOP and SOP in CRC-16/32 Mode.  
3. Page 18, added issue UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY  
Mode.  
3/1/01  
1. Page 12, removed DE 11 from document.  
2. Page 18, UT14. Nonfunctional RxPA Signal for Channels B and D in Packet Direct Status MPHY Mode, added  
workaround to document.  
26  
Agere Systems Inc.  
TDAT042G5 Device Advisory  
for Version 1 and 1A of the Device  
Advisory  
May 2001  
Notes  
Agere Systems Inc.  
27  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@micro.lucent.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC  
Tel. (86) 21 50471212, FAX (86) 21 50472266  
JAPAN:  
Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries:GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Copyright © 2001 Agere Systems Inc.  
All Rights Reserved  
Printed in U.S.A.  
May 2001  
AY01-015SONT (Replaces AY99-013SONT-4 and Must Accompany DS98-193SONT-4)  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
— ITU-T G.707: Network Node Interface for the  
Synchronous Digital Hierarchy.  
Features  
— ITU-T G.803: Architecture of Transport Net-  
works Based on the Synchronous Digital Hier-  
archy.  
— T1.105: SONET-Basic Description including  
Multiplex Structure, Rates, and Formats.  
— T1.105.02 SONET-Payload Mappings.  
— T1.105.03 SONET-Jitter at Network Interfaces.  
— T1.105.06 SONET Physical Layer Specifica-  
tions.  
I Point-to-point path termination device for interface  
termination.  
I Versatile IC supports 155/622/2488 Mbits/s  
SONET/SDH interface solutions for packet over  
SONET (POS), asynchronous transfer mode  
(ATM), or simplified data link (SDL) for data over  
fiber applications.  
I Supports point-to-point and multi-PHY UTOPIA.  
I Low-power 3.3 V operation, CMOS technology.  
— T1.105.07 SONET-Sub-STS-1 Interface Rates  
and Formats Specification.  
— ITU-T I.432: B-ISDN User-Network Interface-  
Physical Layer Specification.  
— IETF RFC 2615 (June 1999): PPP over  
SONET/SDH.  
— IETF RFC 1661: The Point-to-Point Protocol  
(PPP).  
I High-speed I/O is LVPECL. All other logic has 5 V  
tolerant TTL-level inputs.  
I –40 °C to +85 °C temperature range.  
I 600 LBGA package.  
— IETF RFC 1662: PPP in HDLC-like Framing.  
SONET/SDH Interface  
Data Processing  
I Termination of quad STS-3/STM-1, quad STS-12/  
STM-4, or single STS-48/STM-16.  
I Provisionable data engine supports payload inser-  
tion/extraction and CRC-16/-32 generation/verifica-  
tion for ATM cell or PPP, SDL, or HDLC streams.  
I Supports overhead processing for transport and  
path overhead bytes.  
I Optional insertion and extraction of overhead bytes  
via serial overhead interface.  
I Maintains counts for cell/packet traffic (e.g., total  
number of cells, number of discarded cells).  
I Integrated UTOPIA Level 2- and UTOPIA Level 3-  
compatible ATM physical layer interface with  
packet extensions for all test and operations.  
I Full path termination and SPE extraction/insertion.  
I SONET/SDH compliant condition and alarm  
reporting.  
I Insertion and extraction of up to four separate data  
channels.  
I Handles all concatenation levels of STS-3c  
through STS-48c (in multiples of 3; i.e., 3c, 6c, 9c,  
etc.), STM-1 through STM-16.  
I Compliant with 1998:ATM Forum, ITU standards,  
and IETF standards.  
I Built-in diagnostic loopback modes.  
I Compliant with the following Telcordia(Bellcore),  
ANSI*, and ITU standards:  
Microprocessor Interface  
— GR-253 CORE: SONET Transport Systems:  
Common Generic Criteria.  
I 16-bit address and 16-bit data interface with up to  
66 MHz read and write access.  
I Compatible with most industry-standard proces-  
sors.  
*ANSI is a registered trademark of American National Standards  
Institute, Inc.  
Telcordia is a registered trademark of Bell Communications  
Research, Inc.  
Please see the Description section, page 11, for  
details.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Table of Contents  
Contents  
Page  
Features ...................................................................................................................................................................3  
SONET/SDH Interface ...........................................................................................................................................3  
Data Processing .....................................................................................................................................................3  
Microprocessor Interface .......................................................................................................................................3  
Description ..............................................................................................................................................................11  
Pin Information .......................................................................................................................................................11  
Overview .................................................................................................................................................................45  
ATM/HDLC/HDLC-CRC/PPP Support .................................................................................................................47  
SDL Support ........................................................................................................................................................48  
Over-Fiber Mode ..................................................................................................................................................49  
Test and General-Purpose I/O Support ...............................................................................................................49  
External Interfaces ...............................................................................................................................................49  
Functional Description ............................................................................................................................................50  
Line Interface Block .............................................................................................................................................51  
SONET Framer ....................................................................................................................................................53  
Overhead Processor (OHP) Block .......................................................................................................................53  
Path Terminator (PT) Block .................................................................................................................................62  
Data Engine (DE) Block .......................................................................................................................................70  
UTOPIA (UT) Interface Block ...............................................................................................................................84  
JTAG (Boundary-Scan) Test Block ....................................................................................................................100  
Line Interface ........................................................................................................................................................100  
LVPECL I/O Termination and Load Specifications ............................................................................................100  
Interface Description .............................................................................................................................................101  
Microprocessor Interface ...................................................................................................................................101  
General-Purpose I/O Bus (GPIO) ......................................................................................................................102  
Interrupts ............................................................................................................................................................103  
Reset ..................................................................................................................................................................104  
Performance Monitor Reset (PMRST) ...............................................................................................................104  
Loopback Operation ...........................................................................................................................................106  
System Interfaces ..............................................................................................................................................107  
Register Access Description .................................................................................................................................111  
Register Maps ......................................................................................................................................................112  
Core Registers ...................................................................................................................................................112  
UT Registers ......................................................................................................................................................113  
OHP Registers ...................................................................................................................................................116  
PT Registers ......................................................................................................................................................126  
DE Registers ......................................................................................................................................................138  
Register Descriptions ...........................................................................................................................................147  
Core Registers ...................................................................................................................................................147  
UT Registers ......................................................................................................................................................154  
OHP Registers ...................................................................................................................................................165  
PT Registers ......................................................................................................................................................192  
DE Registers ......................................................................................................................................................211  
Absolute Maximum Ratings ..................................................................................................................................253  
Handling Precautions ...........................................................................................................................................253  
Operating Conditions ............................................................................................................................................254  
Electrical Characteristics ......................................................................................................................................254  
4
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Table of Contents (continued)  
Contents  
Page  
Interface Timing Specifications .............................................................................................................................255  
Microprocessor Interface Timing ........................................................................................................................255  
Line Interface I/O Timing ....................................................................................................................................264  
UTOPIA Interface Timing ...................................................................................................................................268  
Transport Overhead Access Channel (TOAC) Interface Timing ........................................................................271  
Reference of SONET/SDH Terms and Comparisons ...........................................................................................273  
Definitions of SONET/SDH Bytes ......................................................................................................................273  
SONET/SDH Comparisons ................................................................................................................................274  
SONET/SDH New Terminology .........................................................................................................................274  
Outline Diagram ....................................................................................................................................................275  
600-Pin LBGA ....................................................................................................................................................275  
Ordering Information .............................................................................................................................................276  
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates ......................................276  
Agere Systems Inc.  
5
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
List of Figures  
Contents  
Page  
Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View) .........................................................................................11  
Figure 2. Overview Block Diagram .........................................................................................................................45  
Figure 3. Interface Block Diagram ..........................................................................................................................46  
Figure 4. External Interface Summary Diagram .....................................................................................................49  
Figure 5. Functional Block Diagram .......................................................................................................................50  
Figure 6. Signal Degrade and Failure Parameters for BER ...................................................................................56  
Figure 7. Pointer Interpreter State Diagram ...........................................................................................................62  
Figure 8. STS-48 Signal Carrying One STS-48c Frame ........................................................................................65  
Figure 9. STS-48 Signal Carrying Four STS-12c Frames ......................................................................................66  
Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame ..........................66  
Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame (Channel A), One  
STS-9c Frame (Channel B), One STS-6c Frame (Channel C), and One STS-3c Frame (Channel D) .67  
Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame ..............................67  
Figure 13. Block Diagram of Date Engine (DE) ......................................................................................................70  
Figure 14. State Diagram for the X31 Scrambler Synchronization Process ...........................................................72  
Figure 15. General Structure of SDL Packets ........................................................................................................72  
Figure 16. Uncompressed and Compressed PPP Packets ....................................................................................75  
Figure 17. Example of Tx/Rx Sequencer Configuration: STS-48c into Single OC-48 Signal .................................78  
Figure 18. Example of Tx/Rx Sequencer Configuration: 4xSTS-12c into Four Independent OC-12 Signals .........79  
Figure 19. SONET Multiplexing: 2-Stage Byte Interleaving Example .....................................................................80  
Figure 20. Example of Tx/Rx Sequencer Configuration: 4xSTS-3c into Four Independent OC-3 Signals .............81  
Figure 21. TDAT042G5 Over-Fiber Modes: SDL, ATM (X31) ................................................................................82  
Figure 22. UT Block Diagram .................................................................................................................................84  
Figure 23. Receive-Side Interface Handshaking in Point-to-Point, Single Cycle Mode .........................................91  
Figure 24. Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode ............................................92  
Figure 25. Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode ........................................95  
Figure 26. Multi-PHY Configuration of All Four Channels ......................................................................................96  
Figure 27. TxPA Two-Cycle Responses of a Multi-PHY for All Four Channels ......................................................98  
Figure 28. RxPA Responses of a Multi-PHY for All Four Channels (PA Response Configured for One Cycle) ....99  
Figure 29. GPIO Functionality ..............................................................................................................................102  
Figure 30. Interrupt Functionality ..........................................................................................................................103  
Figure 31. Miscellaneous Functionality ................................................................................................................104  
Figure 32. Loopback Operation ............................................................................................................................106  
Figure 33. Quad ATM UTOPIA 2 ..........................................................................................................................107  
Figure 34. Single ATM UTOPIA 3 ........................................................................................................................108  
Figure 35. Quad POS UTOPIA 2 ..........................................................................................................................109  
Figure 36. Single POS UTOPIA 3 ........................................................................................................................110  
Figure 37. 32-bit MPHY UTOPIA 3 .......................................................................................................................110  
Figure 38. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin D8) = 1) ....................................256  
Figure 39. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin D8) = 1) ...................................258  
Figure 40. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin D8) = 0) ...............260  
Figure 41. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin D8) = 0) ..................................262  
Figure 42. Receive Line-Side Timing Waveform ..................................................................................................264  
Figure 43. Transmit Line-Side Timing WaveformSTS-48/STM-16 Contraclocking ...........................................265  
Figure 44. Transmit Line-Side Timing WaveformFrame Synch ........................................................................265  
Figure 45. Transmit Line-Side Timing WaveformSTS-48/STM-16 Forward Clocking ......................................265  
Figure 46. Transmit UTOPIA Interface Timing .....................................................................................................268  
Figure 47. Receive UTOPIA Interface Timing ......................................................................................................269  
Figure 48. Transmit TOAC Interface Timing .........................................................................................................271  
Figure 49. STS-12/STM-4 and STS-48/STM-16 Receive TOAC Interface Timing ...............................................272  
Figure 50. STS-3/STM-1 Receive TOAC Interface Timing ...................................................................................272  
6
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
List of Tables  
Contents  
Page  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order .......................................................................12  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name ...............................................................................17  
Table 3. Pin DescriptionsLine Interface Signals .................................................................................................22  
Table 4. Pin DescriptionsTOH Interface Signals .................................................................................................27  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals ..........................................................................28  
Table 6. Pin DescriptionsMicroprocessor Interface Signals ................................................................................40  
Table 7. Pin DescriptionsGeneral-Purpose I/O Signals: Interface Signals .........................................................41  
Table 8. Pin DescriptionsJTAG Interface Signals ...............................................................................................42  
Table 9. Pin DescriptionsPower Signals .............................................................................................................43  
Table 10. Pin DescriptionsNo Connect Pins .......................................................................................................44  
Table 11. Optional Offset Field ...............................................................................................................................48  
Table 12. Line Interface Modes ..............................................................................................................................51  
Table 13. Clock Settings for CLKDIV Pin ...............................................................................................................52  
Table 14. R/T TOH Interface Rates ........................................................................................................................53  
Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example ..................................................................................53  
Table 16. Ns, L, M, and B Values to Set the BER Indicator ...................................................................................57  
Table 17. Ns, L, M, and B Values to Clear the BER Indicator ................................................................................58  
Table 18. TOAC Channel I/O vs. STS Number/Time Slot ......................................................................................59  
Table 19. Types of Signal Labels ...........................................................................................................................64  
Table 20. 1-bit Mode ...............................................................................................................................................64  
Table 21. 3-bit Mode (Enhanced RDI) ....................................................................................................................64  
Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c ........................................................68  
Table 23. Packet Length Field ................................................................................................................................73  
Table 24. UTOPIA Traffic Types ............................................................................................................................85  
Table 25. Standard 53-byte ATM Cell Structure .....................................................................................................86  
Table 26. Bus Format for 16-bit Interface ...............................................................................................................86  
Table 27. Bus Format for 8-bit Interface .................................................................................................................87  
Table 28. Bus Format for 32-bit Interface ...............................................................................................................87  
Table 29. Egress High Watermark Thresholds .......................................................................................................94  
Table 30. Nominal dc Power for Suggested Terminations ...................................................................................100  
Table 31. MPU Modes ..........................................................................................................................................101  
Table 32. PMRST Provisioning ............................................................................................................................105  
Table 33. Quad ATM UTOPIA 3 Interface ............................................................................................................107  
Table 34. Quad POS UTOPIA 3 Interface ............................................................................................................109  
Table 35. Register Address Space .......................................................................................................................111  
Table 36. Map of Core Registers ..........................................................................................................................112  
Table 37. Map of UT Registers .............................................................................................................................113  
Table 38. Map of OHP Registers ..........................................................................................................................116  
Table 39. Map of Path Terminator Registers ........................................................................................................126  
Table 40. Map of DE Registers ............................................................................................................................138  
Table 41. Register 0x0000: Device Version (RO) ................................................................................................147  
Table 42. Registers 0x00010x0005: Device Name (RO) ..................................................................................147  
Table 43. Register 0x0008: Composite Interrupts (RO or COR/W) ......................................................................148  
Table 44. Register 0x000A: GPIO Input (RO) ......................................................................................................148  
Table 45. Register 0x000C: Block Interrupt Masks (R/W) ....................................................................................149  
Table 46. Register 0x000E: Core Resets (WO) ...................................................................................................149  
Table 47. Register 0x000F: GPIO Output (R/W) ..................................................................................................150  
Table 48. Register 0x0010: Line Provisioning/Mode (R/W) ..................................................................................150  
Table 49. Register 0x0011: Channel (AD) Control (R/W) .................................................................................151  
Table 50. Register 0x0012: Loopback Control (R/W) ...........................................................................................151  
Table 51. Register 0x0013: GPIO Mode (R/W) ....................................................................................................152  
Agere Systems Inc.  
7
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
List of Tables (continued)  
Contents  
Page  
Table 52. Registers 0x0014, 0x0015: GPIO Output Configuration .......................................................................152  
Table 53. Register 0x001F: Scratch (R/W) ...........................................................................................................153  
Table 54. Register 0x0200: UT Macrocell Version Number (RO) ........................................................................154  
Table 55. Register 0x0201: UT Interrupt (RO) .....................................................................................................154  
Table 56. Registers 0x0202, 0x0203, 0x0204, 0x0205: Channel [AD] (COR) ..................................................155  
Table 57. Register 0x0206: Interrupt Mask (R/W) ................................................................................................156  
Table 58. Registers 0x0207, 0x0208, 0x0209, 0x020A: Interrupt MaskChannel [AD] (R/W) ........................156  
Table 59. Register 0x020B: Channel [AD] Error Count in PMRST Mode (RO) ................................................156  
Table 60. Fields of the Provisioning Registers .....................................................................................................157  
Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [AD] Receive Provisioning Register (R/W) .158  
Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [AD] Transmit Provisioning Register (R/W) 159  
Table 63. Registers 0x0211, 0x0215, 0x0219, 0x021D: Channel [AD] Ingress Provisioning Register (R/W) ..161  
Table 64. Registers 0x0212, 0x0216, 0x021A, 0x021E: Channel [AD] Egress Provisioning Register (R/W) ...161  
Table 65. Register 0x021F: Reset Register (R/W) ...............................................................................................162  
Table 66. Register 0x0220: Channel [AD] Error Count (RO) ............................................................................162  
Table 67. Register 0x0224: UT_Scratch Register (R/W) ......................................................................................162  
Table 68. Register 0x0225: PA Response Register (R/W) ...................................................................................163  
Table 69. Register 0x0226: Size Mode Register (R/W) ........................................................................................164  
Table 70. Register 0x0400: OHP Macrocell Version Number (RO) .....................................................................165  
Table 71. Register 0x0401: OHP Interrupt (RO) ..................................................................................................165  
Table 72. Registers 0x04020x0409: Delta/Event (COR/W) ..............................................................................165  
Table 73. Registers 0x040A0x040D: Receive/Transmit State (RO) .................................................................168  
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) ............................................................169  
Table 75. Registers 0x040F, 0x0411, 0x0413, 0x0415: Mask Bits (R/W) ............................................................170  
Table 76. Registers 0x04160x0419: Toggles (R/W) .........................................................................................171  
Table 77. Registers 0x041A, 0x041C, 0x041E, 0x0420: Continuous N Times Detect (CNTD) Values (R/W) .....171  
Table 78. Registers 0x041B, 0x041D, 0x041F, 0x0421: Continuous N Times Detect (CNTD) Values (R/W) .....172  
Table 79. Registers 0x04220x042D: Receive Control (R/W) ............................................................................173  
Table 80. Registers 0x042E: Transmit Control Port A (R/W) ...............................................................................177  
Table 81. Registers 0x042F, 0x0431, 0x0433, 0x0435: Transmit Control (R/W) .................................................180  
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [BD] (R/W) ............................................181  
Table 83. Registers 0x04360x0439: Transmit Control (R/W) ...........................................................................184  
Table 84. Registers 0x043A0x0451: OHP Signal Degrade BER Algorithm Parameters (R/W) ........................185  
Table 85. Registers 0x04520x0469: OHP Signal Fail BER Algorithm Parameters (R/W) ................................186  
Table 86. Ns, L, M, and B Values to Set the BER Indicator .................................................................................187  
Table 87. Ns, L, M, and B Values to Clear the BER Indicator ..............................................................................188  
Table 88. Registers 0x046A0x047D: B1, B2, M1 Error Count (RO) .................................................................189  
Table 89. Registers 0x047E0x0485: Transmit F1, S1, K2, K1 OH Insert Value (R/W) ....................................189  
Table 90. Registers 0x04860x0491: Receive F1, S1, K2, K1 Monitor Value (RO) ...........................................190  
Table 91. Registers 0x04920x04F9: Receive J0 Monitor Value (RO) ..............................................................190  
Table 92. Registers 0x05120x0579: Transmit J0 Insert Value (R/W) ...............................................................190  
Table 93. Registers 0x05AA0x05C1: Transmit Z0 Insert Value (R/W) .............................................................191  
Table 94. Register 0x05C2: Scratch Register (R/W) ............................................................................................191  
Table 95. Register 0x0800: PT Macrocell Version Number (RO) .........................................................................192  
Table 96. Register 0x0801: PT Interrupt (RO) ......................................................................................................192  
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A:  
PT Delta/Event Parameters (COR/W) ..................................................................................................192  
Table 98. Registers 0x08360x083B, 0x08680x0887, 0x08880x088D, 0x08BA0x08D9,  
0x08DA0x08DF, 0x090C0x092B, 0x092C0x0931, 0x095E0x097D:  
PT State Registers (RO) ......................................................................................................................194  
Table 99. Register 0x097E: PT Interrupt Mask Control (R/W) .............................................................................195  
8
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
List of Tables (continued)  
Contents  
Page  
Table 100. Registers 0x097F0x0980, 0x098C0x098D, 0x09990x099A, 0x09A60x09A7: PT Interrupt  
Mask Control (R/W) ............................................................................................................................196  
Table 101. Registers (0x09B3, 0x09BF, 0x09CB, 0x09D7, 0x09E3), (0x09EF, 0x09FB, 0x0A07, 0x0A14, 0x0A20),  
(0x0A2C, 0x0A38, 0x0A44, 0x0A50, 0x0A5C), (0x0A68, 0x0A74, 0x0A80, 0x0A8C, 0x0A98):  
Error Counters (RO) ...........................................................................................................................198  
Table 102. Register 0x0AA4: PT One-Shot Control Parameters (WO) ................................................................198  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5:  
PT Control Parameters (R/W) ............................................................................................................199  
Table 104. Registers 0x0AC60x0AF7: PT Provisioning (R/W) .........................................................................205  
Table 105. Registers 0x0ACC0x0AD1: PT Signal Fail BER Algorithm Parameters (R/W) ...............................206  
Table 106. Registers 0x0AD20x0AD7: PT Signal Degrade BER Algorithm Parameters (R/W) .......................207  
Table 107. Ns, L, M, and B Values to Set the BER Indicator ...............................................................................208  
Table 108. Ns, L, M, and B Values to Clear the BER Indicator ............................................................................209  
Table 109. Registers 0x0AD80x0AF7: Transmit J1 Data Insert (R/W) .............................................................210  
Table 110. Register 0x0AF8: Scratch Register (R/W) ..........................................................................................210  
Table 111. Register 0x1000: DE Macrocell Version Number (RO) ......................................................................211  
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) .......................211  
Table 113. Register 0x1004: Dry Escape Marker (R/W) ......................................................................................213  
Table 114. Registers 0x10100x1015: Sequencer Provisioning Registers (R/W) ..............................................214  
Table 115. Registers 0x10160x1021: Egress Configuration (R/W) ..................................................................215  
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W) .................................................................219  
Table 117. Registers 0x102E0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W) ..............223  
Table 118. Registers 0x10320x1036: Sequencer Cell State Registers (R/W) ..................................................225  
Table 119. Registers 0x10400x1043: Ingress Payload Type and Mode Control (R/W) ...................................225  
Table 120. Receive Type and Mode Control Summary Table (Registers 0x10400x1043) ...............................226  
Table 121. Registers 0x10800x1087: ATM Framer Idle Cell Match Mask (R/W) .............................................227  
Table 122. Registers 0x10880x108F: ATM Idle Cell Registers (R/W) ..............................................................227  
Table 123. Registers 0x10900x1097: ATM Unassigned Cell Match Mask (R/W) .............................................228  
Table 124. Registers 0x10980x109F: ATM Unassigned Cell Registers (R/W) .................................................228  
Table 125. Registers 0x10A00x10A3: ATM Framer State Registers (RO) .......................................................229  
Table 126. Register 0x10A4: ATM X43 Frame Control (R/W) ..............................................................................229  
Table 127. Register 0x10A5: ATM X31 Frame Control (R/W) ..............................................................................230  
Table 128. Register 0x10A6: ATM X31 V/W Values (R/W) ..................................................................................230  
Table 129. Register 0x10A7: ATM X31 X/Y Values (R/W) ...................................................................................231  
Table 130. Register 0x10A8: ATM X31 Z Value (R/W) ........................................................................................231  
Table 131. Register 0x10A9: Frame State Interrupt Mask (R/W) .........................................................................232  
Table 132. Register 0x10AA: Scrambler State Interrupt Mask (R/W) ..................................................................232  
Table 133. Register 0x10AB: ATM Receive Debug Register (R/W) .....................................................................233  
Table 134. Registers 0x10B00x10B3: PPP Attach (R/W) .................................................................................234  
Table 135. Registers 0x10E00x10E3: Egress Payload Type and Mode Control (R/W) ...................................234  
Table 136. Transmit Type and Mode Control Summary Table (Registers 0x10E00x10E3) .............................235  
Table 137. Registers 0x10F010FB: PPP Header Value Detach (R/W) ............................................................235  
Table 138. Registers 0x10FC0x10FF: PPP Header Detach Search (R/W) ......................................................236  
Table 139. Registers 0x11000x1107: ATM/HDLC/SDL FramerCondition Counter 1  
(PMRST Update) (RO) .......................................................................................................................238  
Table 140. Registers 0x11080x110F: ATM/HDLC/SDL FramerCondition Counter 2  
(PMRST Update) (RO) .......................................................................................................................239  
Table 141. Registers 0x11100x1117: CRC CheckerBad Packet Counter (PMRST Update) (RO) ...............240  
Table 142. Registers 0x11180x111F: PPP DetachMismatched Header Counter (PMRST Update) (RO) ...241  
Table 143. Registers 0x11200x1127: Receive Good Packet/Cell Counter (PMRST Update) (RO) .................242  
Table 144. Registers 0x11280x112F: Transmit Good Packet/Cell Counter (PMRST Update) (RO) ................243  
Agere Systems Inc.  
9
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
List of Tables (continued)  
Contents  
Page  
Table 145. Registers 0x11800x1186: Interrupt Masks for Packet Counters (R/W) ..........................................243  
Table 146. Registers 0x11810x1187: Interrupts for Packet Counters (COR/W) ..............................................244  
Table 147. Registers 0x12000x1213, 0x12F0: ATM Transmit Registers (R/W) ...............................................244  
Table 148. Registers 0x14000x1403: SDL State Registers (RO) .....................................................................246  
Table 149. Registers 0x14700x1473: A Message Mailbox Registers (RO) ......................................................247  
Table 150. Registers 0x14800x1483: A Message Mailbox Registers (RO) ......................................................247  
Table 151. Registers 0x14900x1493: A Message Mailbox Registers (RO) ......................................................247  
Table 152. Registers 0x14A00x14A3: B Message Mailbox Registers (RO) .....................................................247  
Table 153. Registers 0x14B00x14B3: B Message Mailbox Registers (RO) .....................................................248  
Table 154. Registers 0x14C00x14C3: B Message Mailbox Registers (RO) .....................................................248  
Table 155. Registers 0x14D00x14D3: SDL Interrupt Masks (R/W) ..................................................................248  
Table 156. Registers 0x14E00x14E3: SDL Interrupts (COR/W) ......................................................................249  
Table 157. Register 0x14F0: SDL Receive Configuration Registers (R/W) .........................................................249  
Table 158. Registers 0x16000x1607: SDL Transmit Registers (R/W) ..............................................................250  
Table 159. Recommended Operating Conditions ................................................................................................254  
Table 160. 3.3 V Logic Interface Characteristics ..................................................................................................254  
Table 161. LVPECL Interface Characteristics ......................................................................................................254  
Table 162. LVPECL 3.3 V Logic Interface Characteristics ...................................................................................255  
Table 163. Microprocessor Interface Synchronous Write Cycle Specifications ...................................................257  
Table 164. Microprocessor Interface Synchronous Read Cycle Specifications ...................................................259  
Table 165. Microprocessor Interface Asynchronous Write Cycle Specifications ..................................................261  
Table 166. Microprocessor Interface Asynchronous Read Cycle Specifications .................................................263  
Table 167. Receive Line-Side Timing Specifications ...........................................................................................266  
Table 168. Transmit Line-Side Timing Specifications ..........................................................................................267  
Table 169. Transmit UTOPIA Interface Timing Specifications .............................................................................268  
Table 170. Receive UTOPIA Interface Timing Specifications ..............................................................................269  
Table 171. UTOPIA Interface Clock Specifications ..............................................................................................270  
Table 172. Transmit TOAC Interface Timing Specifications .................................................................................271  
Table 173. Receive TOAC Interface Timing Specifications ..................................................................................272  
Table 174. SONET/SDH Comparisons ................................................................................................................274  
Table 175. SONET/SDH New Terminology ..........................................................................................................274  
10  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Description  
The TDAT042G5 SONET/SDH interface device provides a versatile solution for quad STS-3/STM-1,  
quad STS-12/STM-4, and for single STS-48/STM-16 point-to-point datacom/telecom applications. Constructed  
using Agere Systems Inc.s state-of-the-art CMOS technology, this device incorporates integrated SONET/SDH  
framing, section and line overhead insertion and extraction, path termination, and generation.  
The integrated circuit provides complete encapsulation and decapsulation for packet and ATM streams into and  
out of SONET/SDH payloads.  
Communication with the device is accomplished through a generic microprocessor interface. The device supports  
separate address and data buses.  
With the device, construction of all types of point-to-point STS-3/STS-12/STS-48 (STM-1/STM-4/  
STM-16) data equipment is simplified and cost-reduced, allowing extremely efficient solutions.  
Pin Information  
TDAT042G5 is available in a 600-pin LBGA package. The pin diagram is shown in Figure 1. For convenience, pin  
assignments are listed by pin order in Table 1 and by signal name in Table 2. The pin descriptions as well as the  
pin assignments are listed in Table 3Table 10 and are grouped by interface type.  
AR  
AP  
AN  
AM  
AL  
AK  
AJ  
AH  
AG  
AF  
AE  
AD  
AC  
AB  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35  
10 12 14 16 18 20 22 24 26 28 30 32 34  
2
4
6
8
5-7175(F)  
Figure 1. Pin Diagram of 600-Pin LBGA (Bottom View)  
Agere Systems Inc.  
11  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VDDD  
VDDD  
GNDD  
GNDD  
VDDD  
VDDD  
GNDD  
GNDD  
B1  
B2  
B3  
B4  
VDDD  
VDDD  
GNDD  
GNDD  
C1  
C2  
C3  
C4  
GNDD  
GNDD  
VDDD  
D1  
D2  
D3  
D4  
GNDD  
GNDD  
GNDD  
VDDD  
GNDD  
B5 NC  
C5 NC  
D5 NC  
B6  
VDDA  
C6  
GNDA  
D6 NC  
B7 INT  
C7 RST  
C8 MPCLK  
C9 DS  
D7 PMRST  
D8 MPMODE  
D9 R/W  
B8 CS  
A9 DATA[1]  
A10 DATA[6]  
A11 DATA[10]  
A12 DATA[15]  
A13 GNDD  
A14 ADDR[8]  
A15 ADDR[12]  
A16 GNDD  
A17 VDDD  
A18 VDDD  
A19 NC  
B9 DATA[0]  
B10 DATA[5]  
B11 DATA[9]  
B12 DATA[14]  
B13 ADDR[3]  
B14 ADDR[7]  
B15 ADDR[11]  
B16 ADDR[15]  
B17 NC  
C10 DATA[4]  
C11 DATA[8]  
C12 DATA[13]  
C13 ADDR[2]  
C14 ADDR[6]  
C15 ADDR[10]  
C16 ADDR[14]  
C17 NC  
D10 DATA[3]  
D11 DATA[7]  
D12 DATA[12]  
D13 ADDR[1]  
D14 ADDR[5]  
D15 NC  
D16 ADDR[13]  
D17 NC  
B18 NC  
C18 NC  
D18 NC  
B19 NC  
C19 NC  
D19 NC  
A20 GNDD  
A21 NC  
B20 NC  
C20 NC  
D20 NC  
B21 NC  
C21 NC  
D21 NC  
A22 NC  
B22 NC  
C22 NC  
D22 NC  
A23 GNDD  
A24 NC  
B23 NC  
C23 NC  
D23 NC  
B24 NC  
C24 NC  
D24 NC  
A25 NC  
B25 NC  
C25 NC  
D25 NC  
A26 NC  
B26 NC  
C26 NC  
D26 NC  
A27 GNDD  
A28 GNDD  
A29 GNDD  
A30 VDDD  
A31 VDDD  
A32 GNDD  
A33 GNDD  
A34 VDDD  
A35 VDDD  
B27 NC  
C27 NC  
D27 VDDD  
D28 NC  
B28 NC  
C28 NC  
B29 NC  
C29 NC  
D29 NC  
B30 NC  
C30 NC  
D30 NC  
B31 NC  
C31 NC  
D31 NC  
B32 GNDD  
B33 GNDD  
B34 VDDD  
B35 VDDD  
C32 GNDD  
C33 VDDD  
C34 GNDD  
C35 GNDD  
D32 VDDD  
D33 GNDD  
D34 GNDD  
D35 GNDD  
Note: NC refers to no connect. Do not connect pins so designated.  
12  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
GNDD  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
VDDD  
NC  
F1  
F2  
F3  
F4  
F5  
VDDD  
TCK  
GNDD  
TMS  
NC  
J31 TxEOP[A]  
N1  
J32 TxSOP/C[A]  
J33 TxPRTY[A]  
J34 TxDATA[A][15]  
J35 TxDATA[A][14]  
N2 TxD[6]N  
VDDD PLL  
GNDD PLL  
VDDD  
NC  
N3 TxD[6]P  
N4 TxD[7]N  
N5 TxD[7]P  
F31 NC  
K1  
K2  
K3  
K4  
K5  
TxD[12]N  
TxD[12]P  
TxD[13]N  
TxD[13]P  
VDDD  
N31 RxDATA[A][15]  
N32 RxDATA[A][14]  
N33 RxDATA[A][13]  
N34 RxDATA[A][12]  
N35 GNDD  
ICT  
F32 NC  
DT  
F33 NC  
ADS  
F34 NC  
E10 DATA[2]  
E11 VDDD  
E12 DATA[11]  
E13 ADDR[0]  
E14 ADDR[4]  
E15 ADDR[9]  
E16 VDDD  
E17 NC  
F35 VDDD  
G1 GNDD  
G2 TDO  
K31 TxDATA[A][13]  
K32 TxDATA[A][12]  
K33 TxDATA[A][11]  
K34 TxDATA[A][10]  
K35 TxDATA[A][9]  
P1  
P2  
P3  
P4  
P5  
TxD[4]N  
TxD[4]P  
TxD[5]N  
VDDD  
G3 TRST  
G4 NC  
G5 TDI  
TxD[5]P  
G31 NC  
L1  
L2  
L3  
L4  
L5  
TxD[10]N  
TxD[10]P  
TxD[11]N  
TxD[11]P  
VDDD  
P31 RxDATA[A][11]  
P32 RxDATA[A][10]  
P33 RxDATA[A][9]  
P34 RxDATA[A][8]  
P35 RxDATA[A][7]  
G32 TxADDR[0]  
G33 TxADDR[1]  
G34 TxCLK[A]  
G35 GNDD  
E18 NC  
E19 NC  
E20 VDDD  
E21 NC  
H1  
H2 TxCKQP  
H3 GNDD  
H4 CLKDIV  
H5 GNDD  
GNDD  
L31 VDDD  
R1  
VDDD  
E22 NC  
L32 TxDATA[A][8]  
L33 TxDATA[A][7]  
L34 TxDATA[A][6]  
L35 TxDATA[A][5]  
M1 TxD[8]N  
R2 TxD[2]N/TxD[B]N  
R3 TxD[2]P/TxD[B]P  
R4 TxD[3]P/TxD[A]P  
R5 TxD[3]N/TxD[A]N  
R31 RxDATA[A][6]  
R32 RxDATA[A][5]  
R33 RxDATA[A][4]  
R34 RxDATA[A][3]  
R35 RxDATA[A][2]  
E23 NC  
E24 NC  
E25 VDDD  
E26 NC  
H31 TxSZ[A]  
H32 TxERR[A]  
H33 TxPA[A]  
H34 TxENB[A]  
H35 GNDD  
E27 NC  
M2 TxD[8]P  
E28 NC  
M3 TxD[9]N  
E29 NC  
M4 TxD[9]P  
E30 NC  
M5  
VDDD  
E31 VDDD  
E32 NC  
J1  
J2  
J3  
J4  
J5  
TxD[14]N  
TxD[14]P  
TxD[15]N  
TxD[15]P  
TxCKQN  
M31 TxDATA[A][4]  
M32 TxDATA[A][3]  
M33 TxDATA[A][2]  
M34 TxDATA[A][1]  
M35 TxDATA[A][0]  
T1  
T2  
T3  
T4  
T5  
GNDD  
TxD[0]P/TxD[D]P  
TxD[1]N/TxD[C]N  
TxD[1]P/TxD[C]P  
VDDD  
E33 NC  
E34 NC  
E35 VDDD  
Note: NC refers to no connect. Do not connect pins so designated.  
Agere Systems Inc.  
13  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)  
Pin  
Signal Name  
Pin  
Signal Name  
GNDD  
Pin  
Signal Name  
Pin  
Signal Name  
T31 VDDD  
Y1  
Y2  
AC31 TxDATA[B][8]  
AC32 TxDATA[B][9]  
AG1 RxD[0]N  
AG2 RxD[0]P  
RxD[13]N/  
T32 RxDATA[A][1]  
RxCLK[B]N  
RxD[13]P/  
T33 RxDATA[A][0]  
Y3  
AC33 TxDATA[B][10]  
AG3 ECLREFLO  
RxCLK[B]P  
T34 RxPRTY[A]  
T35 GNDD  
Y4  
Y5  
GNDD  
VDDD  
AC34 TxDATA[B][11]  
AC35 GNDD  
AG4 ECLREFHI  
AG5 GPIO[3]  
U1 TxFSYNCN  
Y31 VDDD  
AD1 RxD[5]N  
AD2 RxD[5]P  
AG31 RxDATA[B][5]  
AG32 RxDATA[B][6]  
U2 TxD[0]N/  
TxD[D]N  
Y32 TxSZ[B]  
U3 TxFSYNCP  
U4 TxCKP  
Y33 TxCLK[B]  
Y34 TxADDR[3]  
Y35 GNDD  
AD3 RxD[6]N  
AD4 RxD[6]P  
AD5 VDDD  
AG33 RxDATA[B][7]  
AG34 RxDATA[B][8]  
AG35 RxDATA[B][9]  
AH1 GNDD  
U5 TxCKN  
RxD[11]N/  
U31 RxSOP/C[A]  
AA1  
AD31 TxDATA[B][3]  
RxCLK[C]N  
RxD[11]P/RxCLK[C]P  
RxD[12]N/RxD[C]N  
RxD[12]P/RxD[C]P  
U32 RxEOP[A]  
U33 NC  
AA2  
AA3  
AA4  
AD32 TxDATA[B][4]  
AD33 TxDATA[B][5]  
AD34 TxDATA[B][6]  
AD35 TxDATA[B][7]  
AE1 RxD[3]N  
AH2 GPIO[2]  
AH3 GPIO[1]  
U34 RxENB[A]  
U35 VDDD  
AH4 GPIO[0]  
AA5 GNDD  
AH5 TxTOHF  
V1  
V2  
V3  
V4  
V5  
VDDD  
AA31 TxEOP[B]  
AA32 TxSOP/C[B]  
AA33 TxENB[B]  
AA34 TxPA[B]  
AA35 TxERR[B]  
AH31 RxDATA[B][1]  
AH32 RxDATA[B][2]  
AH33 RxDATA[B][3]  
AH34 RxDATA[B][4]  
AH35 GNDD  
VDDD  
AE2 RxD[3]P  
GNDD  
RxCKN/RxD[A]N  
RxCKP/RxD[A]P  
AE3 RxD[4]N  
AE4 RxD[4]P  
AE5 VDDD  
RxD[9]N/RxCLK[D]N  
V31 GNDD  
V32 RxERR[A]  
V33 RxPA[A]  
V34 NC  
AB1  
AB2  
AB3  
AB4  
AE31 VDDD  
AJ1 GNDD  
RxD[9]P/RxCLK[D]P  
RxD[10]N/RxD[D]N  
RxD[10]P/RxD[D]P  
AE32 RxDATA[B][15]  
AE33 TxDATA[B][0]  
AE34 TxDATA[B][1]  
AE35 TxDATA[B][2]  
AF1 RxD[1]N  
AJ2 TxTOHCK  
AJ3 TxTOHD[A]  
AJ4 TxTOHD[B]  
AJ5 TxTOHD[C]  
AJ31 RxEOP[B]  
AJ32 RxSOP/C[B]  
V35 VDDD  
W1 VDDD  
AB5 VDDD  
AB31 TxDATA[B][13]  
AB32 TxDATA[B][12]  
W2 RxD[14]N/  
RxCLK[A]N  
AF2 RxD[1]P  
W3 RxD[14]P/  
RxCLK[A]P  
AB33 TxDATA[B][14]  
AB34 TxDATA[B][15]  
AB35 TxPRTY[B]  
AF3 RxD[2]N  
AF4 RxD[2]P  
AF5 VDDD  
AJ33 RxPRTY[B]  
AJ34 RxDATA[B][0]  
AJ35 GNDD  
W4 RxD[15]N/  
RxD[B]N  
W5 RxD[15]P/  
RxD[B]P  
RxDATA[B][10]  
RxDATA[B][11]  
RxDATA[B][12]  
RxDATA[B][13]  
RxDATA[B][14]  
W31 RxADDR[0]  
W32 RxADDR[1]  
W33 RxCLK[A]  
W34 TxADDR[2]  
W35 RxSZ[A]  
AC1 GNDD  
AF31  
AF32  
AF33  
AF34  
AF35  
AK1 VDDD  
AC2 RxD[7]N  
AC3 RxD[7]P  
AC4 RxD[8]N  
AC5 RxD[8]P  
AK2 TxTOHD[D]  
AK3 RxREF  
AK4 RxTOHF[A]  
AK5 RxTOHCK[A]  
Note: NC refers to no connect. Do not connect pins so designated.  
14  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)  
Pin Signal Name Pin Signal Name Pin Signal Name  
Pin  
Signal Name  
AK31 RxSZ[B]  
AK32 RxERR[B]  
AK33 RxPA[B]  
AL31 VDDD  
AM31 TxADDR[4]  
AM32 VDDD  
AN31 NC  
AL32 RxADDR[3]  
AL33 RxADDR[2]  
AL34 RxCLK[B]  
AL35 VDDD  
AN32 GNDD  
AM33 GNDD  
AN33 VDDD  
AK34 RxENB[B]  
AK35 VDDD  
AM34 GNDD  
AN34 GNDD  
AM35 GNDD  
AN35 GNDD  
AL1 VDDD  
AM1 GNDD  
AN1 GNDD  
AP1 VDDD  
AL2 RxTOHD[A]  
AL3 RxTOHF[B]  
AL4 RxTOHCK[B]  
AL5 VDDD  
AM2 GNDD  
AN2 GNDD  
AP2 VDDD  
AM3 GNDD  
AN3 VDDD  
AP3 GNDD  
AM4 VDDD  
AN4 GNDD  
AP4 GNDD  
AM5 RxTOHD[B]  
AM6 RxTOHD[C]  
AM7 NC  
AN5 RxTOHF[C]  
AN6 GNDD  
AP5 NC  
AL6 RxTOHCK[C]  
AL7 RxTOHCK[D]  
AL8 NC  
AP6 RxTOHF[D]  
AP7 NC  
AN7 RxTOHD[D]  
AN8 RxSZ[D]  
AM8 RxCLK[D]  
AM9 RxENB[D]  
AM10 RxDATA[D][1]  
AM11 RxDATA[D][5]  
AM12 RxDATA[D][10]  
AM13 RxDATA[D][15]  
AM14 TxDATA[D][2]  
AM15 TxDATA[D][7]  
AM16 TxDATA[D][12]  
AM17 TxPRTY[D]  
AM18 TxERR[D]  
AM19 NC  
AP8 RxERR[D]  
AP9 RxSOP/C[D]  
AP10 RxDATA[D][3]  
AP11 RxDATA[D][7]  
AP12 RxDATA[D][12]  
AP13 TxDATA[D][1]  
AP14 TxDATA[D][5]  
AP15 TxDATA[D][10]  
AP16 TxDATA[D][14]  
AP17 TxDATA[D][15]  
AP18 TxPA[D]  
AL9 RxPA[D]  
AN9 RxEOP[D]  
AN10 RxDATA[D][2]  
AN11 RxDATA[D][6]  
AN12 RxDATA[D][11]  
AN13 TxDATA[D][0]  
AN14 TxDATA[D][4]  
AN15 TxDATA[D][9]  
AN16 TxDATA[D][13]  
AN17 TxEOP[D]  
AN18 TxSZ[D]  
AL10 RxDATA[D][0]  
AL11 VDDD  
AL12 RxDATA[D][9]  
AL13 RxDATA[D][14]  
AL14 TxDATA[D][3]  
AL15 TxDATA[D][8]  
AL16 VDDD  
AL17 TxSOP/C[D]  
AL18 VDDD  
AL19 NC  
AN19 NC  
AP19 TxCLK[D]  
AP20 RxADDR[4]  
AP21 RxPA[C]  
AL20 VDDD  
AM20 RxSZ[C]  
AN20 RxCLK[C]  
AN21 RxENB[C]  
AN22 RxDATA[C][1]  
AN23 RxDATA[C][5]  
AN24 RxDATA[C][10]  
AN25 RxDATA[C][15]  
AN26 TxDATA[C][3]  
AN27 TxDATA[C][8]  
AN28 TxDATA[C][12]  
AN29 TxPRTY[C]  
AN30 TxPA[C]  
AL21 RxSOP/C[C]  
AL22 RxDATA[C][3]  
AL23 RxDATA[C][7]  
AL24 RxDATA[C][12]  
AL25 VDDD  
AM21 RxEOP[C]  
AM22 RxDATA[C][2]  
AM23 RxDATA[C][6]  
AM24 RxDATA[C][11]  
AM25 TxDATA[C][0]  
AM26 TxDATA[C][4]  
AM27 TxDATA[C][9]  
AM28 TxDATA[C][13]  
AM29 TxSOP/C[C]  
AM30 TxERR[C]  
AP22 RxDATA[C][0]  
AP23 RxDATA[C][4]  
AP24 RxDATA[C][9]  
AP25 RxDATA[C][14]  
AP26 TxDATA[C][2]  
AP27 TxDATA[C][7]  
AP28 TxDATA[C][11]  
AP29 TxDATA[C][15]  
AP30 TxENB[C]  
AL26 TxDATA[C][5]  
AL27 TxDATA[C][10]  
AL28 TxDATA[C][14]  
AL29 TxEOP[C]  
AL30 TxSZ[C]  
Note: NC refers to no connect. Do not connect pins so designated.  
Agere Systems Inc.  
15  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 1. Pin Assignments for 600-Pin LBGA by Pin Number Order (continued)  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
AP31 TxCLK[C]  
AP32 GNDD  
AP33 GNDD  
AP34 VDDD  
AP35 VDDD  
AR1 VDDD  
AR2 VDDD  
AR3 GNDD  
AR4 GNDD  
AR5 VDDD  
AR6 VDDD  
AR16 GNDD  
AR26 TxDATA[C][1]  
AR27 TxDATA[C][6]  
AR28 GNDD  
AR29 GNDD  
AR30 VDDD  
AR7 GNDD  
AR17 TxENB[D]  
AR18 VDDD  
AR8 GNDD  
AR9 RxPRTY[D]  
AR10 RxDATA[D][4]  
AR11 RxDATA[D][8]  
AR12 RxDATA[D][13]  
AR13 GNDD  
AR19 VDDD  
AR20 GNDD  
AR21 RxERR[C]  
AR22 RxPRTY[C]  
AR23 GNDD  
AR31 VDDD  
AR32 GNDD  
AR33 GNDD  
AR34 VDDD  
AR14 TxDATA[D][6]  
AR15 TxDATA[D][11]  
AR24 RxDATA[C][8]  
AR25 RxDATA[C][13]  
AR35 VDDD  
Note: NC refers to no connect. Do not connect pins so designated.  
16  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name  
Signal Name  
Pin  
Signal Name  
DS  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
ADDR[0]  
ADDR[1]  
ADDR[2]  
ADDR[3]  
ADDR[4]  
ADDR[5]  
ADDR[6]  
ADDR[7]  
ADDR[8]  
ADDR[9]  
ADDR[10]  
ADDR[11]  
ADDR[12]  
ADDR[13]  
ADDR[14]  
ADDR[15]  
ADS  
E13  
D13  
C13  
B13  
E14  
D14  
C14  
B14  
A14  
E15  
C15  
B15  
A15  
D16  
C16  
B16  
E9  
C9  
E8  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
G1  
G35  
H1  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD PLL  
GPIO[0]  
GPIO[1]  
GPIO[2]  
GPIO[3]  
ICT  
AP3  
AP32  
AP33  
AP4  
AR3  
AR4  
AR7  
AR8  
AR13  
AR16  
AR20  
AR23  
AR28  
AR29  
AR32  
AR33  
E4  
DT  
ECLREFHI  
ECLREFLO  
GNDA  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
AG4  
AG3  
C6  
H3  
H5  
A3  
H35  
N1  
A4  
A7  
N35  
T1  
A8  
A13  
A16  
A20  
A23  
A27  
A28  
A29  
A32  
A33  
B3  
T35  
V3  
V31  
Y1  
Y4  
Y35  
AA5  
AC1  
AC35  
AH1  
AH35  
AJ1  
CLKDIV  
CS  
H4  
AH4  
AH3  
AH2  
AG5  
E7  
B8  
DATA[0]  
DATA[1]  
DATA[2]  
DATA[3]  
DATA[4]  
DATA[5]  
DATA[6]  
DATA[7]  
DATA[8]  
DATA[9]  
DATA[10]  
DATA[11]  
DATA[12]  
DATA[13]  
DATA[14]  
DATA[15]  
B9  
B4  
A9  
B32  
B33  
C1  
E10  
D10  
C10  
B10  
A10  
D11  
C11  
B11  
A11  
E12  
D12  
C12  
B12  
A12  
AJ35  
AM1  
AM2  
AM3  
AM33  
AM34  
AM35  
AN1  
AN2  
AN4  
AN6  
AN32  
AN34  
AN35  
INT  
B7  
C2  
MPCLK  
MPMODE  
NC  
C8  
C4  
D8  
C32  
C34  
C35  
D1  
A19  
A21  
A22  
A24  
A25  
A26  
B5  
NC  
NC  
NC  
D2  
NC  
D3  
NC  
D33  
D34  
D35  
F3  
NC  
NC  
B17  
B18  
B19  
NC  
NC  
Note: NC refers to no connect. Do not connect pins so designated.  
Agere Systems Inc.  
17  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
NC  
Pin  
Signal Name  
RxD[6]N  
Pin  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
B31  
C5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
D21  
D22  
D23  
D24  
D25  
D26  
D28  
D29  
D30  
D31  
E2  
V34  
AL8  
AD3  
AD4  
AC2  
AC3  
AC4  
AC5  
AB1  
AB2  
AB3  
AB4  
NC  
RxD[6]P  
NC  
AL19  
AM7  
AM19  
AN19  
AN31  
AP5  
AP7  
D7  
RxD[7]N  
NC  
RxD[7]P  
NC  
RxD[8]N  
NC  
RxD[8]P  
RxD[9]N/RxCLK[D]N  
RxD[9]P/RxCLK[D]P  
RxD[10]N/RxD[D]N  
RxD[10]P/RxD[D]P  
NC  
NC  
NC  
PMRST  
R/W  
RxD[11]N/RxCLK[C]N  
RxD[11]P/RxCLK[C]P  
RxD[12]N/RxD[C]N  
RxD[12]P/RxD[C]P  
RxD[13]N/RxCLK[B]N  
RxD[13]P/RxCLK[B]P  
RxD[14]N/RxCLK[A]N  
RxD[14]P/RxCLK[A]P  
RxD[15]N/RxD[B]N  
RxD[15]P/RxD[B]P  
RxDATA[A][0]  
D9  
AA1  
AA2  
AA3  
AA4  
Y2  
E6  
RST  
C7  
E17  
E18  
E19  
E21  
E22  
E23  
E24  
E26  
E27  
E28  
E29  
E30  
E32  
E33  
E34  
F5  
RxADDR[0]  
RxADDR[1]  
RxADDR[2]  
RxADDR[3]  
RxADDR[4]  
RxCKN/RxD[A]N  
RxCKP/RxD[A]P  
RxCLK[A]  
RxCLK[B]  
RxCLK[C]  
RxCLK[D]  
RxD[0]N  
RxD[0]P  
RxD[1]N  
RxD[1]P  
RxD[2]N  
RxD[2]P  
RxD[3]N  
RxD[3]P  
RxD[4]N  
RxD[4]P  
RxD[5]N  
RxD[5]P  
W31  
W32  
AL33  
AL32  
AP20  
V4  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
D5  
Y3  
W2  
W3  
V5  
W4  
W33  
AL34  
AN20  
AM8  
AG1  
AG2  
AF1  
AF2  
AF3  
AF4  
AE1  
AE2  
AE3  
AE4  
AD1  
AD2  
W5  
T33  
T32  
R35  
R34  
R33  
R32  
R31  
P35  
P34  
P33  
P32  
P31  
N34  
N33  
N32  
RxDATA[A][1]  
RxDATA[A][2]  
RxDATA[A][3]  
RxDATA[A][4]  
RxDATA[A][5]  
RxDATA[A][6]  
RxDATA[A][7]  
F31  
F32  
F33  
F34  
G4  
RxDATA[A][8]  
D6  
RxDATA[A][9]  
D15  
D17  
D18  
D19  
D20  
RxDATA[A][10]  
RxDATA[A][11]  
RxDATA[A][12]  
RxDATA[A][13]  
RxDATA[A][14]  
G31  
U33  
Note: NC refers to no connect. Do not connect pins so designated.  
18  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
RxDATA[A][15]  
RxDATA[B][0]  
RxDATA[B][1]  
RxDATA[B][2]  
RxDATA[B][3]  
RxDATA[B][4]  
RxDATA[B][5]  
RxDATA[B][6]  
RxDATA[B][7]  
RxDATA[B][8]  
RxDATA[B][9]  
RxDATA[B][10]  
RxDATA[B][11]  
RxDATA[B][12]  
RxDATA[B][13]  
RxDATA[B][14]  
N31  
RxDATA[D][2]  
RxDATA[D][3]  
RxDATA[D][4]  
RxDATA[D][5]  
RxDATA[D][6]  
RxDATA[D][7]  
RxDATA[D][8]  
RxDATA[D][9]  
AN10  
AP10  
AR10  
AM11  
AN11  
AP11  
AR11  
AL12  
RxSOP/C[A]  
RxSOP/C[B]  
RxSOP/C[C]  
RxSOP/C[D]  
RxSZ[A]  
U31  
AJ32  
AL21  
AP9  
W35  
AK31  
AM20  
AN8  
AK5  
AL4  
AL6  
AL7  
AL2  
AM5  
AM6  
AN7  
AK4  
AL3  
AN5  
AP6  
F2  
TxCLK[B]  
Y33  
AP31  
AP19  
U2  
T2  
AJ34  
AH31  
AH32  
AH33  
AH34  
AG31  
AG32  
AG33  
AG34  
AG35  
AF31  
AF32  
AF33  
AF34  
AF35  
TxCLK[C]  
TxCLK[D]  
TxD[0]N/TxD[D]N  
TxD[0]P/TxD[D]P  
TxD[1]N/TxD[C]N  
TxD[1]P/TxD[C]P  
TxD[2]N/TxD[B]N  
TxD[2]P/TxD[B]P  
TxD[3]N/TxD[A]N  
TxD[3]P/TxD[A]P  
TxD[4]N  
RxSZ[B]  
T3  
RxSZ[C]  
T4  
RxSZ[D]  
R2  
R3  
R5  
R4  
P1  
P2  
P3  
P5  
N2  
N3  
N4  
N5  
M1  
M2  
M3  
M4  
L1  
RxDATA[D][10] AM12  
RxDATA[D][11] AN12  
RxDATA[D][12] AP12  
RxDATA[D][13] AR12  
RxDATA[D][14] AL13  
RxDATA[D][15] AM13  
RxTOHCK[A]  
RxTOHCK[B]  
RxTOHCK[C]  
RxTOHCK[D]  
RxTOHD[A]  
RxTOHD[B]  
RxTOHD[C]  
RxTOHD[D]  
RxTOHF[A]  
RxTOHF[B]  
RxTOHF[C]  
RxTOHF[D]  
TCK  
TxD[4]P  
TxD[5]N  
RxENB[A]  
RxENB[B]  
RxENB[C]  
RxENB[D]  
RxEOP[A]  
RxEOP[B]  
RxEOP[C]  
RxEOP[D]  
RxERR[A]  
RxERR[B]  
RxERR[C]  
RxERR[D]  
RxPA[A]  
U34  
AK34  
AN21  
AM9  
U32  
TxD[5]P  
TxD[6]N  
RxDATA[B][15] AE32  
TxD[6]P  
RxDATA[C][0]  
RxDATA[C][1]  
RxDATA[C][2]  
RxDATA[C][3]  
RxDATA[C][4]  
RxDATA[C][5]  
RxDATA[C][6]  
RxDATA[C][7]  
RxDATA[C][8]  
RxDATA[C][9]  
AP22  
AN22  
AM22  
AL22  
AP23  
AN23  
AM23  
AL23  
AR24  
AP24  
TxD[7]N  
TxD[7]P  
AJ31  
AM21  
AN9  
TxD[8]N  
TxD[8]P  
TDI  
G5  
TxD[9]N  
V32  
TDO  
G2  
TxD[9]P  
AK32  
AR21  
AP8  
TMS  
F4  
TxD[10]N  
TRST  
G3  
TxD[10]P  
L2  
TxADDR[0]  
TxADDR[1]  
TxADDR[2]  
TxADDR[3]  
TxADDR[4]  
TxCKN  
G32  
G33  
W34  
Y34  
AM31  
U5  
TxD[11]N  
L3  
V33  
TxD[11]P  
L4  
RxDATA[C][10] AN24  
RxDATA[C][11] AM24  
RxDATA[C][12] AL24  
RxDATA[C][13] AR25  
RxDATA[C][14] AP25  
RxDATA[C][15] AN25  
RxPA[B]  
AK33  
AP21  
AL9  
TxD[12]N  
K1  
K2  
K3  
K4  
J1  
RxPA[C]  
TxD[12]P  
RxPA[D]  
TxD[13]N  
RxPRTY[A]  
RxPRTY[B]  
RxPRTY[C]  
RxPRTY[D]  
RxREF  
T34  
TxD[13]P  
AJ33  
AR22  
AR9  
TxCKP  
U4  
TxD[14]N  
TxCKQN  
J5  
TxD[14]P  
J2  
RxDATA[D][0]  
RxDATA[D][1]  
AL10  
TxCKQP  
H2  
TxD[15]N  
J3  
AM10  
AK3  
TxCLK[A]  
G34  
TxD[15]P  
J4  
Note: NC refers to no connect. Do not connect pins so designated.  
Agere Systems Inc.  
19  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
TxDATA[A][0]  
TxDATA[A][1]  
TxDATA[A][2]  
TxDATA[A][3]  
TxDATA[A][4]  
TxDATA[A][5]  
TxDATA[A][6]  
TxDATA[A][7]  
TxDATA[A][8]  
TxDATA[A][9]  
TxDATA[A][10]  
TxDATA[A][11]  
TxDATA[A][12]  
TxDATA[A][13]  
TxDATA[A][14]  
TxDATA[A][15]  
TxDATA[B][0]  
TxDATA[B][1]  
TxDATA[B][2]  
TxDATA[B][3]  
TxDATA[B][4]  
TxDATA[B][5]  
TxDATA[B][6]  
TxDATA[B][7]  
TxDATA[B][8]  
TxDATA[B][9]  
TxDATA[B][10]  
TxDATA[B][11]  
TxDATA[B][12]  
TxDATA[B][13]  
TxDATA[B][14]  
TxDATA[B][15]  
TxDATA[C][0]  
TxDATA[C][1]  
TxDATA[C][2]  
M35  
M34  
TxDATA[C][3]  
TxDATA[C][4]  
TxDATA[C][5]  
TxDATA[C][6]  
TxDATA[C][7]  
TxDATA[C][8]  
TxDATA[C][9]  
TxDATA[C][10]  
AN26  
AM26  
AL26  
AR27  
AP27  
AN27  
AM27  
AL27  
TxEOP[C]  
TxEOP[D]  
TxERR[A]  
TxERR[B]  
TxERR[C]  
TxERR[D]  
TxFSYNCN  
TxFSYNCP  
TxPA[A]  
AL29  
AN17  
H32  
AA35  
AM30  
AM18  
U1  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
A17  
A18  
A30  
A31  
A34  
A35  
B1  
M33  
M32  
M31  
L35  
L34  
L33  
U3  
B2  
L32  
TxDATA[C][11] AP28  
TxDATA[C][12] AN28  
TxDATA[C][13] AM28  
H33  
AA34  
AN30  
AP18  
J33  
B34  
B35  
C3  
K35  
TxPA[B]  
K34  
TxPA[C]  
K33  
TxDATA[C][14]  
AL28  
TxPA[D]  
C33  
D4  
K32  
TxDATA[C][15] AP29  
TxPRTY[A]  
TxPRTY[B]  
TxPRTY[C]  
TxPRTY[D]  
TxSOP/C[A]  
TxSOP/C[B]  
TxSOP/C[C]  
TxSOP/C[D]  
TxSZ[A]  
K31  
TxDATA[D][0]  
TxDATA[D][1]  
TxDATA[D][2]  
TxDATA[D][3]  
TxDATA[D][4]  
TxDATA[D][5]  
TxDATA[D][6]  
TxDATA[D][7]  
TxDATA[D][8]  
TxDATA[D][9]  
AN13  
AP13  
AM14  
AL14  
AN14  
AP14  
AR14  
AM15  
AL15  
AN15  
AB35  
AN29  
AM17  
J32  
D27  
D32  
E1  
J35  
J34  
AE33  
AE34  
AE35  
AD31  
AD32  
AD33  
AD34  
AD35  
AC31  
AC32  
AC33  
AC34  
AB32  
AB31  
AB33  
AB34  
AM25  
AR26  
AP26  
E5  
AA32  
AM29  
AL17  
H31  
Y32  
E11  
E16  
E20  
E25  
E31  
E35  
F1  
TxSZ[B]  
TxSZ[C]  
AL30  
AN18  
AJ2  
TxDATA[D][10] AP15  
TxDATA[D][11] AR15  
TxDATA[D][12] AM16  
TxDATA[D][13] AN16  
TxDATA[D][14] AP16  
TxDATA[D][15] AP17  
TxSZ[D]  
TxTOHCK  
TxTOHD[A]  
TxTOHD[B]  
TxTOHD[C]  
TxTOHD[D]  
TxTOHF  
F35  
K5  
AJ3  
AJ4  
L5  
AJ5  
L31  
M5  
AK2  
AH5  
B6  
TxENB[A]  
TxENB[B]  
TxENB[C]  
TxENB[D]  
TxEOP[A]  
TxEOP[B]  
H34  
AA33  
AP30  
AR17  
J31  
P4  
VDDA  
R1  
VDDD  
A1  
T5  
VDDD  
A2  
T31  
U35  
V1  
VDDD  
A5  
AA31  
VDDD  
A6  
Note: NC refers to no connect. Do not connect pins so designated.  
20  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 2. Pin Assignments for 600-Pin LBGA by Signal Name (continued)  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
Signal Name  
Pin  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
V2  
V35  
W1  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
AK1  
AK35  
AL1  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
AL35  
AM4  
AM32  
AN3  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD  
VDDD PLL  
AR2  
AR5  
AR6  
Y5  
AL5  
AR18  
AR19  
AR30  
AR31  
AR34  
AR35  
E3  
Y31  
AB5  
AD5  
AE5  
AE31  
AF5  
AL11  
AL16  
AL18  
AL20  
AL25  
AL31  
AN33  
AP1  
AP2  
AP34  
AP35  
AR1  
Note: NC refers to no connect. Do not connect pins so designated.  
Agere Systems Inc.  
21  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Note:3.3 V CMOS logic inputs are 5 V tolerant. Logic inputs can be driven from standard TTL levels, and logic out-  
puts can drive standard TTL inputs. All LVPECL buffers are differential. LVPECL is compliant with low-volt-  
age (3.3 V) pseudo-emitter-coupled logic interface levels. All PECL outputs, including ECLREFHI and  
ECLREFLO require terminating resistors. The required termination for the PECL buffers is 50 to a termi-  
nating voltage of VDDD 2 V. The Thevenin equivalent is also acceptable (130 to VDDD and 82 to  
GNDD). Other termination styles are not recommended. LVPECL inputs with a / in the name indicate multiple  
functionality. The name preceding the / is the function in STS-48/STM-16 mode. The name after the / is the  
function in STS-3/STM-1 or STS-12/STM-4 mode.  
Table 3. Pin Descriptions—Line Interface Signals  
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally  
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid-  
ered to be NC (no connect).  
Pin  
Symbol  
Type  
I/O  
Name/Description  
V5  
RxCKP/  
RxD[A]P  
RxCKN/  
RxD[A]N  
LVPECL  
I
Receive Line Clock (STS-48/STM-16)/Receive Line Data Input Channel  
A. In STS-48/STM-16 mode, these pins function as receive line clock. This  
155.52 MHz clock comes from an external clock data recovery circuit. This  
clock is used to clock in the RxD[15:0] receive line data inputs.  
V4  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive  
data input channel A at 155.52 Mbits/s or 622.08 Mbits/s, respectively.  
This buffer is internally disabled when not in STS-48/STM-16 mode and  
channel A is disabled. This buffer is internally disabled through proper pro-  
visioning when the input is not active.  
AG2  
AG1  
AF2  
AF1  
AF4  
AF3  
AE2  
AE1  
AE4  
AE3  
AD2  
AD1  
AD4  
AD3  
AC3  
AC2  
AC5  
AC4  
AB2  
RxD[0]P  
RxD[0]N  
RxD[1]P  
RxD[1]N  
RxD[2]P  
RxD[2]N  
RxD[3]P  
RxD[3]N  
RxD[4]P  
RxD[4]N  
RxD[5]P  
RxD[5]N  
RxD[6]P  
RxD[6]N  
RxD[7]P  
RxD[7]N  
RxD[8]P  
RxD[8]N  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
I
Receive Line Data Inputs (STS-48/STM-16). In STS-48/STM-16 mode,  
these pins function as receive line data inputs [0:8]. The remaining receive  
line data inputs [9:15] are listed below and are multiplexed for use in the  
STS-3/STM-1 or STS-12/STM-4 modes.  
The 2.488 Gbits/s STS-48/STM-16 serial data stream is converted to a  
155.52 Mbits/s parallel 16-bit word external to TDAT042G5 by a demulti-  
plexer.  
All 32 differential data input pins, RxD[15:0]P/N, are used as the parallel  
data input bus in the STS-48/STM-16 mode. These pins constitute a  
155.52 Mbits/s parallel 16-bit word-aligned to the RxCKP/N 155.52 MHz  
receive line clock. RxD[15] is the most significant bit and is the first bit  
received. RxD[0] is the least significant bit and is the last bit received.  
This buffer is internally disabled through proper provisioning when the input  
is not active.  
RxD[9]P/  
RxCLK[D]P  
RxD[9]N/  
I
Receive Line Data Input [9]/Receive Line Clock Channel D. In STS-48/  
STM-16 mode, these pins function as receive line data input [9] at  
155.52 Mbits/s.  
AB1  
RxCLK[D]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as receive  
line clock channel D at either 155.52 MHz (STS-3/STM-1) or 622.08 MHz  
(STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16 mode and  
channel D is disabled. This buffer is internally disabled through proper pro-  
visioning when the input is not active.  
22  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 3. Pin DescriptionsLine Interface Signals (continued)  
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally  
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid-  
ered to be NC (no connect).  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AB4  
RxD[10]P/  
RxD[D]P  
LVPECL  
I
Receive Line Data Input [10]/Receive Line Data Input  
Channel D. In STS-48/STM-16 mode, these pins function as  
receive line data input [10] at 155.52 Mbits/s.  
AB3  
RxD[10]N/  
RxD[D]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line data input channel D at either 155.52 Mbits/s (STS-3/  
STM-1) or 622.08 Mbits/s (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel D is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
AA2  
AA1  
RxD[11]P/  
RxCLK[C]P  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
I
I
I
I
Receive Line Data Input [11]/Receive Line Clock Channel C.  
In STS-48/STM-16 mode, these pins function as receive line data  
input [11] at 155.52 Mbits/s.  
RxD[11]N/  
RxCLK[C]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line clock channel C at either 155.52 MHz (STS-3/STM-1)  
or 622.08 MHz (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel C is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
AA4  
AA3  
RxD[12]P/  
RxD[C]P  
Receive Line Data Input [12]/Receive Line Data Input  
Channel C. In STS-48/STM-16 mode, these pins function as  
receive line data input [12] at 155.52 Mbits/s.  
RxD[12]N/  
RxD[C]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line data input channel C at either 155.52 Mbits/s (STS-3/  
STM-1) or 622.08 Mbits/s (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel C is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
Y3  
Y2  
RxD[13]P/  
RxCLK[B]P  
Receive Line Data Input [13]/Receive Line Clock Channel B.  
In STS-48/STM-16 mode, these pins function as receive line data  
input [13] at 155.52 Mbits/s.  
RxD[13]N/  
RxCLK[B]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line clock channel B at either 155.52 MHz (STS-3/STM-1)  
or 622.08 MHz (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel B is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
W3  
W2  
RxD[14]P/  
RxCLK[A]P  
Receive Line Data Input [14]/Receive Line Clock Channel A.  
In STS-48/STM-16 mode, these pins function as receive line data  
input [14] at 155.52 Mbits/s.  
RxD[14]N/  
RxCLK[A]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line clock channel A at either 155.52 MHz (STS-3/STM-1)  
or 622.08 MHz (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel A is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
Agere Systems Inc.  
23  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 3. Pin DescriptionsLine Interface Signals (continued)  
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally  
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid-  
ered to be NC (no connect).  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
W5  
RxD[15]P/  
RxD[B]P  
LVPECL  
I
Receive Line Data Input [15]/Receive Line Data Input  
Channel B. In STS-48/STM-16 mode, these pins function as  
receive line data input [15] at 155.52 Mbits/s.  
W4  
RxD[15]N/  
RxD[B]N  
In STS-3/STM-1 or STS-12/STM-4 mode, these pins function as  
receive line data input channel B at either 155.52 Mbits/s  
(STS-3/STM-1) or 622.08 Mbits/s (STS-12/STM-4).  
This buffer is internally disabled when not in STS-48/STM-16  
mode and channel B is disabled. This buffer is internally disabled  
through proper provisioning when the input is not active.  
H4  
CLKDIV  
3.3 V  
(5 V tolerant)  
Iu Clock Division. This pin controls a divider in the line transmit  
block to create a 77.76 MHz clock from either the 155.52 MHz  
STS-3/STM-1 or STS-48/STM-16 transmit line clock, or the  
622.08 MHz STS-12/STM-4 transmit line clock, TxCKP/N.  
CLKDIV = 1 for STS-12/STM-4 (divide by 8).  
CLKDIV = 0 for STS-3/STM-1 and STS-48 /STM-16 (divide by 2).  
AG3  
AG4  
ECLREFLO  
ECLREFHI  
O
O
Reference Voltage for LVPECL I/O Buffers. ECLREFLO and  
ECLREFHI are buffer outputs which provide the reference for the  
output level of theLVPECL output buffers. ECLREFLO and ECL-  
REFHI must be connected to a 50 source of VDDD 2 V.No  
user-accessible signal is present on these pins.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
This may be obtained from a passive voltage divider of a 130 resistor connected from VDDD to one end of an 82 resistor, the other end of  
which is connected to GNDD.  
Note: The TDAT042G5 has internal circuitry that is associated with the buffer section of the chip. This section  
monitors the voltage levels of REFLO and REFHI. A very low frequency calibration process, during which  
the values at the ECLREFLO and ECLREFHI pins are continuously monitored, is performed to allow the  
drive capactity of remaining buffers to be adjusted within true PECL levels. Therefore, it is important to ter-  
minate the ECLREFLO and ECLREFHI outputs in exactly the same way as you would terminate LVPECL  
outputs.  
24  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 3. Pin DescriptionsLine Interface Signals (continued)  
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally  
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid-  
ered to be NC (no connect).  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
U4  
U5  
TxCKP  
TxCKN  
LVPECL  
I
Transmit Line Clock. When in STS-48/STM-16 mode, this clock  
is a 155.52 MHz input and clocks out TxD[15:0]P/N or TxD[D:A].  
When in STS-12/STM-4 mode, this clock is a 622.08 MHz input  
and clocks out TxD[D:A]P/N.  
When in STS-3/STM-1 mode, this clock is a 155.52 MHz input  
and clocks out TxD[D:A]P/N.  
U3  
U1  
TxFSYNCP  
TxFSYNCN  
LVPECL  
LVPECL  
Id Transmit Line Frame Sync. This input is the external 8 kHz  
transmit line frame sync. Driving this input is optional. If undriven  
Iu  
from an external source, these pins must be no connects. When  
this input is used, it must be (1) synchronized to TxCKP/N, and (2)  
at least one TxCKP/N cycle wide, up to a maximum of 1 frame  
period minus 2 TxCKP/N cycles wide.  
T2  
U2  
TxD[0]P/  
TxD[D]P  
O
O
O
O
Transmit Line Data Output [0]/Transmit Line Data Output  
Channel D. In STS-48/STM-16 mode, the pins function as trans-  
mit line data output [0] at 155.52 Mbits/s.  
TxD[0]N/  
TxD[D]N  
In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as  
transmit data output channel D at either 155.52 Mbits/s or  
622.08 Mbits/s.  
This buffer is internally disabled through proper provisioning when  
the input is not active.  
T4  
T3  
TxD[1]P/  
TxD[C]P  
LVPECL  
LVPECL  
LVPECL  
Transmit Line Data Output [1]/Transmit Line Data Output  
Channel C. In STS-48/STM-16 mode, the pins function as trans-  
mit line data output [1] at 155.52 Mbits/s.  
TxD[1]N/  
TxD[C]N  
In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as  
transmit data output channel C at either 155.52 Mbits/s or  
622.08 Mbits/s.  
This buffer is internally disabled through proper provisioning when  
the input is not active.  
R3  
R2  
TxD[2]P/  
TxD[B]P  
Transmit Line Data Output [2]/Transmit Line Data Output  
Channel B. In STS-48/STM-16 mode, the pins function as trans-  
mit line data output [2] at 155.52 Mbits/s.  
TxD[2]N/  
TxD[B]N  
In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as  
transmit data output channel B at either 155.52 Mbits/s or  
622.08 Mbits/s.  
This buffer is internally disabled through proper provisioning when  
the input is not active.  
R4  
R5  
TxD[3]P/  
TxD[A]P  
Transmit Line Data Output [3]/Transmit Line Data Output  
Channel A. In STS-48/STM-16 mode, the pins function as trans-  
mit line data output [3] at 155.52 Mbits/s.  
TxD[3]N/  
TxD[A]N  
In STS-3/STM-1 or STS-12/STM-4 mode, the pins function as  
transmit data output channel A at either 155.52 Mbits/s or  
622.08 Mbits/s.  
This buffer is internally disabled through proper provisioning when  
the input is not active.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Agere Systems Inc.  
25  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 3. Pin DescriptionsLine Interface Signals (continued)  
Unused LVPECL outputs should not be terminated to minimize power consumption. Unused inputs are internally  
disabled whenever core registers 0x0010 and 0x0011 are properly provisioned. The unused inputs can be consid-  
ered to be NC (no connect).  
Pin  
Symbol  
Type  
I/O  
Name/Description  
H2  
J5  
TxCKQP  
TxCKQN  
LVPECL  
O
Transmit Line Clock Q. This 155.52 MHz clock is used to clock  
out the data in the STS-48/STM-16 mode for forward-directional  
timing with the 155 Mbits/s 16-bit parallel-to-2.5 Gbits/s serial  
MUX.  
For an STS-48/STM-16 contra-clocking interface with the  
155 Mbits/s parallel-to-2.5 Gbits/s serial MUX, this clock is not  
used. In the contra-clocking mode, a phase-locked version of  
TxCKP/N is used to clock out the data. In the contra-clocking  
mode, the transmit line clock PLL must be active (see core regis-  
ter map 0x0010, bit 5 (PLL_ MODE) on page 112).  
This clock is not used in the STS-3/STM-1 or STS-12/STM-4  
modes.  
P2  
P1  
P5  
P3  
N3  
N2  
N5  
N4  
M2  
M1  
M4  
M3  
L2  
TxD[4]P  
TxD[4]N  
TxD[5]P  
TxD[5]N  
TxD[6]P  
TxD[6]N  
TxD[7]P  
TxD[7]N  
TxD[8]P  
TxD[8]N  
TxD[9]P  
TxD[9]N  
TxD[10]P  
TxD[10]N  
TxD[11]P  
TxD[11]N  
TxD[12]P  
TxD[12]N  
TxD[13]P  
TxD[13]N  
TxD[14]P  
TxD[14]N  
TxD[15]P  
TxD[15]N  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
O
Transmit Line Data Outputs (STS-48/STM-16). In STS-48/  
STM-16 mode, these pins function as transmit line data outputs  
[4:15]. The remaining transmit line data outputs [0:3] are listed  
below and are multiplexed for use in the STS-3/STM-1 or STS-12/  
STM-4 modes.  
The 155.52 Mbits/s 16-bit word parallel bus is converted to a  
2.488 Gbits/s serial data stream external to TDAT042G5 by a mul-  
tiplexer.  
All 32 differential data output pins, TxD[15:0]P/N, are used as the  
parallel data output bus in the STS-48/STM-16 mode. These pins  
constitute a 155.52 Mbyte/s parallel 16-bit word-aligned to the  
TxCKP/N and TxCKQP/N 155.52 MHz transmit line clock.  
TxD[15] is the most significant bit and is the first bit transmitted.  
TxD[0] is the least significant bit and is the last bit transmitted.  
L1  
L4  
This buffer is internally disabled through proper provisioning when  
the input is not active.  
L3  
K2  
K1  
K4  
K3  
J2  
J1  
J4  
J3  
26  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 4. Pin DescriptionsTOH Interface Signals  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
AK3  
RxREF  
3.3 V  
O
Receive Line Frame. This output provides the receive 8 kHz  
frame reference for external timing needs. RxREF is derived from  
one of the received line clocks (user-selectable). It is a 50% duty  
cycle clock when TDAT042G5 is in frame. This signal may be  
used to implement line timing on a SONET ring. When not provi-  
sioned, this signal must not be used. RxREF is valid only when  
the SONET framer is in frame. Upon LOC or LOF, RxREF is  
present but is free running. Because jitter may be present on this  
signal when the device goes into and out of an LOC or LOF state,  
it should not be used as a reference for TxFSYNCP/N.  
AL7 RxTOHCK[D]  
AL6 RxTOHCK[C]  
AL4 RxTOHCK[B]  
AK5 RxTOHCK[A]  
3.3 V  
3.3 V  
O
O
Receive TOH Interface Clock. This clock is nominally a  
5.184 MHz (STS-3/STM-1) or 20.736 MHz (STS-12/STM-4,  
STS-48/STM-16) clock which provides timing for circuitry that  
receives and externally processes the receive transport overhead  
bytes. The duty cycle of the clock is not 50% (see Figure 49 and  
Figure 50, page 272). In STS-48/STM-16 mode, all four of these  
clocks are active.  
RxTOHD[D]  
RxTOHD[C]  
RxTOHD[B]  
RxTOHD[A]  
AN7  
AM6  
AM5  
AL2  
Receive TOH Interface Data. This 5.184 Mbits/s or  
20.736 Mbits/s signal contains all the receive transport overhead  
bytes (A1, A2, J0/Z0, B1, E1, F1, D1D3, H1H3, K1, K2,  
D4D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal  
can be used by external circuitry to process the TOH bytes.  
RxTOHD is updated on the falling edge of RxTOHCK. In STS-48/  
STM-16 mode, RxTOHD[A] contains all currently defined TOH  
bits except for M1, which is located in RxTOHD[C].  
AP6  
AN5  
AL3  
AK4  
RxTOHF[D]  
RxTOHF[C]  
RxTOHF[B]  
RxTOHF[A]  
3.3 V  
3.3 V  
3.3 V  
O
O
Receive TOH Interface Frame. This 8 kHz framing signal is used  
to locate the individual receive transport overhead bits in the  
RxTOHD bit stream. RxTOHF is only high while bit 1 (MSB) of the  
first framing byte (A1 during parity time in first byte) is present on  
the RxTOHD output. RxTOHF is updated on the falling edge of  
RxTOHCK.  
AJ2  
TxTOHCK  
Transmit TOH Interface Clock. This clock is nominally a  
5.184 MHz (STS-3/STM-1), 20.736 MHz (STS-12/STM-4,  
STS-48/STM-16) clock which provides timing for circuitry that  
externally generates and transmits the transmit transport over-  
head bytes for inclusion in the transmit data stream. The duty  
cycle of the clock is not 50% (see Figure 48, pag e271).  
AK2  
AJ5  
AJ4  
AJ3  
TxTOHD[D]  
TxTOHD[C] (5 V tolerant)  
TxTOHD[B]  
Iu Transmit TOH Interface Data. This 5.184 Mbits/s or  
20.736 Mbits/s signal contains all the transmit transport overhead  
bytes (A1, A2, J0/Z0, B1, E1, F1, D1D3, H1H3, K1, K2,  
D4D12, S1/Z1, M0, and E2) for all 3/12/48 STS-1s. This signal  
is generated by external circuitry for custom TOH byte definitions.  
TxTOHD is sampled on the rising edge of TxTOHCK.  
TxTOHD[A]  
AH5  
TxTOHF  
3.3 V  
O
Transmit TOH Interface Frame. This 8 kHz framing signal is  
used to align the individual transmit transport overhead bits in the  
TxTOHD bit stream. TxTOHF is only high while bit 1 (MSB) of the  
first framing byte (A1 during parity time in first byte) is expected  
on the TxTOHD input. TxTOHF is updated on the falling edge of  
TxTOHCK.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Agere Systems Inc.  
27  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Note:An external pull-up resistor of 50 k100 kis required on all input pins of a disabled UTOPIA port. Either  
an external pull-up resistor of 50 k100 kor an external pull-down resistor of 0 1 kis required on all  
unused inputs of an enabled UTOPIA port. Use of either a pull-up or pull-down resistor is selected to place  
the unused input pin into the inactive state.  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AM31  
Y34  
W34  
G33  
G32  
TxADDR[4]  
TxADDR[3]  
TxADDR[2]  
TxADDR[1]  
TxADDR[0]  
3.3 V  
(5 V tolerant)  
I
Transmit Address. The TxADDR is driven by the UTOPIA mas-  
ter to poll and select the appropriate PHY channel of  
TDAT042G5 to transmit data.  
Note: The PHY address (0x00 to 0x1E) for each of the four  
channels in TDAT042G5 is configured via software  
provisioning.  
J34  
J35  
TxDATA[A][15]  
3.3 V  
I
Transmit Data Channel A. Used to transport data into the  
UTOPIA PHY Tx block. TxDATA[A] is only valid when TxENB[A]  
is asserted, and is sampled on the rising edge of TxCLK[A].  
Note that TxDATA[A] is used in various UTOPIA modes. In U2 or  
U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits 15  
to 8 are valid.  
TxDATA[A][14] (5 V tolerant)  
TxDATA[A][13]  
TxDATA[A][12]  
TxDATA[A][11]  
TxDATA[A][10]  
TxDATA[A][9]  
TxDATA[A][8]  
TxDATA[A][7]  
TxDATA[A][6]  
TxDATA[A][5]  
K31  
K32  
K33  
K34  
K35  
L32  
L33  
L34  
L35  
M31  
M32  
M33  
M34  
M35  
In U3 or U3+ (32-bit mode), TxDATA[A][15:0] forms the most  
significant 16 bits of the combined data bus (bits 31 to 16), and  
TxDATA[B][15:0] forms the least significant 16 bits of the com-  
bined data bus (bits 15 to 0).  
TxDATA[A][4]  
TxDATA[A][3]  
TxDATA[A][2]  
TxDATA[A][1]  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
TxDATA[A][0]  
AB34 TxDATA[B][15]  
AB33 TxDATA[B][14] (5 V tolerant)  
AB31 TxDATA[B][13]  
AB32 TxDATA[B][12]  
AC34 TxDATA[B][11]  
3.3 V  
I
Transmit Data Channel B. Used to transport data into the  
UTOPIA PHY Tx block. TxDATA[B] is only valid when TxENB[B]  
is asserted (TxENB[A] for U3 or U3+ (32-bit mode)), and is sam-  
pled on the rising edge of TxCLK[B] (TxCLK[A] for U3 or U3+  
(32-bit mode). Note that TxDATA[B] is used in various UTOPIA  
modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-bit  
mode), only bits 15 to 8 are valid.  
AC33 TxDATA[B][10]  
AC32  
AC31  
AD35  
AD34  
AD33  
AD32  
AD31  
AE35  
AE34  
AE33  
TxDATA[B][9]  
TxDATA[B][8]  
TxDATA[B][7]  
TxDATA[B][6]  
TxDATA[B][5]  
TxDATA[B][4]  
TxDATA[B][3]  
TxDATA[B][2]  
TxDATA[B][1]  
TxDATA[B][0]  
In U3 or U3+ (32-bit mode), TxDATA[B][15:0] forms the least sig-  
nificant 16 bits of the combined data bus (bits 15 to 0), and  
TxDATA[A][15:0] forms the most significant 16 bits of the com-  
bined data bus (bits 31 to 16). In this mode, channel B port must  
be provisioned to the idle (default) state.  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
28  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AP29 TxDATA[C][15]  
AL28 TxDATA[C][14] (5 V tolerant)  
AM28 TxDATA[C][13]  
AN28 TxDATA[C][12]  
AP28 TxDATA[C][11]  
3.3 V  
I
Transmit Data Channel C. Used to transport data into the  
UTOPIA PHY Tx block. TxDATA[C] is only valid when TxENB[C]  
is asserted, and is sampled on the rising edge of TxCLK[C].  
Note that TxDATA[C] is used in various UTOPIA modes. In U2  
or U2+, all 16 bits are valid. In U3 or U3+ (8-bit mode), only bits  
15 to 8 are valid.  
AL27 TxDATA[C][10]  
AM27  
AN27  
AP27  
AR27  
AL26  
AM26  
AN26  
AP26  
AR26  
AM25  
TxDATA[C][9]  
TxDATA[C][8]  
TxDATA[C][7]  
TxDATA[C][6]  
TxDATA[C][5]  
TxDATA[C][4]  
TxDATA[C][3]  
TxDATA[C][2]  
TxDATA[C][1]  
TxDATA[C][0]  
In U3 or U3+ (32-bit mode), channel C port is considered dis-  
abled, and must be provisioned to the idle (default) state.  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
AP17 TxDATA[D][15]  
AP16 TxDATA[D][14] (5 V tolerant)  
AN16 TxDATA[D][13]  
AM16 TxDATA[D][12]  
AR15 TxDATA[D][11]  
3.3 V  
I
Transmit Data Channel D. Used to transport data into the UTO-  
PIA PHY Tx block. TxDATA[D] is only valid when TxENB[D] is  
asserted, and is sampled on the rising edge of TxCLK[D]  
(TxCLK[A] for U3+, 32-bit mode). Note that TxDATA[D] is used in  
various UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3  
or U3+ (8-bit mode), only bits 15 to 8 are valid.  
AP15 TxDATA[D][10]  
AN15  
AL15  
AM15  
AR14  
AP14  
AN14  
AL14  
AM14  
AP13  
AN13  
TxDATA[D][9]  
TxDATA[D][8]  
TxDATA[D][7]  
TxDATA[D][6]  
TxDATA[D][5]  
TxDATA[D][4]  
TxDATA[D][3]  
TxDATA[D][2]  
TxDATA[D][1]  
TxDATA[D][0]  
In U3 or U3+ (32-bit mode), channel D port is considered dis-  
abled, and must be provisioned to the idle (default) state.  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
AM17  
AN29  
AB35  
J33  
TxPRTY[D]  
TxPRTY[C]  
TxPRTY[B]  
TxPRTY[A]  
3.3 V  
(5 V tolerant)  
I
Transmit Parity. This signal indicates the parity on the  
TxDATA[D:A][15:0] bus. A parity error raises an alarm but does  
not cause the cell/packet to be dropped. Odd or even parity may  
be provisioned through a software register. TxPRTY[D:A] is con-  
sidered valid only when TxENB[D:A] is asserted, and is sam-  
pled on the rising edge of TxCLK[D:A].  
In U3 or U3+ (32-bit mode), the TxPRTY[A] parity pin of port A  
indicates the parity for the entire 32-bit data input.  
Agere Systems Inc.  
29  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AL17 TxSOP/C[D]  
AM29 TxSOP/C[C] (5 V tolerant)  
AA32 TxSOP/C[B]  
3.3 V  
I
Transmit Start of Packet/Cell. In ATM mode, the TxSOP/C[D:A]  
signal marks the start of a cell on the TxDATA[D:A][15:0] bus.  
When TxSOP/C[D:A] is active, the first word of the cell is present  
on the TxDATA[D:A][15:0] bus.  
J32  
TxSOP/C[A]  
In packet modes, the TxSOP/C[D:A] signal marks the start of a  
packet on the TxDATA[D:A][15:0] bus. When TxSOP/C[D:A] is  
active, the first word of the packet is present on the  
TxDATA[D:A][15:0] bus.  
TxSOP/C[D:A] is considered valid only when TxENB[D:A] is  
asserted, and is sampled on the rising edge of TxCLK[D:A].  
In U3 or U3+ (32-bit mode), only the TxSOP/C[A] pin of port A is  
used to indicate a start of packet/cell for the 32-bit data input.  
AP18  
AN30  
AA34  
H33  
TxPA[D]  
TxPA[C]  
TxPA[B]  
TxPA[A]  
3.3 V  
O
Transmit Cell/Packet Available. This signal indicates when the  
TDAT042G5 transmit FIFO can accept data from the master  
device. If the FIFO is empty or more than the provisioned space is  
available in the FIFO, TxPA[D:A] is set active.  
I One-Cycle Delay Mode. This mode follows the UTOPIA Level  
2 Standard. The TxPA response occurs one cycle after the  
address is polled.  
I Two-Cycle Delay Mode. This mode follows the UTOPIA Level  
3 baselined text*. The TxPA response occurs two cycles after  
the address is polled.  
I TxPA[D:A] Assertion. The TxPA[D:A] signal behavior relies on  
the UTOPIA provisionable watermarks. In packet mode,  
TxPA[D:A] goes high when the amount of data in the FIFO is  
less than the high watermark setting. In ATM mode, TxPA[D:A]  
goes high when the FIFO has space to receive a complete ATM  
cell from the master. (This requires the high threshold to be set  
appropriately by the user, i.e., set so that an entire cell can be  
received once TxPA[D:A] goes active.)  
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July  
1999.  
(See further description on next page.)  
30  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AP18  
AN30  
AA34  
H33  
TxPA[D]  
TxPA[C]  
TxPA[B]  
TxPA[A]  
3.3 V  
O
Transmit Cell/Packet Available. (continued)  
I TxPA[D:A] Deassertion. In packet mode, TxPA[D:A] goes low  
when the amount of data in the FIFO reaches or exceeds the  
high watermark. In ATM mode, TxPA[D:A] goes low when there  
is not enough space in the FIFO to receive an entireATM cell.  
(This requires the threshold values to be provisioned properly,  
i.e., set low enough such that when the high watermark is  
reached, the transmission of the current cell can be completed  
without overflowing the FIFO). In ATM mode, TxPA[D:A] will be  
deasserted four cycles before the end of the current cell trans-  
fer if the FIFO cannot accept a complete ATM cell on the follow-  
ing transmission.  
TxPA[D:A] is updated on the rising edge of TxCLK[D:A].  
In 32-bit mode, only the TxPA[A] pin of port A is used to indicate  
the packet/cell available status.  
I MPHY Support. When the TxPA signals are used for multi-PHY  
(MPHY) direct status, the corresponding TxCLK[B, C, and/or D]  
must be provided. This clock will be the same as TxCLK[A].  
AP19  
AP31  
Y33  
TxCLK[D]  
TxCLK[C]  
TxCLK[B]  
TxCLK[A]  
3.3 V  
(5 V tolerant)  
I
I
Transmit Clock. This clock is used to write cells or packets into  
the transmit FIFO. TxCLK[D:A] can operate at speeds from dc to  
104 MHz.  
G34  
In U3 or U3+ (32-bit mode), only the TxCLK[A] input pin of port A  
is used to clock the data input.  
If MPHY direct status is used, then all clocks TxCLK[D:A] must be  
provided.  
AR17  
AP30  
AA33  
H34  
TxENB[D]  
TxENB[C]  
TxENB[B]  
TxENB[A]  
3.3 V  
(5 V tolerant)  
Transmit Data Enable (Active-Low). This signal is used to trans-  
fer data on the TxDATA[D:A][15:0] bus into the transmit FIFOs. If  
TxENB[D:A] is high, no operation is performed. If TxENB[D:A] is  
low, a write occurs.  
TxENB[D:A] is sampled on the rising edge of TxCLK[D:A].  
TxENB[D:A] has the same meaning as data valid.  
In U3 or U3+ (32-bit mode), only the TxENB[A] input pin of port A  
is used to enable the transfer of data.  
Agere Systems Inc.  
31  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AN18  
AL30  
Y32  
TxSZ[D]  
TxSZ[C]  
TxSZ[B]  
TxSZ[A]  
3.3 V  
(5 V tolerant)  
I
Transmit Size. These pins are used only in U2+ and U3+  
(packet) modes. This signal defines the valid bytes transmitted  
and their packing within (1) TxDATA[D:A][15:0] for U2+ 16-bit  
mode, and (2) TxDATA[A][15:0] and TxDATA[B][15:0] for the U3+  
(32-bit mode). The meaning of these bits may be inverted  
through UT register 0x0226 TxSIZE/RxSIZE mode, page 164.  
H31  
In U3+ (8-bit mode), TxSZ[D:A] are unused.  
For U2+ 16-bit mode,  
TxSZ[D:A] = 0 defines the MSByte of TxDATA[D:A][15:0], i.e.,  
TxDATA[D:A][15:8], to be the last byte of the packet transmit-  
ted when using the default configuration.  
TxSZ[D:A] = 1 defines the LSByte of TxDATA[D:A][15:0], i.e.  
TxDATA[D:A][7:0], to be the last byte of the packet transmit-  
ted when using the default configuration.  
For U3+ (32-bit mode), TxSZ[A] and TxSZ[B] are combined to  
define four states of the transmitted data stream. TxSZ[C] and  
TxSZ[D] are unused. The following states are assigned by  
TxSZ[A] and TxSZ[B] when TxEOP[A] is asserted when using  
the default configuration. TxSZ[D:A] is ignored when  
TxEOP[D:A] is not present.  
TxDATA[A]  
TxDATA[B]  
TxDATA[A][15:8] TxDATA[A][7:0]  
TxDATA[B][15:8] TxDATA[B][7:0]  
TxSZ[A] TxSZ[B] DATA[31:24] DATA[23:16]  
DATA[15:8]  
Not valid  
Not valid  
Valid  
DATA[7:0]  
Not valid  
Not valid  
Not valid  
Valid  
0
0
1
1
0
1
0
1
Valid  
Valid  
Valid  
Valid  
Not valid  
Valid  
Valid  
Valid  
Valid  
There is no byte swapping and the data bytes are packed into  
the upper transmitted bytes first.  
32  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AN17  
AL29  
AA31  
J31  
TxEOP[D]  
TxEOP[C]  
TxEOP[B]  
TxEOP[A]  
3.3 V  
(5 V tolerant)  
I
Transmit End of Packet. These pins are used only in U2+  
and U3+ (packet) modes. This signal indicates that the last  
word of a packet is on the TxDATA[D:A][15:0] bus.  
TxEOP[D:A] is valid only when TxENB[D:A] is asserted, and  
is sampled on the rising edge of TxCLK[D:A].  
In U3+ (32-bit mode), only the TxEOP[A] input pin of port A  
is used to indicate the end of the incoming packet.  
AM18  
AM30  
AA35  
H32  
TxERR[D]  
TxERR[C]  
TxERR[B]  
TxERR[A]  
3.3 V  
(5 V tolerant)  
I
Transmit Error. These pins are used only in U2+ and U3+  
(packet) modes. TxERR[D:A] is only used in packet modes,  
and indicates that the current packet is to be aborted and  
discarded, if possible. TxERR[D:A] is only valid when  
TxEOP[D:A] and TxENB[D:A] are asserted, and is sampled  
on the rising edge of TxCLK[D:A].  
In U3+ (32-bit mode), the TxERR[A] and the TxERR[B] input  
pin of port A is used to indicate an error on the incoming  
packet.  
AP20  
AL32  
AL33  
W32  
W31  
RxADDR[4]  
RxADDR[3]  
RxADDR[2]  
RxADDR[1]  
RxADDR[0]  
3.3 V  
(5 V tolerant)  
I
Receive Address. Receive address is driven to the MPHY  
to poll and select the appropriate MPHY channel.  
Note: The address for each channel is configured by the  
microprocessor.  
N31  
N32  
N33  
N34  
P31  
P32  
P33  
P34  
P35  
R31  
R32  
R33  
R34  
R35  
T32  
T33  
RxDATA[A][15]  
RxDATA[A][14]  
RxDATA[A][13]  
RxDATA[A][12]  
RxDATA[A][11]  
RxDATA[A][10]  
RxDATA[A][9]  
RxDATA[A][8]  
RxDATA[A][7]  
RxDATA[A][6]  
RxDATA[A][5]  
RxDATA[A][4]  
RxDATA[A][3]  
RxDATA[A][2]  
RxDATA[A][1]  
RxDATA[A][0]  
3.3 V  
O
Receive Data Channel A. Used to transport data out of the  
UTOPIA PHY Rx block. RxDATA[A][15:0] is only valid when  
RxENB[A] is asserted, and is updated on the rising edge of  
RxCLK[A]. Note that RxDATA[A][15:0] is used in various  
UTOPIA modes. In U2 or U2+, all 16 bits are valid. In U3 or  
U3+ (8-bit mode), only bits 15 to 8 are valid.  
In U3 or U3+ (32-bit mode), RxDATA[A][15:0] forms the most  
significant 16 bits of the combined data bus (bits 31 to 16),  
and RxDATA[B][15:0] forms the least significant 16 bits of the  
combined data bus (bits 15 to 0).  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
Agere Systems Inc.  
33  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AE32 RxDATA[B][15]  
AF35 RxDATA[B][14]  
AF34 RxDATA[B][13]  
AF33 RxDATA[B][12]  
AF32 RxDATA[B][11]  
AF31 RxDATA[B][10]  
3.3 V  
O
Receive Data Channel B. Used to transport data out of the  
UTOPIA PHY Rx block. RxDATA[B][15:0] is only valid when  
RxENB[B] is asserted, and is updated on the rising edge of  
RxCLK[B]. Note that RxDATA[B][15:0] is used in various UTO-  
PIA modes. In U2 or U2+, all 16 bits are valid. In U3 or U3+ (8-  
bit mode), only bits 15 to 8 are valid.  
AG35  
AG34  
AG33  
AG32  
AG31  
AH34  
AH33  
AH32  
AH31  
AJ34  
RxDATA[B][9]  
RxDATA[B][8]  
RxDATA[B][7]  
RxDATA[B][6]  
RxDATA[B][5]  
RxDATA[B][4]  
RxDATA[B][3]  
RxDATA[B][2]  
RxDATA[B][1]  
RxDATA[B][0]  
In U3 or U3+ (32-bit mode), RxDATA[B][15:0] forms the least sig-  
nificant 16 bits of the combined data bus (bits 15 to 0), and  
RxDATA[A][15:0] forms the most significant 16 bits of the com-  
bined data bus (bits 31 to 16). In this mode, channel B port must  
be provisioned to idle.  
In this mode, RxDATA[B][15:0] is valid when RxENB[A] is  
asserted, and RxDATA[B][15:0] is updated on the rising edge of  
RxCLK[A].  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
AN25 RxDATA[C][15]  
AP25 RxDATA[C][14]  
AR25 RxDATA[C][13]  
AL24 RxDATA[C][12]  
AM24 RxDATA[C][11]  
AN24 RxDATA[C][10]  
3.3 V  
O
Receive Data Channel C. Used to transport data out of the  
UTOPIA PHY Rx block. RxDATA[C][15:0] is only valid when  
RxENB[C] is asserted, and is updated on the rising edge of  
RxCLK[C]. Note that RxDATA[C][15:0] is used in various UTO-  
PIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit  
mode), only bits 15 to 8 are valid.  
AP24  
AR24  
AL23  
RxDATA[C][9]  
RxDATA[C][8]  
RxDATA[C][7]  
In U3 or U3+ (32-bit mode), channel C port must be provisioned  
to idle mode.  
AM23 RxDATA[C][6]  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
AN23  
AP23  
AL22  
RxDATA[C][5]  
RxDATA[C][4]  
RxDATA[C][3]  
AM22 RxDATA[C][2]  
AN22  
AP22  
RxDATA[C][1]  
RxDATA[C][0]  
34  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AM13 RxDATA[D][15]  
AL13 RxDATA[D][14]  
AR12 RxDATA[D][13]  
AP12 RxDATA[D][12]  
AN12 RxDATA[D][11]  
AM12 RxDATA[D][10]  
3.3 V  
O
Receive Data Channel D. Used to transport data out of the  
UTOPIA PHY Rx block. RxDATA[D][15:0] is only valid when  
RxENB[D] is asserted, and is updated on the rising edge of  
RxCLK[D]. Note that RxDATA[D][15:0] is used in various UTO-  
PIA modes. In U2 or U2+, all 16 bits are valid. In U3+ (8-bit  
mode), only bits 15 to 8 are valid.  
AL12  
AR11  
AP11  
AN11  
RxDATA[D][9]  
RxDATA[D][8]  
RxDATA[D][7]  
RxDATA[D][6]  
In U3 or U3+ (32-bit mode), channel D port must be provisioned  
to idle mode.  
Note: [15:0] refers to a 16-bit data bus (15 = MSB, 0 = LSB).  
AM11 RxDATA[D][5]  
AR10  
AP10  
AN10  
RxDATA[D][4]  
RxDATA[D][3]  
RxDATA[D][2]  
AM10 RxDATA[D][1]  
AL10  
RxDATA[D][0]  
AR9  
AR22  
AJ33  
T34  
RxPRTY[D]  
RxPRTY[C]  
RxPRTY[B]  
RxPRTY[A]  
3.3 V  
O
O
Receive Parity. This signal indicates the parity on the  
RxDATA[D:A][15:0]. Odd or even parity may be provisioned  
through a software register. RxPRTY[D:A] is considered valid  
only when RxENB[D:A] is asserted, and is updated on the rising  
edge of RxCLK[D:A].  
In U3 or U3+ (32-bit mode), the RxPRTY[A] parity pin of port A  
indicates the parity for the entire 32-bit data output.  
AP9  
AL21  
AJ32  
U31  
RxSOP/C[D]  
RxSOP/C[C]  
RxSOP/C[B]  
RxSOP/C[A]  
3.3 V  
Receive Start of Packet/Cell. In ATM mode, RxSOP/C[D:A]  
signal marks the start of a cell on the RxDATA[D:A][15:0] bus.  
When RxSOP/C[D:A] is high on the clock cycle following the  
latching of an active RxENB[D:A] signal, the first word of the cell  
structure is present on the RxDATA[D:A][15:0] bus.  
In packet modes, the RxSOP/C[D:A] signal marks the start of a  
packet on the RxDATA[D:A][15:0] bus. When RxSOP/C[D:A] is  
high, the first word of the packet is present on the  
RxDATA[D:A][15:0] bus.  
RxSOP/C[D:A] is considered valid only when RxENB[D:A] is  
asserted, and is updated on the rising edge of RxCLK[D:A].  
In U3 or U3+ (32-bit mode), only the RxSOP/C[A] pin of port A is  
used to indicate a start of packet/cell for the 32-bit data output.  
Agere Systems Inc.  
35  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AL9  
AP21  
AK33  
V33  
RxPA[D]  
RxPA[C]  
RxPA[B]  
RxPA[A]  
3.3 V  
O
Receive Cell/Packet Available. This signal indicates when the  
TDAT042G5 receive FIFO can send data to the master device.  
The RxPA[D:A] signal behavior depends on the provisioned low  
watermark in the UTOPIA interface.  
I One-Cycle Delay Mode. This mode follows the UTOPIA Level  
2 Standard. The RxPA response occurs one cycle after the  
address is polled. RxENB is asserted to activate the selected  
PHY. RxDATA and RxSOP are output one cycle after RxENB is  
sampled active by the PHY device.  
I Two-Cycle Delay Mode. This mode follows the UTOPIA Level  
3 baselined text*. The RxPA response occurs two cycles after  
the address is polled. RxENB is asserted to activate the  
selected PHY. RxDATA and RxSOP are output two cycles after  
RxENB is sampled active by the PHY device.  
I RxPA[D:A] Assertion. RxPA[D:A] goes high (is asserted)  
when the amount of data in the receive FIFO has reached or  
exceeded the low watermark or there is end of packet (EOP)  
resident in the FIFO.  
I RxPA[D:A] Deassertion. In ATM mode, the RxPA[D:A] signal  
goes low (is deasserted) when the FIFO has less than the low  
threshold amount of data and there is no EOP inside the FIFO  
(i.e., part of an ATM cell). Once the last byte of the current cell  
is transmitted, and if the amount of data within the FIFO is still  
less than the low threshold, RxPA[D:A] is deasserted.  
In packet mode, the RxPA[D:A] signal goes low (is deasserted)  
when the FIFO has less than the low threshold amount of data  
and there is no EOP inside the FIFO.  
Once the data transfer begins (since the amount of data has  
reached or exceeded the low watermark), and if there is no  
EOP below the low threshold (i.e., a long packet), the RxPA  
signal is deasserted when the FIFO is drained by the UTOPIA  
master device. In this case, the master must closely monitor the  
RxPA[D:A] signals and use these signals as data valid indica-  
tors to ensure that bad data is not read from the TDAT042G5.  
TDAT042G5 will deassert the RxPA[D:A] signal immediately  
when the FIFO is drained.  
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July  
1999.  
(See further description on next page.)  
36  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O  
Name/Description  
AL9  
AP21  
AK33  
V33  
RxPA[D]  
RxPA[C]  
RxPA[B]  
RxPA[A]  
3.3 V  
O
Receive Cell/Packet Available. (continued)  
I Data Transfer. A TDAT042G5 ingress channel sends data  
when it has asserted RxPA[D:A] and the master device  
requests data (via RxENB[D:A]). In ATM mode, if the master  
device requests data using RxENB[D:A] and if the TDAT042G5  
has less than the low watermark amount of data to send and  
there is no end of cell in the FIFO (RxPA[D:A] is deasserted),  
then the TDAT042G5 UTOPIA interface will send out data that  
should be ignored by the master, i.e., it does not send data from  
its internal FIFO.  
In ATM mode, once an ATM cell transfer starts, the Tx or Rx  
side must complete the transfer. If the transfer is not com-  
pleted, then the cell will be corrupted. The transfer continues  
until either (1) the end of cell is reached, when the end of cell  
exists below the low watermark, or (2) the end of the FIFO is  
reached. If the end of the FIFO is reached, no underflow is  
flagged on the receive side. In ATM mode, the low watermark  
should be set so that at least one entire cell is in the FIFO prior  
to asserting RxPA[D:A].  
In packet mode, once the data transfer begins, the RxPA[D:A]  
signal will remain asserted until the FIFO is drained if there is  
no EOP below the low watermark. During the time RxPA[D:A] is  
asserted, valid data is being transferred.  
RxPA[D:A] is updated on the rising edge of RxCLK[D:A].  
In 32-bit mode, only the RxPA[A] pin of port A is used to indi-  
cate the packet/cell available status.  
I MPHY Support. When the RxPA signals are used for MPHY  
direct status, the corresponding RxCLK[B, C, and/or D] must be  
provided. This clock will be the same as RxCLK[A].  
AM9  
AN21  
AK34  
U34  
RxENB[D]  
RxENB[C]  
RxENB[B]  
RxENB[A]  
3.3 V  
(5 V tolerant)  
I
Receive Data Enable (Active-Low). This signal is used to indi-  
cate to the UTOPIA PHY Rx block that it is selected. If  
RxENB[D:A] is high, no operation is performed. If RxENB[D:A] is  
low, the UTOPIA PHY Rx block sends data (not necessarily valid  
data).  
In U3 or U3+ (32-bit mode), only the RxENB[A] input pin of port A  
is used to enable the transfer of data.  
Agere Systems Inc.  
37  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
AM8  
AN20  
AL34  
W33  
RxCLK[D]  
RxCLK[C]  
RxCLK[B]  
RxCLK[A]  
3.3 V  
(5 V tolerant)  
Iu/O Receive Clock. This clock is used to read cells or packets from  
the receive FIFO. RxCLK[D:A] can operate at speeds from dc to  
104 MHz. For clock rates above 52 MHz, the receive clock must  
be placed in source mode.  
RxCLK[D:A] sourcing from the respective TxCLK[D:A] may be  
provisioned by CLOCK_MODE_Rx (see registers 0x020F,  
0x0213, 0x0217, 0x021B on pages 114115).  
In U3 or U3+ (32-bit mode), only the RxCLK[A] input/output pin of  
port A is used to clock the data output.  
If MPHY mode is used, then all clocks RxCLK[D:A] must be pro-  
vided.  
AN8  
AM20  
AK31  
W35  
RxSZ[D]  
RxSZ[C]  
RxSZ[B]  
RxSZ[A]  
3.3 V  
O
Receive Size. These pins are used only in U2+ and U3+ (packet)  
modes. This signal defines the valid bytes received and their  
packing within (1) RxDATA[D:A][15:0] for U2+ 16-bit mode, and (2)  
RxDATA[A][15:0] and RxDATA[B][15:0] for the U3+ (32-bit mode).  
The meaning of these bits may be inverted through UT register  
0x0226 TxSIZE/RxSIZE mode, page 164.  
In U3+ (8-bit mode), RxSZ[D:A] are unused.  
For U2+ 16-bit mode,  
RxSZ[D:A] = 0 defines the MSByte of RxDATA[D:A][15:0], i.e.,  
RxDATA[D:A][15:8], to be the last byte of the packet received  
when using the default configuration.  
RxSZ[D:A] = 1 defines the LSByte of RxDATA[D:A][15:0], i.e.,  
RxDATA[D:A][7:0], to be the last byte of the packet received  
when using the default configuration.  
In U3+ (32-bit mode), the MSByte will be placed on RxDATA[A],  
bits 15 to 8. In the 16-bit mode, the MSByte will be placed on  
RxDATA[D:A], bits 15 to 8.  
For U3+ (32-bit mode), RxSZ[A] and RxSZ[B] are combined to  
define four states of the received data stream. RxSZ[C] and  
RxSZ[D] are unused. The following states are assigned by  
RxSZ[A] and RxSZ[B] when RxEOP[A] is asserted and the  
default configuration is provisioned.  
RxDATA[A]  
RxDATA[B]  
RxDATA[A][15:8] RxDATA[A][7:0]  
RxDATA[B][15:8] RxDATA[B][7:0]  
RxSZ[A] RxSZ[B]DATA[31:24] DATA[23:16]  
DATA[15:8]  
Not valid  
Not valid  
Valid  
DATA[7:0]  
Not valid  
Not valid  
Not valid  
Valid  
0
0
1
1
0
1
0
1
Valid  
Valid  
Valid  
Valid  
Not valid  
Valid  
Valid  
Valid  
Valid  
The data bytes are packed into the upper transmitted bytes first.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
38  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 5. Pin DescriptionsEnhanced UTOPIA Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
AN9  
AM21  
AJ31  
U32  
RxEOP[D]  
RxEOP[C]  
RxEOP[B]  
RxEOP[A]  
3.3 V  
O
Receive End of Packet. These pins are used only in U2+ and  
U3+ (packet) modes. This signal indicates that the last word of a  
packet is on the RxDATA[D:A][15:0] bus. RxEOP[D:A] is valid only  
when RxENB[D:A] is asserted, and is updated on the rising edge  
of RxCLK[D:A].  
In U3+ (32-bit mode), only the RxEOP[A] output pin of port A is  
used to indicate the end of the outgoing packet.  
AP8  
AR21  
AK32  
V32  
RxERR[D]  
RxERR[C]  
RxERR[B]  
RxERR[A]  
3.3 V  
O
Receive Error. These pins are used only in U2+ and U3+  
(packet) modes. RxERR[D:A] is only used in POS mode, and indi-  
cates that the current packet is to be aborted and discarded, if  
possible. RxERR[D:A] is only valid when RxEOP[D:A] and  
RxENB[D:A] are asserted, and is updated on the rising edge of  
RxCLK[D:A].  
If the Rx FIFO overflows, RxERR[D:A] and RxEOP[D:A] are  
asserted to indicate a corrupted packet.  
RxERR is asserted when a CRC error occurs in any packet mode  
using CRC-16 or CRC-32. RxERR is asserted when an incoming  
packet has an abort flag at the end of its stream. In both of these  
cases, an RxEOP is asserted with the RxERR.  
RxERR is not asserted when a header does not match in PPP  
header attaching mode. In that case, no data is sent to the UTO-  
PIA interface.  
In U3+ (32-bit mode), only the RxERR[A] output pin of port A is  
used to indicate an error on the outgoing packet.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Agere Systems Inc.  
39  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 6. Pin DescriptionsMicroprocessor Interface Signals  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
C7  
RST  
3.3 V  
(5 V tolerant)  
Iu Reset (Asynchronous) (Active-Low). Reset must be held  
active-low for a minimum of 100 ns. After deassertion of reset, the  
device is reset and available for use after 8 µs.  
E7  
D7  
ICT  
3.3 V  
(5 V tolerant)  
Iu 3-State Control (Active-Low). ICT has an internal 100 kpull-  
up. This control 3-states the digital outputs. It does not control the  
LVPECL outputs.  
PMRST  
3.3 V  
I/O 1-Second Performance Monitor (PM) Clock. PM clock can be  
(5 V tolerant)  
generated on-chip. This signal will have a 50% duty cycle.  
PMRST clock may be programmed by core register 0x0013,  
bit 15 (PMRST_I/O_CTRL) to be either an output or input. As an  
output clock, it is derived from the transmit line clock, TxCKP/N.  
This clock is divided to produce a 1 second, 50% duty cycle clock  
output. As an input, PMRST is under software control and can be  
activated longer or shorter than once per second. In the software  
control mode with PMRST an input, the minimum pulse width of  
the external PMRST signal is 10 ms.  
D8  
C8  
B8  
B7  
MPMODE  
MPCLK  
CS  
3.3 V  
(5 V tolerant)  
Iu MPU Mode Select. This signal is set high for a synchronous  
microprocessor, or low for an asynchronous microprocessor.  
Iu MPU Clock. This clock can operate from 1 Hz to 66 MHz when in  
synchronous mode.  
Iu Chip Select (Active-Low). This signal must be low during regis-  
3.3 V  
(5 V tolerant)  
3.3 V  
(5 V tolerant)  
ter access.  
INT  
3.3 V  
O
Interrupt (Active-Low). This signal goes low when the device  
(open drain)  
generates an unmasked interrupt.  
A12  
B12  
C12  
D12  
E12  
A11  
B11  
C11  
D11  
A10  
B10  
C10  
D10  
E10  
A9  
DATA[15]  
DATA[14]  
DATA[13]  
DATA[12]  
DATA[11]  
DATA[10]  
DATA[9]  
DATA[8]  
DATA[7]  
DATA[6]  
DATA[5]  
DATA[4]  
DATA[3]  
DATA[2]  
DATA[1]  
DATA[0]  
u
3.3 V  
(5 V tolerant)  
Iu/O Data Bus. This bus is a bidirectional data bus for writing and  
reading software registers. [15:0] refers to a 16-bit data bus  
(15 = MSB, 0 = LSB).  
B9  
u
d
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
40  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 6. Pin DescriptionsMicroprocessor Interface Signals (continued)  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
B16  
C16  
D16  
A15  
B15  
C15  
E15  
A14  
B14  
C14  
D14  
E14  
B13  
C13  
D13  
E13  
ADDR[15]  
ADDR[14]  
ADDR[13]  
ADDR[12]  
ADDR[11]  
ADDR[10]  
ADDR[9]  
ADDR[8]  
ADDR[7]  
ADDR[6]  
ADDR[5]  
ADDR[4]  
ADDR[3]  
ADDR[2]  
ADDR[1]  
ADDR[0]  
3.3 V  
(5 V tolerant)  
Iu Address Bus. This bus is used to address registers. [15:0] refers  
to a 16-bit data bus (15 = MSB, 0 = LSB).  
E9  
ADS  
3.3 V  
(5 V tolerant)  
Iu Address Strobe (Active-Low). This signal indicates the address  
is valid for MPU access in the asynchronous mode, and transfer  
start for the synchronous mode.  
D9  
C9  
R/W  
DS  
3.3 V  
(5 V tolerant)  
Iu Read/Write. This signal is low to indicate a write operation and is  
high to indicate a read operation.  
3.3 V  
(5 V tolerant)  
Iu Data Strobe (Active-Low). This signal used in the asynchronous  
mode (MPMODE = 0) indicates that the data is valid for MPU  
writes.  
E8  
DT  
3.3 V  
O
Data Transfer Acknowledge (Active-Low). This signal acknowl-  
edges the data transfer cycle.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Table 7. Pin DescriptionsGeneral-Purpose I/O Signals: Interface Signals  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
AG5  
AH2  
AH3  
AH4  
GPIO[3]  
GPIO[2]  
GPIO[1]  
GPIO[0]  
3.3 V  
(5 V tolerant)  
Iu/O General-Purpose I/O. These programmable I/O pins may be  
used to monitor or control external circuitry. These pins may also  
be provisioned to cause an interrupt upon a change in their val-  
ues.  
u
d
u
d
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Agere Systems Inc.  
41  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 8. Pin DescriptionsJTAG Interface Signals  
Pin  
Symbol  
Type  
I/O*  
Name/Description  
F2  
TCK  
3.3 V  
Iu JTAG Test Clock. This 10 MHz signal provides timing for test  
(5 V tolerant)  
operations.  
F4  
G5  
G2  
TMS  
TDI  
3.3 V  
Iu JTAG Test Mode Select. Controls test operations. TMS is sam-  
(5 V tolerant)  
pled on the rising edge of TCK.  
Iu JTAG Test Data In. Provides a 10 Mbits/s test data input signal.  
3.3 V  
(5 V tolerant)  
TDI is sampled on the rising edge of TCK.  
TDO  
3.3 V  
O
JTAG Test Data Out. This 10 Mbits/s data output signal is  
updated on the falling edge of TCK. The TDO output is 3-stated  
except when scanning out test data.  
G3  
TRST  
3.3 V  
(5 V tolerant)  
Iu JTAG Test Reset (Active-Low). This signal provides an asyn-  
chronous reset for the TAP. Under normal device operations,  
TRST should be pulled low. TRST is a Schmitt-triggered input.  
d
u
d
u
* I = I = 50 k, where I = internal pull-up resistance and I = internal pull-down resistance.  
Note: JTAG interface signals are used for test operations that are carried out using the IEEE P1149.1 test access port. IEEE is a registered  
trademark of The Institute of Electrical and Electronics Engineers, Inc.  
42  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 9. Pin DescriptionsPower Signals  
Pin  
Symbol  
Type*  
I/O  
Name/Description  
B6  
VDDA  
VDDD  
P
P
Analog Power Supply.  
A1, A2, A5, A6, A17,  
A18, A30, A31, A34,  
A35, B1, B2, B34, B35,  
C3, C33, D4, D27, D32,  
E1, E5, E11, E16, E20,  
E25, E31, E35, F1, F35,  
K5, L5, L31, M5, P4, R1,  
T5, T31, U35, V1, V2,  
V35, W1, Y5, Y31, AB5,  
AD5, AE5, AE31, AF5,  
AK1, AK35, AL1, AL5,  
AL11, AL16, AL18,  
Digital Power Supply.  
AL20, AL25, AL31,  
AL35, AM4, AM32, AN3,  
AN33, AP1, AP2, AP34,  
AP35, AR1, AR2, AR5,  
AR6, AR18, AR19,  
AR30, AR31, AR34,  
AR35  
E3  
C6  
VDDD PLL  
GNDA  
P
P
P
Digital Power Supply PLL.  
Analog Ground.  
A3, A4, A7, A8, A13,  
A16, A20, A23,  
GNDD  
Digital Ground.  
A27, A28, A29, A32,  
A33, B3, B4, B32, B33,  
C1, C2, C4, C32, C34,  
C35, D1, D2, D3, D33,  
D34, D35, F3, G1, G35,  
H1, H3, H5, H35, N1,  
N35, T1, T35, V3, V31,  
Y1, Y4, Y35, AA5, AC1,  
AC35, AH1, AH35, AJ1,  
AJ35, AM1, AM2, AM3,  
AM33, AM34, AM35,  
AN1, AN2, AN4, AN6,  
AN32, AN34, AN35,  
AP3, AP4, AP32, AP33,  
AR3, AR4, AR7, AR8,  
AR13, AR16, AR20,  
AR23, AR28, AR29,  
AR32, AR33  
E4  
GNDD PLL  
P
Digital Ground PLL.  
* P = power.  
Agere Systems Inc.  
43  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Pin Information (continued)  
Table 10. Pin DescriptionsNo Connect Pins  
Pin  
Symbol  
Type  
I/O  
Name/Description  
E6, D6  
NC  
No Connection. Has internal pull-up resistor.  
Do not connect to these pins.  
A19, A21, A22, A24,  
A25, A26, B5, B17, B18,  
B19, B20, B21, B22,  
B23, B24, B25, B26,  
B27, B28, B29, B30,  
B31, C5, C17, C18, C19,  
C20, C21, C22, C23,  
C24, C25, C26, C27,  
C28, C29, C30, C31, D5,  
D15, D17, D18, D19,  
D20, D21, D22, D23,  
D24, D25, D26, D28,  
D29, D30, D31, E2, E17,  
E18, E19, E21, E22,  
E23, E24, E26, E27,  
E28, E29, E30, E32,  
E33, E34, F5, F31, F32,  
F33, F34, G4, G31, U33,  
V34, AL8, AL19, AM7,  
AM19, AN19, AN31,  
AP5, AP7  
NC  
No Connection. Do not connect to these pins.  
44  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Overview  
This device integrates the SONET/SDH interface termination functions with a generic cell/packet delineation cir-  
cuit. It supports STS-48/STM-16, quad STS-12/STM-4, and quad STS-3/STM-1 interface rates. Up to four data  
channels transported within an STS-N payload are processed via the SONET/SDH termination blocks and the on-  
chip data encapsulation/decapsulation engine. Packet orATM data are transmitted/received by this device on the  
equipment side via the enhanced UTOPIA interface. SONET/SDH streams are transmitted/received by this device  
on the network side via the line interface.  
Concatenation levels supported by this device range from STS-1 to STS-48c. Valid standard concatenated  
SONET frame configurations for this device are STS-3c, STS6c, STS-9c, STS-12c, STS-15c, STS-18c, and STS-  
48c. Non-standard concatenation levels (such as STS-4c, STS-5c, STS-7c, etc.) are supported as well. In STS-48  
mode, four pointer processors are available. This allows an STS-48 frame to carry up to four concatenated sub-  
frames (for example, mapping of four STS-12c payloads into an STS-48 frame). In quad STS-3 and STS-12  
modes, only one pointer processor is available. Therefore, only a single subframe may be mapped into an STS-3  
or STS-12 frame (mapping a single STS-3c payload into an STS-12 frame, for instance). For details, see Table 22  
on page 68.  
This device supports mapping for ATM cells into SONET/SDH, mapping for packet data via all existing or currently  
proposed standards (e.g., PPP, SDL) into SONET/SDH streams. Via SDL mapping, this device also supports  
packet over fiber or ATM over fiber, respectively. Figure 2 shows the overview block diagram, and Figure 3 shows  
the interface block diagram for this device.  
PAYLOAD  
TERMINATION  
LINE  
PATH  
TERMINATION TERMINATION  
PACKET/CELL  
SINGLE STM-16/STS-48  
OR QUAD STM-4/STS-12  
OR QUAD STM-1/STS-3  
OVERHEAD  
SPE  
PROCESSOR  
PROCESSOR  
MAPPER  
-ENCAPSULATION  
-SCRAMBLING  
-CRC GENERATION  
INSERT  
ENHANCED  
UTOPIA  
ENHANCED  
UTOPIA  
INTERFACE  
COMPATIBLE  
INTERFACE  
(U2, U2+, U3, U3+)  
PACKET/CELL  
PROCESSOR  
-DELINEATION  
-DECAPSULATION  
-UNSCRAMBLING  
-CRC VERIFICATION  
SINGLE STM-16/STS-48  
OR QUAD STM-4/STS-12  
OR QUAD STM-1/STS-3  
OVERHEAD  
POINTER  
PROCESSOR  
INTERPRETER  
MONITOR  
CONTROL  
µP INTERFACE  
5-6680(F).ar.15  
Figure 2. Overview Block Diagram  
Agere Systems Inc.  
45  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Overview (continued)  
Figure 3 shows the interface diagram of the IC.  
ATM/HDLC/SDL  
FRAME INSERTION  
SCRAMBLING  
TRANSMIT  
OVERHEAD  
PROCESSOR  
SPE  
MAPPER  
UTOPIA  
Tx  
ENCAPSULATION  
STS-3/STM-1  
STS-12/STM-4  
STS-48/STM-16  
ENHANCED  
UTOPIA  
INTERFACE  
OVERHEAD  
INTERFACE  
ATM/HDLC/SDL  
FRAME  
UNSCRAMBLING  
DECAPSULATION  
RECEIVE  
OVERHEAD  
PROCESSOR  
POINTER  
INTERPRETER  
UTOPIA  
Rx  
STS-3/STM-1  
STS-12/STM-4  
STS-48/STM-16  
TOH  
INTERFACE  
MPU  
INTERFACE  
JTAG  
INTERFACE  
5-6746(F)r.11  
Figure 3. Interface Block Diagram  
The receive path terminates and processes section, line, and path overhead. It performs framing (A1, A2),  
descrambling, detects alarm conditions, and monitors section, line, and path BIP-Ns (B1, B2, B3), accumulating  
error counts for each level for performance monitoring purposes. Line and path remote error indications (M1, G1)  
are also accumulated. The payload pointers (H1, H2) are interpreted, and the synchronous payload envelope  
(SPE) is extracted.  
The transmit path inserts section, line, and path overhead. It inserts the framing pattern (A1, A2), performs scram-  
bling, inserts AIS (optionally), and calculates and inserts section, line, and path BIP-8s (B1, B2, B3). Line and path  
remote failure indications (M1, G1) are inserted based on received BIP-8 errors. The payload pointers (H1, H2) are  
generated, and the SPE is inserted.  
When used to implement an ATM UNI, ATM cells are written into an internal 4-cell FIFO buffer using a generic  
8-/16-/32-bit wide UTOPIA 2/3 compliant interface. Idle/unassigned cells are automatically inserted when the inter-  
nal FIFO is empty. The device provides generation of the header check sequence and optionally scrambles the  
ATM payload.  
46  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Overview (continued)  
When used to implement a POS UNI, the device writes packets into an internal 256-byte FIFO buffer using a  
generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. HDLC framing performs the insertion of  
flags, control escape characters, and the FCS fields. Either the CRC-ITU or CRC-32 (in regular or reversed mode)  
can be computed and added to the frame. Counts of transmitted packets and errored/dropped packets are accu-  
mulated for performance monitoring purposes.  
ATM/HDLC/HDLC-CRC/PPP Support  
TDAT042G5 supports the transfer of ATM cells or variable-length packets. Support for 52- or 53-byte cell sizes is  
provided at the UTOPIA interface through register provisioning. The following three types of packet data can be  
sent and received with HLDC-like framing: transparent HDLC, CRC, and PPP. Transparent HDLC contains 0x7E  
framing but no CRC. CRC mode is HDLC with an attached CRC. PPP has 0x7E framing with provisionable  
attached header information and CRC.  
When used to implement an ATM UNI, the device performs cell delineation on the SPE. HEC error correction is  
provided. Idle/unassigned cells may be dropped according to a programmable filter. Cells are also dropped upon  
detection of an uncorrectable header check sequence error. The ATM cell payloads are descrambled before being  
passed to a 4-cell FIFO buffer. The received cells are read from the FIFO using a generic 8-/16-/32-bit wide  
UTOPIA 2/3 compliant interface. Counts of received ATM cells, uncorrectable HEC errors, and correctable HEC  
errors are accumulated independently for performance monitoring purposes.  
When used to implement a POS UNI, the device descrambles the SPE before extracting HDLC frames. The con-  
trol escape characters are removed. Descrambling can be performed after control escape byte destuffing (or  
before to control malicious HDLC expansion). The optional 16- or 32-bit error check sequence is verified for cor-  
rectness. The packets are placed into a 256-byte FIFO buffer.* The received packets are read from the FIFO using  
a generic 8-/16-/32-bit wide enhanced UTOPIA 2/3 compliant interface. Counts of received packets and errored/  
dropped packets are accumulated independently for performance monitoring purposes. The device POS imple-  
mentation also allows the optional attach/detach of a per-channel provisionable PPP header.  
* FIFOs are 256 bytes per channel and cannot be reallocated.  
Agere Systems Inc.  
47  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Overview (continued)  
SDL Support  
Supports the simplified data link (SDL) protocol, which is currently being reviewed in standards bodies. The imple-  
mentation supports 4-byte modified SDL UNI including the following:  
I CRC-16 based frame delineation with 2-byte packet field length  
I Forty-eighth order scrambler  
I No HDLC-like packet expansion  
I Optional CRC-16/-32 payload check  
I Capable of packet-over-fiber operation (i.e., no SONET frame)  
I Two user-programmable 6-byte OAM messages  
I Optional offset field from 0 to 32 bytes  
TDAT042G5 provides support for a provisionable offset to the packet to allow for the attachment of layer 2 routing  
information (e.g., MPLS tags). Table 11 defines the provisioned value for each offset.  
Table 11. Optional Offset Field  
Provisioned  
Value  
Route Tag Length  
(Bytes)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0
1
2
3
4
5
6
7
8
10  
12  
14  
16  
20  
24  
32  
The packet length value (header value that CRC is calculated over) will account for the total length of the packet  
datagram as well as the associated route tags.  
48  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Overview (continued)  
Over-Fiber Mode  
Over-fiber mode is used for packet delivery over fiber. No SONET overhead is added in this mode. Since no  
SONET overhead is added, the OHP and PT blocks must be configured for the bypass mode.  
In transmitting from the TDAT042G5 to the line, the data engine maps the data payload into a full SONET frame  
starting at what normally would be the first A1 byte. The data engine continues to map payload into the full SONET  
frame until an end of packet or end of frame is reached, at which time the data engine halts the mapping of the  
incoming data stream into the SONET frame until the next start of frame.  
When TDAT042G5 is receiving from the line, the data engine must be provisioned to receive the maximum packet  
size, unless the location of the last byte of the packet is known in advance. If the size of the packet is not known,  
one must program the data engine to receive the entire SONET frame. The external UTOPIA interface device must  
then be capable of extracting the variable length packets from the full SONET frame.  
Details of the over-fiber mode are given in the Data Engine (DE) Block section, page 82.  
Test and General-Purpose I/O Support  
The device is provisioned, controlled, and monitored using a generic 16-bit microprocessor interface. A standard  
five-signal IEEE -1149.1 compliant JTAG test port is also provided for boundary-scan purposes.  
A 4-bit GPIO (general-purpose input/output) interface is provided to control and/or monitor other onboard devices.  
External Interfaces  
Figure 4 shows the external interfaces.  
TXTOHF  
TXTOHCK  
RXREF  
RXTOHF  
4
RXTOHD  
4
TXTOHD  
RXTOHCK  
4
4
348 SIGNAL PINS  
2
2
OHP  
TxFSYNC  
TxCK  
4 x 24 Tx UTOPIA  
+5 MPHY ADDRESS  
TX LINE  
2
TxCKQ  
TxD  
32  
2
ECLREF  
RxD  
4 x 24 Rx UTOPIA  
32  
+5 MPHY ADDRESS  
RX LINE  
2
RxCLK  
CLKDIV  
MPU AND TEST INTERFACE  
16  
DATA  
16  
5
4
GPIO  
ICT  
MPMODE  
CS  
ADS  
ADDR  
DS  
JTAG  
RST PMRST  
MPCLK INT  
R/W  
DT  
5-6745(F).br.3  
Figure 4. External Interface Summary Diagram  
Agere Systems Inc.  
49  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description  
The block diagram for this device can be seen in Figure 5.  
TOH I/O  
OHP  
PT  
DE  
Tx LINE I/O  
Tx UTOPIA I/O  
Rx UTOPIA I/O  
Rx LINE I/O  
CTRL  
JTAG  
MP  
GPIO  
5-7055(F).br.2  
Figure 5. Functional Block Diagram  
50  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Line Interface Block  
This device is designed to work with commonly available optoelectronic converters for OC-3, OC-12, and OC-48  
line rates. It will also work with available multiplexer and demultiplexer chip sets for an STS-48/STM-16 line inter-  
face rate. The line interface will operate in one of three possible modes, and is provisioned through core register  
0x0010 (mode), bits 40. These three values of the mode register are the only values allowed.  
Table 12. Line Interface Modes  
Mode[4:0]  
Core Register  
0x0010  
Interfaces  
Line Interface Signals  
10000  
01111  
STS-48/STM-16  
STS-12/STM-4  
RxCKP/N, RxD[15:0]P/N, TxCKP/N, TxD[15:0]P/N  
RxCLK[D]P/N, RxD[D]P/N, TxCKP/N, TxD[D]P/N  
RxCLK[C]P/N, RxD[C]P/N, TxCKP/N, TxD[C]P/N  
RxCLK[B]P/N, RxD[B]P/N, TxCKP/N, TxD[B]P/N  
RxCLK[A]P/N, RxD[A]P/N, TxCKP/N, TxD[A]P/N  
00000  
STS-3/STM-1  
RxCLK[D]P/N, RxD[DP/N, TxCKP/N, TxD[D]P/N  
RxCLK[C]P/N, RxD[C]P/N, TxCKP/N, TxD[C]P/N  
RxCLK[B]P/N, RxD[B]P/N, TxCKP/N, TxD[B]P/N  
RxCLK[A]P/N, RxD[A]P/N, TxCKP/N, TxD[A]P/N  
This block provides the interface between the external SONET/SDH line components and the overhead processor  
(OHP) block. The line interface must provide transmit/receive functions for quad STS-3/STM-1, quad STS-12/  
STM-4, and STS-48/STM-16 applications. All external inputs and outputs for the TDAT042G5 line I/O block are ref-  
erenced to the positive edge of the clock. When the external devices are referenced to the negative edge, the dif-  
ferential input clock will need to be reversed at the TDAT042G5 input.  
Receive Line Interface Summary  
The following list summarizes the receive line interface operations for each STS mode:  
I In quad STS-3/STM-1 mode, the receive line interface provides four separate STS-3/STM-1 input pin groups.  
Each input group comprises a differential LVPECL 155.52 Mbits/s data input and a differential 155.52 MHz clock.  
Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and  
requires an external CDR.  
I In quad STS-12/STM-4 mode, the receive line interface provides four separate STS-12/STM-4 input pin groups.  
Each input group comprises a differential LVPECL 622.08 Mbits/s data input and a differential 622.08 MHz clock.  
Each input group provides data to only one of four (A, B, C, or D) OHP blocks. This interface is synchronous and  
requires an external CDR.  
I In the STS-48/STM-16 mode, the device provides 16 differential LVPECL data inputs at 155.52 Mbits/s with a dif-  
ferential LVPECL 155.52 MHz clock. In this mode, an external 1:16 data demultiplexer with a 1/16 clock divider is  
required. External barrel shifter circuitry to byte align the data is not required.  
I Multiplexers select between the terminal loopback data, the 32-bit parallel STS-48/STM-16 data bus, and the  
four STS-12/STM-4 or STS-3/STM-1 8-bit parallel data buses. The controls for these MUXes are mode (register  
0x0010) and loopback (register 0x0012) provided by the control block (see Table 48 and Table 50 on pages  
150151).  
I For STS-48 mode, the 155.52 MHz input clock is divided by two to 77.76 MHz and distributed to all four multi-  
plexers. For the STS-12/STM-4 mode, each 622.08 MHz input clock is divided by eight to 77.76 MHz. Each  
77.76 MHz clock is distributed to the appropriate clock multiplexer (A, B, C, or D). For the STS-3/STM-1 mode,  
each 155.52 MHz input clock is divided by eight to 19.44 MHz. Each 19.44 MHz clock is distributed to the appro-  
priate clock multiplexer (A, B, C, or D).  
Agere Systems Inc.  
51  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Line Interface Block (continued)  
Transmit Line Interface Summary  
The following list summarizes the transmit line interface operations for each STS mode.  
I In quad STS-3/STM-1 and STS-12/STM-4 modes, the transmit line interface receives 8 bits of data from each  
OHP block (A, B, C, and D) at 19.44 Mbits/s and 77.76 Mbits/s, respectively. An 8-to-1 parallel-to-serial conver-  
sion produces output data at 155.52 Mbits/s for STS-3/STM-1 mode and 622.08 Mbits/s for STS-12/STM-4  
mode. For facility loopback, the outputs are multiplexed with the corresponding data from the STS-12/STS-3  
(STM-4/STM-1) receive block and sent to four differentialLVPECL buffers.  
I In STS-48/STM-16 mode, a 32-bit data word at 77.76 Mbits/s is received from the OHP. Then a 2-to-1 parallel-to-  
parallel conversion is performed producing a 16-bit word at 155.52 Mbits/s. In this mode, an external 16:1 data  
demultiplexer is required. Facility loopback is not available for the STS-48/STM-16 mode.  
I There is a single clock input, TxCKP/N, in the transmit case. The clock source rates are 622.08 MHz (STS-12/  
STM-4), 155.52 MHz (STS-3/STM-1), or 155.52 MHz (STS-48/STM-16).  
In the STS-48/STM-16 case, two transmit clock modes are available, contra* and forward clocking. In the contra-  
clocking mode, the transmit data is sent out as commanded by TxCKP/N; in addition, an internal PLL must be  
activated, core register 0x0010 bit 5, to minimize the phase delay between TxCKP/N and the transmitted data. In  
the forward clocking mode, the transmit data and the clock, TxCKQ (used to clock out the data), are sent in par-  
allel to the transmit multiplexer.  
In STS-12/STM-4 and STS-3/STM-1 modes, the input clock is divided by eight producing the internal clock at  
77.76 MHz and 19.44 MHz, respectively. In STS-48/STM-16 mode, the input clock is divided by eight to produce  
an internal clock at 77.76 MHz. The CLKDIV pin (H4) controls this division. Table 13 shows the required value of  
CLKDIV.  
Table 13. Clock Settings for CLKDIV Pin  
CLKDIV Pin  
Description  
CLKDIV = 1  
CLKDIV = 0  
When in STS-12/STM-4 (622.08 MHz divide by 8).  
When in STS-3/STM-1, STS-48/STM-16 (155.52 MHz divide by 2).  
I TxFSYNCP/N is an optional external frame sync. This 8 kHz frame sync pulse must be synchronous with  
TxCKP/N. It is, at minimum, a one TxCKP/N clock cycle wide pulse that is latched in at the system rate  
(622.08 MHz or 155.52 MHz). TOH interface signal RxREF should not be used as a source to TxFSYNCP/N.  
I The active edge of the transmit clock is the positive edge.  
I When TDAT042G5 operates in asynchronous mode (MPMODE = 0), the line block provides the microprocessor  
clock to the microprocessor interface block. The CLKDIV pin must be set to ensure that the clock is always  
77.76 MHz.  
Line interface timing is given in the Interface Timing Specifications section (see Table 168, page 267).  
* Contra refers to a type of data transmission whereby a clock signal is received by a register before the register sends data.  
52  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
SONET Framer  
The SONET framer consists of the overhead processor (OHP) and path terminator (PT) blocks. The receive  
SONET framer requires 625 µs to drop frame after the line input signal is lost. Once a valid receive line input is  
restored, the maximum average reframe time (MART) is 250 µs.  
Overhead Processor (OHP) Block  
The OHP block terminates/generates the section and line overhead bytes of the line. The data rate of the TOH  
interface is given in Table 14. Timing for the TOH interface is given in the Interface Timing Specifications section  
(see Table 172 and Table 173, page 271).  
Table 14. R/T TOH Interface Rates  
Mode  
R/T TOH Interface Rate  
STS-48/STM-16  
STS-12/STM-4  
STS-3/STM-1  
20.736* Mbits/s  
20.736 Mbits/s  
5.184 Mbits/s  
* This STS-48/STM-16 interface is a four-line interface resulting in an effective interface rate  
of 82.944 Mbits/s.  
All receive transport overhead bytes are output on the RTOH interface for external processing. Transmit transport  
overhead bytes can optionally be inserted from the TTOH interface.  
The transmit transport overhead bytes can be inserted in one of three ways selected through software provision-  
ing: (1) automatically by hardware, (2) via software provisioning, or (3) through the TOAC. Table 15 defines those  
overhead bytes that can be inserted via each of the three paths. In some cases, the user has the choice to insert  
the byte via software registers or through the TOAC. Superscripts in the table reference these insertion methods  
which are described in the footnotes.  
Table 15. TOAC Byte Insertion: An STS-3/STM-1 Example  
OH Parity3  
(1st bit of  
1st byte)  
X6  
X6  
X6  
X6  
X6  
J05  
Z04  
Z04  
X6  
D13  
X6  
B1-21  
D1-21  
X6  
B1-31  
D2-31  
X6  
E15  
D23  
X6  
E1-21  
D2-21  
X6  
E1-31  
D2-31  
X6  
F15  
D33  
X6  
F1-21  
D3-21  
X6  
F1-31  
D3-31  
X6  
X6  
X6  
X6  
K12  
D53  
D83  
D113  
Z23  
K1-21  
D5-21  
D8-21  
D11-21  
Z2-23  
K1-31  
D5-31  
D8-31  
D11-31  
X6  
K22  
D63  
D93  
D123  
E23  
K2-21  
D6-21  
D9-21  
D12-21  
E2-21  
K2-31  
D6-31  
D9-31  
D12-31  
E2-31  
D43  
D73  
D103  
S15  
D4-21  
D7-21  
D10-21  
Z1-23  
D4-31  
D7-31  
D10-31  
Z1-33  
1.Inserted via TOAC, but not part of SONET standard.  
2.Inserted via software or automatically via hardware.  
3.Inserted via TOAC only.  
4.Inserted via software register only.  
5.Inserted via TOAC or software register.  
6.Inserted via TOAC hardware; should be included in TOAC interface timing.  
Agere Systems Inc.  
53  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
The TOAC inserter must insert the first bit of A1 at the TOAC input, TxTOHD[D:A], during the first clock cycle when  
TxTOHF = 1. The TOAC has a built-in parity checker. For the parity check, the value of the first inserted bit of A1  
must be set to the parity value of the previous frame. The remainder of the inserted bits of the A1, A2 bytes are  
ignored by the transmit framer.  
Receive OHP  
Loss-of-Signal. The loss-of-signal block monitors the incoming scrambled data for the absence of transitions.  
When an absence of transitions is detected for a programmable length of time, a loss-of-signal (LOS) is declared.  
LOS is cleared when two valid framing patterns are detected, and during the intervening time, no LOS condition is  
detected.  
Framer. The frame block finds and locks onto the incoming A1 and A2 bytes of the SONET transport overhead.  
Loss-of-frame (LOF) is declared when a defect persists for more than 3 ms. LOF is cleared when the defect is  
absent for more than 3 ms. To prevent intermittent out-of-frame/in-frame conditions, the 3 ms timer is not reset to  
zero until an in-frame (or out-of-frame) condition persists for 3 ms. The framer is also responsible for performing bit  
rotations on the incoming data stream to ensure that the rest of the IC receives byte-aligned data.  
While in-frame, the A1/A2 framing bytes in each frame are compared against the expected pattern. Out-of-frame  
(OOF) is declared when five consecutive frames containing one or more framing pattern errors have been  
received.  
While out-of-frame, this block will monitor the receive data stream for an occurrence of the framing pattern. When a  
framing pattern has been recognized, the framer performs the necessary bit rotation and verifies that an error-free  
framing pattern is present in the next frame before declaring in-frame.  
J0 Section Trace. The section trace message is extracted and stored in a 16-byte memory for access by software.  
The first byte of the message can be provisioned to be either:  
I The byte with the most significant bit (MSB) set high (for SDH), or  
I The byte following a carriage return (0x0D) and line feed (0x0A) sequence (for SONET).  
J0 mismatch detection is provided using one of four methods (provisionable via J0MONMODE[AD][1:0]; see reg-  
ister description, page 173).  
Descrambler. The descrambler block implements the frame synchronous SONET descrambler with a generating  
polynomial of 1 + x6 + x7. The framing bytes (A1, A2), the section trace bytes (J0), and the growth bytes (Z0) are  
not descrambled. The descrambler may be disabled through a software register.  
54  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
B1 BIP-8 Check. The SBIP block counts section BIP-8 (B1) errors. The SBIP value is calculated over the scram-  
bled data of the complete previous frame. The calculated value is compared against the received B1 byte and dif-  
ferences (errors) are counted. A theoretical maximum of 64,000 errors may be detected per second. The SBIP  
block accumulates these errors in a 16-bit saturating counter. This counter operates in latch and clear mode to  
ensure Bellcore and ITU compliance with regard to not missing any events (bit errors). It is intended that this  
counter be polled at least once per second so that no error events are missed. Optionally, a maximum of only  
one SBIP error per frame can be counted (provisionable via B1BITBLKCNT[AD]; see register description,  
page 174). This causes the error counter to only increment by one when one or more errors are detected.  
B2 BIP-N Check. The LBIP block counts line BIP-N errors. The LBIP value is calculated over the incoming frame  
and is compared to the received B2 bytes received in the next frame. The errors are counted. Optionally, a maxi-  
mum of only one LBIP error per frame can be counted (B2BITBLKCNT[AD]; see register description, page 174).  
This causes the block error counter to only increment by one when one or more errors are detected. A theoretical  
maximum of 3,072,000 errors may be detected per second. The LBIP block accumulates these errors in a 22-bit  
saturating counter. This counter is operated in latch and clear mode to ensure Bellcore and ITU compliance with  
regard to not missing any events (bit errors). It is intended that this counter be polled at least once per second so  
that no error events are missed.  
BER Check. The OHP block also detects provisionable signal fail (SF) and signal degrade (SD) conditions. The  
SF and SD values are provisioned through a group of software registers (SF addresses 0x04520x0469,  
SD addresses 0x043A0x0451). The SF alarm can be provisioned for a bit error rate (BER) of between 103 to  
105; the SD alarm can be provisioned for a bit error rate (BER) of between 105 to 109 (see Table 86, page 187).  
Agere Systems Inc.  
55  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
Figure 6 illustrates the parameters used in determining the bit error detection rate.  
NUMBER OF MONITORING BLOCKS SFBSET[AD] OR SDBSET[AD] (IN THIS CASE, 3)  
NUMBER OF FRAMES IN A MONITORING BLOCK SFNSSET[AD] OR SDNSSET[AD],  
SFNSCLEAR[AD] OR SDNSCLEAR[AD]  
(IN THIS CASE, 7)  
FRAME  
BOUNDARY  
BLOCK  
BOUNDARY  
SFLSET[AD] OR SDLSET[AD]  
SFMSET[AD] OR SDMSET[AD]  
SFLCLEAR[AD] OR SDLCLEAR[AD]  
SFMCLEAR[AD] OR SDMCLEAR[AD]  
ACCUMULATED BIP ERROR COUNT:  
B1 OR B2 FOR LINE  
BLOCK GOOD/BAD COUNT  
B3 FOR PATH  
5-7934(F)  
Figure 6. Signal Degrade and Failure Parameters for BER  
TDAT042G5 provides a method to monitor the BER at the line and path layers. The following explains the algo-  
rithm for this method to set and clear the BER. The algorithm for this method is the same for setting and clearing  
the BER, the only difference is the programmed values. TDAT042G5 includes two complete sets of identical  
counters, one used to determine signal fail (SF) and one used to determine signal degrade (SD). The only differ-  
ence between SF and SD is the provisioned values. The same algorithm is used for both the line and path layers of  
SONET.  
The algorithm uses four sets of counters: labelled Ns (number of frames), L (number of errors), M (number of  
errored blocks), and B (total number of blocks). Each of these counters has different values that are provisioned to  
either set the BER high or clear the BER indication. The algorithm works by counting blocks, i.e., a preset number  
of SONET/SDH frames (Ns). If the number of errors in the block exceeds the provisioned level (L), then the errored  
block counter is incremented by 1; otherwise, the number of blocks in error stays at its current level. At this point,  
the frame counter and the error counter are reset back to 0 and start counting again. At the end of a preset number  
of blocks (B), the count in the errored block counter is compared against a provisioned threshold (M). If the total  
number of blocks in error equals or exceeds the provisioned threshold (M), then the BER alarm is raised. If the total  
number of blocks in error is less than the provisioned amount (M), then the BER alarm is cleared.  
The values used by the counters are determined by the state of the algorithm. If the BER state is low, then the SET  
parameters are used. If the BER state is high, then the CLEAR parameters are used.  
56  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
Table 16 and Table 17 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to  
set and clear the BER indicator. SF registers are 0x04520x0469 and SD registers are 0x043A0x0451. All  
SF/SD set and clear values are hexadecimal.  
Table 16. Ns, L, M, and B Values to Set the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Declaring  
SF/SD (%)  
Integra-  
tion  
Time  
(s)  
Max-  
imum  
Number  
of Frames  
Ns*  
L*  
M*  
B*  
@BER @BER/2 @BER @BER/2  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
6
9
3D  
3
3D  
7
62  
48  
99.96  
72.70  
71.34  
71.34  
69.74  
68.07  
56.90  
85.13  
7.28  
10.08  
10.09  
9.44  
8.82  
11.25  
97.68  
96.06  
95.19  
95.19  
95.07  
98.47  
96.52  
0.00  
0.16  
0.52  
0.52  
0.13  
0.82  
0.60  
0.008  
0.013  
0.1  
1
64  
104  
30  
7
3
7
384  
800  
1E0  
1275  
B5A4  
3F7A0  
7
3
7
3840  
47250  
465000  
4160000  
8000  
80000  
664000  
5336000  
7
4
9
10  
7
3
9
83  
4
5
F
667  
STS-12/ 1.00E-03  
STM-4  
2
B
8
6
A
8
64  
22  
100.00  
84.92  
67.93  
66.19  
65.75  
65.75  
65.75  
88.43  
9.64  
7.17  
6.66  
6.53  
6.53  
6.53  
100.00  
98.38  
96.48  
95.46  
95.16  
95.16  
95.16  
0.04  
0.00  
0.25  
0.19  
0.18  
0.18  
0.18  
0.008  
0.008  
0.025  
0.25  
2.5  
64  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
D
3
117  
200  
80  
8
3
8
1152  
11475  
114750  
1147500  
2000  
20000  
168000  
1336000  
4FB  
31CE  
1F20C  
8
3
8
8
3
8
21  
8
3
8
167  
STS-48/ 1.00E-03  
STM-16  
1
E
A
7
3F  
35  
8
3F  
3F  
E
64  
64  
100.00  
99.95  
90.60  
77.55  
75.80  
74.58  
82.92  
100.00  
58.97  
16.25  
13.09  
12.15  
11.54  
19.71  
100.00  
96.89  
96.47  
96.69  
95.17  
98.09  
97.29  
100.00  
0.00  
0.00  
0.00  
0.00  
0.01  
0.18  
0.008  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
5
320  
64  
20  
480  
500  
13A  
C1C  
765C  
7
8
E
4710  
46500  
333300  
5000  
41600  
336000  
7
7
E
6
6
A
42  
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
Agere Systems Inc.  
57  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
Overhead (OH) Extract. All transport overhead (TOH) bytes are extracted and sent over the RxTOH interface for  
possible external processing. The number of bits sent are as follows:  
I STS-3/STM-1: 5,184,000 bits/s per interface  
I STS-12/STM-4: 20,736,000 bits/s per interface  
I STS-48/STM-16: 82,944,000 bits/s (over 4 serial lines (20,736 kbits/s each))  
Table 17. Ns, L, M, and B Values to Clear the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Clearing  
SF/SD (%)  
Integra-  
tion  
Time  
(s)  
Max-  
imum  
Number  
of Frames  
Ns*  
L*  
M*  
B*  
@BER*5 @BER @BER*5 @BER  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
2
2
2
2
2
2
3
3
3
3
4
3
2
7
8
0.013  
0.1  
104  
85.13  
93.01  
84.42  
84.42  
83.66  
82.86  
46.31  
0.39  
11.33  
6.84  
6.84  
6.59  
6.35  
1.48  
0.27  
0.01  
0.34  
0.34  
0.22  
0.03  
0.50  
100.00  
99.21  
99.88  
99.88  
99.98  
99.75  
99.84  
6
7
48  
800  
30  
7
384  
1
8000  
1E05  
1275  
B5A4  
3F7A0  
7
3840  
47250  
465000  
4160000  
10  
80000  
664000  
5336000  
53360000  
9
83  
9
667  
6670  
F
STS-12/ 1.00E-03  
STM-4  
1
7
2
2
2
2
2
2
6
8
3
3
3
3
3
6
7
0.008  
0.025  
0.25  
2.5  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
100.00  
98.36  
87.99  
87.34  
87.17  
87.17  
87.17  
51.54  
20.51  
8.23  
7.94  
7.87  
7.87  
7.87  
0.00  
0.07  
0.02  
0.02  
0.03  
0.03  
0.03  
99.03  
100.00  
99.59  
99.64  
99.65  
99.65  
99.65  
2
A
8
22  
200  
D
117  
2000  
80  
8
1152  
11475  
114750  
1147500  
20000  
168000  
1336000  
13360000  
4FB  
31CE  
1F20C  
8
21  
8
167  
8
1670  
STS-48/ 1.00E-03  
STM-16  
2
3
2
2
2
2
64  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
1.00E-04  
100.00  
100.00  
95.07  
87.34  
86.52  
85.95  
84.89  
45.99  
60.11  
7.28  
7.94  
7.61  
7.38  
7.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.03  
99.42  
99.47  
99.98  
99.94  
99.95  
99.96  
99.95  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
D
D
6
E
15  
64  
5
3F  
13  
13  
13  
A
320  
500  
20  
640  
5000  
41600  
336000  
3360000  
13A  
C1C  
765C  
6
6280  
62000  
333300  
6
42  
4
420  
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
58  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
The OH interface consists of clock, data, and frame. The data and frame signals update on the falling edge of the  
clock. The frame pulse is high for the most significant bit (MSB) of the first bit of the frame. Bytes J0, Z0, and F1  
(current and previous), K1, K2, and S1 can also be extracted via software registers.  
Table 18 shows the ordering of the bytes for the allowed TOAC configurations.  
Table 18. TOAC Channel I/O vs. STS Number/Time Slot  
Output Rate  
TOAC Channel Input vs. Input STS Number/Time Slot  
Time  
STS-3/STM-1  
3 2 1 (Channel A)  
3 2 1 (Channel B)  
3 2 1 (Channel C)  
3 2 1 (Channel D)  
STS-12/STM-4  
STS-48/STM-16  
12 9 6 3 11 8 5 2 10 7 4 1 (Channel A)  
12 9 6 3 11 8 5 2 10 7 4 1 (Channel B)  
12 9 6 3 11 8 5 2 10 7 4 1 (Channel C)  
12 9 6 3 11 8 5 2 10 7 4 1 (Channel D)  
39 27 15  
42 30 18  
45 33 21  
3
6
9
38 26 14  
41 29 17  
44 32 20  
2
5
8
37 25 13  
40 28 16  
43 31 19  
1
4
7
(Channel A)  
(Channel B)  
(Channel C)  
48 36 24 12 47 35 23 11 46 34 22 10 (Channel D)  
The overhead extract block also performs the following functions:  
I Error Monitors. The REI_L block counts remote error indication block errors. The M1 byte is extracted and  
counted. This represents the number of LBIP errors detected by the far-end equipment. Optionally, a maximum  
of only one REI-L error per frame may be counted (provisionable via M1BITBLKCNT[AD]; register description,  
page 175). This causes the block error counter to only increment by one when one or more errors are detected.  
I Automatic Protection Switch Signaling. The APS block filters the K1 and K2 bytes (automatic protection  
switching channel) and stores the validated message in software-accessible registers. The K bytes are validated  
after a programmable number of consecutive frames contain identical K1 (and K2[7:3] or K2[7:0]) values. APS  
protection switching byte failure is detected within this block when a programmable number of frames have  
passed without valid K bytes. The protection switching byte failure is removed upon detection of a programmable  
number of frames with identical K1 (and K2[7:3] or K2[7:0]) bytes. The use of K2[7:3] or K2[7:0] is provisionable  
via the K1K2_2_OR_1 register bit (see register description, page 169).  
I Line Remote Defect Indicator. Bits 2, 1, and 0 of the K2 byte are monitored for the pattern 110. If this pattern  
appears for 315 (provisionable by OHP register CNTDK2) consecutive frames, RDI-L is asserted. RDI-L is  
removed when any pattern other than 110 is detected for 315 (provisionable by OHP register CNTDK2) con-  
secutive frames. (See page 171 for register description of CNTDK2[AD][3:0].)  
I Line Alarm Indication Signal. Bits 6, 7, and 8 of the K2 byte are monitored for the pattern 111. If this pattern  
appears for 315 (provisionable by OHP register CNTDK2) consecutive frames, AIS-L is asserted. AIS-L is  
removed when any pattern other than 111 is detected for 315 (provisionable by OHP register CNTDK2) con-  
secutive frames. (See page 171 for register description of CNTDK2[AD][3:0].)  
Agere Systems Inc.  
59  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Receive OHP (continued)  
I Rx Synchronization Message. The S1 block filters the synchronization message (S1) byte and stores the vali-  
dated message in a software-accessible register. The synchronization message will be validated if a programma-  
ble number (in OHP register CNTDS1) of consecutive frames contain identical S1 values. An inconsistent  
synchronization message alarm will be reported if a provisional number (by OHP register CNTDS1FRAME) of  
consecutive frames pass without a validated message occurring. (See page 172 for register descriptions of  
CNTDS1[AD][3:0] and CNTDS1FRAME [AD][3:0].)  
I F1 User Channel. The F1 byte is extracted by the OHP. The F1 user channel is monitored for change of state  
using OHP registers 0x0402, 0x0404, 0x0406, 0x0408 (see register map, page 116). The previous and current  
F1 values are stored in F1DMON1[AD][7:0] and F1DMON0[AD][7:0], respectively (see page 122 for register  
map, page 190 for register descriptions).  
I DCC and Orderwire Bytes. The data communication channel (D1D3, D4D12) and orderwire bytes (E1, E2)  
can only be extracted via the TOAC.  
I D1/D2/D3 Section Data Communications Channels (DCC). DCC outputs are taken from the TOAC.  
I D4D12 Line Data Communications Channels (DCC). DCC outputs are taken from the TOAC.  
I M1 REI-L. REI-L is extracted by the OHP.  
I Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-over-  
fiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead  
insertion/extraction is done when in bypass mode.  
Transmit OHP  
Overhead Insertion. Some transport overhead (TOH) bytes can optionally be inserted via the TxTOH interface  
and inserted into the TOH bytes (see Table 15, page 53). Certain bytes can be either inserted from values stored in  
registers or automatically generated. The TxTOH interface controls the insertion mechanism. Software insertion  
takes precedence over TOAC insertion. The number of bits received are as follows:  
I STS-3/STM-1: 5,184,000 bits/s per interface  
I STS-12/STM-4: 20,736,000 bits/s per interface  
I STS-48/STM-16: 82,944,000 bits/s (over 4 serial lines (20,736 kbits/s each))  
S1 Synchronization Message. The S1 block controls the insertion of the S1 byte. The byte ordering is the same  
as the RxTOAC and is shown in Table 18 (see pa ge59). The S1 byte can be provisioned to come from the TxTOH  
interface or from a software-settable register. Control for message insertion is from software control register  
TS1INS[AD] (see register description, page 179 and page 183).  
K1K2 APS Signaling. The APS block controls the insertion of the K bytes based on software provisioned K bytes,  
and alarm conditions (AIS-L, RDI-L). Inconsistent APS bytes can be inserted via register provisioning by  
TAPSBABBLEINS[AD] (see register description, page 178 and page 183).  
RDI_L Generation. The following six alarms contribute to RDI_L generation: LOF, OOF, LOS, LOC, AIS_L, and  
SF. They can be inhibited from contributing to RDI-L via transmit control registers (addresses 0x042F, 0x0431,  
0x0433, 0x0435; see register description, page 180).  
60  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Overhead Processor (OHP) Block (continued)  
Transmit OHP (continued)  
BIP-8 Generation. The SBIP block calculates the B1 value according to Bellcore and ITU standards. Insertion of  
SBIP errors is possible through the use of software control register TB1ERRINS[AD] (see register description,  
page 180).  
The LBIP block calculates the B2 values according to Bellcore and ITU standards. Insertion of LBIP errors is pos-  
sible through the use of software control register TB2ERRINS[AD] (see register description, page 180).  
The REI_L block controls the insertion of the remote error indication block error count.  
J0 Section Trace. The section trace message is inserted either from the TxTOH interface or from a message  
stored in a 16-byte software-accessible memory. Control for message insertion is from software control register  
TJ0INS[AD] (see register description, page 177 and page 181).  
SONET Scrambler. The scrambler block implements the frame synchronous SONET scrambler with a generating  
polynomial of 1 + x6 + x7. The scrambler may be disabled through a software register.  
A1/A2 Framing Bytes. A1 and A2 are automatically placed on the line. Errors can be inserted into A2 by setting  
OHP register TA1A2ERRINS[AD][4:0] (see register description, page 180).  
E1/E2 Orderwire Bytes. The orderwire bytes for section and line are taken from the TOAC.  
D1/D2/D3 Section Data Communications Channels (DCC). DCC inputs are taken from the TOAC.  
D4D12 Line Data Communications Channels (DCC). DCC inputs are taken from the TOAC.  
F1 User Channel. The F1 byte can be optionally inserted from stored values in OHP register TF1INS[AD]  
(addresses 0x047E, 0x0480, 0x0482, 0x0484; see register description, page 179 and page 183).  
M1 REI-L. REI-L can be automatically generated and inserted into the outgoing SONET frame, or can optionally  
be inhibited. Errors can be inserted into M1 via OHP register TM1_ERR_INS[AD] (addresses 0x042E, 0x0430,  
0x0432, 0x0434; see register description, page 179 and page 183).  
Support for ATM/Packet-Over-Fiber. The transport overhead must be bypassed when operating in data-over-  
fiber mode. In this mode, the TOH_BYPASS and ROH_BYPASS register bits must be set to 1. No overhead inser-  
tion/extraction is done when in bypass mode.  
Agere Systems Inc.  
61  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block  
The path terminator performs path overhead (POH) termination and extracts the payload for further processing by  
the downstream circuitry. The path terminator block interprets the incoming H1/H2 pointer of each incoming STS  
channel. The pointer interpreter supports up to four channels and performs path overhead termination on each  
channel. Each channel may be either an STS-1, STS-3c, STS-6c, STS-9c, . . . , STS-45c, or STS-48c.  
The pointer is validated according to Bellcore and ITU specifications. The H1/H2 pointers are used to determine  
the location of the first path overhead (POH) byte (J1). The pointer interpreter consists of a finite state machine  
(FSM) with four steady states. These states are defined as follows:  
I Normal state  
I Loss-of-pointer (LOP)  
I Alarm indication signal (AIS)  
I Concatenation  
The transition between states will require several consecutive events to protect against transient conditions caused  
by bit errors during high BER conditions. The state machine is shown below in Figure 7.  
1 NDF POINTER OR  
3 NORMAL POINTERS  
NORMAL  
AIS  
3 AIS INDICATIONS  
8 INVALID POINTERS  
3 CONC INDICATIONS  
LOP  
CONC  
5-7935(F)  
Figure 7. Pointer Interpreter State Diagram  
The PT block monitors for the following conditions and takes appropriate actions:  
I Pointer Increment. TDAT042G5 uses an 11-bit counter to count the number of pointer increments and updates  
the associated counter holding register on the occurrence of PMRST (RPI_INC[AD][10:0]; see register  
description, page 198). A pointer increment can occur when in the normal pointer mode. The following two meth-  
ods can be used to determine if the pointer increment operation should be performed: 6-of-10 or 8-of-10 majority  
matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [AD]; see register description,  
page 200).  
62  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
I Pointer Decrement. TDAT042G5 uses an 11-bit counter to count the number of pointer decrements and  
updates the associated counter holding register on the occurrence of PMRST (RPI_DEC[AD][10:0]; see regis-  
ter description, page 198). A pointer decrement can occur when in the normal pointer mode. The following two  
methods can be used to determine if the pointer decrement operation should be performed: 6-of-10 or 8-of-10  
majority matching (selectable via software provisioning of register RINCDEC_6OR8MAJ [AD]; see register  
description, page 200).  
I Loss-of-Pointer. LOP-P is declared as shown in the above state diagram. In an LOP-P state, none of the path  
overhead bytes are extracted.  
I AIS-P. The AIS-P is declared when the H1 and H2 bytes are set to all ones. In an AIS-P state, none of the path  
overhead bytes are extracted.  
I Concatenated Pointer. A concatenated pointer is detected when the new data flag is set and the pointer offset  
value is all ones.  
I New Pointer. TDAT042G5 uses a 13-bit counter to count the number of new data flags that occur and updates  
the associated counter holding register on the occurrence of PMRST (RNDFCNT[AD][12:0]; see register  
description, page 198). TDAT042G5 uses a 3-of-4 majority voting scheme to determine if the new data flag is  
set. Valid new data flags occur when the NDF bits are either 1001, 0001, 1101, 1011, or 1000.  
I Normal Pointer. A normal pointer occurs when all of the following conditions are true simultaneously:  
1. NDF is not set (NDF bits are either 0110, 0111, 0100, or 0010),  
2. There is no invalid pointer value,  
3. There is a valid offset (0 to 782)  
I Invalid Pointer. An invalid pointer is declared when neither a new data flag nor a normal pointer is detected.  
SPE Terminate  
Receive Path Trace. The path trace message is extracted and stored in a 16-byte (SDH) or 64-byte (SONET)  
memory for access by software. The first byte of the message can be provisioned to be either of the following:  
I For SDH mode, the byte with the most significant bit (MSB) set high (for SDH)  
I For SONET mode, the byte following a carriage return (0x0D) and line feed (0x0A) sequence  
The framing can also be disabled.  
Receive Error Monitor. The PBIP block counts path BIP-8 errors. A theoretical maximum of 64,000 errors may be  
detected per second. The PBIP block accumulates these errors in a 16-bit saturating counter. This counter is oper-  
ated in latch and clear mode to ensure Bellcore and ITU compliance with regard to not missing any events (bit  
errors). It is intended that this counter be polled at least once per second in order that no error events are missed.  
The REI_P block counts remote error indication block errors.  
Agere Systems Inc.  
63  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
SPE Terminate (continued)  
Receive Signal Label. The C2 block will extract and validate the signal label byte (C2) and store it in a software-  
accessible register. The signal label is updated when a provisionable number of consecutive detections of a new  
C2 value occur (CNTDC2[AD][3:0]; see register description, page 204). All monitoring is disabled when the  
pointer is in an LOP-P or an AIS-P state. Commonly used values of C2 with their signal labels are listed below in  
Table 19.  
Table 19. Types of Signal Labels  
C2 Value  
Signal Label  
0x00  
0x01  
0x13  
0x16  
Unequipped STS SPE  
Equipped nonspecific payload  
Mapping for ATM  
Mapping for HDLC-PPP  
Any value of C2 may be provisioned. If the provisioned value is not matched by the detected value, then data is not  
passed to the DE. If the provisioned value does match the detected value, then data is passed to the DE.  
TDAT042G5 will detect unequipped payloads (UNEQ-P) when a provisionable number of consecutive monitored  
C2 bytes match the 0x00 unequipped STS SPE state. TDAT042G5 will detect mismatched payloads (PLM-P)  
when a provisionable number of consecutive monitored C2 bytes do not match the provisioned expected payload  
label (RC2EXPVAL[7:0]; see register description, page 205).  
Receive Path Status. The G1 block extracts the path remote error indication (REI-P) bits of G1[7:4] and accumu-  
lates the REI-P errors in a 16-bit saturating counter. This counter is operated in latch and clear mode to ensure  
Bellcore and ITU compliance. It is intended that this counter be polled at least once per second in order that no  
error events are missed.  
RDI-P. This block will also validate the path remote defect indication (RDI-P) bits and store the result in a software-  
accessible register. The receive path can monitor remote defect indications in either enhanced or single bit RDI-P  
modes (provisionable via software bit RDIPMON_ENH_OR1B [AD]; see register description, page 200). The  
interpretation of the G1 byte is as follows.  
Table 20. 1-bit Mode  
G1 Bytes  
Description  
No RDI-P defects  
AIS-P, LOP-P  
G1[3:1] = 0xx  
G1[3:1] = 1xx  
Table 21. 3-bit Mode (Enhanced RDI)  
G1 Bytes  
Description  
G1[3:1] = 001  
G1[3:1] = 010  
G1[3:1] = 101  
G1[3:1] = 110  
No RDI-P defects  
PLM-P or LCD-P  
AIS-P or LOP-P  
UNEQ-P or TIM-P (TIM-P is J1 mismatch*)  
* TIM-P must be accomplished through (microprocessor) software by reading the  
transmit RDI-P state and inserting the G1 bit.  
64  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
Z5/N1, Z4/K4, Z3/F3, H4, F2 Monitoring. TDAT042G5 monitors the F2 user channel byte, the H4 VT multiframe  
indicator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte.  
These bytes are stored in software registers. These registers are updated when a provisionable number of detec-  
tions of new values occur on the associated incoming byte. All monitoring is disabled when the pointer is in an  
LOP-P or an AIS-P state.  
Signal Failure and Signal Degrade Monitoring. The path overhead processor also detects/clears provisionable  
signal fail (SF) and signal degrade (SD) conditions. The SF and SD values are provisionable through a group of  
software registers in the PT register map. The provisioning is the same as that shown in Table 16, page 57 of the  
Overhead Processor (OHP) Block section.  
SPE Generate  
Transmit Pointer Generation. The pointer generation block generates the outgoing H1 and H2 pointer values.  
Each of the four PT channels can generate one normal (valid) pointer. Therefore, in STS-3/STM-1 and STS-12/  
STM-4 modes, only one normal pointer (and only one SPE) may be inserted into the transmitted SONET/SDH  
frame. In STS-48/STM-12 mode, all four PT channels are used. Therefore, up to four normal pointers (and four  
SPEs) may be inserted into the transmitted SONET/SDH frame.  
When inserting concatenated frames, only the first H1 and H2 bytes will contain a valid pointer value. The remain-  
ing H1 and H2 bytes of the channel will be set to indicate concatenation. The remaining unequipped channels will  
have their H1 and H2 pointers set to a fixed pointer value.  
For proper pointer generation, the appropriate values must be provisioned in the H-byte transmit state register  
THx_STATE (see register description, page 203).  
The following examples illustrate how the device may be configured to transmit various sub-rates and concate-  
nated payloads. Each block in the following diagrams represents one STS-1 frame. Figure 8 illustrates how to pro-  
vision the THx_STATE registers to transmit an STS-48c frame within an STS-48 signal. In this example, the pointer  
to the first STS-1 is provisioned as a normal pointer value while the pointers to the remaining STS-1 signals are  
provisioned as concatenated pointers. Figure 9 illustrates how to provision the THx_STATE registers to transmit  
four STS-12c frames within an STS-48 signal. The concatenated STS-Mc frames that may be mapped into STS-N  
signals (where M N) are restricted to those listed in Table 22 (see page 68).  
12  
39  
42  
45  
48  
11  
27  
30  
33  
36  
10  
15  
18  
21  
24  
9
3
8
7
6
5
2
4
3
2
1
1
TIME-SLOT NUMBER  
38  
41  
44  
47  
26  
29  
32  
35  
14  
17  
20  
23  
37  
40  
43  
46  
25  
28  
31  
34  
13  
16  
19  
22  
6
5
4
9
8
7
12  
11  
10  
NORMAL POINTER  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
00  
01  
01  
01  
THX_STATE[A][121][1:0]  
THX_STATE[B][121][1:0]  
THX_STATE[C][121][1:0]  
THX_STATE[D][121][1:0]  
47 CONCATENATED POINTERS  
0351(F)  
Figure 8. STS-48 Signal Carrying One STS-48c Frame  
Agere Systems Inc.  
65  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
SPE Generate (continued)  
12  
39  
42  
45  
48  
11  
27  
30  
33  
36  
10  
15  
18  
21  
24  
9
3
8
7
6
5
2
4
3
2
1
1
TIME-SLOT NUMBER  
38  
41  
44  
47  
26  
29  
32  
35  
14  
17  
20  
23  
37  
40  
43  
46  
25  
28  
31  
34  
13  
16  
19  
22  
6
5
4
9
8
7
12  
11  
10  
FOUR NORMAL POINTERS  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
00  
01  
01  
01  
00  
01  
01  
01  
00  
01  
01  
01  
00  
01  
01  
01  
THX_STATE[A][121][1:0]  
THX_STATE[B][121][1:0]  
THX_STATE[C][121][1:0]  
THX_STATE[D][121][1:0]  
44 CONCATENATED POINTERS  
0352(F)  
Figure 9. STS-48 Signal Carrying Four STS-12c Frames  
12  
11  
10  
9
8
7
6
5
4
3
2
1
TIME-SLOT NUMBER  
12a  
12b  
12c  
12d  
9a  
9b  
9c  
9d  
6a  
3a  
3b  
3c  
3d  
11a  
11b  
11c  
11d  
8a  
8b  
8c  
8d  
5a  
5b  
5c  
5d  
2a  
2b  
2c  
2d  
10a  
10b  
10c  
10d  
7a  
7b  
7c  
7d  
4a  
4b  
4c  
4d  
1a  
1b  
1c  
1d  
6b  
6c  
6d  
CONCATENATED POINTERS  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
00  
00  
00  
00  
THX_STATE[A][121][1:0]  
THX_STATE[B][121][1:0]  
THX_STATE[C][121][1:0]  
THX_STATE[D][121][1:0]  
NORMAL POINTERS  
UNEQUIPPED  
POINTERS  
UNEQUIPPED  
POINTERS  
UNEQUIPPED  
POINTERS  
0353(F)  
Figure 10. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-3c Frame  
66  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
SPE Generate (continued)  
12  
11  
10  
6a  
9
8
7
6
5
4
3
2
1
TIME-SLOT NUMBER  
12a  
12b  
12c  
12d  
9a  
9b  
9c  
9d  
3a  
3b  
3c  
3d  
11a  
11b  
11c  
11d  
8a  
8b  
8c  
8d  
5a  
5b  
5c  
5d  
2a  
2b  
2c  
2d  
10a  
10b  
10c  
10d  
7a  
7b  
7c  
7d  
4a  
4b  
4c  
4d  
1a  
1b  
1c  
1d  
6b  
6c  
6d  
NORMAL POINTERS  
01  
10  
10  
01  
01  
01  
10  
10  
01  
01  
01  
10  
01  
01  
01  
01  
01  
10  
10  
10  
01  
01  
10  
10  
01  
01  
01  
10  
01  
01  
01  
01  
01  
10  
10  
10  
01  
01  
10  
10  
01  
01  
01  
10  
00  
00  
00  
00  
THX_STATE[A][121][1:0]  
THX_STATE[B][121][1:0]  
THX_STATE[C][121][1:0]  
THX_STATE[D][121][1:0]  
0354(F)  
Figure 11. Quad STS-12 Configuration With Each STS-12 Signal Carrying One STS-12c Frame  
(Channel A), One STS-9c Frame (Channel B), One STS-6c Frame (Channel C), and  
One STS-3c Frame (Channel D)  
12  
3a  
3b  
3c  
3d  
11  
2a  
2b  
2c  
2d  
10  
1a  
1b  
1c  
1d  
9
8
7
6
5
4
3
2
1
TIME-SLOT NUMBER  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
CONCATENATED POINTERS  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
00  
00  
00  
00  
THX_STATE[A][121][1:0]  
THX_STATE[B][121][1:0]  
THX_STATE[C][121][1:0]  
THX_STATE[D][121][1:0]  
NORMAL POINTERS  
UNEQUIPPED POINTERS  
0355(F)r.1  
Figure 12. Quad STS-3 Configuration With Each STS-3 Signal Carrying One STS-2c Frame  
Agere Systems Inc.  
67  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
SPE Generate (continued)  
The general rule for mapping STS-Mc frames in STS-N signals (M N) is that the TDAT042G5 can have a maxi-  
mum of four normal pointers in STS-48 mode. For M 12, the valid starting locations for mapping into an STS-48  
signal are 1, 13, 25, and 37. For M >12, only one normal pointer is permitted and it must start at the first location  
(the first STS-1). The TDAT042G5 allows only one normal pointer in STS-3 or STS-12 modes. The only valid start-  
ing location for mapping concatenated frames into an STS-3 or STS-12 signal is 1.  
Table 22. Valid Concatenation Starting Locations: STS-Mc into an STS-48c  
STS-1 Number STS-3c  
STS-6c  
STS-9c STS-12c STS-15c STS-18c STS-48c  
1
Y
Y
Y
Y
Y
Y
Y
4
7
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
Y
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
10  
13  
16  
19  
22  
25  
28  
31  
34  
37  
40  
43  
46  
68  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Path Terminator (PT) Block (continued)  
SPE Generate (continued)  
BIP-8. The PBIP block calculates the B3 value according to Bellcore and ITU standards. Insertion of PBIP errors is  
possible through the use of a software control register.  
REI Generation. The REI_P block controls the insertion of the remote error indication block error count. The  
received PBIP error counts are inserted into the path status (G1) byte.  
RDI-P Generation. The transmit path can insert remote defect indications using either single-bit or enhanced  
RDI-P modes (provisionable via software register bit TRDIP_ENH_OR1B[AD]; see register description, page  
202). The highest to lowest priority of the defect code insertion is as follows:  
1. AIS-P, LOP-P (applies only to the single-bit version of RDI-P),  
2. UNEQ-P,  
3 . P L M - P, L C D - P,  
4. No defects  
TIM-P can be inserted using software through TRDIPSINS (registers 0x0AAA, 0x0AB2, 0x0ABA, or 0x0AC2,  
bits 1511; see register description, page 201). The LCD-P defect is observed in the data engine and passed to  
the pointer block for transmission. Each particular defect can be inhibited from contributing to the transmitted  
RDI-P insertion value via software registers 0x0AAA, 0x0AB2, 0x0ABA, and 0x0AC2. RDI_P can either be inserted  
by software or automatically through hardware.  
Z5/N1, Z4/K4, Z3/F3, H4, F2 Insertion. TDAT042G5 inserts the F2 user channel byte, the H4 VT multiframe indi-  
cator byte, Z3/F3 growth/user byte, Z4/K4 growth/APS path byte, and the Z5/N1 tandem connection byte via soft-  
ware provisioning.  
Error Insertion Mechanisms. TDAT042G5 provides a method to inject via software REI-P  
(TREIPERRINS[AD]) and B3 (TB3ERRINS[AD]) errors into the transmitted SONET frame (see register  
descriptions, page 202).  
Insertion of J1, F2, C2, Z3, H4, Z4, Z5, SS Values. TDAT042G5 provides paged provisionable registers to insert  
the path overhead bytes into the outgoing SONET frame. The paging is done by first writing to the page provision-  
ing register at location 0x0AC6 to set the port number and time slot to be provisioned, and then writing to the  
appropriate insertion registers. Available time-slot values for TDAT042G5 are time slot 1 for STS-48c mode; time  
slots 1, 2, 3, and 4 for STS-48 consisting of four STS-Mc (M 12) signals; and time slot 1 for quad STS-12c and  
quad STS-3c modes (ports A, B, C, and D configured for quad STS-3c and quad STS-12c).  
Agere Systems Inc.  
69  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block  
The DE block processes ATM, SDL, PPP, and HDLC cells/packets at rates up to 2.488 Gbits/s. The DE block  
behaves like four independent logical data channels, one for each of the four STS-12/STM-4 or STS-3/STM-1  
channels, or like a separate single channel for STS-48/STM-16. The following description is for each one of these  
data engines. Each of the functional elements to be described are independently provisioned.  
The data engine supports both ATM cells and packet data formats.  
I The ATM processor functions with 52-byte, 53-byte, and 56-byte ATM cells.  
I The packet processor has three packet modes: HDLC, CRC, and PPP. All three modes use HDLC framing, i.e.,  
0x7E delineates the packets. In HDLC mode, the 0x7E framing bytes are inserted or detected by the data  
engine. In the CRC mode, a user-selectable 16-bit or 32-bit CRC word is appended or detected at the end of the  
packet. The PPP mode places or detects a PPP header on the front of the packet as well as uses the CRC word.  
The block diagram for the data engine is shown in Figure 13.  
RECEIVE-SIDE DE BLOCK  
CBINT  
SDL  
FRAMER  
ATM  
FRAMER  
X43  
POST-  
UNSCRAMBLER  
X43  
PRE-  
UNSCRAMBLER  
RX  
PPP  
DETACH  
CRC  
CHECKER  
HDLC  
FRAMER  
SEQUENCER  
PT  
UT  
INTERFACE  
INTERFACE  
TRANSMIT-SIDE DE BLOCK  
CBINT  
SDL  
INSERTER  
ATM  
INSERTER  
X43  
POST-  
SCRAMBLER  
TX  
PPP  
ATTACH  
X43  
HDLC  
INSERTER  
CRC  
GENERATOR  
PRESCRAMBLER  
SEQUENCER  
PT  
UT  
INTERFACE  
INTERFACE  
5-8385(F)r.2  
Figure 13. Block Diagram of Date Engine (DE)  
70  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine  
Receive Sequencer. The receive sequencer demaps SONET framing to four logical channels, performs the phys-  
ical channel byte alignment and packing, and performs appropriate payload clock domain transfer. The receive  
sequencer must be provisioned properly for correct operation. There are six registers that are fixed for each partic-  
ular mode of operation (STS-3/STM-1, STS-12/STM-4, or STS-48/STM-16) and must not be modified  
(SEQ_CTRL, INIT_CNTS, OH_MARKER_LO, OH_MARKER_HI, SOH_MARKER_LO, SOH_MARKER_HI). See  
the register descriptions for details, page 214. Also, the appropriate time slots must be provisioned for the rate of  
the payload expected for each channel. This is done via the registers Rx_TS[112] (see register descriptions,  
page 219). An example of how to configure this for STS-48c mode is shown in the section on configuring the trans-  
mit/receive sequencer (see Transmit Data Engine section, page 78).  
ATM Cell Processor. The cell processor performs ATM cell delineation using the ATM header error correction  
(HEC) field found in the cell header. The HEC is a CRC-8 calculation over the first four octets (total of 32 bits) of  
the ATM cell header. If the TDAT042G5 is in bit-synchronous mode (data is not byte-aligned), 32 separate HEC  
calculations are performed to delineate an ATM cell. If the TDAT042G5 is in byte-synchronous mode (data is byte-  
aligned), four separate HEC calculations are performed to delineate an ATM cell. An alpha-delta counter is used to  
track the processors ability to frame the ATM cells consistently. When a certain level of confidence is reached  
(defined by the programmable delta counter threshold), the frame is declared in sync state, and data is passed to  
subsequent blocks. If the framer is unable to frame ATM cells over a few cell periods (defined by the programma-  
ble delta counter threshold), the framer resumes hunt state.  
In SONET mode, the processor performs optional X43 unscrambling of the payload. Because the X43 scrambler is  
self-synchronizing, the framer needs no assistance from the data in order to synchronize the scrambler. The  
TDAT042G5 also supports an X31 scrambler, compliant with I.432, which is mainly used for packet-over-fiber  
applications. The state diagram for the X31 scrambler is shown in Figure 14 on page 72. The X31 scrambler uses  
an x31 + x28 + 1 polynomial to scramble the data. Unlike the X43 scrambler, the X31 scrambler does not self-  
synchronize based upon the data it receives. Thus, one-bit samples of the scrambler output are sent on the trans-  
mit side and compared with the scrambler samples on the receive side every 212 bits. If the samples do not match,  
the receive-side scrambler is adjusted to converge with the transmit-side scrambler. This process continues until a  
certain level of confidence in the scrambler synchronization is achieved. In the X31 mode, the ATM cell processor  
does not send out any output until both the framer and the scrambler are synchronized, whereas in X31 mode, only  
the framer needs to be synchronized.  
Idle ATM cells, which contain no real data, can be either left in or removed from the bit stream. The idle cell header  
description can be configured, though it is set to a default value (0x00000001).ATM cells can also be filtered if the  
header contents match a provisioned match register after masking with a provisionable mask register. This allows  
filtering based on the contents of the GFC, PTI, and CLP fields of the header. Optionally, ATM cells may be  
dropped if uncorrectable HEC errors are detected. Incoming single-bit ATM header errors can be corrected and the  
cells may be passed through or dropped, depending on the software configuration.  
The data engine processes only standard 53-byte ATM cells. However, the UTOPIA block processes 52-byte, 53-  
byte, 54-byte, and 56-byte cells, and interfaces these to the data engine. (See UTOPIA (UT) Interface Block,  
page 86, for details).  
Agere Systems Inc.  
71  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine (continued)  
COUNTER EQUALS Y  
VERIFICATION  
SYNCHRONIZED  
COUNTER LESS  
THAN Y  
COUNTER DROPS  
BELOW V  
COUNTER DROPS  
BELOW W  
COUNTER EQUALS X  
ACQUISITION  
COUNTER LESS  
THAN X  
5-8388(F)  
Note: Even in synchronized mode, the confidence counter can continue to increase up to the Z value.  
Figure 14. State Diagram for the X31 Scrambler Synchronization Process  
SDL Frame Processor. The SDL frame processor consists of an SDL framer, which detects the start of SDL pack-  
ets, and an (optional) X48 unscrambler, which is used to unscramble payload data. SDL packets can also arrive  
unscrambled, in which case the unscrambler is disabled. The SDL frame processor can frame packets in SDL form  
which contain a data length between 4 and 65,535 bytes.  
The SDL framer uses a CRC-16 check upon 2 bytes sequences used to determine packet length in order to frame  
SDL packets. Since the framer is designed to support data that is not byte-aligned, 32 separate framers may be  
used to search for the CRC-16 pattern. If the data is byte-synchronized, only four framers are needed. A confi-  
dence counter is used to gauge the framers ability to frame SDL packets consistently. When the confidence  
counters reaches a certain level (defined by the programmable SDL delta counter register), the framer is in sync  
state. Single-bit error correction for the SDL headers is also supported. Shown below in Figure 15 is the general  
structure of the SDL packets. In this figure, there is no interpacket fill.  
PACKET  
LENGTH  
PACKET  
LENGTH  
PACKET PAYLOAD  
CRC-16  
PACKET PAYLOAD  
CRC-16  
PACKET PAYLOAD  
5-8386(F)r.2  
Figure 15. General Structure of SDL Packets  
72  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine (continued)  
Interpacket fill separating packets always contains a multiple of 4 bytes. The SDL framer is able to detect inter-  
packet fill since its value is fixed. (It has 4 bytes equal to 0x0000000, i.e., a packet length of 0x0000 with a CRC-16  
of 0x0000.) Since the framer knows the length of a particular packet and can detect interpacket fill, it will predict the  
start of the next frame and frame on it. The SDL frame processor supports SDL and SDL CRC modes. When oper-  
ating in SDL CRC mode, a 2-byte or 4-byte CRC for the packet payload is attached to the end of the packet pay-  
load prior to the next packet length. When operating in SDL mode, there is no 2-byte or 4-byte CRC for the packet  
payload.  
The SDL frame processor supports X48 scrambling of the packet payload, which is accomplished by using a primi-  
tive polynomial of x48 + x28 + x27+ x + 1. The X48 scrambler is not self-synchronizing. Thus, the side transmitting  
SDL packets will periodically send its 48-bit scrambler state within the data stream such that the receive side can  
synchronize its scrambler. Whenever the SDL frame processor receives a scrambler state, it is immediately put  
into sync state, which allows it to send data out. Upon receiving additional scrambler states, the scrambler will  
compare its own state with the state received. If the scrambler states match, then the scrambler remains in sync  
state. However, if there is a mismatch, the scrambler is put into postsync state. In postsync state, if an additional  
scrambler state mismatch occurs, the X48 scrambler is resynchronized with the scrambler state it has received.  
The SDL frame processor detects scrambler state data since the packet length field of 0x001 and the length of  
time separating scrambler state transmissions is programmable. Single-bit error correction for the SDL scrambler  
state is incorporated within the TDAT042G5.  
Both the SDL framer and the X48 scrambler must be synchronized before the SDL frame processor will send data.  
Besides the SDL scrambler state being transmitted, the SDL framer will also extract special A and B messages  
used by the upstream device to send link layer 1 messages to the downstream hardware. The packet length field  
used to detect A and B messages are 0x0002 and 0x0003, respectively.  
In addition to scrambling the data, the SDL data stream coming into the SDL frame processor is dc balanced with  
the 32-bit value 0xB6AB31E0.  
Table 23 below is used to describe the packet length field.  
Table 23. Packet Length Field  
Packet Length  
Field  
SDL Data Type  
0x0000  
0x0001  
0x0002  
0x0003  
Interpacket fill  
SDL scrambler state  
A message  
B message  
0x0004—  
0xFFFF  
Length of payload region for current  
packets (in bytes)  
Pre-descrambler. The pre-descrambler block descrambles the payload using a self-synchronous descrambler  
with a generator polynomial of 1 + x43. For ATM cell traffic, only the 48-byte cell payload (and not the cell over-  
head) is descrambled. For HDLC and PPP packets, the entire frame (including header and trailer) is descrambled.  
Predescrambling, post-descrambling, or no descrambling may be selected through a provisionable register.  
Agere Systems Inc.  
73  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine (continued)  
HDLC Framer. The packet processor frame aligns to HDLC packets using the HDLC flag character (0x7E). Flags  
are also used to fill interpacket spaces. The flags are removed and control escape destuffing is performed. The  
control escape character (0x7D) is searched for and when it is found, the control escape character is removed, i.e.,  
0x7D5D is unescaped to 0x7D and 0x7D5E is unescaped to 0x7E. If dry mode is enabled, then 0x7D20 is unes-  
caped to a value of 0x00, which represents dry data (FIFO underflow in the middle of a packet). Any other unes-  
caped sequence of 0x7D results in an errored packet.  
CRC Check. An optional CRC-ITU or CRC-32 calculation on the whole POS frame is performed after byte destuff-  
ing and data descrambling. The CRC-ITU generating polynomial is 1 + x5 + x12 + x16. The CRC-32 generating  
polynomial is 1 + x + x2 + x4 + x5 + x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32. The computation over  
the whole packet, including the FCS field, should result in all zeros. A different value indicates an error. Packets  
with FCS errors are marked as such and are discarded. CRC field stripping is optional. Both normal and reversed  
CRC modes are supported.  
Post-descrambler. The descrambler block descrambles the payload using a self-synchronous descrambler with a  
generator polynomial of 1 + x43. For ATM cell traffic, this block is bypassed. For HDLC frames, the entire frame  
(including header and trailer) is descrambled. The descrambler may be disabled through the use of a software reg-  
ister.  
74  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine (continued)  
PPP Header Detach. The PPP detach function matches the PPP header (corresponding to the first 4 bytes of the  
PPP uncompressed frame or first 2 bytes of the PPP compressed frame) to a set of fixed or provisionable values  
for each channel and outputs frames in accordance with payload control register settings. The address and control  
field bytes are assumed to be 0xFF03. The block supports two fixed protocol fields (0x0021 corresponding to the  
IP protocol field, and 0x8021 corresponding to the IP control protocol). Additionally, 12 provisionable registers,  
PPP_Rx_HDR [011][15:0] (addresses 0x10F00x10FB), are supported on-chip to allow a large number of pro-  
tocols to be recognized in the receive (ingress) data path of the chip.  
The PPP detach function supports compressed or uncompressed header fields, optionally matching two fixed (one  
corresponding to IP protocol) 16-bit protocol fields. This optional PPP header check allows PPP (normal or com-  
pressed (i.e., no FF03)) to be checked and the header optionally stripped. Packets that fail to match one of the pro-  
visioned headers or the two default headers can optionally be discarded. This function supports optionally  
matching 12 programmable 16-bit protocol fields. The PPP detach function provides mismatched PPP header  
count on a per-channel basis through four 28-bit counters, PM_MHC_[03][27:0] (addresses 0x11180x111F).  
The function can optionally discard frames if header fields do not match on a per-channel basis. It can also option-  
ally strip header fields only if they do match on a per-channel basis.  
A PPP packet has the following two formats:  
UNCOMPRESSED PPP PACKET  
PACKET  
2 bytes  
NEXT PACKET  
1 byte  
1 byte  
0x7E  
1 byte  
1 byte  
64 Kbytes*  
2 OR 4 bytes  
CRC FIELD  
ADDRESS FIELD  
0xFF  
CONTROL FIELD  
0x03  
PROTOCOL  
FIELD  
DATA  
0x7E  
COMPRESSED PPP PACKET  
PACKET  
64 Kbytes*  
NEXT PACKET  
1 byte  
2 bytes  
2 OR 4 bytes  
CRC FIELD  
1 byte  
PROTOCOL  
FIELD  
0x7E  
DATA  
0x7E  
5-9642 (F)  
* TDAT042G5 is verified to handle packets of up to 64 Kbytes. Larger packets may be processed, but no upper bound or packet size  
has been determined. Packets of less than 4 bytes are discarded by the DE.  
Figure 16. Uncompressed and Compressed PPP Packets  
Each channel has a 16-bit register, PPP_Rx_CHK_CH [03][15:0] (addresses 0x10FC0x10FF), that can be  
provisioned.  
If the header bytes do not match and payload control bit 7 = 0, the entire PPP packet is discarded for a given chan-  
nel. Otherwise, if the header bytes do not match and payload control bit 7 = 1, the PPP packet is marked as bad  
and not discarded for a given channel.  
If payload control bit 6 = 0, the header is stripped, provided it matches a provisionable value; otherwise, it is left on  
for a given channel.  
Agere Systems Inc.  
75  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Receive Data Engine (continued)  
The bad packet counting is based upon the following criteria:  
I Header Fields. The PPP mismatched header counter, PM_MHC_[03][27:0] (addresses 0x11180x111F),  
counts for PPP packets with various header errors/mismatches as provisioned in the registers.  
I CRC Field. The CRC bad packet counter, PM_BPC_n (n = 0, 1, 2, 3), increments if a CRC error is found in  
channel n.  
Each PPP packet not counted as a bad packet in PM_MHC_n (n = 0, 1, 2, 3) counter or PM_BPC_n counter incre-  
ments the PPP good packet counter, PM_GPC_n (n = 0, 1, 2, 3), for channel n. (See register descriptions,  
page 241.)  
Note that each channel only has a single pair of good and bad packet counters.  
Transmit Data Engine  
ATM Cell Inserter. The ATM cell inserter provides X43 or X31 scrambling of the payload for transport of ATM cells  
over SONET. X31 scrambling is suitable for the transport of ATM cells over fiber where bit-level cell delineation is  
required. The state diagram for the X31 scrambler is shown in Figure 14, page72. TheATM cell inserter will gener-  
ate idle cells/bytes to fill the SONET/SDH payload when cells/packets are not available in the transmit direction  
FIFO of the UTOPIA block. For ATM cells, the GFC, PTI, and CLP fields of the idle cell header and the idle cell pay-  
load are provisionable via software registers. The idle generator generates idle cells/bytes to fill the SONET/SDH  
payload when cells/packets are not available in the transmit FIFO. Idle cell HCS is automatically calculated and  
inserted.  
Header Check Sequence (HCS) Generator. The HCS generator performs a CRC-8 calculation over the first four  
header octets of the ATM cell. The generator inserts the result into the fifth octet of the ATM header.  
SDL Frame Inserter. The SDL inserter performs SDL frame generation and X48 scrambling of the payload field.  
An optional CRC-16/32 field can be attached (SDL-CRC mode) and is calculated over the payload. The SDL  
inserter also periodically transmits scrambler state updates through a special 6-byte message. The time between  
scrambler state updates can be provisioned by software using register SDLFI_INT (see register description, page  
250). The packet length header of scrambler state updates is the 16-bit word, 0x0001. Special A and B messages  
can be software-provisioned to send link layer 1 messages to downstream hardware. The packet length headers  
for the special A and B messages are 0x0002 and 0x0003, respectively.  
76  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transmit Data Engine (continued)  
Prescrambler. The prescrambler block optionally scrambles the payload using a self-synchronizing scrambler with  
a generator polynomial of 1 + x43 for HDLC and PPP packets. For HDLC frames, the entire frame, including  
header and trailer, is scrambled; however, HDLC flags are not scrambled. The scrambler may be disabled through  
the use of a software register. This scrambler removes excessive 0x7D and 0x7E bytes. For ATM cell and SDL  
packet traffic, this block is not used. (By randomizing the data, the scrambler prevents malicious use of the channel  
due to escaping 7D and 7E sequences.)  
CRC-16/-32 Generator. An optional CRC-16/-32 generator on the whole packet frame can be performed. The gen-  
erating polynomial for CRC-16 is 1+ x5 + x12 + x16. The generating polynomial for CRC-32 is 1+ x + x2 + x4 + x5 +  
x7 + x8 + x10 + x11 + x12 + x16 + x22 + x23 + x26 + x32.  
HDLC Inserter. The HDLC framer provides frame check sequence (FCS) generation and insertion using either the  
CRC-ITU or CRC-32 generation polynomials. After optional CRC generation, the HDLC framer performs control  
escape (0x7D) stuffing, flag character (0x7E) or abort character (0x7D7E) insertion, and dry mode insertion  
(0x7D20, where the last two bytes (the 20 bytes of the default value of 0x7D20) are provisionable).  
Postscrambler. The postscrambler block optionally scrambles the payload using a self-synchronizing scrambler  
with a generator polynomial of 1 + x43 for HDLC and PPP packets, in accordance with RFC1619. For HDLC and  
PPP packets, the entire frame, including header and trailer, is scrambled. The scrambler may be disabled through  
the use of a software register. ForATM cell and SDL packet traffic, this block is not used.*  
PPP Header Attach. The PPP attach function inserts the provisionable 4-byte PPP header if payload control  
bit 7 = 1 (addresses 0x10E00x10E3). The first and second bytes are set to 0xFF03, and the third and fourth  
bytes are set to a value defined by a software register in PPP_Tx_CHAN[03] (see register descriptions,  
page 234).  
If payload control bit 7 = 0 (addresses 0x10E00x10E3) (compressed PPP header mode), only the two provision-  
able bytes defined by the software register PPP_Tx_CHAN[03] can be attached. Note that there is only one soft-  
ware register-defined protocol value for each channel.  
The PPP attach function provides good packet count on a per-channel basis through four 28-bit counters,  
PM_GPC_TX_[03] [27:0] (addresses 0x1128112F).  
* The ATM and SDL framer inserters have their own dedicated scramblers.  
Agere Systems Inc.  
77  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transmit Data Engine (continued)  
Tx Sequencer. The transmit sequencer maps logical channels into SONET frames, and must be provisioned prop-  
erly for correct operation. The appropriate time slots must be provisioned for the rate of the payload expected for  
each channel. This is done via the registers Tx_TS[112] (see register descriptions, page 215).  
TDAT042G5 provides 12 time slots and four channels to define how data is mapped into the 48 synchronous trans-  
port signals (STS-1) of an STS-48 frame or into the 12/3 STS signals of an STS-12/3 SONET frame.  
Figure 17 illustrates the mapping of the 48 STS-1 signals into an STS-48 signal and their assigned time slots. Each  
STS-1 block in the figure represents a byte of data for the specific STS-1 signal. The STS signals within the 12 time  
slots are ordered such that the SONET multiplexing requirements of lower rate signals into higher rate signals are  
satisfied. A value of 0x4 indicates that valid data is contained in the specific byte (STS) and the data is being  
received/transmitted from/to channel 0.  
12  
39  
42  
45  
48  
11  
27  
30  
33  
36  
10  
15  
9
3
8
7
6
5
2
4
3
2
1
1
TIME-SLOT NUMBER  
38  
41  
44  
47  
26  
29  
32  
35  
14  
17  
20  
23  
37  
40  
43  
46  
25  
28  
31  
34  
13  
16  
19  
22  
18  
21  
24  
6
5
4
9
8
7
12  
11  
10  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
TX_TS[121][15:12]  
TX_TS[121][11:8]  
TX_TS[121][7:4]  
TX_TS[121][3:0]  
0 x 4 PAYLOAD LOCATIONS  
CONFIGURE SIMILARLY  
FOR RX SEQUENCER  
REGISTER  
VALID AND DIRECTED TO CHANNEL 0  
5-7936(F)r.3  
Figure 17. Example of Tx/Rx Sequencer Configuration: STS-48c into Single OC-48 Signal  
78  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transmit Data Engine (continued)  
Figure 18 illustrates the configuration of the time-slot registers for four independent STS-12 signals. In this case,  
there are 12 STS-1 signals that comprise each STS-12 signal.  
12  
11  
9a  
9b  
9c  
9d  
10  
6a  
6b  
6c  
6d  
9
8
7
6
5
4
3
2
1
TIME-SLOT NUMBER  
12a  
12b  
12c  
12d  
3a  
3b  
3c  
3d  
11a  
11b  
11c  
11d  
8a  
8b  
8c  
8d  
5a  
5b  
5c  
5d  
2a  
2b  
2c  
2d  
10a  
10b  
10c  
10d  
7a  
7b  
7c  
7d  
4a  
4b  
4c  
4d  
1a  
1b  
1c  
1d  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5  
0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6  
0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7  
TX_TS[121][15:12]  
TX_TS[121][11:8]  
TX_TS[121][7:4]  
TX_TS[121][3:0]  
0 x 4 PAYLOAD VALID TO CHANNEL 0  
0 x 5 PAYLOAD VALID TO CHANNEL 1  
0 x 6 PAYLOAD VALID TO CHANNEL 2  
0 x 7 PAYLOAD VALID TO CHANNEL 3  
CONFIGURE SIMILARLY  
FOR RX SEQUENCER  
REGISTER  
5-7937(F)r.3  
Figure 18. Example of Tx/Rx Sequencer Configuration: 4xSTS-12c into Four Independent OC-12 Signals  
Agere Systems Inc.  
79  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transmit Data Engine (continued)  
The multiplexing rules of SONET are illustrated in Figure 19, and are shown for the case of two-stage byte inter-  
leaving of 12 STS-1 signals into an STS-12 signal. The values provisioned in the time-slot registers should obey  
the SONET multiplexing rules. In Figure 18, time slots 1 through 12 of channel A represent the interleaved bytes of  
the multiplexed STS-12 signal being received/transmitted in logical channel 0 (0x4). Channels B, C, and D are con-  
figured similarly; however, data is being received/transmitted from logical channels 1, 2, and 3, respectively.  
STS#  
1
2
3
3:1  
3:1  
3:1  
3:1  
3
6
2
5
1
4
4
5
12TH BYTE  
1ST BYTE  
6
12  
9
6
3
11  
8
5
2
10  
7
4
1
7
8
9
8
7
9
10  
11  
12  
12  
11  
10  
5-8387(F)  
Figure 19. SONET Multiplexing: 2-Stage Byte Interleaving Example  
80  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transmit Data Engine (continued)  
Figure 20 illustrates the configuration of the time-slot registers for four independent STS-3 signals. In this case,  
there are three STS-1 signals that comprise each STS-3 signal. Since there are 12 time slots and only three are  
actually required, the values in time slots 412 can be repetitively configured as shown in the figure or can be  
configured as invalid, i.e., 0x0, 0x1, 0x2, and 0x3 for channels A, B, C, and D, respectively.  
12  
3a  
3b  
3c  
3d  
11  
2a  
2b  
2c  
2d  
10  
1a  
1b  
1c  
1d  
9
8
7
6
5
4
3
2
1
TIME-SLOT NUMBER  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
3a  
3b  
3c  
3d  
2a  
2b  
2c  
2d  
1a  
1b  
1c  
1d  
0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4 0 x 4  
0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5 0 x 5  
0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6 0 x 6  
0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7 0 x 7  
TX_TS[121][15:12]  
TX_TS[121][11:8]  
TX_TS[121][7:4]  
TX_TS[121][3:0]  
0 x 4 PAYLOAD VALID TO CHANNEL 0  
0 x 5 PAYLOAD VALID TO CHANNEL 1  
0 x 6 PAYLOAD VALID TO CHANNEL 2  
0 x 7 PAYLOAD VALID TO CHANNEL 3  
CONFIGURE SIMILARLY  
FOR RX SEQUENCER  
REGISTER  
5-7937(F).ar2  
Figure 20. Example of Tx/Rx Sequencer Configuration: 4xSTS-3c into Four Independent OC-3 Signals  
Performance Monitoring  
This block contains several cell/packet counters for receive/transmit data traffic. Two 28-bit saturating counters  
count the number of good packets/cells that are sent out and received by the enhanced UTOPIA interface. There  
are 28-bit counters used to count the number of corrected ATM HCS single bit errors, HDLC invalid sequences,  
and SDL corrected headers. Also, 28-bit counters are used to count the number of uncorrectable HCS errored  
ATM cells (discarded cells), HDLC short packets, SDL errored headers, packets with bad CRC checks, and mis-  
matched PPP headers. These counters are operated in latch and clear mode (using PMRST) to ensure GR-256  
standards compliance. It is intended that these counters be polled at least once per second so that no error events  
are missed.  
Agere Systems Inc.  
81  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Over-Fiber Modes  
In addition to the support of the normal SONET/SDH modes for different payload types such as HDLC, PPP, ATM  
(X43 or X31), and SDL as shown in Figure 2 on pa ge45, this device is capable of supporting the over-fiber modes  
for two payload types, SDL or ATM (X31). In the over-fiber mode, a 3% payload increase can be realized because  
the data stream contains no SONET/SDH overhead bytes.  
In the over-fiber modes, it is possible to utilize the whole bandwidth (155 Mbits/s for OC-3, 622 Mbits/s for OC-12,  
or 2.5 Gbits/s for OC-48) of the optical fiber for SDL packets or ATM cells.  
As can be seen in Figure 21, for over-fiber modes the device is provisioned as follows:  
I The line termination (OHP) and path termination (PT) blocks of the device need to be provisioned in the  
passthrough mode.  
I The payload termination (DE) block needs to be set to the bit synchronization mode in the payload control regis-  
ter.  
I The transparent mode in the transmit and receive sequencers (addresses 0x102E and 0x102F; see register  
description, page 223).  
I Bit 12 of the mode register (address 0x0010) needs to be set to 0 so that the received clock drives the entire  
receive data path. In this way, there is no need to cross the clock domain boundary. As a result, only a single  
channel is allowed for OC-3, OC-12, or OC-48 when the device is operated in the over-fiber modes. In contrast,  
the device is capable of supporting four OC-3/OC-12 channels or one OC-8 channel in the SONET/SDH modes.  
PAYLOAD  
TERMINATION  
LINE  
PATH  
TERMINATION TERMINATION  
PACKET/CELL  
PROCESSOR  
-ENCAPSULATION  
-SCRAMBLING  
-CRC GENERATION  
PASSTHROUGH  
PASSTHROUGH  
SINGLE OC-48  
SINGLE OC-12  
SINGLE OC-3  
ENHANCED  
UTOPIA I/O  
PACKET/CELL  
PROCESSOR  
-BIT SYNC  
PASSTHROUGH  
PASSTHROUGH  
-DECAPSULATION  
-UNSCRAMBLING  
-CRC VERIFICATION  
CONTROL  
µP INTERFACE  
5-6680(F).cr.1  
Figure 21. TDAT042G5 Over-Fiber Modes: SDL, ATM (X31)  
82  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
Data Engine (DE) Block (continued)  
Transparent Payload Mode  
The transparent payload mode in the payload termination data engine (DE) block is one of seven basic payload  
type modes in the payload control registers and allows data to pass directly through the DE. In this mode, no fram-  
ing is done on the data, and the data in the SONET frame is treated as raw data. The transparent payload mode  
basically disables all the functions of the framers. In contrast, the transparent mode of the sequencer (over-fiber  
mode) disables the conversion function of the sequencer between the SONET/SDH framing structure and the log-  
ical channel structure.  
In the transparent payload mode, the data engine processes the entire payload as a single packet with no J1 byte  
or other POH. An RxSOP is generated on the UTOPIA interface on the first byte following the J1 byte. The last  
byte of payload occurs at an RxEOP.  
If the device is set in both the transparent payload mode in the payload control registers and the transparent mode  
in the sequencer, then the whole SONET/SDH frame (overhead bytes will be overwritten with zeros) will appear at  
the receive UTOPIA interface as one packet. At the transmit UTOPIA side, the whole SONET/SDH frame needs to  
be supplied.  
Transparent Receive Mode Control. In receiving from the line, provisioning must specify the time slot and  
SONET frame byte location where the last byte in the packet will occur. The following registers are used to indicate  
this location.  
I Rx_CHCD_FM (address 0x1030; see register description, page 224) specifies the time slot where the last byte  
of a packet exists in channels C andD.  
I Rx_CHAB_FM (address 0x1031; see register description, page 224) specifies the time slot where the last byte  
of a packet exists in channels A and B.  
I Rx_CELLA_FM (address 0x1032), Rx_CELLB_FM (address 0x1033), Rx_CELLC_FM (address 0x1034), and  
Rx_CELLD_FM (address 0x1035) specify in which SONET location (0 to 809) the last byte in a packet exists in  
channel A, B, C, or D, respectively. (See register descriptions, page 225.)  
In the case where the location of the last byte in the frame is not known, the last byte should be provisioned for  
location 809 and time slot 12, and external UTOPIA hardware must perform packet delineation on the data  
stream.  
Transparent Transmit Mode Control. In transmitting to the line, provisioning must specify the time slot and  
SONET frame alignment. This is done through Tx_TRANS_CTRL (address 0x102F; see register description,  
page 223) used in conjunction with Tx_TS[112] (addresses 0x10160x1021; see register descriptions,  
page 215).  
Agere Systems Inc.  
83  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block  
The UT core provides buffering and UTOPIA interface functionality. This enhanced UTOPIA interface will pass U2,  
U2+, U3, and U3+ protocols. In the receive direction, data is buffered from the line side, and sent out of the device  
via a UTOPIA/packet-over-SONET-PHY interface. In the transmit direction, data is received by the device via a  
UTOPIA/packet-over-SONET-PHY interface, and buffered before being sent to the line side. Data that is sent or  
received can be either packet or ATM traffic, and is configurable on a per-channel basis. The UTOPIA slave inter-  
face is designed to accommodate back-to-back ATM cell and packet data transfers in point-to-point or multi-PHY  
modes.  
Level-2 physical interfaces (transmit and receive) support four logical data channels as shown in Figure 22. Each  
of these interfaces is independently configurable for cell or packet transfers, and can support up to STS-12/STM-4  
bandwidth. Optionally, two of the interfaces, specifically A and B, can be grouped together to support a 32-bit  
UTOPIA level-3 interface supporting up to STS-48/STM-16 of bandwidth. The aggregate traffic that can be carried  
over these interfaces is limited to STS-48/STM-16 bandwidth.  
In addition to operating as separate point-to-point streams, MPHY capabilities for up to four channels can be pro-  
vided from the A interface in either 16-bit or 32-bit modes. For example, when operating as a 32-bit interface, the A  
interface can support either a single STS-48c channel or four STS-12c channels. As a 16-bit interface, the MPHY  
interface can support either a single STS-12c channel or four STS-3c channels.  
Since each channel can be configured independently, each one can carry different traffic types at different rates,  
provided that the capabilities of the active interfaces and the data engine are not exceeded.  
There are two basic data paths: receive side, defined to be data going from the line side to the UTOPIA side, and  
transmit side, defined to be data going from the UTOPIA side to the line side as shown in Figure 22.  
EGRESS SIDE  
INTERFACE A  
INTERFACE B  
Tx  
INTERFACE C  
INTERFACE D  
LOOPBACKS  
INTERFACE A  
INTERFACE B  
Rx  
INTERFACE C  
INTERFACE D  
INGRESS SIDE  
INTERNAL  
CONTROL  
BUS  
SOFTWARE REGISTERS  
UTOPIA 2/3 INTERFACE  
NOTE: UTOPIA 32-bit MODE  
COMBINES CHANNELS A & B  
IN BOTH DIRECTIONS (Tx & Rx)  
5-7056(F)r.5  
Note: For MPHY support, channels are mapped to interface A only.  
Figure 22. UT Block Diagram  
84  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
Enhanced refers to the extensions that have been added to support packet transfers. These extensions are indica-  
tions of the following: (1) an end of packet (TxEOP/RxEOP), (2) the byte on which packet ends in last word (TxSZ/  
RxSZ), and (3) the signal to abort a packet early (TxERR/RxERR). An abort occurs, for example, if the check sum  
at the end of a packet is bad, or the end of a packet is reached prematurely. If the receive FIFO overflows because  
the master cannot process packet data fast enough, an RxERR will also be generated.  
UTOPIA Loopbacks  
TDAT042G5 can be placed in loopback on a channel-by-channel basis. When the TDAT042G5 is placed in far-end  
loopback (FELB), data from the DE is sent to and processed by the UTOPIA interface. Instead of sending it to the  
UTOPIA master, however, the data is sent to the corresponding egress channel and back to the line interface.  
When the TDAT042G5 is placed in near-end loopback (NELB), data from the egress channel is transferred to the  
corresponding ingress channel, instead of the DE. This data is then processed by the ingress channel and is  
returned to the UTOPIA master.  
UTOPIA Modes  
Each UTOPIA interface mode is capable of supporting various types of traffic with different bandwidth capabilities  
as summarized in Table 24. In a point-to-point operational mode, any interface can be configured independently in  
any of the defined modes (e.g., channel A passes ATM cells using STS-12c, channel B passes packets, etc.).  
It should be noted that the U3 or U3+ (32-bit mode) can only be supported by overloading channel A and B inter-  
face pins. Only the control signals from channel A are used. The channel B size and data bits are combined with  
the channel A size and data bits to form the 2-bit size and the 32-bit data words. When 32-bit mode is selected,  
channels B, C, and D must be configured to be idle (so that channel B will be under the control of channel A in  
32-bit mode).  
Multichannel multi-PHY (MPHY) capabilities are only supported on interface A by grouping the internal FIFOs and  
data paths of channels B, C, and D as needed. This operational mode is described in a later section.  
Table 24. UTOPIA Traffic Types  
UTOPIA Name  
Interface  
Width  
Maximum  
Speed  
Aggregate  
Bandwidth  
Traffic Type  
Maximum  
Number of  
Interfaces  
U2  
16 bits  
16 bits  
8 bits  
52 MHz*  
52 MHz*  
104 MHz  
104 MHz  
104 MHz  
104 MHz  
622 Mbits/s (STS-12)  
ATM cells only  
4
4
4
4
1
1
U2+  
622 Mbits/s (STS-12) ATM cells/packets  
622 Mbits/s (STS-12) ATM cells only  
622 Mbits/s (STS-12) ATM cells/packets  
2.5 Gbits/s (STS-48) ATM cells only  
2.5 Gbits/s (STS-48) ATM cells/packets  
U3, 8-bit mode  
U3+, 8-bit mode  
U3, 32-bit mode  
U3+, 32-bit mode  
8 bits  
32 bits  
32 bits  
* Maximum speed may be exceeded if nonstandard load conditions are used and the clock is sourced. See CLOCK_MODE_Rx [AD]  
(registers 0x020F, 0x0213, 0x0217, 0x021B), pages 158159 for details.  
Agere Systems Inc.  
85  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UTOPIA ATM Cell Processing  
The UTOPIA block will process ATM packets of 52, 53, 54, or 56 bytes. The standard 53-byte ATM cell structure is  
shown in Table 25.  
Table 25. Standard 53-byte ATM Cell Structure  
H1  
H2  
H3  
H4  
H5 (HEC)  
D1  
D2  
. . .  
D48  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
53 bytes  
In the receive path, TDAT042G5 automatically calculates the HEC (byte 5) and overwrites this byte of the ATM cell.  
It is therefore possible to transfer only 52-byte packets through the UTOPIA I/O to increase interface efficiency.  
This mode will be referred to as the 52-byte mode. The 52-byte or 53-byte ATM mode is provisioned through  
ATM_SIZE_Rx[AD] (bit 4 of registers 0x020F, 0x0213, 0x0217, and 0x021B) and ATM_SIZE_Tx[AD] (bit 4 of  
registers 0x0210, 0x0214, 0x0218, and 0x021C).  
U2 Modes. For U2 and U2+, both the 52-byte and 53-byte, 16-bit UTOPIA interface modes are supported forATM  
cells as shown in Table 26.  
Table 26. Bus Format for 16-bit Interface  
53-byte Option†  
TxD[15:8] or RxD[15:8] TxD[7:0] or RxD[7:0] TxD[15:8] or RxD[15:8] TxD[7:0] or RxD[7:0]  
52-byte Option (HEC Omitted)  
H1  
H3  
H2  
H4  
H1  
H3  
D1  
D3  
H2  
H4  
D2  
D4  
H5 (HEC)  
D1  
H5 (UDF*)  
D2  
D3  
D4  
.
.
.
.
.
.
.
.
.
.
.
.
D47  
D48  
D47  
D48  
* UDF refers to the undefined H5 byte.  
This option is also called the 54-byte mode.  
86  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UTOPIA ATM Cell Processing (continued)  
U3 Modes. For U3 and U3+, both the 52-byte and 53-byte, and either 8-bit or 32-bit modes are supported for ATM  
cells as shown below.  
For the case of an 8-bit UTOPIA interface, data is placed on the UTOPIA port as shown in Table 27.  
Table 27. Bus Format for 8-bit Interface  
53-byte Option  
52-byte Option (HEC Omitted)  
TxD[15:8] or RxD[15:8] TxD[7:0] or RxD[7:0] TxD[15:8] or RxD[15:8] TxD[7:0] or RxD[7:0]  
H1  
H2  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
H1  
H2  
H3  
H4  
D1  
D2  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
H3  
H4  
H5 (HEC)  
D1  
D2  
.
.
.
.
.
.
.
.
.
.
.
.
D48  
Not used  
D48  
Not used  
For the case of a 32-bit UTOPIA interface, parallel data is placed on the UTOPIA port as shown inTable 28.  
Table 28. Bus Format for 32-bit Interface  
53-byte Option†  
TxD[23:16] TxD[15:8]  
or or  
52-byte Option (HEC Omitted)  
TxD[31:24]  
or  
TxD[7:0]  
or  
TxD[31:24]  
or  
TxD[23:16]  
or  
TxD[15:8]  
or  
TxD[7:0]  
or  
RxD[31:24] RxD[23:16]  
RxD[15:8]  
RxD[7:0]  
RxD[31:24] RxD[23:16]  
RxD[15:8]  
RxD[7:0]  
H1  
H5 (HEC)  
D1  
H2  
H5-UDF1  
D2  
H3  
H4  
H5-UDF3  
D4  
H1  
D1  
D5  
H2  
D2  
D6  
H3  
D3  
D7  
H4  
D4  
D8  
H5-UDF2  
D3  
D5  
D6  
D7  
D8  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
D45  
D46  
D47  
D48  
D45  
D46  
D47  
D48  
* UDF refers to undefined H5 bytes.  
This option is also called the 56-byte mode.  
Agere Systems Inc.  
87  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Clocking  
TDAT042G5 is compliant with the U2 standard1 and several versions of the proposed U3 specification26 as a UT  
slave device. The U2 standard and proposed U3 specifications define the slave device transmit path (egress) clock  
as an input clock. For the U2 case, the slave transmit path clock is generated by the UT master device. For the cur-  
rent version of the U3 specification6, the transmit path clock for both slave and master devices is generated by the  
same external clock source7. The U2 standard and current U3 proposed specification6 define the slave device  
receive path (ingress) clock as an input clock. In the U2 case, the slave device receive path (ingress) clock is gen-  
erated by the UT master device. In the U3 case, the receive clock for both the master and slave devices is gener-  
ated by same external clock source. Previous proposed versions of the U3 specification provided for the case  
where the receive path clock could be generated by the slave device. TDAT042G5 can be provisioned in the con-  
figuration where it sources the receive path (ingress) clock.  
The timing specification for the UT clock is given in the UTOPIA Interface Timing section, pages 268270.  
UT Transmit Path (Egress) Clock  
In all UTOPIA modes, the transmit path clock must be provided to TxCLK[D:A] pins as described in Table 5, page  
page 31.  
UT Receive Path (Ingress) Clock  
The receive path clock RxCLK[D:A] pins can be provisioned to be either clock inputs or outputs as described in  
Table 5, page 38. Provisioning as either an input or output is done on a per-channel basis through registers  
0x020F, 0x0213, 0x0217, and 0x021B (CLOCK_MODE_Rx). In the U2 mode, RxCLK is always provisioned to be  
an input. To meet the latest proposed U3 specification, RxCLK is provisioned as an input. To meet special UT  
requirements, RxCLK may be provisioned to be a clock output signal. When provisioned as a clock output, the  
RxCLK[D:A] is derived from the corresponding TxCLK[D:A] input.  
For RxCLK rates greater than 52 MHz, RxCLK must be provisioned to be an output.  
1. UTOPIA Level 2, Version 1.0, AF-PHY-0039.000, June 1995.  
2. UTOPIA Level 3 Baseline Text, UL3-01.04, February 1999.  
3. UTOPIA Level 3 Living List, UL3-01.04, February 1999.  
4. UTOPIA Level 3 Living List, LTD-PHY-UL3-01.05, April 1999.  
5. UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.  
6.UTOPIA Level 3, AF-PHY-136.00, October 1999.  
7.Previous proposed versions of the U3 specification were similar to the U2 standard where the slave device transmit clock was generated by  
the UT master device.  
88  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Receive Input Path (Ingress)  
The UTOPIA Rx interface is designed to accommodate ATM cells as well as packet traffic. While the standard  
UTOPIA interface transmits and receives ATM cells, this interface has been enhanced to carry non-ATM traffic.  
The interfaces supported include the following: UTOPIA Level 2 (U2), enhanced UTOPIA Level 2 (U2+), UTOPIA  
Level 3 (U3) in 8-bit mode or 32-bit mode, and enhanced UTOPIA Level 3 (U3+) in 8-bit mode or 32-bit mode.  
In the receive direction, data arrives and is sent to one of four channels (A through D). Each channel buffers data  
independently and, when sufficient data has been stored in its FIFO, sends the data out of the channel via its UTO-  
PIA interface. There are four paths inside the UT core, corresponding to one path per channel. These paths are  
labeled A to D. When using 32-bit modes, only the control signals of interface A and size signals of interfaces A  
and B are used.  
Note: 32-bit mode is supported using channels A and B only. When 32-bit mode is selected, channels B, C, and D  
must be configured to be idle (channel B will be under the control of channel A in 32-bit mode).  
In normal mode, data arrives into the ingress channel, and control and data information are written into the FIFO.  
The data is extracted from the FIFO, and word-aligned on the first byte of data. After word alignment, the data is  
sent out of the device via the UTOPIA interface.  
Note:The start of packets must be word-aligned, and there can only be one packet per word (required by the defi-  
nition of the UTOPIA interface).  
FIFO. The 256-byte UTOPIA Rx FIFO is responsible for buffering data from the DE block to be sent to the UTOPIA  
interface. The FIFO accommodates four ATM cells or 256 bytes of packet data. In STS-48/STM-16, only one  
256-byte FIFO is used. The FIFO is required to manage the asynchronous nature of the UTOPIA interface. Over-  
flow will only occur if the master device connected to the UTOPIA interface is having congestion problems. When  
overflow occurs and head of line discard is performed, it is possible that part of one packet may be appended to  
another (if, for example, an end of packet is discarded along with the data at the head of the FIFO). Because this is  
not a desirable operation, it is necessary to discard until the start of the next packet is observed. Data is read from  
the FIFO when there is sufficient data in the FIFO. Upon overflow, the RxERR and RxEOP signals are asserted to  
indicate to the master the corruption of the current packet.  
Sufficient data is defined to be a minimum amount of data in the FIFO (a programmable threshold, low watermark),  
or at least one end of packet stored in the FIFO. If the FIFO overflows, the block is responsible for discarding data  
until the next start of packet. When this occurs, an alarm is raised. Underflow in the receive direction can occur  
when there is no data, or if only part of a packet has arrived and has been transmitted, and is normal behavior.  
Agere Systems Inc.  
89  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Receive Input Path (Ingress) (continued)  
Receive Cell/Packet Available (RxPA). This signal indicates when the TDAT042G5 receive FIFO can send data  
to the master device. The RxPA[D:A] signal behavior depends on the provisioned low watermark in the UTOPIA  
interface.  
I One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The RxPA response occurs one cycle  
after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are output one  
cycle after RxENB is sampled active by the PHY device.  
I Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The RxPA response occurs two  
cycles after the address is polled. RxENB is asserted to activate the selected PHY. RxDATA and RxSOP are out-  
put two cycles after RxENB is sampled active by the PHY device.  
I RxPA[D:A] Assertion. RxPA[D:A] goes high (is asserted) when the amount of data in the receive FIFO has  
reached or exceeded the low watermark or there is end of packet (EOP) resident in the FIFO.  
I RxPA[D:A] Deassertion. In ATM mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less  
than the low threshold amount of data and there is no EOP inside the FIFO (i.e., part of anATM cell). Once the  
last byte of the current cell is transmitted, and if the amount of data within the FIFO is still less than the low  
threshold, RxPA[D:A] is deasserted.  
In packet mode, the RxPA[D:A] signal goes low (is deasserted) when the FIFO has less than the low threshold  
amount of data and there is no EOP inside the FIFO.  
Once the data transfer begins (since the amount of data has reached or exceeded the low watermark), and if  
there is no EOP below the low threshold (i.e., a long packet), the RxPA signal is deasserted when the FIFO is  
drained by the UTOPIA master device. In this case, the master must closely monitor the RxPA[D:A] signals and  
use these signals as data valid indicators to ensure that bad data is not read from the TDAT042G5. TDAT042G5  
will deassert the RxPA[D:A] signal immediately when the FIFO is drained.  
I Data Transfer. A TDAT042G5 ingress channel sends data when it has asserted RxPA[D:A] and the master  
device requests data (via RxENB[D:A]). InATM mode, if the master device requests data using RxENB[D:A] and  
if the TDAT042G5 has less than the low watermark amount of data to send and there is no end of cell in the FIFO  
(RxPA[D:A] is deasserted), then the TDAT042G5 UTOPIA interface will send out data that should be ignored by  
the master, i.e., it does not send data from its internal FIFO.  
In ATM mode, once an ATM cell transfer starts, the Tx or Rx side must complete the transfer. If the transfer is not  
completed, then the cell will be corrupted. The transfer continues until either (1) the end of cell is reached, when  
the end of cell exists below the low watermark, or (2) the end of the FIFO is reached. If the end of the FIFO is  
reached, no underflow is flagged on the receive side. In ATM mode, the low watermark should be set so that at  
least one entire cell is in the FIFO prior to asserting RxPA[D:A].  
In packet mode, once the data transfer begins, the RxPA[D:A] signal will remain asserted until the FIFO is  
drained if there is no EOP below the low watermark. During the time RxPA[D:A] is asserted, valid data is being  
transferred.  
RxPA[D:A] is updated on the rising edge of RxCLK[D:A].  
In 32-bit mode, only the RxPA[A] pin of port A is used to indicate the packet/cell available status.  
I MPHY Support. When the RxPA signals are used for MPHY direct status, the corresponding  
RxCLK[B, C, and/or D] must be provided. This clock will be the same as RxCLK[A].  
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.  
90  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Receive Input Path (Ingress) (continued)  
Figure 23 illustrates the receive-side interface handshaking when operating in point-to-point mode with the RxPA  
response provisioned to be a single cycle. In two-cycle mode, the RxSOP, RxDATA, and RxPA signals are  
delayed an additional cycle. In the figure, the master device initiates the transfer after observing an asserted  
packet available for the channel. The TDAT042G5 samples RxENB low on the first cycle and then asserts  
RxSOP/C and RxDATA on the second cycle. RxDATA is sampled on the rising edge of the second cycle by the  
master device. Figure 24 illustrates receive-side interface handshaking when operating in two-cycle mode. When  
operating in U3+ mode, two-cycle mode must be used.  
In this example, the master stops transfer in the middle of the packet. Data with value c is valid on the cycle that  
RxENB goes inactive, and when RxENB returns, data is again valid on the first cycle after the slave observes an  
active RxENB (data value d).  
The packet transfer is complete when the slave asserts the RxEOP signal. If an error occurs in the packet, then the  
RxERR signal is asserted simultaneously with the RxEOP. RxERR is ignored if it is not asserted when RxEOP is  
active.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
RxCLK  
RxPA  
RxENB  
RxSOP/C  
RxDATA[15:0]  
a
b
c
d
e
RxEOP  
RxERR  
5-7450(F).ar.2  
Figure 23. Receive-Side Interface Handshaking in Point-to-Point, Single Cycle Mode  
The packet transfer is complete when the slave asserts the RxEOP signal. If an error occurs in the packet, then the  
RxERR signal is asserted simultaneously with the RxEOP. RxERR is ignored if it is not asserted when RxEOP is  
active.  
Agere Systems Inc.  
91  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Receive Input Path (Ingress) (continued)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
RxCLK  
RxPA  
RxENB  
RxSOP/C  
RxDATA[15:0]  
a
b
c
d
e
RxEOP  
RxERR  
5-7450(F)br.1  
Figure 24. Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode  
92  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Transmit Input Path (Egress)  
In the transmit direction, data arrives from the various UTOPIA interfaces, and is stored in a 256-byte FIFO, one  
per channel. After sufficient data has been stored into the FIFO, it is made available to be sent to the DE.  
Like the UTOPIA Rx interface, the UTOPIA Tx interface is designed to accommodate ATM cells as well as packet  
traffic. While the traditional UTOPIA interface only transfers ATM cells, this interface has been enhanced to carry  
packet traffic. The interfaces supported include the following: UTOPIA Level 2 (U2), enhanced UTOPIA Level 2  
(U2+), UTOPIA Level 3 (U3) in 4 x 8-bit mode or 32-bit mode, and enhanced UTOPIA Level 3 (U3+) in 4 x 8-bit  
mode or 32-bit mode.  
The UTOPIA Tx side can indicate to the ATM side to suspend the transfer, by deasserting TxPA, when necessary.  
When the amount of data in the FIFO exceeds its programmable high watermark, it deasserts TxPA. This signal  
causes the deassertion of TxPA on the next clock. At this point, the ATM side knows that the UTOPIA Tx block can  
only accept a limited number of words, after which it will overflow. In this case, the ATM device must not exceed  
writing this limited number of words before suspending the transfer. Transfer is resumed once again when the  
FIFO falls below the high watermark. When transferring ATM cells, TxPA must be deasserted four clocks before  
the end of cell, or else it must be prepared to accept an entire new cell. When transferring ATM cells, deasserting  
TxPA does not immediately suspend the transfer of the current cell because the entire cell can be transmitted with-  
out interruption.  
Transmit Cell/Packet Available (TxPA). This signal indicates when the TDAT042G5 transmit FIFO can accept  
data from the master device. If the FIFO is empty or more than the provisioned space is available in the FIFO,  
TxPA[D:A] is set active.  
I One-Cycle Delay Mode. This mode follows the UTOPIA Level 2 Standard. The TxPA response occurs one cycle  
after the address is polled.  
I Two-Cycle Delay Mode. This mode follows the UTOPIA Level 3 baselined text*. The TxPA response occurs two  
cycles after the address is polled.  
I TxPA[D:A] Assertion. The TxPA[D:A] signal behavior relies on the UTOPIA provisionable watermarks. In  
packet mode, TxPA[D:A] goes high when the amount of data in the FIFO is less than the high watermark setting.  
In ATM mode, TxPA[D:A] goes high when the FIFO has space to receive a complete ATM cell from the master.  
(This requires the high threshold to be set appropriately by the user, i.e., set so that an entire cell can be  
received once TxPA[D:A] goes active.)  
I TxPA[D:A] Deassertion. In packet mode, TxPA[D:A] goes low when the amount of data in the FIFO reaches or  
exceeds the high watermark. In ATM mode, TxPA[D:A] goes low when there is not enough space in the FIFO to  
receive an entireATM cell. (This requires the threshold values to be provisioned properly, i.e., set low enough  
such that when the high watermark is reached, the transmission of the current cell can be completed without  
overflowing the FIFO). In ATM mode, TxPA[D:A] will be deasserted four cycles before the end of the current cell  
transfer if the FIFO cannot accept a complete ATM cell on the following transmission.  
TxPA[D:A] is updated on the rising edge of TxCLK[D:A].  
In 32-bit mode, only the TxPA[A] pin of port A is used to indicate the packet/cell available status.  
I MPHY Support. When the TxPA signals are used for multi-PHY (MPHY) direct status, the corresponding  
TxCLK[B, C, and/or D] must be provided. This clock will be the same as TxCLK[A].  
* ATM Forum Technical Committee, UTOPIA Level 3, STR-PHY-UL3-01.00, July 1999.  
Agere Systems Inc.  
93  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Transmit Input Path (Egress) (continued)  
FIFO. The UTOPIA Tx FIFO is used to create an elastic store that can buffer bursts of data received via the UTO-  
PIA Tx, faster than can be transmitted out of the path. After the FIFO exceeds a programmable watermark, it indi-  
cates to the UTOPIA Tx master to stop sending data. The master can choose to ignore this request causing the  
risk of an overflow. The FIFO block buffers 256 bytes of cell/packet data. The FIFO accommodates four ATM cells  
or 256 bytes of packet data. The FIFO is required to manage the asynchronous nature of the UTOPIA interface.  
Optionally, in the case of FIFO underflow, a 0x7D207D207D20 . . . will be inserted by the data engine into the mid-  
dle of the packet if dry mode is provisioned and the default dry escape sequence is used (0x7D20, where the last  
two bytes (the 20 bytes of the default value of 0x7D20) are provisionable). This will be removed at the far end by  
the device (provided the link is comprised of two devices and both sides of the link support dry mode).  
I FIFO Watermark Threshold. When carrying ATM cell traffic, this threshold, while measured in words, should be  
set at least one cells length from end of FIFO. The UTOPIA Tx interface, by definition, must be able to accept an  
entire ATM cell after the current ATM cell, unless TxPA is deasserted at least four clock cycles before the end of  
the current cell transfer.  
When carrying packet traffic, however, the threshold can be set higher, as the UTOPIA Tx interface only needs  
to accept a limited number of words after deasserting TxPA. The number of words is a programmable value for  
the sender, and should be assumed to be at least 2 words for the purposes of setting the threshold.  
FIFO high watermark threshold, EGRESS_WATERMARK_HIGH_[AD][6:0] (addresses 0x0212, 0x0216,  
0x021A, 0x021E), should be set as follows.  
Table 29. Egress High Watermark Thresholds  
UTOPIA Mode  
Maximum Threshold Value  
8-bit, U3+  
16-bit, U2+  
32-bit, U3+  
0x3D  
0x3B  
0x37  
Note: The high watermark threshold should be set less than the values in the above table assuming there is no  
delay between TxPA deassertion and TxENB deassertion. Then the threshold values may be changed to  
optimize UT egress performance and to avoid FIFO overflow.  
94  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
UT Transmit Path (Egress) (continued)  
Figure 25 illustrates the transmit-side interface handshaking when operating in point-to-point mode with the TxPA  
response provisioned to be a single cycle. In two-cycle mode, the TxPA signal is delayed an additional cycle. In the  
figure, the master device initiates the transfer after observing an asserted packet available for the channel by  
asserting the TxENB signal. The master places data and start of packet on the bus the same cycle as TxENB, and  
the TDAT042G5 samples the TxSOP and TxDATA on the following clock cycle (rising edge).  
In this example, the master stops transfer in the middle of the packet. Data with value c is valid on the cycle that  
TxENB goes inactive, and when TxENB returns, data is again valid on the first cycle (data value d).  
The packet transfer is complete when the master asserts the TxEOP signal. If an error occurs in the packet, then  
the TxERR signal is asserted simultaneously with the TxEOP. TxERR is ignored if it is not asserted when TxEOP  
is active.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
TxCLK  
TxPA  
TxENB  
TxSOP/C  
TxDATA[15:8]  
TxEOP  
a
b
c
d
e
f
g
TxERR  
5-7457(F).ar.2  
Figure 25. Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode  
Agere Systems Inc.  
95  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
Multi-PHY Support  
In addition to point-to-point UTOPIA mode, the TDAT042G5, as the slave device, can also be configured to support  
the polled multi-PHY mode. To operate in multi-PHY mode, channel A must be configured in the polling mode,  
since the control signals of channel A are used for all channels. Any combination of B, C, or D can be included in  
the polling group, in which case they provide control information to channel A. Channels B, C, and D also can be  
configured in any of the UTOPIA modes. In this case, the output is transferred through the channel A interface  
(channel A and B interfaces for 32-bit mode). Channels not configured for polling can be operated as point-to-point  
connections. If channel A is in 32-bit polling mode, channel B cannot be in point-to- point mode since its interface is  
controlled by channel A, while channels C and D may be provisioned as point-to-point connections.  
Figure 26 shows a multi-PHY mode when all four channels of the UT are in polling mode.  
RxPA[A]/RxDATA[A]  
INGRESS CHANNEL A  
INGRESS CHANNEL B  
INGRESS CHANNEL C  
INGRESS CHANNEL D  
UTOPIA _PHY_Rx  
RxENB[A]/RxADDR  
RxPA[B]  
UTOPIA _PHY_Rx  
UTOPIA _PHY_Rx  
UTOPIA _PHY_Rx  
RxPA[C]  
RxPA[D]  
µP  
TxPA[A]  
EGRESS CHANNEL A  
EGRESS CHANNEL B  
EGRESS CHANNEL C  
EGRESS CHANNEL D  
UTOPIA _PHY_Tx  
TxENB[A]/TxDATA[A]/TxADDR  
TxPA[B]  
UTOPIA _PHY_Tx  
UTOPIA _PHY_Tx  
UTOPIA _PHY_Tx  
TxPA[C]  
TxPA[D]  
5-7349(F)r.2  
Figure 26. Multi-PHY Configuration of All Four Channels  
Mixed mode polling is also possible. For example, for those channels operated in polling mode, it is legitimate for  
some of the channels to be in packet mode while others are in ATM mode. However, if one or more of the channels  
are in packet mode, channel A should be configured as packet mode to activate control signals for packet transfer.  
Multi-PHY operation can be configured by asserting the polling mode enable bit and Tx/Rx address in the respec-  
tive port provisioning registers (see port provisioning registers, pages 158161). Microprocessor provisionable  
registers in each channel include a polling mode enable bit and 5-bit Rx address or 5-bit Tx address. The value for  
the Tx and Rx address of an MPHY channel must be identical. Both the Rx and Tx directions have a 5-pin address  
input to poll and select the appropriate PHY.  
96  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
Multi-PHY Support (continued)  
In 8-bit or 16-bit multi-PHY mode, only the data bus and the control signals (except the RxPA or TxPA signal) of  
channel A are active for the polled group. RxPA[A] indicates the packet/cell availability of the selected or polled  
channel. Similarly, TxPA[A] indicates transmit FIFO availability for a selected or polled channel. The remaining  
RxPA/TxPA signals for the polled channels are activated and indicate instantaneous or direct status of the particu-  
lar channel. In 32-bit multi-PHY mode, the data bus and size control signals of channel B are also active.  
TDAT042G5 does not provide a selected packet available (SPA) signal to monitor the status of the current channel  
sending/receiving data to or from the master. To prevent the FIFOs from running dry or overflowing in the middle of  
a packet transfer, the user must design the UT TDAT042G5 slave-to-master interface with direct status mode  
rather than address polling. The direct status of each channel is provided on the associated SPA pin for that chan-  
nel. In this mode, the user must guarantee that when channels are switched to receive data from a channel other  
than channel A, they immediately reapply the address of channel A to the address bus after the new channel is  
selected. The user then gets the direct status SPA signal from channel A. Channels B, C, and D are always directly  
sent out of the TDAT042G5. In either receive or transmit, when direct status is used in addition to the direct status  
pin for a given interface, its corresponding interface clock pin must be driven by the clock of the A interface.  
During the cycle when the selected channel is being changed, the address of the new channel is placed on the  
address bus. The user must ignore the RxPA response of the initial channel during the expected response time  
(one or two cycles later, depending on the PA response bit when the address of the newly selected channel was  
applied).  
Figure 27 illustrates the transmit interface timing for the case when the direct status of packet available of channels  
A, B, C, and D is present. In this example, channels A and C indicate they can receive data. When the SPA signal  
for C is observed, a channel switch is performed by the master by deasserting TxENB and placing the address of  
channel C on the address bus. On the following cycle, data is placed on the bus along with the start of packet. In  
this example, the TxPA response is configured for two cycles so that the PA response of address 02 results in the  
PA of channel C to appear on channel As output two clock cycles later. Subsequent data sent to the slave will go  
to channel C (i.e., data values I, J, etc.).  
When the RxPA signals are used for multi-PHY (MPHY) direct status, the corresponding RxCLK[B, C, and/or D]  
must be provided. They may be provided via an external UT master, or they may be sourced from the correspond-  
ing TxCLK[D:A] pin by using the UT clock source mode (see UT Clocking, page 88).  
Agere Systems Inc.  
97  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
Multi-PHY Support (continued)  
1
2
3
4
5
6
7
8
9
10  
11  
TXCLK[A]  
TXADDR  
00  
00  
02  
00  
TXPA[A]  
00  
00  
02  
00  
TXPA[B]  
TXPA[C]  
TXPA[D]  
TXENB[A]  
HIGH Z  
HIGH Z  
TXSOP/C[A]  
TXDATA[A][15:0]  
TXDATA[B][15:0]  
TXEOP[A]  
A
B
C
D
E
F
G
H
I
K
L
M
N
O
P
Q
R
J
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
TXSIZE[A, B]  
11  
5-7933(F).ar.3  
Figure 27. TxPA Two-Cycle Responses of a Multi-PHY for All Four Channels  
98  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
UTOPIA (UT) Interface Block (continued)  
Multi-PHY Support (continued)  
The ATM side sends one RxENB (TxENB) signal to channel A for the grouped channels to select a channel which  
has ATM cells/packets (or room) available. An MPHY channel is selected using the following procedures.  
1.The ATM layer polls the RxPA[D:A] (TxPA[D:A]) status of a channel by placing its address on the RxADDR[4:0]  
(TxADDR[4:0]) lines.  
2.In the following cycle, the MPHY channel gives its status by driving RxPA[D:A] (TxPA[D:A]) of channel A.  
3.The ATM side selects the MPHY channel by placing the desired MPHY address on the address bus  
RxADDR[4:0] (TxADDR[4:0]) during this cycle; RxENB[D:A] (TxENB[D:A]) is deasserted.  
4.During the next cycle, the ATM side asserts RxENB[D:A] (TxENB[D:A]), and the selection of an MPHY channel is  
made.  
Only one MPHY channel at a time is selected for a cell/packet transfer when ATM drives RxENB (TxENB) for  
channel A from high to low. However, another MPHY channel can be polled for its RxPA (TxPA) status while the  
selected channel transfers data.  
Figure 28 shows an example of the single-cycleRxPA response of each channel. In this figure, channels A, B, C,  
and D have Rx addresses 00, 01, 02, and 03, respectively. RxPA[A] shows the packet availability of all four chan-  
nels. Channels A and C have available packets to send, and channels B and D do not have packets to send. By  
driving RxENB[A] low at clock edge 1, the ATM side selects channel A, and packet transfer is started at  
clock edge 2. The master samples this data at clock edge 3. At clock edge 4, RxPA[C] shows that channel C also  
has a packet to send, and this is reflected to RxPA[A] at clock edge 5. RxPA[B] and RxPA[D] show the direct status  
of channels B and D, indicating that they do not have packets to send.  
1
2
3
4
5
6
7
8
9
10  
11  
RXCLK[A]  
RXADDR  
00  
1F  
01  
1F  
02  
1F  
03  
1F  
00  
1F  
01  
RXDATA[A]  
P1P2  
P3P4  
P5P6  
P7P8  
P9P10 P11P12 P13P14 P15P16 P17P18  
HIGH Z  
HIGH Z  
RXSOP/C[A]  
RXEOP[A]  
HIGH Z  
RXSZ[A]  
RXENB[A]  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
RXPA[A]  
00  
01  
02  
03  
00  
RXPA[B]  
RXPA[C]  
RXPA[D]  
5-7348(F)r.2  
Figure 28. RxPA Responses of a Multi-PHY for All Four Channels  
(PA Response Configured for One Cycle)  
Agere Systems Inc.  
99  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Functional Description (continued)  
JTAG (Boundary-Scan) Test Block  
The JTAG test block provides an IEEE 1149.1 JTAG controller interface for memory BIST, boundary scan, and  
32-bit ID register instructions. Details about JTAG (boundary-scan) functionality and interface timing specifications  
can be found in MN98-060ASIC-02, HL250C 3.3 Volt 0.25 µm CMOS Standard-Cell Library Manual, page 8-1  
through page 8-31.  
The instruction register length is 3 bits.  
Reset of JTAG Logic  
There are two events that will reset the JTAG logic:  
I Pulse or pull the TRST pin signal low with no TCK pin signal present. TRST is pulled high on-chip.  
I The TMS pin signal is driven high for five cycles of TCK. TMS is pulled high on-chip.  
TRST can be held high during normal device operation only if TRST is pulled low upon powerup.  
Line Interface  
LVPECL I/O Termination and Load Specifications  
The LVPECL buffers are compatible with the temperature independent ECL 100K levels, but the output levels that  
are guaranteed are relaxed 30 mV from the actual 100K levels allowing for noise and variations in the power sup-  
ply and process.  
All LVPECL output buffers require a terminating resistor. These terminating resistors, which must also be con-  
nected to both LVPECLREFHI and LVPECLREFLO, go to a common terminating voltage. All of the terminating  
resistors used with a chip must be identical precision (1%) resistors. The value of these terminating resistors is  
usually chosen to match the characteristic impedance of the board. To save on power, a terminating voltage equal  
to VDDD 2 V is available in most ECL systems. The minimum value of the terminating resistor that can be used on  
these bufers is 50 . This is also the standard termination used in most ECL systems. Larger values of resistance  
will save power, but will also slow down the high-to-low transition of the output, since it is RC limited.  
if no VDDD 2 V supply is available, a larger value resistor may be connected directly to GND. It should be chosen  
such that the current through it does not exceed the current through a 50 resistor to VDDD 2 V (21 mA in the  
high state). This large resistor will most likely be a poor match to the board impedance. The match can be  
improved by the user of a Thevenin equivalent resistor pair. Such a Thevenin equivalent resistor will burn much  
more system power (but not on-chip power) than would a single resistor, but it does allow for impedance matching  
in the absence of aVDDD 2 V supply. Termination resistor options are shown in Table 30.  
Experienced ECL designers sometimes use the (bipolar) ECL output buffers in a tied-OR configuration. Unfortu-  
nately, this cannot be done with these LVPECL buffers.  
Table 30. Nominal dc Power for Suggested Terminations  
Note: The value is the average of the high and low states inLVPECL output buffer and external terminating resis-  
tors, for a single-ended output. The values double for double-ended outputs.  
Terminating Resistor and Voltage  
Output Transistor (on-chip) Terminating Resistor (off-chip)  
Power (mW)  
Power (mW)  
50 to VDDD 2 V1  
15  
15  
13  
52  
125 to VDDD and 83 to GND2  
1.  
2.  
Standard ECL termination (parallel).  
Thevenin equivalent or 50 to VDDD 2 V.  
100  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Line Interface (continued)  
LVPECL I/O Termination and Load Specifications (continued)  
The input common mode range for LVPECL differential buffers is from 1 V to 2.75 V; and the swing needs to be at  
least 300 mV. So basically what it means is the lowest voltage on the input should be no lower than (1 V 0.150 V)  
and the highest voltage on the input shouldnt be more than (2.75 V + 0.150 V). So if the differential swing is  
800 mV, then the common mode range would be 2.5 V down to 1.25 V. This is all for 3 V buffers.  
Interface Description  
Microprocessor Interface  
This device is equipped with a generic 16-bit microprocessor interface that allows operation with most commer-  
cially available microprocessors. Input MPMODE is used to configure this interface into one of two possible modes  
(synchronous or asynchronous). In synchronous mode, the microprocessor interface can operate at speeds from  
1 MHz up to 66 MHz.* In asynchronous mode, the internal 78 MHz system clock is used to operate this interface.  
Table 31. MPU Modes  
MPMODE  
Mode  
Microprocessor Interface Signals  
0
1
Async  
Sync  
CS, INT, D[15:0], A[15:0], ADS, R/W, DS, DT  
MPCLK, CS, INT, D[15:0], A[15:0], ADS, R/W, DT  
The host interface is designed to connect directly to a commonly used asynchronous or synchronous host bus.  
The interface to this block includes a separate clock, MPCLK, which is used in the synchronous interface mode.  
The interface is only a slave on the host bus. There is no posting of writes in the host interface; all registers are  
directly accessible. The microprocessor interface pins use 3.3 V (5V, TTL-tolerant) CMOS I/O levels. The micro-  
processor interface timing specifications are given in the Interface Timing Specifications section (see Table 163—  
Table 166, pages 257263).  
* All status counters must be read within the 1-second time window of the PMRST. If this is not the case, counter values will be l ost.  
Agere Systems Inc.  
101  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
General-Purpose I/O Bus (GPIO)  
GPIO[3:0] are bidirectional pins. They can be configured individually as input or output by writing to the GPIO mode  
and GPIO output configuration registers (addresses 0x0013, 0x0014, 0015; see register descriptions, page 152).  
The value to be output is written into the GPIO output register (address 0x000F; see register descriptions,  
page 150). To use the GPIO pins as outputs, set the GPIO output configuration bits (bits 8 and 0) to 1, and set the  
GPIO mode bits GPIO[3:0]_DIRECTION_ I/O (address 0x0013, bits [3:0]) to 1.  
The input value is read from the GPIO input register (address 0x000A; see register description, page148). GPIO  
pins can also be used to generate an interrupt upon a change in value. An interrupt can be generated on either the  
input level or edge, depending on the GPIO mode register. Figure 29 shows how the GPIO functions.  
CORE REGISTERS  
INTERRUPTS  
GPIO INPUTS  
3 2 1 0  
0000  
0001  
0002  
0003  
0004  
0005  
DEVICE VERSION  
3
3
2
2
1
1
0
0
DEVICE NAME =  
TDAT042G5  
GPIO OUTPUTS  
+
0008 COMPOSITE INTERRUPTS  
000A GPIO INPUTS  
000C BLOCK INTERRUPT MASKS  
POS.  
EDGE  
DET.  
ACTIVE  
DIRECTION  
3 2 1 0 3 2 1 0  
000E  
000F  
0010  
0011  
0012  
0013  
CORE RESETS  
GPIO OUTPUTS  
GPIO MODE  
3
2
1
0
LEVEL EDGE  
LINE PROVISIONING  
CHANNEL CONTROL  
LOOPBACK CONTROL  
GPIO MODE  
001F  
SCRATCH  
3
2
1
0
GPIO[3:0]  
5-7058(F)r.6  
Figure 29. GPIO Functionality  
If a GPIO pin is an input, the logic value on the pin can be read from a software register. The GPIO pin can also be  
programmed to generate a level-sensitive interrupt or a positive edge-triggered interrupt contributing to the external  
interrupt pin.  
If a GPIO pin is an output, the value provisioned will appear on the device pin immediately.  
102  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
Interrupts  
Interrupt requests can be read from the composite interrupts register (0x0008; see register description, page 148).  
There is also a corresponding block interrupt masks register (0x000C; see register description, page 149). Any  
unmasked request will cause the INT pin to go low. GPIO interrupt functionality is shown in Figure 30.  
CORE REGISTERS  
0000  
0001  
0002  
0003  
0004  
0005  
DEVICE VERSION  
DEVICE NAME =  
TDAT042G5  
PM INTERRUPT  
(GPIO)  
0008 COMPOSITE INTERRUPTS  
000A GPIO INPUTS  
000C BLOCK INTERRUPT MASKS  
INTERRUPTS  
PM  
3
2
1
0
UT DE  
PT OH  
000E  
000F  
0010  
0011  
0012  
0013  
CORE RESETS  
GPIO OUTPUTS  
LINE PROVISIONING  
CHANNEL CONTROL  
LOOPBACK CONTROL  
GPIO MODE  
BLOCK INTERRUPT MASKS  
3
2
1
0
001F  
SCRATCH  
INT  
5-7059(F)r.5  
Figure 30. Interrupt Functionality  
Agere Systems Inc.  
103  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
Reset  
If the reset pin RST (C7) is forced low, the software registers will be placed in their default powerup state. The  
device will lose its previous state, and data path continuity will be lost. An internal 100 kpull-up and a Schmitt-  
trigger input is provided for this pin. Reset can be generated from software by writing 0x0005 to the core resets reg-  
ister (0x000E; see register description on page 149 and timing on page 263).  
Performance Monitor Reset (PMRST)  
A 1 Hz clock (PMRST) is provided to all internal macrocells. This clock is used to control the 1-second binning of  
coding violations (CVs) and alarms. The source of this clock is selectable from one of the three following sources:  
I The PMRST pin (D7)  
I A software controllable register (0x000E; see register description on page 149)  
I An internal 1-second counter (sourced from the 77.76 MHz transmit clock).  
This is configured by the line provisioning register (address 0x0010). When under software control, writing 0x0080  
to core resets register (address 0x000E) will generate a PMRSTX pulse.  
POS.  
EDGE  
DET.  
CORE REGISTERS  
INTERRUPTS  
0000  
0001  
0002  
0003  
0004  
0005  
DEVICE VERSION  
PM  
CORE RESETS  
R R R  
DEVICE NAME =  
TDAT042G5  
1 SEC.  
COUNT  
0008 COMPOSITE INTERRUPTS  
000A GPIO INPUTS  
000C BLOCK INTERRUPT MASKS  
000E  
000F  
0010  
0011  
0012  
0013  
CORE RESETS  
GPIO OUTPUTS  
LINE PROVISIONING  
LINE EQ./UNEQ.  
P M S  
48 12 12 12 12  
7
6 5 4 3 2 1 0  
LINE PROVISIONING  
CHANNEL CONTROL  
LOOPBACK CONTROL  
GPIO MODE  
11  
10  
9
8
A
B
C
D
15 14 13 12 11 10 9  
LOOPBACKS L B LB  
8 7 6 5 4 3 2 1 0  
001F  
SCRATCH  
A
B
LB  
C
LB  
D
15  
PMRST I/O CONTROL  
DELTA  
RST  
PMRST  
5-7060(F)r.4  
Figure 31. Miscellaneous Functionality  
104  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
Performance Monitor Reset (PMRST) (continued)  
Address 0x0010, bits 8 and 9 of the core register set defines the mode of operation for PMRST. Address 0x000E,  
bit 7 provides the software-controllable reset function (see Register Maps section, page 112). When this bit is set  
to 1, the PMRST signal goes high. The register will automatically be reset to 0, and the PMRST signal will go low  
after 500 ms.  
Table 32. PMRST Provisioning  
Core Register  
Description  
ADDR 0x0010, Bits 9, 8  
00  
01  
PMRST comes from external pin (1 Hz, 50% duty cycle signal).  
PMRST comes from internal 1-second counter (1 Hz, 50% duty cycle signal).  
Writing a logic 1 to the PMRST bit (core register 0x000E, bit 7) in this mode will  
reset the counter so that a 01 transition occurs on the PMRST within 10 clock  
cycles of the 77.76 MHz clock.  
11  
PMRST is software controlled. Writing a logic 1 to the PMRST bit (core register  
0x000E, bit 7) will cause a 01 transition on the internal PMRST signal. This  
pulse will be high for 100 cycles of the 77.76 MHz clock and low for 100 cycles of  
the 77.76 MHz clock. Writing the PMRST bit to a logic 1 during this 200 clock  
cycle interval will have no effect (2.57 µs). The PMRST rising edge must occur  
within 10 clock cycles of writing the PMRST bit.  
Agere Systems Inc.  
105  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
Loopback Operation  
Figure 32 illustrates the different types of loopback provided in the device. Loopback is controlled by core register  
0x0012, loopback control (see register description on page 151).  
SINK  
FAR  
END  
FACILITY  
TERMINAL  
NEAR  
END  
FACILITY  
(OPTICS)  
CONT  
CONT  
TERMINAL B  
TERMINAL A  
5-7061(F)r.4  
Figure 32. Loopback Operation  
In the following description, only the data path from Terminal A to B is discussed, but the same terms apply to the  
reverse direction.  
Near-End Loopback  
The packet/cell payload is looped back to the data source (Layer 2 device) as soon as it crosses the Layer 1 to  
Layer 2 boundary (UTOPIA block).  
Far-End Loopback  
The packet/cell payload is looped back to the facility (optical) data source as soon as it enters the UTOPIA block of  
Terminal B. The data does not enter the Layer 2 device. The total delay from receive data input to transmit data  
output in far-end loopback (FELB) mode is approximately 2 µs.  
Terminal Loopback  
The SONET/SDH signal is looped back at the terminal (line interface) block, and is returned to the Layer 2 device.  
For terminal loopback of UTOPIA ports B, C, or D to function, UTOPIA port A must be provisioned for terminal loop-  
back. This is because only the Tx clock from port A is used in terminal loopback mode.  
Facility Loopback  
The facility (optical) data signal is looped back to the facility as soon as it enters the Terminal B line interface block.  
SONET facility loopback is only available in STS-3/STM-1 and STS-12/STM-4 modes.  
106  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
System Interfaces  
ATM Interfaces  
TxCLK[A]  
TxENB[A]  
TxPA[A]  
TxCLK  
TxENB  
TxCLAV  
TxSZ[A]  
TxDATA[15:0][A]  
TxPRTY[A]  
TxSOP/C[A]  
TxEOP[A]  
TxDATA[15:0]  
TxPRTY  
TxSOC  
TxERR[A]  
ATM DEVICE  
RxCLK[A]*  
RxENB[A]  
RxPA[A]  
RxCLK  
RxENB  
RxCLAV  
TDAT042G5  
RxSZ[A]  
RxDATA[15:0][A]  
RxPRTY[A]  
RxSOP/C[A]  
RxEOP[A]  
RxDATA[15:0]  
RxPRTY  
RxSOC  
RxERR[A]  
[B]  
DEVICE #2  
DEVICE #3  
[B]  
[C]  
[C]  
[D]  
DEVICE #4  
[D]  
5-6750(F)r.3  
* RxCLK may be either sunk or sourced, depending upon the application.  
The transmit and receive signals for channels B, C, and D of the TDAT042G5 device are mapped to the remaining three ATM devices as  
shown above.  
Figure 33. Quad ATM UTOPIA 2  
For the quadATM UTOPIA 3 eight-bit interface mode, where theATM device has only an 8-bit interface, the  
RxDATA[15:0] and TxDATA[15:0] words are replaced with RxDATA[15:8] and TxDATA[15:8] in each channel of the  
TDAT042G5. This is shown in the following table.  
Table 33. Quad ATM UTOPIA 3 Interface  
TDAT042G5 Channel  
ATM Device  
TxDATA[15:8][A]  
RxDATA[15:8][A]  
TxDATA[7:0]  
RxDATA[7:0]  
Same signals for channel [B]  
Same signals for channel [C]  
Same signals for channel [D]  
Same signals for device #2  
Same signals for device #3  
Same signals for device #4  
Agere Systems Inc.  
107  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
System Interfaces (continued)  
ATM Interfaces (continued)  
TX CLOCK  
TxCLK[A]  
TxENB[A]  
TxPA[A]  
TxCLK  
TxENB  
TxCLAV  
TxSZ[A:B]  
TxDATA[15:0][A:B]  
TxPRTY[A]  
TxDATA[31:0]  
TxPRTY  
TxSOP/C[A]  
TxEOP[A]  
TxSOC  
RX CLOCK  
TxERR[A]  
TDAT042G5  
ATM DEVICE  
RxCLK[A]*  
RxENB[A]  
RxPA[A]  
RxCLK  
RxENB  
RxCLAV  
RxSZ[A]  
RxDATA[15:0][A:B]  
RxPRTY[A]  
RxDATA[31:0]  
RxPRTY  
RxSOP/C[A]  
RxSOC  
RxEOP[A]  
RxERR[A]  
5-6740(F)r.5  
* RxCLK may be either sunk or sourced, depending upon the application.  
Figure 34. Single ATM UTOPIA 3  
108  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
System Interfaces (continued)  
POS Interfaces  
TxCLK[A]  
TFCLK  
TxENB[A]  
TxPA[A]  
TxSZ[A]  
TENB  
TPA  
TMOD  
TDAT[15:0]  
TPRTY  
TSOP  
TxDATA[15:0][A]  
TxPRTY[A]  
TxSOP/C[A]  
TxEOP[A]  
TEOP  
TERR  
TxERR[A]  
POS DEVICE  
RxCLK[A]*  
RxENB[A]  
RxPA[A]  
RFCLK  
RENB  
RPA  
TDAT042G5  
RxSZ[A]  
RMOD  
RDAT[15:0]  
RPRTY  
RSOP  
RxDATA[15:0][A]  
RxPRTY[A]  
RxSOP/C[A]  
RxEOP[A]  
REOP  
RxERR[A]  
RERR  
[B]  
[B]  
DEVICE #2  
[C]  
DEVICE #3  
DEVICE #4  
[C]  
[D]  
[D]  
5-6741(F)r.7  
* RxCLK may be either sunk or sourced, depending upon the application.  
The transmit and receive signals for channels B, C, and D of the TDAT042G5 device are mapped to the remaining three POS devices as  
shown above.  
Figure 35. Quad POS UTOPIA 2  
For the quad POS UTOPIA 3 eight-bit interface mode, where the POS device has only an 8-bit interface, the  
RxDATA and TxDATA words are replaced with RxDATA[15:8] and TxDATA[15:8] in each channel of the  
TDAT042G5. This is shown in the following table.  
Table 34. Quad POS UTOPIA 3 Interface  
TDAT042G5 Channel  
POS Device  
TxDATA[15:8][A]  
RxDATA[15:8][A]  
TxDATA[7:0]  
RxDATA[7:0]  
Same signals for channel [B]  
Same signals for channel [C]  
Same signals for channel [D]  
Same signals for device #2  
Same signals for device #3  
Same signals for device #4  
Agere Systems Inc.  
109  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Description (continued)  
System Interfaces (continued)  
POS Interfaces (continued)  
TX CLOCK  
TxCLK[A]  
TxENB[A]  
TFCLK  
TENB  
TxPA[A]  
TPA  
TxSZ[A:B]  
TxDATA[15:0][A:B]  
TxPRTY[A]  
TMOD[1:0]  
TDAT[31:0]  
TPRTY  
TSOP  
TxSOP/C[A]  
TxEOP[A]  
TEOP  
TERR  
TxERR[A]  
RX CLOCK  
TDAT042G5  
POS DEVICE  
RxCLK[A/B]*  
RxENB[A]  
RFCLK  
RENB  
RPA  
RxPA[A]  
RxSZ[A]  
RMOD[1:0]  
RDAT[31:0]  
RPRTY  
RSOP  
RxDATA[15:0][A:B]  
RxPRTY[A]  
RxSOP/C[A]  
RxEOP[A]  
REOP  
RxERR[A]  
RERR  
5-6743(F)r.7  
* RxCLK may be either sunk or sourced, depending upon the application.  
Figure 36. Single POS UTOPIA 3  
TX CLOCK  
TxCLK[A]  
TxENB[A]  
T
TX  
X
CLK  
ENB  
TxPA[A]  
TxSZ[A:B]  
TxDATA[15:0][A:B]  
TxPRTY[A]  
TxSOP/C[A]  
TxEOP[A]  
T
TX  
TX  
TX  
TX  
TX  
X
CLAV[0]  
MOD[1:0]  
DAT[31:0]  
PRTY  
SOP  
EOP  
T
X
ERR  
TxERR[A]  
TxADDR[4:0]  
TxPA[B:D]  
TxADDR[12:0]  
TxCLAV[3:1]  
RX CLOCK  
TDAT042G5  
LAYER DEVICE  
RxCLK[A:B]*  
RxENB[A]  
R
RX  
RX  
X
CLK  
ENB  
CLAV[0]  
RxPA[A]  
RxSZ[A]  
R
RX  
R
RX  
R
R
R
R
X
MOD[1:0]  
DAT[31:0]  
XPRTY  
RxDATA[15:0][A:B]  
RxPRTY[A]  
RxSOP/C[A]  
RxEOP[A]  
SOP  
X
EOP  
RxERR[A]  
RxADDR[4:0]  
RxPA[B:D]  
XERR  
X
ADDR[12:0]  
CLAV[3:1]  
X
5-6743(F).br.2  
* RxCLK may be either sunk or sourced, depending upon the application.  
Figure 37. 32-bit MPHY UTOPIA 3  
110  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Access Description  
Register address space is defined by the 16-bit address word of ADDR[15:0] (see Table 6, page 41). Bits 15  
through 13 must be 0. Bits 12 through 9 map to the major functional blocks as shown in Table 35. The usable  
address space is also shown in Table 35.  
Table 35. Register Address Space  
Functional Block  
Address Range (Hex)  
Core  
UT  
0x00000x001F  
0x02000x0226  
0x04000x05C2  
0x08000x0AF8  
0x10000x1607  
OHP  
PT  
DE  
Register addresses outside of the space defined in Table 35 must not be addressed, i.e., written or read.  
Table 36Table 40 are the register maps. Details of the register functions are given in the following register  
description tables. Note that the usable register address space is not contiguous. Register addresses not specifi-  
cally identified in the following tables are reserved and must not be addressed, i.e., written or read. Registers and  
bits that are reserved must not be written or must be written to the indicated default value. In Table 36Table 40,  
the registers may be read only (RO), read/write (R/W), write only (WO), or clear-on-read or clear-on-write  
(COR/W).  
The core registers must be written prior to provisioning any other registers (1) to establish the internal clock rates  
for the device, and (2) because writing to certain core registers resets the remainder of the device. Certain clocks  
must be present to read/write registers prior to provisioning the device.  
One of the following clocks must be present prior to provisioning to enable register access.  
I TxCKP and TxCKN  
I MPU clock (microprocessor interface synchronous mode only)  
Provisioning must be implemented in the following sequence.  
I Core register 0x0010 (mode) must be provisioned first  
I Core register 0x0011 (channel [AD] control) second  
I Remainder of the core registers must then be provisioned (order does not matter)  
It is recommended, but not required, that the remainder of the device be provisioned in the following order.  
I OHP, PT, and DE blocks (order does not matter)  
I UT block to turn on the data source to the master and slave  
Agere Systems Inc.  
111  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
112  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
113  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
114  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
115  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
116  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
117  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
118  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
119  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
120  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
121  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
122  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
123  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
124  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
125  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
126  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
127  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
128  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
129  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
130  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
131  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
132  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
133  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
134  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
135  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
136  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
137  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
138  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
139  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
140  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
141  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
142  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
143  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
144  
Agere Systems Inc.  
Data Sheet  
May 2001  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Agere Systems Inc.  
145  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
146  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions  
Core Registers  
This section gives a brief description of each register bit and its functionality. All algorithms are described in the  
main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/  
write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W).  
Required Provisioning Sequence and Clocks  
0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every  
register table in the document.  
Table 41. Register 0x0000: Device Version (RO)  
Reset default of register = 0x0100.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0000  
158 DEVICE_VERSION[7:0] Device Version Number. Device version register will  
0x011  
change each time the device is changed.  
70  
Reserved.  
0x00  
1. 0x02 for version 1A.  
Table 42. Registers 0x00010x0005: Device Name (RO)  
Reset default of each register is shown below.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0001  
0002  
0003  
0004  
0005  
150  
150  
150  
150  
150  
ASCII_NAME_TD  
ASCII_NAME_AT  
ASCII_NAME_04  
ASCII_NAME_2G  
ASCII_NAME_5CR  
Device ASCII Name. Value = T, D.  
Device ASCII Name. Value = A, T.  
Device ASCII Name. Value = 0, 4.  
Device ASCII Name. Value = 2, G.  
Device ASCII Name. Value = 5, CR.  
0x5444  
0x4154  
0x3034  
0x3247  
0x350D  
Agere Systems Inc.  
147  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Table 43. Register 0x0008: Composite Interrupts (RO or COR/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0008  
15  
PMRSTI  
Performance Monitor Reset Interrupt. Active-high  
signal indicating a 1 second event has occurred.  
This bit is COR/W.  
0
1412  
118  
Reserved. These bits must be written to their reset  
default value (000).  
000  
0x0  
GPIO[3:0]I  
General-Purpose Interrupt. Signal indicating the  
associated input is active. When the GPIO are out-  
puts, this signal will be forced low. These interrupts  
are COR/W when the interrupt is programmed to  
the positive edge mode; otherwise, this is a read-  
only (RO) location.  
7
6
UTI  
DEI  
UTOPIA Composite Interrupt. Active-high signal  
indicating an unmasked delta or event is active in  
the UTOPIA block. This bit is RO.  
0
0
Data Engine Composite Interrupt. Active-high  
signal indicating an unmasked delta or event is  
active in the data engine block. This bit is RO.  
52  
Reserved. These bits must be written to their reset  
default value (0000).  
0000  
0
1
PTI  
Path Terminator Composite Interrupt. Active-high  
signal indicating an unmasked delta or event is  
active in the path terminator block. This bit is RO.  
0
OHPI  
Overhead Processor Composite Interrupt.  
Active-high signal indicating an unmasked delta or  
event is active in the overhead processor block.  
This bit is RO.  
0
Table 44. Register 0x000A: GPIO Input (RO)  
Reset default of register = 0x000x (x not determined).  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
000A  
154  
30  
Reserved. These bits must be written to their reset 0x000  
default value (0x000).  
GPIO[3:0]_INPUT_VALUE General-Purpose Input Value. These are the logi-  
Pin  
cal values of the GPIO[3:0] I/O pins.  
Value  
148  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Table 45. Register 0x000C: Block Interrupt Masks (R/W)  
Reset default of register = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
000C  
15  
PMRSTM  
Performance Monitor Reset Mask. When set to 1,  
the associated composite interrupt bit will be inhib-  
ited (masked) from contributing to the interrupt pin  
(INT).  
1
1412  
118  
Reserved. These bits must be written to their reset  
default value (111).  
General-Purpose Interrupt Mask. When set to 1,  
the associated composite interrupt bits will be inhib-  
ited (masked) from contributing to the interrupt pin  
(INT).  
111  
0xF  
GPIO[3:0]IM  
7
6
UTIM  
DEIM  
UTOPIA Composite Interrupt Mask. When set to  
1, the associated composite interrupt bit will be  
inhibited (masked) from contributing to the interrupt  
pin (INT).  
Data Engine Composite Interrupt Mask. When  
set to 1, the associated composite interrupt bit will  
be inhibited (masked) from contributing to the inter-  
rupt pin (INT).  
1
1
52  
Reserved. These bits must be written to their reset  
default value (1111).  
Path Terminator Composite Interrupt Mask.  
When set to 1, the associated composite interrupt  
bit will be inhibited (masked) from contributing to  
the interrupt pin (INT).  
1111  
1
1
PTIM  
0
OHPIM  
Overhead Processor Composite Interrupt Mask.  
When set to 1, the associated composite interrupt  
bit will be inhibited (masked) from contributing to  
the interrupt pin (INT).  
1
Table 46. Register 0x000E: Core Resets (WO)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
000E  
158  
PMRST  
Reserved.  
NA  
NA  
7
Performance Monitor Reset. When this bit is set  
to 1, the PMRST signal goes high. The register will  
automatically be reset to 0, and the PMRST signal  
will go low after 500 ms.  
63  
20  
SWRST  
Reserved.  
NA  
NA  
Software Reset. When a binary value of 101 is  
written to this register, it will create a software reset  
of the device. This reset has the same effect as the  
hardware reset. All microprocessor registers are  
reset to their default states, and all internal data  
path state machines are reset.  
Agere Systems Inc.  
149  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Table 47. Register 0x000F: GPIO Output (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
000F  
154  
30  
Reserved. These bits must be written to their reset  
default value (0x000).  
0x000  
GPIO[3:0]_OUTPUT_VALUE  
General-Purpose Output Values. The value writ-  
0x0  
ten into these bits will appear on the GPIO[3:0] pins.  
Provisioning Registers  
Table 48. Register 0x0010: Line Provisioning/Mode (R/W)  
Reset default of register = 0x1070.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0010  
1513  
Reserved. These bits must be written to their reset  
000  
default value (000).  
12  
POF_POS  
Packet/ATM Over Fiber/SONET. 0 = packet or ATM  
over fiber (POF); 1 = packet or ATM over SONET  
(POS).  
1
1110  
98  
Reserved. These bits must be written to their reset  
default value (00).  
00  
00  
PMMODE[1:0]  
Performance Monitoring Mode.  
00 or 10 = PMRST comes from external pin.  
01 = PMRST comes from internal 1-second counter.  
11 = PMRST is software controlled.  
7
6
SDH/SONET  
COR/W  
SDH or SONET Mode. 1 = SDH; 0 = SONET.  
0
1
Clear-on-Read or Clear-on-Write Control. This bit  
sets the functionality of the COR/W registers.  
1 = COR. Clear on read; read register to clear.  
0 = COW. Clear on write; write 1 to clear.  
COW mode will clear bits to which a 1 is written. Bits  
written to 0 are not cleared.  
5
PLL_MODE  
PLL Mode. Control for STS-48/STM-16 mode only.  
This bit controls the transmit line clock PLL. For  
STS-48/STM-16 contra-clocking mode, this PLL  
must be active, i.e., the bit = 0.  
1
1 = PLL off (inactive)  
0 = PLL on (active)  
4
STS48  
STS-48/STM-16 Control. 1 = STS-48/STM-16  
1
mode; 0 = STS-3/STS-12 (STM-1/STM-4) mode.  
30  
STS12[AD]  
STS-12/STS-3 (STM-4/STM-1) Mode Control.  
The only values permitted are the following:  
1111 = STS-12/STM-4  
0x0  
0000 = STS-3/STM-1  
150  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Provisioning Registers (continued)  
Table 49. Register 0x0011: Channel (AD) Control (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0011  
15  
EQ_CH_A  
Equip Channel A. 1 = enable; 0 = disable, i.e., turns off  
clock in Rx direction, except in the STS-48/STM-16  
mode. This function is valid only for STS-12/STM-4 and  
STS-3/STM-1 modes (no effect in Tx direction).  
0
1412  
Reserved. These bits must be written to their reset  
default value (000).  
000  
0
11  
EQ_CH_B  
Equip Channel B. 1 = enable; 0 = disable, i.e., turns off  
clock in Rx direction, except in the STS-48/STM-16  
mode. This function is valid only for STS-12/STM-4 and  
STS-3/STM-1 modes (no effect in Tx direction).  
108  
Reserved. These bits must be written to their reset  
default value (000).  
000  
0
7
EQ_CH_C  
Equip Channel C. 1 = enable; 0 = disable, i.e., turns off  
clock in Rx direction, except in the STS-48/STM-16  
mode. This function is valid only for STS-12/STM-4 and  
STS-3/STM-1 modes (no effect in Tx direction).  
64  
Reserved. These bits must be written to their reset  
default value (000).  
000  
0
3
EQ_CH_D  
Equip Channel D. 1 = enable; 0 = disable, i.e., turns off  
clock in Rx direction, except in the STS-48/STM-16  
mode. This function is valid only for STS-12/STM-4 and  
OSTS-3/STM-1 modes (no effect in Tx direction).  
20  
Reserved. These bits must be written to their reset  
000  
default value (000).  
Table 50. Register 0x0012: Loopback Control (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0012  
1512  
118  
74  
LOOPBACK[3:0]_  
CH_A  
Loopback Control. Only the following combinations  
are valid:  
0x0  
0x0  
0x0  
0x0  
LOOPBACK[3:0]_  
CH_B  
0000 = no loopbacks  
0001 = SONET facility loopback  
0010 = SONET terminal loopback  
0100 = UTOPIA far-end loopback  
1000 = UTOPIA near-end loopback  
LOOPBACK[3:0]_  
CH_C  
30  
LOOPBACK[3:0]_  
CH_D  
SONET facility loopback is only available in STS-3/  
STM-1 and STS-12/STM-4 modes.  
Agere Systems Inc.  
151  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Provisioning Registers (continued)  
Table 51. Register 0x0013: GPIO Mode (R/W)  
Reset default of register = 0x0000.  
Address Bit #  
(Hex)  
Name  
Function  
Reset  
Default  
0013  
15  
PMRST_I/O_CTRL  
PMRST I/O Control. This bit is set to 1 to make  
0
PMRST an output.  
1412  
Reserved. These bits must be written to their reset  
default value (000).  
000  
0x0  
118 GPIO[3:0]_INTERRUPT_ GPIO Interrupt Active State.  
ACTIVE_H/L 0 = report received value unchanged (level = input pin  
value, positive edge = 1 when signal rises).  
1 = invert received value (level = invert input pin value,  
positive edge = 0 when detected).  
74 GPIO[3:0]_INTERRUPT_ GPIO Interrupt Type. 0 = positive edge; 1 = level.  
0x0  
0x0  
LEVEL/EDGE  
30  
GPIO[3:0]_DIRECTION_ GPIO Direction Control. 0 = input; 1 = output.  
I/O  
Table 52. Registers 0x0014, 0x0015: GPIO Output Configuration  
Reset default of registers = 0x0000.  
Address Bit #  
(Hex)  
Name  
Function  
Reset  
Default  
0014  
GPIO[1:0]_OC  
GPIO[1:0] Output Configuration.  
0x0000  
159  
Reserved. These bits must be written to their reset  
default value (0000000).  
0000  
000  
8
71  
0
GPIO[1]_OC  
GPIO[1] Output Configuration. Set this bit to 1 to  
activate the output of the corresponding GPIO pin.  
0
Reserved. These bits must be written to their reset  
default value (0000000).  
0000  
000  
GPIO[0]_OC  
GPIO[0] Output Configuration. Set this bit to 1 to  
0
activate the output of the corresponding GPIO pin.  
0015  
GPIO[3:2]_OC  
GPIO[3:2] Output Configuration.  
0x0000  
159  
Reserved. These bits must be written to their reset  
default value (0000000).  
0000  
000  
8
71  
0
GPIO[3]_OC  
GPIO[3] Output Configuration. Set this bit to 1 to  
activate the output of the corresponding GPIO pin.  
0
Reserved. These bits must be written to their reset  
default value (0000000).  
0000  
000  
GPIO[2]_OC  
GPIO[2] Output Configuration. Set this bit to 1 to  
0
activate the output of the corresponding GPIO pin.  
152  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
Core Registers (continued)  
Provisioning Registers (continued)  
Table 53. Register 0x001F: Scratch (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
001F  
150 CORE_SCRATCH[15:0] Core Scratch Register. A read/write register used to  
verify functionality of the microprocessor interface. No  
internal action will occur when written data is written to  
this location.  
0x0000  
Agere Systems Inc.  
153  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers  
This section gives a brief description of each register bit and its functionality. All algorithms are described in the  
main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write  
(R/W), write only (WO), or clear-on-read or clear-on-write (COR/W).  
0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every  
register table in the document.  
Version Control  
Table 54. Register 0x0200: UT Macrocell Version Number (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0200  
158  
70  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
UT_VERSION[7:0]  
UT Macrocell Version Number. The version of  
the macrocell will increment each time a  
change occurs to the macrocell functionality.  
0x00  
Interrupt  
Table 55. Register 0x0201: UT Interrupt (RO)  
Reset default of register = 0x0000.  
Note: These registers are cleared by accessing registers 0x0202, 0x0203, 0x0204, 0x0205.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0201  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
UT_INT[D]  
UT Interrupt for Channel D. If this bit is set to  
1, it indicates one of the interrupt conditions for  
channel D occurred.  
0x0  
2
1
0
UT_INT[C]  
UT_INT[B]  
UT_INT[A]  
UT Interrupt for Channel C. If this bit is set to  
1, it indicates one of the interrupt conditions for  
channel C occurred.  
UT Interrupt for Channel B. If this bit is set to  
1, it indicates one of the interrupt conditions for  
channel B occurred.  
UT Interrupt for Channel A. If this bit is set to  
1, it indicates one of the interrupt conditions for  
channel A occurred.  
154  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
Delta and Event Parameters (COR)  
Table 56. Registers 0x0202, 0x0203, 0x0204, 0x0205: Channel [AD] (COR)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0202, 0203, 154  
Reserved. These bits must be written to their  
0x000  
0204, 0205  
reset default value (0x000).  
3
2
1
0
FIFO_OVERFLOW_  
FIFO OverflowTransmit Channel [AD]. If  
set, indicates that an overflow occurred in the  
Tx FIFO of channel [AD].  
0x0  
Tx[AD]  
FIFO_UNDERFLOW_  
FIFO Underflow Transmit Channel [AD]. If  
set, indicates that an underflow occurred in the  
Tx FIFO of channel [AD].  
Tx[AD]  
FIFO_OVERFLOW_  
FIFO Overflow Receive Channel [AD]. If  
set, indicates that an overflow occurred in the  
Rx FIFO of channel [AD].  
Rx[AD]  
PARITY_ERROR_  
Parity Error Transmit Channel [AD]. If set,  
indicates that a parity error was detected on the  
Tx channel of channel [AD].  
Tx[AD]  
Agere Systems Inc.  
155  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
Interrupt Mask Parameters (R/W)  
Table 57. Register 0x0206: Interrupt Mask (R/W)  
Reset default of register = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0206  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
2
1
0
INTM[D]  
INTM[C]  
INTM[B]  
INTM[A]  
Interrupt Mask D. If set to 1, masks any inter-  
rupts from channel D.  
0xF  
Interrupt Mask C. If set to 1, masks any inter-  
rupts from channel C.  
Interrupt Mask B. If set to 1, masks any inter-  
rupts from channel B.  
Interrupt Mask A. If set to 1, masks any inter-  
rupts from channel A.  
Table 58. Registers 0x0207, 0x0208, 0x0209, 0x020A: Interrupt MaskChannel [AD] (R/W)  
Reset default of registers = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0207, 0208, 154  
Reserved. These bits must be written to their  
0x000  
0209, 020A  
reset default value (0x000).  
3
2
1
0
FIFO_OVERFLOW_Tx_  
FIFO Overflow Transmit Mask [AD]. If set,  
masks this interrupt from setting Int[AD].  
0xF  
MASK[AD]  
FIFO_UNDERFLOW_Tx_  
FIFO Underflow Transmit Mask [AD]. If set,  
masks this interrupt from setting Int[AD].  
MASK[AD]  
FIFO_OVERFLOW_Rx_  
FIFO Overflow Receive Mask [AD]. If set,  
masks this interrupt from setting Int[AD].  
MASK[AD]  
PARITY_ERROR_Tx_  
Parity Error Transmit Mask [AD]. If set,  
masks this interrupt from setting Int[AD].  
MASK[AD]  
Error Counters in PMRST Mode (RO)  
Table 59. Register 0x020B: Channel [AD] Error Count in PMRST Mode (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
020B020E 150  
PMRST_PECTx[AD] PMRST Parity Error Count Transmit  
Channel [AD]. Counts the number of parity  
errors that occur for Tx channel [AD], based  
upon the PMRST interval.  
0x0000  
156  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
UT Provisioning Registers (R/W)  
The fields of the UT provisioning registers in Table 61Table 64 are summarized in Table 60. Following the table  
are the provisioning registers for the four channels.  
Note:The default value depends on the channel. Defaults are as follows:  
Channel A = 00000  
Channel B = 00001  
Channel C = 00010  
Channel D = 00011  
Table 60. Fields of the Provisioning Registers  
Field Name  
Function  
Bit Value  
Default  
POLLING_ENB_Rx  
POLLING_ENB_Tx  
Enabled  
Disabled  
Bit 15 = 1  
Bit 15 = 0  
Bits [12:8]  
0
RxADDR_[4:0]  
TxADDR_[4:0]  
MPHY AddressValue  
See note above.  
0
CLOCK_MODE_Rx  
Source  
Sink  
Bit 6 = 1  
Bit 6 =0  
PARITY_Rx  
PARITY_Tx  
Odd  
Bit 5 = 1  
1
0
Even  
Bit 5 = 0  
ATM_SIZE_Rx  
ATM_SIZE_Tx  
52 Bytes  
53 Bytes  
ATM Cells  
Packets  
Disabled (Idle)*  
U2  
Bit 4 = 1  
Bit 4 = 0  
TRAFFIC_TYPE_Rx  
TRAFFIC_TYPE_Tx  
Bit 3 = 1  
0
Bit 3 = 0  
UTOPIA_MODE_Rx  
UTOPIA_MODE_Tx  
Bits[2:0] = 000  
Bits[2:0] = 001  
Bits[2:0] = 010  
Bits[2:0] = 011  
Bits[2:0] = 100  
Bits[2:0] = 101  
Bits[2:0] = 110  
Bits[2:0] = 111  
000  
U2+  
U3, 8-bit  
U3, 32-bit  
U3+, 8-bit  
U3+, 32-bit  
Invalid  
*The value 000 for UTOPIA_MODE_Rx bits places the corresponding UTOPIA outputs in the high-impedance state.  
Agere Systems Inc.  
157  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
UT Provisioning Registers (R/W) (continued)  
Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [AD] Receive Provisioning Register (R/W)  
Reset default of register 0x020F = 0x0020.  
Reset default of register 0x0213 = 0x0120.  
Reset default of register 0x0217 = 0x0220.  
Reset default of register 0x021B = 0x0320.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
020F, 0213,  
0217, 021B  
15  
POLLING_ENB_Rx  
Polling Enable Receive Channel [AD]. If  
set to 1, receive polling mode is enabled.  
0
[AD]  
1413  
128  
Reserved. These bits must be written to their  
reset default value (00).  
00  
RxADDR_A[4:0]  
RxADDR_B[4:0]  
RxADDR_C[4:0]  
RxADDR_D[4:0]  
Polling Receive Address Channel [AD].  
Receive polling address.  
00000  
00001  
00010  
00011  
0
7
6
Reserved. This bit must be written to its reset  
default value (0).  
CLOCK_MODE_Rx  
Clock Mode Receive Channel [AD].  
Defines if the RxCLK[AD] is sourced or sunk.  
If this bit = 1, the clock is sourced, and then  
(1) the corresponding Tx clock is used as  
RxCLK[AD], and (2) this clock is also sent out  
of the device via RxCLK[AD].  
0
[AD]  
If this bit = 0, CLOCK_MODE_Rx[AD] is  
sunk, and then RxCLK[AD] acts as an input.  
Default is sink.  
5
4
PARITY_Rx[AD]  
Parity Receive Channel [AD]. Defines if odd  
(bit = 1) or even (bit = 0) parity is generated for  
the data transmitted across the UTOPIA PHY  
Rx interface. Default is odd.  
1
0
ATM_SIZE_Rx[AD]  
ATM Packet Size Receive Channel [AD].  
Defines how many bytes are received per ATM  
cell. Default is 53 bytes. Valid only when traffic  
type is ATM cells.  
Page 86 and page 87 give details of the func-  
tion of this bit.  
0 = standard 53-byte (also 54-byte and 56-byte)  
ATM cell modes.  
1 = 52-byte ATM cell mode (HEC omitted).  
3
TRAFFIC_TYPE_Rx  
Traffic Type Receive Channel [AD]. Config-  
ures channel to receive either ATM cells or  
packets.  
0
[AD]  
Bit Value Traffic Type  
0
1
packets (default)  
ATM cells  
158  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
UT Provisioning Registers (R/W) (continued)  
Table 61. Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [AD] Receive Provisioning Register (R/W)  
(continued)  
Reset default of register 0x020F = 0x0020.  
Reset default of register 0x0213 = 0x0120.  
Reset default of register 0x0217 = 0x0220.  
Reset default of register 0x021B = 0x0320.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
020F, 0213, 20  
0217, 021B  
UTOPIA_MODE_Rx  
UTOPIA Mode Receive Channel [AD]. Con-  
figures the Rx channel mode.  
000  
[AD][2:0]  
Mode  
Bit Value  
disabled (idle)* bits[2:0] = 000  
U2  
U2+  
U3, 8-bit  
U3, 32-bit  
U3+, 8-bit  
U3+, 32-bit  
invalid  
bits[2:0] = 001  
bits[2:0] = 010  
bits[2:0] = 011  
bits[2:0] = 100  
bits[2:0] = 101  
bits[2:0] = 110  
bits[2:0] = 111  
U3 configuration also requires the appropriate  
setting of register 0x0225 (PA response) to be  
set for a two-cycle response.  
*The value 000 for these bits places the corresponding UTOPIA outputs in the high-impedance state.  
Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [AD]Transmit Provisioning Register (R/W)  
Reset default of register 0x0210 = 0x0000.  
Reset default of register 0x0214 = 0x0120.  
Reset default of register 0x0218 = 0x0220.  
Reset default of register 0x021C = 0x0320.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0210, 0214,  
0218, 021C  
15  
POLLING_ENB_Tx  
Polling Enable Transmit Channel [AD]. If  
set, transmit polling mode is enabled.  
0
[AD]  
1413  
128  
Reserved. These bits must be written to their  
reset default value (00).  
00  
TxADDR_A[4:0]  
TxADDR_B[4:0]  
TxADDR_C[4:0]  
TxADDR_D[4:0]  
Polling Transmit Address Channel [AD].  
Transmit polling address.  
00000  
00001  
00010  
00011  
00  
76  
Reserved. These bits must be written to their  
reset default value (00).  
Agere Systems Inc.  
159  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
UT Provisioning Registers (R/W) (continued)  
Table 62. Registers 0x0210, 0x0214, 0x0218, 0x021C: Channel [AD] Transmit Provisioning Register (R/W)  
(continued)  
Reset default of register 0x0210 = 0x0000.  
Reset default of register 0x0214 = 0x0120.  
Reset default of register 0x0218 = 0x0220.  
Reset default of register 0x021C = 0x0320.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0210, 0214,  
0218, 021C  
5
PARITY_Tx[A]  
Parity Transmit Channel [AD]. Defines if  
odd (bit = 1) or even (bit = 0) parity is generated  
for the data transmitted across the UTOPIA  
PHY Tx interface. Default is even for channel A  
and odd for channels B, C, and D.  
0
1
PARITY_Tx[BD]  
4
ATM_SIZE_Tx[AD]  
ATM Packet Size Transmit Channel [AD].  
Defines how many bytes are transmitted per  
ATM cell. Default is 53 bytes. Valid only when  
traffic type is ATM cells.  
0
Page 86 and page 87 give details of the func-  
tion of this bit.  
0 = standard 53-byte (also 54-byte and 56-byte)  
ATM cell modes.  
1 = 52-byte ATM cell mode (HEC omitted).  
3
TRAFFIC_TYPE_Tx  
Traffic Type Transmit Channel [AD]. Con-  
figures channel to transmit either ATM cells or  
packets.  
0
[AD]  
Bit Value Traffic Type  
0
1
packets (default)  
ATM cells  
20  
UTOPIA_MODE_Tx  
UTOPIA Mode Transmit Channel [AD].  
000  
[AD][2:0]  
Configures the Tx channel mode.  
Mode  
Bit Value  
disabled (idle) bits[2:0] = 000  
U2  
U2+  
bits[2:0] = 001  
bits[2:0] = 010  
bits[2:0] = 011  
bits[2:0] = 100  
bits[2:0] = 101  
bits[2:0] = 110  
bits[2:0] = 111  
U3, 8-bit  
U3, 32-bit  
U3+, 8-bit  
U3+, 32-bit  
invalid  
U3 configuration also requires appropriate set-  
ting of register 0x0225 (PA response) to be set  
for a two-cycle response.  
160  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
UT Provisioning Registers (R/W) (continued)  
Table 63. Registers 0x0211, 0x0215, 0x0219, 0x021D: Channel [AD] Ingress Provisioning Register (R/W)  
Reset default of registers = 0x361F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0211, 0215, 1514  
Reserved. These bits must be written to their  
00  
reset default value (00).  
0219, 021D  
138 INGRESS_WATERMARK Ingress Watermark High for Channel  
110110  
_HIGH_[AD][6:0]  
[AD]. Defines threshold before which over-  
flow is detected causing a head of FIFO dis-  
card; data in the receive FIFO will be discarded  
down to the next start of packet/cell.  
76  
Reserved. These bits must be written to their  
00  
reset default value (00).  
50 INGRESS_WATERMARK Ingress Watermark Low for Channel [AD].  
011111  
_LOW_[AD][6:0]  
Defines how many words must be stored in the  
ingress FIFO before transmission out of the  
UTOPIA port, if an end of packet is not  
received.  
Table 64. Registers 0x0212, 0x0216, 0x021A, 0x021E: Channel [AD] Egress Provisioning Register (R/W)  
Reset default of registers = 0x361F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0212, 0216, 1514  
Reserved. These bits must be written to their  
00  
021A, 021E  
reset default value (00).  
138 EGRESS_WATERMARK_ Egress Watermark High for Channel [AD].  
110110  
HIGH_[AD][6:0]  
Defines how many words can be stored into the  
egress FIFO before backpressure is applied to  
the UTOPIA PHY Tx port to stop acceptance of  
more traffic. Default value is set for packet  
transfer. For ATM transfer, the value should be  
configured as 0x29. For packet mode, this value  
depends upon the specific user-interface char-  
acteristics. The default value (110110) will work  
for packet mode.  
76  
Reserved. These bits must be written to their  
00  
reset default value (00).  
50 EGRESS_WATERMARK_ Egress Watermark Low for Channel [AD].  
011111  
LOW_[AD][6:0]  
Defines how many words must be stored in the  
egress FIFO before transmission to the data  
engine, if an end of packet is not received.  
Agere Systems Inc.  
161  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
Reset Register (R/W)  
Table 65. Register 0x021F: Reset Register (R/W)  
Reset default of register = 0x00FF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
021F  
UT_ARST  
UTOPIA Asynchronous Reset. Active-high  
signal. This must be the last signal written to  
the UTOPIA interface during configuration and  
must be written to the value 0x00 to enable the  
particular channels.  
0x00FF  
158  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
7
6
5
4
3
2
1
0
UT_TxARST_D  
UT_TxARST_C  
UT_TxARST_B  
UT_TxARST_A  
UT_RxARST_D  
UT_RxARST_C  
UT_RxARST_B  
UT_RxARST_A  
Transmit ARST for Transmit Channel D.  
Transmit ARST for Transmit Channel C.  
Transmit ARST for Transmit Channel B.  
Transmit ARST for Transmit Channel A.  
Receive ARST for Receive Channel D.  
Receive ARST for Receive Channel C.  
Receive ARST for Receive Channel B.  
Receive ARST for Receive Channel A.  
1
1
1
1
1
1
1
1
Error Count Registers (RO)  
Table 66. Register 0x0220: Channel [AD] Error Count (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
02200223 150  
PECTx[AD]  
Parity Error Count Transmit Channel [AD].  
Counts the instantaneous (real-time) number of  
parity errors that occur for Tx channel [AD].  
0x0000  
Scratch Register (R/W)  
Table 67. Register 0x0224: UT_Scratch Register (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0224  
150  
UT_SCRATCH  
UT Scratch Register. Read/write register with  
0x0000  
no other internal UT connections.  
162  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
PA Response Register (R/W)  
Table 68. Register 0x0225: PA Response Register (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0225  
PA/DATA  
Packet Available (PA). In MPHY mode, when  
this bit is 0, the PA response follows placement  
of a valid address on the address bus by the  
ATM master device by one UTOPIA interface  
clock period. The RxDATA response follows the  
RxENB assertion.  
0x0000  
If this bit is 1, then the PA response and  
RxDATA response follow the address by two  
clock periods. Two-cycle response is provided  
for U3-compatible operation.  
158  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
7
6
5
4
3
TxPAD  
TxPAC  
TxPAB  
TxPAA  
TxPA Response forTransmit Channel D.  
TxPA Response forTransmit Channel C.  
TxPA Response forTransmit Channel B.  
TxPA Response forTransmit Channel A.  
0
0
0
0
0
RxPAD/RxDATAD/RxSOP/ RxPA Response for Receive Channel D.  
CD  
2
1
0
RxPAC/RxDATAC/RxSOP/ RxPA Response for Receive Channel C.  
0
0
0
CC  
RxPAB/RxDATAB/RxSOP/ RxPA Response for Receive Channel B.  
CB  
RxPAA/RxDATAA/RxSOP/ RxPA Response for Receive Channel A.  
CA  
Agere Systems Inc.  
163  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
UT Registers (continued)  
Size Mode Register (R/W)  
Table 69. Register 0x0226: Size Mode Register (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0226  
Size Mode. Size mode for each channel. These  
bits define the size mode for the TxSZ[DA]  
and RxSZ[DA] pins (see Table 5, page 32  
and page 38).  
0x0000  
If this mode bit = 0 (default mode):  
I TxSIZE_[DA] (or RxSIZE_[DA]) set to 0  
means the most significant byte is the last  
byte of the current packet, and  
I TxSIZE_[DA] (or RxSIZE_[DA]) set to 1  
means the least significant byte is the last  
byte.  
If this mode bit = 1:  
I TxSIZE_[DA] (or RxSIZE_[DA]) set to 1  
means the most significant byte is the last  
byte of the current packet, and  
I TxSIZE_[DA] (or RxSIZE_[DA]) set to 0  
means the least significant byte is the last  
byte.  
158  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
7
6
5
4
3
2
1
0
TxSIZE_D  
TxSIZE_C  
TxSIZE_B  
TxSIZE_A  
RxSIZE_D  
RxSIZE_C  
RxSIZE_B  
RxSIZE_A  
TxSIZE_MODE for Transmit Channel D.  
TxSIZE_MODE for Transmit Channel C.  
TxSIZE_MODE for Transmit Channel B.  
TxSIZE_MODE for Transmit Channel A.  
RxSIZE_MODE for Receive Channel D.  
RxSIZE_MODE for Receive Channel C.  
RxSIZE_MODE for Receive Channel B.  
RxSIZE_MODE for Receive Channel A.  
0
0
0
0
0
0
0
0
164  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers  
This section gives a brief description of each register bit and its functionality. All algorithms are described in the  
main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/  
write (R/W), write only (WO), or clear-on-read or clear-on-write (COR/W).  
0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every  
register table in the document.  
Table 70. Register 0x0400: OHP Macrocell Version Number (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0400  
150  
OHP_VERSION[15:0]  
OHP Macrocell Version Number. The version  
of the macrocell will increment each time a  
change occurs to the macrocell functionality.  
0x0000  
Table 71. Register 0x0401: OHP Interrupt (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0401  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
2
1
0
OHP_INT[D]  
OHP_INT[C]  
OHP_INT[B]  
OHP_INT[A]  
OHP Interrupt. Active-high interrupt bits for  
channels D to A. Each bit is the ORing of all  
event and delta bits of that channel. In STS-48/  
STM-16 mode, INT[A] is valid.  
0x0  
0x0  
0x0  
0x0  
Table 72. Registers 0x04020x0409: Delta/Event (COR/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0402, 0404,  
0406, 0408  
15  
LRDIMOND[AD]  
Line/Multiplex RDI Delta. Delta bits indicate a  
change of state for the line/multiplex RDI state  
bits (LRDIMON[AD]). Their mask bits are  
LRDIMONM[AD]. Only LRDIMOND[A] is  
valid for STS-48/STM-16.  
0
0
0
14  
13  
LAISMOND[AD]  
Line/Multiplex AIS Delta. Delta bits indicate a  
change of state for the line/multiplex AIS state  
bits (LAISMON[AD]). Their mask bits are  
LAISMONM[AD]. Only LAISMOND[A] is valid  
for STS-48/STM-16.  
RAPSBABLEE[AD]  
APS Babble Event. Each bit is active-high to  
indicate the inconsistence in K1 byte of that  
channel. Their mask bits are  
RAPSBABLEM[AD]. Only RAPSBABLEE[A]  
is valid for STS-48/STM-16.  
Agere Systems Inc.  
165  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 72. Registers 0x04020x0409: Delta/Event (COR/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0402, 0404,  
0406, 0408  
12  
S1DMON4D[AD]  
Delta Register for S1DMON[3:0] When  
0
S1MON8or4CTL = 1. Each delta bit indicates a  
change of state for S1DMON[3:0] in its channel.  
Their mask bits are S1DMON4M[AD]. In  
STS-48/STM-16 mode, S1DMON4D[A] is valid.  
11  
S1DMON8D[AD]  
Delta Register for S1DMON[7:4] When  
S1MON8or4CTL = 1 or S1DMON[7:0] When  
S1MON8or4CTL = 0. Each delta bit indicates a  
change of state for S1DMON[7:4]/  
0
S1DMON[7:0] in its channel. Their mask bits  
are S1DMON8M[AD]. In STS-48/STM-16  
mode, S1DMON8D[A] is valid.  
10  
9
K2DMOND[AD]  
K2[2:0] Data Monitor Delta. Each bit is active-  
high to indicate a change in K2DMON[AD]  
for that channel. Their mask bits are  
K2DMONM[AD]. Only K2DMOND[A] is valid  
for STS-48/STM-16.  
0
0
K1K2DMOND[AD]  
K1K2 Data Monitor Delta. Each bit is active-  
high to indicate a change in (K1[7:0] and  
K2[7:3]) or (K1[7:0] and K2[7:0]) for that chan-  
nel depending on K1K2_2_OR_1. Their mask  
bits are K1K2DMONM[AD]. Only  
K1K2DMOND[A] is valid for STS-48/STM-16.  
8
7
6
F1DMOND[AD]  
TTOAC_PERRE[AD]  
S1BABBLEE[AD]  
F1 Data Monitor Delta. Their mask bits are  
F1DMONM[AD]. Only F1DMOND[A] is valid  
for STS-48/STM-16.  
0
0
0
Transmit TOAC Parity Error Event. Event bit  
indicates a parity error was detected on the  
incoming TOAC.  
Receive S1 Byte Babbling Event. Event bit  
will be set if CNTDS1FRAME[AD][3:0] con-  
secutive frames pass without a validated S1  
byte.  
5
SFD[AD]  
Signal Fail BER Algorithm Delta. Delta bits  
indicate a change of state for the signal fail BER  
algorithm state bits (SF[AD]). Their mask bits  
are SFM[AD]. Only SFD[A] is valid for STS-  
48/STM-16.  
0
166  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 72. Registers 0x04020x0409: Delta/Event (COR/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0402, 0404,  
0406, 0408  
4
SDD[AD]  
Signal Degrade BER Algorithm Delta. Delta  
bit indicates a change of state for the signal  
degrade BER algorithm state bits (SD[AD]).  
Their mask bits are SDM[AD]. Only SDD[A] is  
valid for STS-48/STM-16.  
0
0
0
0
0
3
2
1
0
OOFD[AD]  
LOFD[AD]  
LOSD[AD]  
LOCD[AD]  
Receive Out-of-Frame Delta. Delta bit indi-  
cates a change of state for the out-of-frame  
(OOF[AD]). Their mask bits are  
OOFM[AD]. In STS-48/STM-16 mode, only  
OOFD[A] is valid.  
Receive Loss-of-Frame Delta. Delta bit indi-  
cates a change of state for the loss-of-frame  
(LOF[AD]) . Their mask bits are LOFM[AD].  
In STS-48/STM-16 mode, only LOFD[A] is  
valid.  
Receive Loss-of-Signal Delta. Delta bit indi-  
cates a change of state for the loss-of-signal  
(LOS[AD]). Their mask bits are LOSM[AD].  
In STS-48/STM-16 mode, only LOSD[A] is  
valid.  
Receive Loss-of-Clock Delta. Delta bit indi-  
cates a change of state for the loss-of-clock  
(LOC[AD]). Their mask bits are LOCM[AD].  
In STS-48/STM-16 mode, only LOCD[A] is  
valid.  
0403, 0405, 151  
0407, 0409  
Reserved. These bits must be written to their  
reset default value (000000000000000).  
000  
0000  
0000  
0000  
0
J0MISE[AD]  
J0 Mismatch Event. Their mask bits are  
J0MISM[AD]. In STS-48/STM-16 mode, only  
J0MISE[A] is valid for J0 byte while J0MISE[B—  
D] are used for Z0 bytes.  
0
Agere Systems Inc.  
167  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 73. Registers 0x040A0x040D: Receive/Transmit State (RO)  
Reset default of registers = 0x000C.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
040A040D  
15  
14  
LRDIMON[AD]  
LAISMON[AD]  
Line/Multiplex RDI State. In STS-48/  
STM-16 mode, only LRDIMON[A] is valid.  
0
Line/Multiplex AIS State. In STS-48/  
STM-16 mode, only LAISMON[A] is valid.  
0
137  
6
Reserved. These bits must be written to their  
reset default value (0000000).  
000  
0000  
TLRDIINT[AD]  
Transmit Line RDI Insert State. State bits for  
inserting line RDI value into the K2[2:0] bits. In  
STS-48/STM-16 mode, only TLRDIINT[A] is  
valid.  
0
5
4
3
SF[AD]  
SD[AD]  
OOF[AD]  
Signal Fail State. In STS-48/STM-16 mode,  
only SF[A] is valid.  
0
0
1
Signal Degrade State. In STS-48/STM-16  
mode, only SD[A] is valid.  
Out-of-Frame. Active-high out-of-frame state  
bits. In STS-48/STM-16 mode, only OOF[A] is  
valid.  
2
1
0
LOF[AD]  
LOS[AD]  
LOC[AD]  
Loss-of-Frame. Active-high loss-of-frame state  
bits. In STS-48/STM-16 mode, only LOF[A] is  
valid.  
1
0
0
Loss-of-Signal. Active-high loss-of-signal state  
bits. In STS-48/STM-16 mode, only LOS[A] is  
valid.  
Loss-of-Clock. Active-high loss-of-clock state  
bits. In STS-48/STM-16 mode, only LOC[A] is  
valid.  
168  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W)  
Reset default of registers = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
040E, 0410,  
0412, 0414  
15  
LRDIMONM[AD]  
Line/Multiplex RDI Mask. A 1 masks the cor-  
responding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only  
LRDIMONM[A] is valid.  
1
1
1
1
14  
13  
12  
LAISMONM[AD]  
RAPSBABLEM[AD]  
S1DMON4M[AD]  
Line/Multiplex AIS Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only  
LAISMONM[A] is valid.  
APS Babble Mask. A 1 masks the correspond-  
ing occurrence of the alarm to the interrupt. In  
STS-48/STM-16 mode, only  
RAPSBABLEM[A] is valid.  
Mask Bits for S1DMON4D When S1MON8  
or 4CTL = 1. A 1 masks the corresponding  
occurrence of the alarm to the interrupt. In  
STS-48/STM-16 mode, only  
S1DMON4LSNM[A] is valid.  
11  
10  
9
S1DMON8M[AD]  
K2DMONM[AD]  
K1K2DMONM[AD]  
F1DMONM[AD]  
Mask Bits for S1DMON8D. A 1 masks the cor-  
responding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only  
S1DMON8M[A] is valid.  
1
1
1
1
1
K2[2:0] Data Monitor Mask. A 1 masks the  
corresponding occurrence of the alarm to the  
interrupt. In STS-48/STM-16 mode, only  
K2DMONM[A] is valid.  
K1K2 Data Monitor Mask. A 1 masks the cor-  
responding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only  
K1K2DMONM[A] is valid.  
8
F1 Data Monitor Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only  
F1DMONM[A] is valid.  
7
TTOAC_PERRM[AD] Transmit TOAC Parity Error Mask. A 1 masks  
the corresponding occurrence of the alarm to  
the interrupt. All 4 bits are valid in every mode.  
Agere Systems Inc.  
169  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 74. Registers 0x040E, 0x0410, 0x0412, 0x0414: Mask Bits (R/W) (continued)  
Reset default of registers = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
040E, 0410,  
0412, 0414  
6
S1BABBLEM[AD]  
S1 Babbling Mask. A 1 masks the correspond-  
ing occurrence of the alarm to the interrupt. In  
STS-48/STM-16 mode, only S1BABBLEM[A] is  
valid.  
1
5
4
SFM[AD]  
SDM[AD]  
Signal Fail Mask. A 1 masks the correspond-  
ing occurrence of the alarm to the interrupt. In  
STS-48/STM-16 mode, only SFM[A] is valid.  
1
1
Signal Degrade Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only SDM[A] is  
valid.  
3
2
1
0
OOFM[AD]  
LOFM[AD]  
LOSM[AD]  
LOCM[AD]  
Out-of-Frame Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only OOFM[A]  
is valid.  
1
1
1
1
Loss-of-Frame Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only LOFM[A] is  
valid.  
Loss-of-Signal Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only LOSM[A] is  
valid.  
Loss-of-Clock Mask. A 1 masks the corre-  
sponding occurrence of the alarm to the inter-  
rupt. In STS-48/STM-16 mode, only LOCM[A] is  
valid.  
Table 75. Registers 0x040F, 0x0411, 0x0413, 0x0415: Mask Bits (R/W)  
Reset default of registers = 0x8001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
040F, 0411,  
0413, 0415  
15  
INTM[AD]  
Interrupt Mask. The corresponding occurrence  
of a 1 masks the alarm to the interrupt.  
1
141  
Reserved. These bits must be written to their  
00  
reset default value (00000000000000).  
0000  
0000  
0000  
0
J0MISM[AD]  
J0 Mismatch Mask. The corresponding occur-  
1
rence of a 1 masks the alarm to the interrupt.  
170  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 76. Registers 0x04160x0419:Toggles (R/W)  
Reset default of registers = 0x0000.  
Note: These registers are one-shot type registers. They are enabled by writing a 0-to-1 transition to a bit. After  
being enabled, the registers must be cleared by writing all bits to 0 following access.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
04160419 155  
Reserved. These bits must be written to their  
reset default value (00000000000).  
000  
0000  
0000  
4
TA1A2ERREN[AD]  
Transmit A1/A2 Error Enable. Enable signal to  
start the insertion of A2 errors in the outgoing  
frame. The number of consecutive errors is  
controlled by TA1A2ERRINS[4:0].  
0
TA1A2ERREN[A] is valid in STS-48/STM-16  
mode.  
3
2
1
SFCLEAR[AD]  
SFSET[AD]  
Signal Fail Clear. Allows the signal fail algo-  
rithm to be forced into the normal state.  
0
0
0
Signal Fail Set. Allows the signal fail algorithm  
to be forced into the failed state.  
Signal Degrade Clear. Allows the signal  
degrade algorithm to be forced into the normal  
state.  
SDCLEAR[AD]  
0
SDSET[AD]  
Signal Degrade Set. Allows the signal degrade  
0
algorithm to be forced into the degraded state.  
Table 77. Registers 0x041A, 0x041C, 0x041E, 0x0420: Continuous N Times Detect (CNTD) Values (R/W)  
Reset default of registers = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
041A,041C, 1512  
041E, 0420  
CNTDK2[AD][3:0]  
Continuous N Times Detect for K2[2:0] Byte.  
The valid range for these bits is 0x20xF.  
Invalid values will be mapped to a value of 0x1.  
In STS-48/STM-16 mode, CNTDK2[A] is valid.  
Continuous N Times Detect for APS (K1,  
K2[7:3]) Byte. The valid range for these bits is  
0x20xF. Invalid values will be mapped to a  
value of 0x1. In STS-48/STM-16 mode,  
CNTDK1K2[A] is valid.  
0x3  
118  
CNTDK1K2[AD][3:0]  
0x3  
74  
30  
CNTDF1[AD][3:0]  
Continuous N Times Detect for F1 Byte. The  
valid range for these bits is 0x20xF. Invalid  
values will be mapped to a value of 0x1. In  
STS-48/STM-16 mode, CNTDF1[A] is valid.  
Continuous N Times Detect for J0Z0 Bytes.  
The valid range for these bits is 0x20xF.  
Invalid values will be mapped to a value of 0x1.  
In STS-48/STM-16 mode, CNTDJ0Z0[A] is  
valid.  
0x3  
0x3  
CNTDJ0Z0[AD][3:0]  
Agere Systems Inc.  
171  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 78. Registers 0x041B, 0x041D, 0x041F, 0x0421: Continuous N Times Detect (CNTD)Values (R/W)  
Reset default of registers = 0x053C.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
041B, 041D, 1512  
Reserved. These bits must be written to their reset  
0x0  
041F, 0421  
default value (0x0).  
118  
CNTDS1FRAME  
Continuous N Times Detect for S1 Byte Bab-  
bling. The valid range for these bits is 0x20xF.  
Invalid values will be mapped to a value of 0x1. In  
STS-48/STM-16 mode, CNTDS1FRAME[A] is  
valid.  
0x5  
[AD][3:0]  
74  
30  
CNTDS1[AD][3:0] Continuous N Times Detect for S1 Byte. The  
valid range for these bits is 0x20xF. Invalid val-  
ues will be mapped to a value of 0x1. In  
0x3  
STS-48/STM-16 mode, CNTDS1[A] is valid.  
CNTDK1K2FRAME Continuous N Times Detect for APS Frame. The  
0xC  
[AD][3:0]  
valid range for these bits is 0x20xF. Invalid val-  
ues will be mapped to a value of 0x1. In STS-48/  
STM-16 mode, CNTDK1K2FRAME[A] is valid.  
172  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 79. Registers 0x04220x042D: Receive Control (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0422, 0424, 1514 J0MONMODE[AD][1:0] J0 Monitoring Mode. The four modes are,  
00  
0426, 0428  
00 = The OHP will latch the value of the J0 byte  
every frame for a total of 16 bytes. The OHP will  
compare the incoming J0 byte with the next  
expected value (the expected value is obtained  
by cycling through the previously stored 16  
received bytes in round-robin fashion) and set  
the event bit if different.  
01 = This is the SONET framing mode. The  
hardware looks for 0x0D followed by 0x0A to  
indicate that the next byte is the first byte of the  
path trace message. The J0 byte is continu-  
ously written into J0DMON with the first byte  
residing at the first address. If any received byte  
does not match the previously received byte for  
its location, then the event bit is set.  
10 = This is the SDH framing mode. The hard-  
ware looks for the byte with the MSB set to 1,  
which indicates that the next byte is the second  
byte of the message. The rest of the operation  
is the same as the SONET framing mode.  
11 = A new J0 byte J0DMON[0][7:0] will be  
detected after CNTDJ0Z0[3:0] consecutive con-  
sistent occurrences of a new pattern in the J0  
overhead byte. Any changes to this byte are  
reported to J0MISE and J0MISM. These event  
bits will act as delta bits indicating a change of  
state for the J0DMON[0][7:0].  
13  
M1B7IGNORE[AD]  
Bit 7 of M1 Byte Ignore. Bit 7 of M1 byte will  
be ignored if M1B7IGNORE is set to 1 for that  
channel. Only M1B7IGNORE[A] is valid for  
STS-48/STM-16.  
0
12  
11  
10  
LAISINS[AD]  
LOF_AISINH[AD]  
OOF_AISINH[AD]  
AIS Software Insertion. Active-high for AIS  
insertion. In STS-48/STM-16 mode, only LAI-  
SINS[A] is valid.  
0
0
0
Loss-of-Frame AIS Inhibit. When set to logic  
1, the AIS insertion will be inhibited in case of  
loss-of-frame.  
Out-of-Frame AIS Inhibit. When set to logic 1,  
the AIS insertion will be inhibited in case of out-  
of-frame.  
Agere Systems Inc.  
173  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 79. Registers 0x04220x042D: Receive Control (R/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0422, 0424,  
0426, 0428  
9
LOS_AISINH[AD]  
Loss-of-Signal AIS Inhibit. When set to logic  
1, the line AIS insertion will be inhibited in case  
of loss-of-signal.  
0
8
7
6
5
SFB1B2SEL[AD]  
SDB1B2SEL[AD]  
CNTDB1SEL[AD]  
Signal Fail B1/B2 Error Count Select. When  
set to logic 0, the B1 errors will be used by the  
signal fail error rate algorithm; otherwise, B2  
errors are used.  
0
Signal Degrade B1/B2 Error Count Select.  
When set to logic 0, the B1 errors will be used  
by the signal degrade error rate algorithm; oth-  
erwise, B2 errors are used.  
0
0
0
Reset CNTD Counters on B1 Error. Active-  
high control bits to reset continuous N time  
detect counters upon received B1 errors. Only  
CNTDB1SEL[0] is valid for STS-48/STM-16.  
S1MON8_OR_4CTL[AD] S1 Byte or Nibble. When set to logic 1, the S1  
byte will be monitored as two nibbles. Other-  
wise, it is treated as a byte. Only  
S1MON8or4CTL[A] is valid for STS-48/STM-  
16.  
4
K1K2_2_OR_1[AD]  
K1 and K2 Treated as 2 Registers or 1. When  
a bit is set to 1, the K1 and K2 bytes will be  
treated as one 16-bit register. Otherwise, they  
will be treated as two registers of size 13  
(K1[7:0] and K2[7:3]) and 3 (K2[2:0]).  
0
K1K2_2_OR_1[A] is valid for STS-48/STM-16.  
3
2
1
0
B2BITBLKCNT[AD]  
DSCRINH[AD]  
B2 Error Count in Bit or Block. When set to 0,  
B2 check logic will count bit errors; otherwise, it  
counts block errors. Only B2BITBLKCNT[A] is  
valid for STS-48/STM-16.  
0
0
0
0
Descramble Inhibit Control. When a bit is set  
to 1, the descrambler for that is disabled. In  
STS-48/STM-16 mode, all 4 bits need to be set  
to same value.  
B1BITBLKCNT[AD]  
ROH_BYPASS[AD]  
B1 Error Count in Bit or Block. When set to 0,  
B1 check logic will count bit errors; otherwise, it  
counts block errors. Only B1BITBLKCNT[A] is  
valid for STS-48/STM-16.  
Receive Overhead Bypass. Control bit, when  
set to 1, causes the received data to pass  
through the block retimed. In STS-48/STM-16  
mode, all 4 bits need to be set to same value.  
174  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 79. Registers 0x04220x042D: Receive Control (R/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0423, 0425,  
0427, 0429  
15  
M1BITBLKCNT[AD]  
M1 Error Count in Bit or Block. When set to  
0, M1 check logic will count bit errors. When set  
to 1, block errors are counted. Only  
0
M1BITBLKCNT[C] is valid for STS-48/STM-16.  
1413  
Reserved. These bits must be written to their  
00  
reset default value (00).  
120 LOSDETCNT[AD][12:0] Loss-of-Signal Detection Count. Set the  
number of consecutive all-zeros/-ones pattern  
detected to declare receive LOS state for each  
channel. The time scale is in steps of 8 (for  
STS-3/STM-1 and STS-12/STM-4) or 32  
(STS-48/STM-16) bits at a time. Only  
0
0000  
0000  
0000  
LOSDETCNT[A][12:0] is valid for STS-48/  
STM-16.  
042A  
1514  
RREFSEL[1:0]  
RREF_EN  
Receive Reference Sync Select. Select refer-  
ence output from channel A (00), B (01), C (10),  
and D (11).  
00  
0
13  
Receive Reference Sync Enable. When set to  
0, the receive 8 kHz (50% duty cycle) sync out-  
put, RxREF (pin AK3), is placed in the high-  
impedance state.  
124  
Reserved. These bits must be written to their  
0000  
reset default value (000000000).  
00000  
3
RTOACSINH[A]  
Receive TOAC Frame (Sync) Inhibit Channel  
A. When set to 1, the TOAC sync output,  
RxTOHF (pin AK4), is placed in the high-imped-  
ance state.  
0
2
RTOACCINH[A]  
Receive TOAC Clock Inhibit Channel A.  
When set to 1, the TOAC clock output,  
RxTOHCK (pin AK5), is placed in the high-  
impedance state.  
0
1
0
RTOACDINH[A]  
Receive TOAC Data Inhibit Channel A. When  
set to 1, the TOAC data output, RxTOHD (pin  
AL2), is placed in the high-impedance state.  
0
0
RTOAC_OEPINS[A]  
Receive TOAC Odd or Even Parity Insert  
Channel A. When set to 1, the output TOAC  
parity bit is even. When set to 0, the parity is  
odd.  
Agere Systems Inc.  
175  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 79. Registers 0x04220x042D: Receive Control (R/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
042B042D 154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
RTOACSINH[BD]  
Receive TOAC Frame (Sync) Inhibit Channel  
[BD]. When set to 1, the TOAC sync output,  
RxTOHF (pins AL3, AN5, AP6), is placed in the  
high-impedance state.  
0
2
1
0
RTOACCINH[BD]  
RTOACDINH[BD]  
Receive TOAC Clock Inhibit Channel [BD].  
When set to 1, the TOAC clock output,  
RxTOHCK (pins AL4, AL6, AL7), is placed in  
the high-impedance state.  
0
0
0
Receive TOAC Data Inhibit Channel [BD].  
When set to 1, the TOAC data output, RxTOHD  
(pins AM5, AM6, AN7), is placed in the high-  
impedance state.  
RTOAC_OEPINS[BD] Receive TOAC Odd or Even Parity Insert  
Channel [BD]. When set to 1, the output  
TOAC parity bit is even. When set to 0, the par-  
ity is odd.  
176  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 80. Registers 0x042E:Transmit Control Port A (R/W)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
042E  
15  
TTOACINH  
Transmit TOAC Clock and Sync Inhibit Chan-  
nel A. When set to 1, the transmit TOAC clock  
and sync are placed in the high-impedance  
state.  
0
14  
13  
TJ0INS[A]  
Transmit J0 Insert Control Channel A. Con-  
trol bit, when set to a logic 1, inserts the value in  
TJ0DINS[AD][16:1][7:0] into the outgoing J0  
bytes; otherwise, the insert value depends on  
TTOAC_J0[AD] registers. TJ0INS[A] is valid  
in STS-48/STM-16 mode.*  
0
TTOAC_J0[A]  
Transmit TOAC J0 Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value 00000000 for SONET or  
11111111 for SDH to be inserted into the J0  
byte in the transmit frame. Setting this bit to  
logic 1 causes the TTOAC value to be inserted  
into the J0 byte. TTOAC_J0[A] is valid for STS-  
48/STM-16 mode.*  
0
12  
11  
TTOAC_OEPMON[A]  
TTOAC_INS[A]  
Transmit TOAC Odd or Even Parity Monitor  
Channel A. When set to 1, even parity is  
checked for transmit TOAC channels; other-  
wise, odd parity is checked.  
0
0
Transmit TOAC Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value 00000000 for SONET or  
11111111 for SDH to be inserted into those  
overhead bytes within the transmit frame that  
do not have all specific insert control bits. Set-  
ting these bits to logic 1 causes the TTOAC  
value to be inserted into those overhead bytes  
not having specific insert control bits.  
TTOAC_INS[A] is valid for STS-48/STM-16  
mode.  
10  
TTOAC_E2[A]  
Transmit TOAC E2 Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value to be inserted into the E2 byte in  
the transmit frame. Setting these bits to logic 1  
causes the TTOAC value to be inserted into the  
E2 byte. TTOAC_E2[A] is valid for STS-48/  
STM-16 mode.  
0
* TJ0INS = 1 always sets J0 to the TJ0DINS values regardless of the value of TTOAC_J0.  
Agere Systems Inc.  
177  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 80. Registers 0x042E: Transmit Control Port A (R/W) (continued)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
042E  
9
TTOAC_S1[A]  
Transmit TOAC S1 Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value to be inserted into the S1 byte in  
the transmit frame. Setting these bits to logic 1  
causes the TTOAC value to be inserted into the  
S1 byte. TTOAC_S1[A] is valid for STS-48/  
STM-16 mode.  
0
8
7
TTOAC_D4TO12[A]  
TTOAC_D1TO3[A]  
Transmit TOAC D4 to D12 Byte Control  
Channel A. Control bit, when set to logic 0,  
causes the default value to be inserted into the  
D4 to D12 bytes in the transmit frame. Setting  
these bits to logic 1 causes the TTOAC value to  
be inserted into the D4 to D12 bytes.  
TTOAC_D4TO12[A] is valid for STS-48/  
STM-16 mode.  
0
Transmit TOAC D1 to D3 Byte Control Chan-  
nel A. Control bit, when set to logic 0, causes  
the default value to be inserted into the D1 to  
D3 bytes in the transmit frame. Setting these  
bits to logic 1 causes the TTOAC value to be  
inserted into the D1 to D3 bytes.  
0
TTOAC_D1TO3[A] is valid for STS-48/STM-16  
mode.  
6
5
4
TTOAC_F1[A]  
TTOAC_E1[A]  
Transmit TOAC F1 Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value to be inserted into the F1 byte in  
the transmit frame. Setting these bits to logic 1  
causes the TTOAC value to be inserted into the  
F1 byte. TTOAC_F1[A] is valid for STS-48/  
STM-16 mode.  
0
0
0
Transmit TOAC E1 Byte Control Channel A.  
Control bit, when set to logic 0, causes the  
default value to be inserted into the E1 byte in  
the transmit frame. Setting this bit to logic 1  
causes the TTOAC value to be inserted into the  
E1 byte. TTOAC_E1[A] is valid for STS-48/  
STM-16 mode.  
TAPSBABBLEINS[A]  
Transmit APS Babble Insert Channel A. Con-  
trol bit, when set to 1, causes an inconsistent  
APS byte (K1[7:0], K2[7:3]) to be inserted into  
the outgoing STS-M frame until this register is  
reset to 0.  
178  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 80. Registers 0x042E: Transmit Control Port A (R/W) (continued)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
042E  
3
TM1_ERR_INS[A]  
Transmit M1 Error Insert Channel A. Once  
this register is set to 1, an error will be inserted  
continuously into the outgoing M1 byte until this  
register is reset to 0. In STS-48/STM-16 mode,  
only TM1_ERR_INS is valid.  
0
2
1
TM1_REIL_INH[A]  
TF1INS[A]  
Transmit M1 REI-L Inhibit Channel A. Active-  
high to inhibit automatic insertion of REI-L  
(MS-REI). In STS-48/STM-16 mode, only  
TM1_REIL_INH is valid.  
0
1
Transmit F1 Insert Control Channel A. Con-  
trol bit, when set to a logic 1, inserts the value in  
TF1DINS[7:0] into the outgoing F1 byte in the  
STS-M frame; otherwise, the insert value  
depends on TTOAC_F1 register. TF1INS[A] is  
valid in STS-48/STM-16 mode.  
0
TS1INS[A]  
Transmit S1 Insert Control Channel A. Con-  
trol bit, when set to a logic 1, inserts the value in  
TS1DINS[7:0] into the outgoing S1 byte in the  
STS-M frame; otherwise, the insert value  
depends on TTOAC_S1 register. TS1INS[A] is  
valid in STS-48/STM-16 mode.  
1
Agere Systems Inc.  
179  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 81. Registers 0x042F, 0x0431, 0x0433, 0x0435: Transmit Control (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
042F, 0431, 1511 TA1A2ERRINS[AD][4:0] Number of Consecutive Frames with A2  
0x00  
0433, 0435  
Error Insertion. These bits specify the number  
of consecutive frames to be inserted with a  
frame error of the first A2 byte.  
10  
TOH_BYPASS[AD]  
Transmit Overhead Bypass. Control bit, when  
set to 1, causes the frame from PT pass  
through untouched. In STS-48/STM-16 mode,  
all 4 bits need to be set to same value.  
0
9
8
7
SCRINH[AD]  
TB1ERRINS[AD]  
TB2ERRINS[AD]  
Scramble Inhibit. When set to high, the scram-  
bling is inhibited. In STS-48/STM-16 mode, all  
4 bits need to be set to same value.  
0
0
0
Transmit B1 Error Insertion. When set to  
high, the B1 output will be inverted. For  
STS-48/STM-16, only TB1ERRINS[A] is valid.  
Transmit B2 Error Insertion. When set to  
high, all B2 bytes in that channel will be  
inverted. All 4 bits are valid in STS-48/STM-16  
mode.  
6
TIMER_LRDIINH[AD] Transmit 20-Frame Line RDI Inhibit. Control  
bit, when set to logic high, inhibits the require-  
0
ment of minimum 20 frame RDI insertion.  
5
4
3
2
1
0
TSF_LRDIINH[AD]  
Transmit Signal Fail Line RDI Inhibit. Active-  
high.  
0
0
0
0
0
0
TLAISMON_LRDIINH  
Transmit Line-AIS-Monitored Line RDI  
Inhibit. Active-high.  
[AD]  
TLOF_LRDIINH[AD]  
TOOF_LRDIINH[AD]  
TLOS_LRDIINH[AD]  
TLOC_LRDIINH[AD]  
Transmit Loss-of-Frame Line RDI Inhibit.  
Active-high.  
Transmit Out-of-Frame Line RDI Inhibit.  
Active-high.  
Transmit Loss-of-Signal Line RDI Inhibit.  
Active-high.  
Transmit Loss-of-Clock Line RDI Inhibit.  
Control bit, when set to a logic 1, causes the  
associated failure not to contribute to the auto-  
matic insertion of RDI-L; otherwise, the associ-  
ated alarm contributes to the generation of  
RDI-L.  
180  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [BD] (R/W)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0430, 0432,  
0434  
15  
14  
Reserved. This bit must be written to its reset  
default value (0).  
0
TJ0INS[BD]  
Transmit J0 Insert Control Channel [BD].  
Control bit, when set to a logic 1, insert the  
value in TJ0DINS[AD][16:1][7:0] into the out-  
going J0 bytes; otherwise, the insert value  
depends on TTOAC_J0[AD] registers.  
TJ0INS[A] is valid in STS-48/STM-16 mode.*  
0
13  
TTOAC_J0[BD]  
Transmit TOAC J0 Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value 00000000 for SONET or  
11111111 for SDH to be inserted into the J0  
byte in the transmit frame. Setting this bit to  
logic 1 causes the TTOAC value to be inserted  
into the J0 byte. TTOAC_J0[A] is valid for STS-  
48/  
0
STM-16 mode.*  
12  
11  
TTOAC_OEPMON[BD] Transmit TOAC Odd or Even Parity Monitor  
Channel [BD]. When set to 1, even parity is  
checked for transmit TOAC channels; other-  
wise, odd parity is checked.  
0
0
TTOAC_INS[BD]  
Transmit TOAC Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value 00000000 for SONET or  
11111111 for SDH to be inserted into those  
overhead bytes within the transmit frame that  
do not have all specific insert control bits. Set-  
ting this bit to logic 1 causes the TTOAC value  
to be inserted into those overhead bytes not  
having specific insert control bits.  
TTOAC_INS[A] is valid for STS-48/STM-16  
mode.  
10  
TTOAC_E2[BD]  
Transmit TOAC E2 Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value to be inserted into the E2 byte  
in the transmit frame. Setting this bit to logic 1  
causes the TTOAC value to be inserted into the  
E2 byte. TTOAC_E2[A] is valid for STS-48/  
STM-16 mode.  
0
* TJ0INS = 1 always sets J0 to the TJ0DINS values regardless of the value of TTOAC_J0.  
Agere Systems Inc.  
181  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [BD] (R/W) (continued)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0430, 0432,  
0434  
9
TTOAC_S1[BD]  
Transmit TOAC S1 Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value to be inserted into the S1 byte  
in the transmit frame. Setting this bit to logic 1  
causes the TTOAC value to be inserted into the  
S1 byte. TTOAC_S1[A] is valid for STS-48/  
STM-16 mode.  
0
8
7
TTOAC_D4TO12[BD]  
TTOAC_D1TO3[BD]  
Transmit TOAC D4 to D12 Byte Control  
Channel [BD]. Control bit, when set to logic  
0, causes the default value to be inserted into  
the D4 to D12 bytes in the transmit frame. Set-  
ting this bit to logic 1 causes the TTOAC value  
to be inserted into the D4 to D12 bytes.  
TTOAC_D4TO12[A] is valid for STS-48/STM-16  
mode.  
0
Transmit TOAC D1 to D3 Byte Control Chan-  
nel [BD]. Control bit, when set to logic 0,  
causes the default value to be inserted into the  
D1 to D3 bytes in the transmit frame. Setting  
this bit to logic 1 causes the TTOAC value to be  
inserted into the D1 to D3 bytes.  
0
TTOAC_D1TO3[A] is valid for STS-48/STM-16  
mode.  
6
5
TTOAC_F1[BD]  
TTOAC_E1[BD]  
Transmit TOAC F1 Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value to be inserted into the F1 byte  
in the transmit frame. Setting this bit to logic 1  
causes the TTOAC value to be inserted into the  
F1 byte. TTOAC_F1[A] is valid for STS-48/  
STM-16 mode.  
0
0
Transmit TOAC E1 Byte Control Channel  
[BD]. Control bit, when set to logic 0, causes  
the default value to be inserted into the E1 byte  
in the transmit frame. Setting this bit to logic 1  
causes the TTOAC value to be inserted into the  
E1 byte. TTOAC_E1[A] is valid for STS-48/  
STM-16 mode.  
182  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 82. Registers 0x0430, 0x0432, 0x0434: Transmit Control Port [BD] (R/W) (continued)  
Reset default of registers = 0x0003.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0430, 0432,  
0434  
4
TAPSBABBLEINS[BD] Transmit APS Babble Insert Channel  
[BD]. Control bit, when set to 1, causes an  
inconsistent APS byte (K1[7:0], K2[7:3]) to be  
inserted into the outgoing STS-M frame until  
this register is reset to 0.  
0
3
TM1_ERR_INS[BD]  
Transmit M1 Error Insert [BD]. Once this  
register is set to 1, an error will be inserted con-  
tinuously into the outgoing M1 byte until this  
register is reset to 0. In STS-48/STM-16 mode,  
only TM1_ERR_INS is valid.  
0
2
1
TM1_REIL_INH[BD]  
TF1INS[BD]  
Transmit M1 REI-L Inhibit Channel [BD].  
Active-high to inhibit automatic insertion of  
REI-L (MS-REI). In STS-48/STM-16 mode, only  
TM1_REIL_INH is valid.  
0
1
Transmit F1 Insert Control Channel [BD].  
Control bit, when set to a logic 1, inserts the  
value in TF1DINS[7:0] into the outgoing F1 byte  
in the STS-M frame; otherwise, the insert value  
depends on TTOAC_F1 register. TF1INS[A] is  
valid in STS-48/STM-16 mode.  
0
TS1INS[BD]  
Transmit S1 Insert Control Channel [BD].  
Control bit, when set to a logic 1, inserts the  
value in TS1DINS[7:0] into the outgoing S1 byte  
in the STS-M frame; otherwise, the insert value  
depends on TTOAC_S1 register. TS1INS[A] is  
valid in STS-48/STM-16 mode.  
1
Agere Systems Inc.  
183  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 83. Registers 0x04360x0439: Transmit Control (R/W)  
Reset default of registers = 0xC000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
04360439  
15  
TAPSINS[AD]  
Transmit APS Software Insert. When set to 1,  
the value in registers TK1DINS[7:0] and  
TK2DINS[7:3] will be inserted into K1[7:0] and  
K2[7:3] in the transmit frame. When set to 0, a  
value of all zeros will be inserted.  
1
14  
TK2SINS[AD]  
Transmit K2 Software Insert. When set to  
logic 1, the value in registers TK2DINS[2:0] will  
be inserted into K2[2:0] in the transmit frame;  
otherwise, hardware insert is enabled for RDI-L  
(110) insertion.  
1
1312  
110  
Reserved. These bits must be written to their  
reset default value (00).  
00  
TAISLINS[AD][11:0]  
Force Line AIS in the Selected Output Time  
Slot. Active-high. For STS-3/STM-1, the index  
[0:2] corresponds to time slot 1-2-3; for STS-12/  
STM-4, the index[0:11] corresponds to time slot  
1-4-7-10-2-5-8-11-3-6-9-12; and for STS-48/  
STM-16, the index [A][0:11] is for time slot 1-13-  
25-37-2-14-26-38-3-15-27-39, [B][0:11] for 4-  
16-28-40-5-17-29-41-6-18-30-42, [C][0:11] for  
7-19-31-43-8-20-32-44-9-21-33-45, and  
[D][0:11] for 10-22-34-46-11-23-35-47-12-24-  
36-48.  
0x000  
184  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 84. Registers 0x043A0x0451: OHP Signal Degrade BER Algorithm Parameters (R/W)  
Reset default of registers = 0x0000.  
Notes: OHP_SDNSSET[AD][2:0] are located in registers 0x043B, 0x043D, 0x043F, and 0x0441, respectively.  
OHP_SDNSCLEAR[AD][2:0] are located in registers 0x0447, 0x0449, 0x044B, and 0x044D, respec-  
tively.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
043A, 043C, 150  
043E, 0440  
OHP_SDNSSET  
[AD][18:3]  
Signal Degrade Ns Set [18:3]. Number of  
frames in a monitoring block for SD.  
0x0000  
043B, 043D,  
043F, 0441  
15  
Reserved. This bit must be written to its reset  
default value (0).  
0
147 OHP_SDMSET[AD][7:0] Signal Degrade M Set. Threshold of the num-  
ber of bad monitoring blocks in an observation  
0000  
0000  
interval. If the number of bad blocks is above  
this threshold, then signal degrade (SD) is set.  
63 OHP_SDLSET[AD][3:0] Signal Degrade L Set. Error threshold for  
0x0  
000  
determining if a monitoring block is bad.  
20 OHP_SDNSSET[AD][2:0] Signal Degrade Ns Set [2:0]. Number of  
frames in a monitoring block for SD.  
04420445 150 OHP_SDBSET[AD][15:0] Signal Degrade B Set. Number of monitoring  
0x0000  
0x0000  
0
blocks.  
0446, 0448, 150  
OHP_SDNSCLEAR  
Signal Degrade Ns Clear [18:3]. Number of  
044A, 044C  
[AD][18:3]  
frames in a monitoring block for SD.  
0447, 0449,  
044B, 044D  
15  
Reserved. This bit must be written to its reset  
default value (0).  
147  
OHP_SDMCLEAR  
Signal Degrade M Clear. Threshold of the  
number of bad monitoring blocks in an observa-  
tion interval. If the number of bad blocks is  
below this threshold, then SD (signal degrade)  
is cleared.  
0000  
0000  
[AD][7:0]  
63  
20  
OHP_SDLCLEAR  
Signal Degrade L Clear. Error threshold for  
determining if a monitoring block is bad.  
0x0  
000  
[AD][3:0]  
OHP_SDNSCLEAR  
Signal Degrade Ns Clear[2:0]. Number of  
[AD][2:0]  
frames in a monitoring block for SD.  
044E0451 150  
OHP_SDBCLEAR  
Signal Degrade B Clear. Number of monitoring  
0x0000  
[AD][15:0]  
blocks.  
Agere Systems Inc.  
185  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 85. Registers 0x04520x0469: OHP Signal Fail BER Algorithm Parameters (R/W)  
Reset default of registers = 0x0000.  
Notes: OHP_SFNSSET[AD][2:0] are located in registers 0x0453, 0x0455, 0x0457, and 0x0459, respectively.  
OHP_SDNSCLEAR[AD][2:0] are located in registers 0x045F, 0x0461, 0x0463, 0x0465, respectively.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0452, 0454, 150  
OHP_SFNSSET  
Signal Fail Ns Set [18:3]. Number of frames in  
0x0000  
0456, 0458  
[AD][18:3]  
a monitoring block for SF.  
0453, 0455,  
0457, 0459  
15  
Reserved. This bit must be written to its reset  
default value (0).  
0
147 OHP_SFMSET[AD][7:0] Signal Fail M Set. Threshold of the number of  
bad monitoring blocks in an observation inter-  
val. If the number of bad blocks is above this  
threshold, then SF (signal fail) is set. (See Table  
86, page 187, for register settings in terms of  
corresponding BER.)  
0000  
0000  
63  
OHP_SFLSET[AD][3:0] Signal Fail L Set. Error threshold for determin-  
ing if a monitoring block is bad. (See Table 86,  
page 187, for register settings in terms of corre-  
sponding BER.)  
0x0  
000  
20 OHP_SFNSSET[AD][2:0] Signal Fail Ns Set [2:0]. Number of frames in a  
monitoring block for SF. (See Table 86, page  
187, for register settings in terms of corre-  
sponding BER.)  
045A045D 150 OHP_SFBSET[AD][15:0] Signal Fail B Set. Number of monitoring  
blocks. (See Table 86, page 187, for register  
0x0000  
settings in terms of corresponding BER.)  
045E, 0460, 150  
0462, 0464  
OHP_SFNSCLEAR  
Signal Fail Ns Clear [18:3]. Number of frames  
in a monitoring block for SF.  
0x0000  
0
[AD][18:3]  
045F, 0461,  
0463, 0465  
15  
Reserved. This bit must be written to its reset  
default value (0).  
147  
OHP_SFMCLEAR  
Signal Fail M Clear. Threshold of the number  
of bad monitoring blocks in an observation  
interval. If the number of bad blocks is below  
this threshold, then SF (signal fail) is cleared.  
0x00  
[AD][7:0]  
63  
20  
OHP_SFLCLEAR  
Signal Fail L Clear. Error threshold for deter-  
mining if a monitoring block is bad.  
0x0  
000  
[AD][3:0]  
OHP_SFNSCLEAR  
Signal Fail Ns Clear [2:0]. Number of frames  
in a monitoring block for SF.  
[AD][2:0]  
04660469 150  
OHP_SFBCLEAR  
Signal Fail B Clear. Number of monitoring  
blocks.  
0x0000  
[AD][15:0]  
186  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 86 and Table 87 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to  
set and clear the BER indicator. SF registers are 0x04520x0469, and SD registers are 0x043A0x0451.  
All SF/SD set and clear values are hexadecimal.  
Table 86. Ns, L, M, and B Values to Set the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Declaring  
SF/SD (%)  
Integra-  
tion  
Time  
(s)  
Max-  
imum  
Number  
of Frames  
Ns*  
L*  
M*  
B*  
@BER @BER/2 @BER @BER/2  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
6
9
3D  
3
3D  
7
62  
48  
99.96  
72.70  
71.34  
71.34  
69.74  
68.07  
56.90  
85.13  
7.28  
10.08  
10.09  
9.44  
8.82  
11.25  
97.68  
96.06  
95.19  
95.19  
95.07  
98.47  
96.52  
0.00  
0.16  
0.52  
0.52  
0.13  
0.82  
0.60  
0.008  
0.013  
0.1  
1
64  
104  
30  
7
3
7
384  
800  
1E0  
1275  
B5A4  
3F7A0  
7
3
7
3840  
47250  
465000  
4160000  
8000  
80000  
664000  
5336000  
7
4
9
10  
7
3
9
83  
4
5
F
667  
STS-12/ 1.00E-03  
STM-4  
2
B
8
6
A
8
64  
22  
100.00  
84.92  
67.93  
66.19  
65.75  
65.75  
65.75  
88.43  
9.64  
7.17  
6.66  
6.53  
6.53  
6.53  
100.00  
98.38  
96.48  
95.46  
95.16  
95.16  
95.16  
0.04  
0.00  
0.25  
0.19  
0.18  
0.18  
0.18  
0.008  
0.008  
0.025  
0.25  
2.5  
64  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
D
3
117  
200  
80  
8
3
8
1152  
11475  
114750  
1147500  
2000  
20000  
168000  
1336000  
4FB  
31CE  
1F20C  
8
3
8
8
3
8
21  
8
3
8
167  
STS-48/ 1.00E-03  
STM-16  
1
E
A
7
3F  
35  
8
3F  
3F  
E
64  
64  
100.00  
99.95  
90.60  
77.55  
75.80  
74.58  
82.92  
100.00  
58.97  
16.25  
13.09  
12.15  
11.54  
19.71  
100.00  
96.89  
96.47  
96.69  
95.17  
98.09  
97.29  
100.00  
0.00  
0.00  
0.00  
0.00  
0.01  
0.18  
0.008  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
5
320  
64  
20  
480  
500  
13A  
C1C  
765C  
7
8
E
4710  
46500  
333300  
5000  
41600  
336000  
7
7
E
6
6
A
42  
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
Agere Systems Inc.  
187  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 87. Ns, L, M, and B Values to Clear the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Clearing  
SF/SD (%)  
Integra-  
Max-  
imum  
Number  
of Frames  
tion  
Time  
(s)  
Ns*  
L*  
M*  
B*  
@BER*5 @BER @BER*5 @BER  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
2
2
2
2
2
2
3
3
3
3
4
3
2
7
8
0.013  
0.1  
104  
85.13  
93.01  
84.42  
84.42  
83.66  
82.86  
46.31  
0.39  
11.33  
6.84  
6.84  
6.59  
6.35  
1.48  
0.27  
0.01  
0.34  
0.34  
0.22  
0.03  
0.50  
100.00  
99.21  
99.88  
99.88  
99.98  
99.75  
99.84  
6
7
48  
800  
30  
7
384  
1
8000  
1E05  
1275  
B5A4  
3F7A0  
7
3840  
47250  
465000  
4160000  
10  
80000  
664000  
5336000  
53360000  
9
83  
9
667  
6670  
F
STS-12/ 1.00E-03  
STM-4  
1
7
2
2
2
2
2
2
6
8
3
3
3
3
3
6
7
0.008  
0.025  
0.25  
2.5  
64  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
100.00  
98.36  
87.99  
87.34  
87.17  
87.17  
87.17  
51.54  
20.51  
8.23  
7.94  
7.87  
7.87  
7.87  
0.00  
0.07  
0.02  
0.02  
0.03  
0.03  
0.03  
99.03  
100.00  
99.59  
99.64  
99.65  
99.65  
99.65  
2
A
8
22  
200  
D
117  
2000  
80  
8
1152  
11475  
114750  
1147500  
20000  
168000  
1336000  
13360000  
4FB  
31CE  
1F20C  
8
21  
8
167  
8
1670  
STS-48/ 1.00E-03  
STM-16  
2
3
2
2
2
2
64  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
1.00E-04  
100.00  
100.00  
95.07  
87.34  
86.52  
85.95  
84.89  
45.99  
60.11  
7.28  
7.94  
7.61  
7.38  
7.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.03  
99.42  
99.47  
99.98  
99.94  
99.95  
99.96  
99.95  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
D
D
6
E
15  
64  
5
3F  
13  
13  
13  
A
320  
500  
20  
640  
5000  
41600  
336000  
3360000  
13A  
C1C  
765C  
6
6280  
62000  
333300  
6
42  
4
420  
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
188  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 88. Registers 0x046A0x047D: B1, B2, M1 Error Count (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
046A046D 150  
B1ECNT[AD][15:0]  
B1 Error Count. The value of the internal run-  
ning counter is transferred into this holding reg-  
ister at the 0-to-1 transition of PMRST signal.  
The counter is then reset to 0.  
0x0000  
046E, 0470, 156  
Reserved. These bits must be written to their  
00  
0472, 0474  
reset default value (0000000000).  
0000  
0000  
50  
B2ECNT[AD][21:16]  
B2 Error Count [21:16]. The value of the inter- 000000  
nal running counter is transferred into this hold-  
ing register at the 0-to-1 transition of PMRST  
signal. The counter is then reset to 0.  
046F, 0471, 150  
B2ECNT[AD][15:0]  
B2 Error Count [15:0]. Same description as  
0x0000  
0473, 0475  
above.  
0476, 0478, 155  
047A, 047C  
Reserved. These bits must be written to their  
reset default value (00000000000).  
000  
0000  
0000  
40  
M1ECNT[AD][20:16]  
M1ECNT[AD][15:0]  
M1 Error Count [20:16]. The value of the inter-  
nal running counter is transferred into this hold-  
ing register at the 0-to-1 transition of PMRST  
signal. The counter is then reset to 0.  
00000  
0477, 0479, 150  
M1 Error Count [15:0]. Same description as  
0x0000  
047B, 047D  
above.  
Table 89. Registers 0x047E0x0485:Transmit F1, S1, K2, K1 OH InsertValue (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
047E, 0480, 158  
0482, 0484  
TF1DINS[AD][7:0]  
TS1DINS[AD][7:0]  
TK2DINS[AD][7:0]  
TK1DINS[AD][7:0]  
Transmit F1 Byte Value. Register value is  
inserted into the transmit F1 byte.  
0x00  
0x00  
0x00  
0x00  
70  
Transmit S1 Byte Value. Register value is  
inserted into the transmit S1 byte.  
047F, 0481, 158  
0483, 0485  
Transmit K2 Byte Value. Register value is  
inserted into the transmit K2 byte.  
70  
Transmit K1 Byte Value. Register value is  
inserted into the transmit K1 byte.  
Agere Systems Inc.  
189  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 90. Registers 0x04860x0491: Receive F1, S1, K2, K1 Monitor Value (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0486, 0489, 158  
048C, 048F  
0487, 048A, 158  
048D, 0490  
F1DMON1[AD][7:0]  
F1DMON0[AD][7:0]  
K2DMON[AD[7:0]  
K1DMON[AD][7:0]  
Receive F1 Previous Monitor Value.  
Receive F1 Current Monitor Value.  
Receive K2 Monitor Value.  
0x00  
0x00  
0x00  
0x00  
0x00  
70  
70  
Receive K1 Monitor Value.  
0488, 048B, 158  
Reserved. These bits must be written to their  
048E, 0491  
reset default value (0x00).  
70  
S1DMON[AD][7:0]  
Receive S1 Monitor Value.  
0x00  
Table 91. Registers 0x04920x04F9: Receive J0 MonitorValue (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
04920499 150 RJ0DMON[A][116][7:0] Receive J0 MonitorValue. Registers capture  
0x0000  
a 16-byte sequence from the J0 byte of each  
channel. In STS-48/STM-16 mode,  
J0DMON[A][116][7:0] is valid for J0 bytes  
while J0DMON[BD][1][7:0] are used for  
Z0DMON[BD][1][7:0].  
04B204B9 150 RJ0DMON[B][116][7:0]  
04D204D9 150 RJ0DMON[C][116][7:0  
04F204F9 150 RJ0DMON[D][116][7:0]  
Table 92. Registers 0x05120x0579: Transmit J0 Insert Value (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
05120519 150  
05320539 150  
05520559 150  
05720579 150  
TJ0DINS[A][116][7:0]  
TJ0DINS[B][116][7:0]  
TJ0DINS[C][116][7:0]  
TJ0DINS[D][116][7:0]  
Transmit J0 Insert Value. Registers allow a  
16-byte sequence to be inserted into the J0  
byte of each channel. In STS-48/STM-16 mode,  
TJ0DINS[A][116][7:0] is valid for J0 bytes  
while TJ0DINS[BD][1][7:0] are used for  
TZ0DINS[BD][1][7:0].  
0x0000  
190  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
OHP Registers (continued)  
Table 93. Registers 0x05AA0x05C1:Transmit Z0 InsertValue (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
05AA—  
0x05C1  
TZ0DINS[AD][212][7:0] Transmit Z0 Insert Value. Register values are  
inserted into the transmit Z0 bytes. In STS-3/  
STM-1 mode, TZ0DINS[AD][23] are valid; in  
STS-12/STM-4 mode, TZ0DINS[AD][212]  
are valid; and in STS-48/STM-16 mode, all 44  
TZ0DINS bytes plus TJ0DINS[BD][1][7:0] are  
used for 47 Z0 byte values.  
0x0000  
05AA  
158  
70  
TZ0DINS[A][2][7:0]  
Transmit Z0 Insert A2 Value.  
0x00  
0x00  
Reserved. These bits must be written to their  
reset default value (0x00).  
05AB05AF 150  
TZ0DINS[A][312][7:0]  
TZ0DINS[B][2][7:0]  
Transmit Z0 Insert [A][312]Value.  
0x0000  
0x00  
05B0  
158  
70  
Transmit Z0 Insert B2 Value.  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
05B105B5 150  
TZ0DINS[B][312][7:0]  
TZ0DINS[C][2][7:0]  
Transmit Z0 Insert [B][312]Value.  
0x0000  
0x00  
05B6  
158  
70  
Transmit Z0 Insert C2 Value.  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
05B705BB 150  
TZ0DINS[C][312][7:0] Transmit Z0 Insert [C][312]Value.  
0x0000  
0x00  
05BC  
158  
70  
TZ0DINS[D][2][7:0]  
Transmit Z0 Insert D2 Value.  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
05BD05C1 150  
TZ0DINS[D][312][7:0] Transmit Z0 Insert [D][312]Value.  
0x0000  
Table 94. Register 0x05C2: Scratch Register (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
05C2  
150  
OHP_SCRATCH[15:0]  
Scratch Register. Allows the control system to 0x0000  
verify read and write operations to the device  
without affecting device operation.  
Agere Systems Inc.  
191  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers  
This section gives a brief description of each register bit and its functionality. All algorithms are described in the  
main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write  
(R/W), write only (WO), or clear-on-read or clear-on-write (COR/W).  
0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every  
register table in the document.  
Table 95. Register 0x0800: PT Macrocell Version Number (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0800  
158  
70  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
PT_VERSION[7:0]  
Macrocell Version Number. The version of the  
macrocell will increment each time a change  
occurs to the macrocell functionality.  
0x00  
Table 96. Register 0x0801: PT Interrupt (RO)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0801  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
2
1
0
PT_INT[D]  
PT_INT[C]  
PT_INT[B]  
PT_INT[A]  
Interrupt. Active-high interrupt bit on a per-port  
basis. These bits are the ORing of all event and  
delta bits associated with a particular port. An  
event or delta bit contribution can be inhibited  
from contributing to the interrupt by setting the  
appropriate mask bit.  
0x0  
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A: PT Delta/Event  
Parameters (COR/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0802, 080F,  
081C, 0829  
15  
RJ1DMONMIS[AD]E  
Receive J1 Data Monitor Mismatch. Event bit  
indicates a mismatch has occurred between the  
expected J1 value and the received value.  
0
1412  
110  
Reserved. These bits must be written to their  
reset default value (000).  
000  
RPIHD[AD][112]  
Receive Pointer Interpretation Hardware  
Delta. Delta bits indicate a change of the  
associated state bit.  
0x000  
192  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 97. Registers 0x0802, 0x080F, 0x081C, 0x0829 and 0x0803, 0x0810, 0x081D, 0x082A: PT Delta/Event  
Parameters (COR/W) (continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0803, 0810,  
081D, 082A  
15  
TRDIPD[AD]  
Transmit RDI-P Delta. Delta bit indicates a  
change of the associated state byte.  
0
1411  
Reserved. These bits must be written to their  
0000  
reset default value (0000).  
10  
9
RZ5DMOND[AD]  
RZ4DMOND[AD]  
RZ3DMOND[AD]  
RH4DMOND[AD]  
RF2DMOND[AD]  
RRDIPDMOND[AD]  
RC2DMOND[AD]  
RUC2D[AD]  
Receive Z5 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
0
0
0
0
0
0
0
0
Receive Z4 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
8
Receive Z3 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
7
Receive H4 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
6
Receive F2 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
5
Receive RDI-P Data Monitor Delta. Delta bit  
indicates a change of the associated state bit.  
4
Receive C2 Data Monitor Delta. Delta bit  
indicates a change of the associated state byte.  
3
Receive Unequipped C2 Values Delta. Delta  
bit indicates a change of the associated state  
bit.  
2
RPPLMD[AD]  
Receive Path Payload Label Mismatch Delta.  
Delta bit indicates a change of the associated  
state bit.  
0
1
0
RSDD[AD]  
RSFD[AD]  
Receive Signal Degrade Delta. Delta bit  
indicates a change of the associated state bit.  
0
0
Receive Signal Fail Delta. Delta bit indicates a  
change of the associated state bit.  
Agere Systems Inc.  
193  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 98. Registers 0x08360x083B, 0x08680x0887, 0x08880x088D, 0x08BA0x08D9,  
0x08DA0x08DF, 0x090C0x092B, 0x092C0x0931, 0x095E0x097D:  
PT State Registers (RO)  
Reset default of registers 0x0836, 0x0837, 0x0888, 0x0889, 0x08DA, 0x08DB, 0x092C, 0x092D = 0x0AAA.  
Reset default of all other registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0836,  
0888,  
08DA,  
092C  
1514  
1312  
110  
RSSDRP[AD][1:0]  
Receive SS Drop Values. SS bit values from  
the four selected ports.  
00  
Reserved. These bits must be written to their  
reset default value (00).  
00  
RPIH_STATE[AD]  
[16][1:0]  
Receive Pointer Interpretation Hardware  
State[Bits 16]. Software access to the 48  
STS-1 PI state values. 00 = Normal;  
01 = Concat; 10 = LOP; 11 = AIS.  
0xAAA  
0837,  
0889,  
08DB,  
092D  
1512  
110  
Reserved. These bits must be written to their  
reset default value (0x0).  
0x0  
RPIH_STATE[AD]  
[712][1:0]  
Receive Pointer Interpretation Hardware  
State[Bits 712]. Software access to the 48  
STS-1 PI state values. 00 = Normal;  
01 = Concat; 10 = LOP; 11 = AIS.  
0xAAA  
0838,  
088A,  
08DC,  
092E  
1513  
127  
64  
3
TRDIPINT[AD][2:0]  
Transmit RDI-P State. State bits indicating the  
value of the inserted RDI-P value.  
000  
000000  
000  
Reserved. These bits must be written to their  
reset default value (000000).  
RRDIPDMON[AD][2:0] Receive RDI-P Data Monitor State. State bits  
indicating the value of the G1[3:1] bits.  
RUC2VS[AD]  
RPPLMS[AD]  
RSDS[AD]  
Receive Unequipped C2 Value State. State  
bit indicating an unequipped value (0x00) has  
been detected in the C2 byte.  
0
2
1
Receive Path Payload Label Mismatch State.  
State bit indicating a mismatch occurred  
(logic 1).  
0
0
Receive Signal Degrade State Bit. State bit  
indicating the state of the BER algorithm.  
0 = within BER programmed, 1 = exceed BER  
threshold programmed.  
0
RSF[AD]  
Receive Signal Fail State Bit. State bit  
indicating the state of the BER algorithm.  
0 = within BER programmed, 1 = exceed BER  
threshold programmed.  
0
0839,  
088B,  
08DD,  
092F  
158  
70  
RF2DMON[AD][7:0]  
RC2DMON[AD][7:0]  
Receive F2 Byte Data Monitor. State byte  
indicating the value of the validated F2 byte.  
0x00  
0x00  
Receive C2 Data Monitor. State byte holding  
the accepted value for the monitored C2 byte.  
194  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 98. Registers 0x08360x083B, 0x08680x0887, 0x08880x088D, 0x08BA0x08D9, 0x08DA—  
0x08DF, 0x090C0x092B, 0x092C0x0931, 0x095E0x097D: PT State Registers (RO)  
(continued)  
Reset default of registers 0x0836, 0x0837, 0x0888, 0x0889, 0x08DA, 0x08DB, 0x092C, 0x092D = 0x0AAA.  
Reset default of all other registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
083A,  
088C,  
08DE,  
0930  
158  
70  
RZ3DMON[AD][7:0]  
RH4DMON[AD][7:0]  
RZ5DMON[AD][7:0]  
RZ4DMON[AD][7:0]  
Receive Z3 Byte Data Monitor. State byte  
indicating the value of the validated Z3 byte.  
0x00  
Receive H4 Byte Data Monitor. State byte  
indicating the value of the validated H4 byte.  
0x00  
083B,  
088D,  
08DF,  
0931  
158  
70  
Receive Z5 Byte Data Monitor. State byte  
indicating the value of the validated Z5 byte.  
0x00  
Receive Z4 Byte Data Monitor. State byte  
indicating the value of the validated Z4 byte.  
0x00  
08680887 150  
08BA08D9 150  
RJ1DMON[A][164][7:0] Receive J1 Data Monitor Values. Status  
registers for J1 storage.  
0x0000  
RJ1DMON[B][164][7:0]  
090C092B 150 RJ1DMON[C][164][7:0]  
095E097D 150 RJ1DMON[D][164][7:0]  
Table 99. Register 0x097E: PT Interrupt Mask Control (R/W)  
Reset default of register = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
097E  
1514  
PT_FUNCMODE  
Path Terminator Functional Mode. These bits  
set the functional mode of the path terminator.  
Only the values below are valid.  
00  
Bit 15 Bit 14 PT Function  
0
1
0
0
normal mode  
pass-through mode (ATM/SDL  
over fiber)  
134  
Reserved. These bits must be written to their  
00  
reset default value (0000000000).  
0000  
0000  
3
2
1
0
PTINTM[D]  
PTINTM[C]  
PTINTM[B]  
PTINTM[A]  
Interrupt Masks. Mask bits to inhibit the  
associated composite delta/event bits for each  
port from contributing to the interrupt signal  
from the PT macro. Setting these bits to 1  
masks the interrupts.  
0xF  
Agere Systems Inc.  
195  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 100. Registers 0x097F0x0980, 0x098C0x098D, 0x09990x099A, 0x09A60x09A7: PT Interrupt  
Mask Control (R/W)  
Reset default of registers 0x097F, 0x098C, 0x0999, 0x09A6 = 0x8FFF.  
Reset default of registers 0x0980, 0x098D, 0x099A, 0x09A7 = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function (All Mask Bits Are Active-High)  
Reset  
Default  
097F, 098C,  
0999, 09A6  
15  
RJ1DMONMISM[AD]  
Receive J1 Data Monitor Mismatch Mask.  
Mask bit to inhibit the associated event bit from  
contributing to the interrupt pin (INT).  
1
1412  
110  
Reserved. These bits must be written to their  
reset default value (000).  
000  
RPIH_STATEM[AD]  
[112]  
Receive Pointer Interpretation Hardware  
Mask. Mask bits to inhibit the associated delta  
bits from contributing to the interrupt pin (INT).  
0xFFF  
196  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 100. Registers 0x097F0x0980, 0x098C0x098D, 0x09990x099A, 0x09A60x09A7: PT Interrupt  
Mask Control (R/W) (continued)  
Reset default of registers 0x097F, 0x098C, 0x0999, 0x09A6 = 0x8FFF.  
Reset default of registers 0x0980, 0x098D, 0x099A, 0x09A7 = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function (All Mask Bits Are Active-High)  
Reset  
Default  
0980, 098D,  
099A, 09A7  
15  
TRDIPINTM[AD]  
Transmit RDI-P Mask. Mask bit to inhibit the  
associated delta bit from contributing to the  
interrupt pin (INT).  
1
1411  
Reserved. These bits must be written to their  
reset default value (1111).  
1111  
1
10  
RZ5DMONM[AD]  
Receive Z5 Data Monitor Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
9
8
7
6
5
4
3
2
1
0
RZ4DMONM[AD]  
RZ3DMONM[AD]  
RH4DMONM[AD]  
RF2DMONM[AD]  
RRDIPDMONM[AD]  
RC2DMONM[AD]  
RUC2VM[AD]  
Receive Z4 Data Monitor Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
1
1
1
1
1
1
1
1
1
1
Receive Z3 Data Monitor Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
Receive H4 Data Monitor Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
Receive F2 Data Monitor Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
Receive RDI-P Data Monitor Mask. Mask bit  
to inhibit the associated delta bit from  
contributing to the interrupt pin (INT).  
Receive C2 Value Mask. Mask bit to inhibit the  
associated delta bit from contributing to the  
interrupt pin (INT).  
Receive Unequipped C2 Values Mask. Mask  
bit to inhibit the associated delta bit from  
contributing to the interrupt pin (INT).  
RPPLMM[AD]  
Receive Path Payload Label Mismatch Mask.  
Mask bit to inhibit the associated delta bit from  
contributing to the interrupt pin (INT).  
RSDM[AD]  
Receive Signal Degrade Mask. Mask bit to  
inhibit the associated delta bit from contributing  
to the interrupt pin (INT).  
RSFM[AD]  
Receive Signal Fail Mask. Mask bit to inhibit  
the associated delta bit from contributing to the  
interrupt pin (INT).  
Agere Systems Inc.  
197  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 101. Registers (0x09B3, 0x09BF, 0x09CB, 0x09D7, 0x09E3), (0x09EF, 0x09FB, 0x0A07, 0x0A14,  
0x0A20), (0x0A2C, 0x0A38, 0x0A44, 0x0A50, 0x0A5C), (0x0A68, 0x0A74, 0x0A80, 0x0A8C,  
0x0A98): Error Counters (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
09B3, 09EF, 1511  
Reserved. These bits must be written to their  
00000  
reset default value (00000).  
0A2C, 0A68  
100  
RPI_INC[AD][10:0]  
Receive Pointer Interpreter Increment  
Counter. Counter that counts the number of  
increments that occurred on the selected time  
slot.  
000  
0000  
0000  
09BF, 09FB, 1511  
0A38, 0A74  
Reserved. These bits must be written to their  
reset default value (00000).  
00000  
100  
RPI_DEC[AD][10:0]  
Receive Pointer Interpreter Decrements  
Counter. Counter that counts the number of  
decrements that occurred on the selected time  
slot.  
000  
0000  
0000  
09CB, 0A07, 1513  
Reserved. These bits must be written to their  
000  
reset default value (000).  
0A44, 0A80  
120  
RNDFCNT[AD][12:0]  
Receive Pointer Interpreter NDF Counter.  
Counter that counts the number of set NDF  
(1001) values received on the selected time  
slot.  
0
0000  
0000  
0000  
09D7, 0A14, 150 RB3ERRCNT[AD][15:0] B3 Error Count. Number of B3 errors detected 0x0000  
on the monitored STS-1 time slots.  
0A50, 0A8C  
09E3, 0A20, 150  
0A5C, 0A98  
RREIPERRCNT  
[AD][15:0]  
Receive Remote Error IndicationPath  
Error Count. Count of the number of B3 errors  
detected in the G1[7:4] nibble.  
0x0000  
Table 102. Register 0x0AA4: PT One-Shot Control Parameters (WO)  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AA4  
1512  
118  
74  
SDCLEAR[AD]  
SDSET[AD]  
Signal Degrade Clear. One-shot clear control.  
Signal Degrade Set. One-shot set control.  
Signal Fail Clear. One-shot clear control.  
Signal Fail Set. One-shot set control.  
SFCLEAR[AD]  
SFSET[AD]  
30  
198  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Control  
Parameters (R/W)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0x1200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AA6, 0AAE, 1512  
0AB6, 0ABE  
RPOHMONSEL  
Receive POH Monitor Select. Control bit selects which  
of the 12 time-slot POH bytes are monitored in the  
associated data stream. A total of four  
0001  
[AD][3:0]  
STS-Nc streams can be monitored at any one time.  
Only values from 0001 (time slot 1) to 1100  
(time slot 12) are valid. For quad OC-3 and quad OC-12  
mode, use the default value 0001.  
1110  
Reserved. These bits must be written to their reset  
default value (00).  
00  
1
9
RCONC_ALLOR  
FIRST[AD]  
Receive Concatenation State: Use All STS-1 Time  
Slots or Just the First One. If set to 1, all STS-1 time  
slots are used. If set to 0, a higher level state machine  
(CONC) is used to process the individual states from  
the associated time slots. The higher-order state  
machine is defined as follows.  
CONC State Equations (ETSI and G.783 (SDH)):  
States  
Concatenation States (bold states are reported)  
AISX  
AIS#1 AND AISC#2 AND . . . AISC#X  
NORMX NORM#1 AND CONC#2 AND . . . CONC#N  
INCX*  
DECX*  
NDFX*  
LOPX  
INC#1 AND CONC#2 AND . . . CONC#N  
DEC#1 AND CONC#2 AND . . . CONC#N  
NDF#1 AND CONC#2 AND . . . CONC#N  
(Any other): NOT AISX  
AND NOT NORMX  
AND NOT INCX  
AND NOT DECX  
AND NOT NDFX  
* States INCX, DECX, and NDFX are considered the same as  
NORMX state in terms of reporting.  
87  
RJ1FRAMEA  
[AD][1:0]  
Receive J1 Frame Algorithm. Control bits, when set to  
00 or 11 = no framing; 01 = SONET framing; 10 = SDH  
framing.  
00  
* These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed  
through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.  
Agere Systems Inc.  
199  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Con-  
trol Parameters (R/W) (continued)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AA6,0AAE,  
0AB6, 0ABE  
6
RJ1DMPC[AD]  
Receive J1 Dump Control. Control bit, when set  
to a logic 1, causes the device to store the J1 byte  
of the selected STS-1 time slot.  
0
5
4
Reserved. This bit must be written to its reset  
default value (0).*  
0
0
RB3BITBLKCNT[AD] Receive B3 Bit/Block Count. Control bit, when  
set to a logic 0, causes the B3 error counter to  
count bit errors; otherwise, block errors are  
counted.  
3
RINCDEC_6OR8MAJ  
Receive Increment/Decrement 6-or-8 Majority  
Voting. If programmed to a logic 0, uses 6 of 10  
majority voting to determine a valid increment or  
decrement; otherwise, uses 8 of 10 majority voting.  
0
[AD]  
21  
Reserved. These bits must be written to their reset  
default value (00).  
00  
0
0
RDIPMON_ENH_OR1B Remote Defect Indication Enhanced or 1-Bit  
Monitoring. Control bit, when set to a logic 1,  
causes the RDI-P to detect G1[3:1] bits for an  
enhanced failure code; otherwise, monitors G1[3]  
for a 1-bit code.  
[AD]  
0AA7, 0AAF, 1512  
0AB7, 0ABF  
RFORCE_LOP[AD]  
[14]  
Receive FORCE_LOP. Control bits, when set to a  
logic 1, force the associated time slot into the LOP  
state; otherwise, does nothing.†  
0x0  
110  
CONCATI_EXPECTED Concatenation Indication Expected. Control bits, 0x000  
when set to 0 = do not expect associated time slot  
to be in CONC mode; otherwise, expect CONC  
mode.  
[AD][112]  
* SS pointer interpretation algorithm is not implemented.  
These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed  
through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.  
200  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Con-  
trol Parameters (R/W) (continued)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AA8, 0AB0, 1512  
0AB8, 0AC0  
RFORCE_LOP[AD]  
[58]  
Receive FORCE_LOP. Control bits, when set  
to a logic 1, force the associated time slot into  
the LOP state; otherwise, does nothing.*  
0x0  
110  
MASK_CONCAT[AD]  
[112]  
MASK_CONCATENATION Expected  
Indication. When set, mask bits inhibit the  
generation of AIS when the selected time slot  
transitions to a state other than  
0xFFF  
CONCAT_EXPECTED[AD].  
0AA9, 0AB1, 1512  
0AB9, 0AC1  
RFORCE_LOP[AD]  
[912]  
Receive FORCE_LOP. Control bits, when set  
to a logic 1, force the associated time slot into  
the LOP state; otherwise, does nothing.*  
0x0  
110  
RFORCE_AIS[AD]  
[112]  
Receive FORCE AIS. If set, control bits insert  
AIS-P into the selected STS-1 time slot.*  
0x000  
0x0  
0AAA, 0AB2, 1512  
Tx_REIP_VALUE  
Transmit REI-P Error Value. REI software  
error value. Error values are 1 to 8; all others  
are interpreted as no errors.  
0ABA, 0AC2  
[AD][3:0]  
11  
TRDIPSINS[AD]  
Transmit RDI-P Software Insert. Control bit,  
when set, forces the value in  
0
TRDIPDINS[AD][2:0] into the outgoing  
G1[3:1] bits.  
10  
9
Reserved. This bit must be written to its reset  
default value (0).  
0
0
TRDIP_LCD[AD]  
Transmit RDI-P LCD. Control bit, when clear,  
generates an LCD failure that causes an RDI-P  
generation. When set, no LCD failure is  
generated. LCD determination must be done  
via software.  
8
TRDIP_PLMPINH[AD] Transmit RDI-P PLM-P Inhibit. Control bit,  
when set, causes the PLM-P failure to not  
0
contribute to RDI-P generation.  
* These bits maintain the validated J1 byte, place 0x0000 into all other POH bytes, and invalidate the received payload so that no data is passed  
through the DE. These bits do not affect the transmit path and do not affect the transmitted G1 byte.  
Agere Systems Inc.  
201  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Con-  
trol Parameters (R/W) (continued)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AAA, 0AB2,  
0ABA, 0AC2  
7
TRDIP_UNEQUIPINH  
Transmit RDI-P UNEQUIP Inhibit. Control bit,  
when set, causes the UNEQUIP failure to not  
contribute to RDI-P generation.  
0
0
0
0
[AD]  
6
5
4
TRDIP_LOPPINH[AD] Transmit RDI-P LOP-P Inhibit. Control bit,  
when set, causes the LOP-P failure to not  
contribute to RDI-P generation.  
TRDIP_AISINH[AD]  
Transmit RDI-P AIS-P Inhibit. Control bit,  
when set, causes the AIS-P failure to not  
contribute to RDI-P generation.  
TRDIP_ENH_OR1B[AD] Transmit RDI-P Enhanced or 1-Bit  
Monitoring. Control bit, when set, causes  
enhanced failure code insert to occur on the  
G1[3:1] bits; otherwise, inserts a single bit  
failure code into G1[3].  
3
TREIPERRINS[AD]  
Transmit REI-P Error Insert. Control bit, when  
set, causes an error to be continuously injected  
into the G1[7:4] bits.  
0
2
1
TB3ERRINS[AD]  
TJ1SINS[AD]  
Transmit B3 Error Insert. Control bit, when  
set, causes the B3 value to be inverted.  
0
0
Transmit J1 Software Insert. Control bit, when  
set, causes the J1 byte stored in the  
TJ1DINS[AD][164][7:0] register to be  
injected into the outgoing J1 byte; otherwise,  
inserts 0x00 into the J1 byte.  
0
Reserved. This bit must be written to its reset  
0
default value (0).  
202  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Con-  
trol Parameters (R/W) (continued)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AAB, 0AB3, 1512 TPOHINSSEL[AD][3:0] Transmit POH Insert Select. Control bits,  
0x1  
0xAAA  
0x3  
when set, select the STS-1 time slot into which  
POH data is injected.  
0ABB, 0AC3  
110  
THx_STATE[AD]  
[16][1:0]  
Transmit H Bytes Software State. Control  
bits, when set to a logic 00 = normal state,  
01 = CONC, 10 = unequipped, 11 = AIS.  
0AAC, 0AB4, 1512 CNTDH4Z3Z4[AD][3:0] Continuous N Times Detect H4/Z3/Z4 Bytes.  
Control signal for detecting changes in state of  
the H4, Z3, and Z4 bytes. Valid values are 0 to  
15. A value of 0 or 1 causes the data monitor  
byte to be updated every frame.  
0ABC, 0AC4  
A value of n, where 2 n 15, of these four bits  
means that the same value of the H4, Z3, or Z4  
byte must be detected n times consecutively to  
declare a new value in the H4, Z3, or Z4 byte  
register.  
110  
THx_STATE[AD]  
[712][1:0]  
Transmit H Bytes Software State. Control  
bits, when set to a logic 00 = normal state,  
01 = CONC, 10 = unequipped, 11 = AIS.  
0xAAA  
Agere Systems Inc.  
203  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 103. Registers 0x0AA60x0AAD, 0x0AAE, 0x0AB5, 0x0AB60x0ABD, 0x0ABE0x0AC5: PT Con-  
trol Parameters (R/W) (continued)  
Reset default of registers 0x0AA6, 0x0AAE, 0x0AB6, 0x0ABE = 0xF200.  
Reset default of registers 0x0AA7, 0x0AAF, 0x0AB7, 0x0ABF = 0x0000.  
Reset default of registers 0x0AA8, 0x0AB0, 0x0AB8, 0x0AC0 = 0x0FFF.  
Reset default of registers 0x0AA9, 0x0AB1, 0x0AB9, 0x0AC1 = 0x0000.  
Reset default of registers 0x0AAA, 0x0AB2, 0x0ABA, 0x0AC2 = 0x0000.  
Reset default of registers 0x0AAB, 0x0AB3, 0x0ABB, 0x0AC3 = 0x1AAA.  
Reset default of registers 0x0AAC, 0x0AB4, 0x0ABC, 0x0AC4 = 0x3AAA.  
Reset default of registers 0x0AAD, 0x0AB5, 0x0ABD, 0x0AC5 = 0x3333.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AAD, 0AB5, 1512  
0ABD, 0AC5  
CNTDZ5[AD][3:0]  
Continuous N Times Detect Z5 Byte. Control  
signal for detecting changes in state of the Z5  
byte. Valid values are 0 to 15. A value of 0 or 1  
causes the data monitor byte to be updated  
every frame.  
0x3  
0x3  
0x3  
0x3  
A value of n, where 2 n 15, of these four bits  
means that the same value of the Z5 byte must  
be detected n times consecutively to declare a  
new value in the Z5 byte register.  
Continuous N Times Detect F2 Byte. Control  
signal for detecting changes in state of the F2  
byte. Valid values are 0 to 15. A value of 0 or 1  
causes the data monitor byte to be updated  
every frame.  
118  
74  
30  
CNTDF2[AD][3:0]  
CNTDRDIP[AD][3:0]  
CNTDC2[AD][3:0]  
A value of n, where 2 n 15, of these four bits  
means that the same value of the F2 byte must  
be detected n times consecutively to declare a  
new value in the F2 byte register.  
Continuous N Times Detect RDI-P. Control  
signal for detecting changes in state of the  
G1[3:1] bits. Valid values are 0 to 15. A value of  
0 or 1 causes the data monitor byte to be  
updated every frame.  
A value of n, where 2 n 15, of these four bits  
means that the same value of the RDI-P byte  
must be detected n times consecutively to  
declare a new value in the RDI-P byte register.  
Continuous N Times Detect C2 Byte. Control  
signal for detecting changes in state of the C2  
byte. Valid values are 0 to 15. A value of 0 or 1  
causes the data monitor byte to be updated  
every frame.  
A value of n, where 2 n 15, of these four bits  
means that the same value of the C2 byte must  
be detected n times consecutively to declare a  
new value in the C2 byte register.  
204  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 104. Registers 0x0AC60x0AF7: PT Provisioning (R/W)  
Reset default of register 0x0AC6 = 0x0001.  
Reset default of registers 0x0AC70x0ACB = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AC6  
156  
Reserved. These bits must be written to their  
00  
reset default value (0000000000).  
0000  
0000  
54  
30  
PG_PROV_PNUM[1:0]  
PG_PROV_TNUM[3:0]  
Page Provisioning Port Number. Control bit  
that selects the port being provisioned. 00 =  
port A, 01 = port B, 10 = port C, and 11 = port  
D.  
00  
Page Provisioning Time-Slot Number.  
Control bit that selects the time slot being  
provisioned. Legal values are 1 to 12, all illegal  
values default to time slot 1.  
0x1  
0AC7  
1513  
1211  
102  
TRDIPDINS[2:0]  
TSS[1:0]  
Transmit RDI-P Data Insert. Software insert  
value.  
000  
00  
Transmit SS Value. Control values inserted  
into the SS bits in the H1 byte.  
Reserved. These bits must be written to their  
0
reset default value (000000000).  
0000  
0000  
10  
158  
70  
Reserved. These bits must be written to their  
reset default value (00).*  
00  
0AC8  
0AC9  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
0x00  
0x00  
0x00  
RC2EXPVAL[7:0]  
TF2DINS[7:0]  
TC2DINS[7:0]  
Receive C2 Expected Value. Expected value  
for the C2 byte.  
158  
70  
Transmit F2 Data Insert. Programmable F2  
byte insert value.  
Transmit C2 Data Insert. Insert byte for the  
outgoing C2 bytes.  
Note: A value of zero causes an unequipped  
signal to be generated.  
0ACA  
0ACB  
158  
70  
TZ3DINS[7:0]  
TH4DINS[7:0]  
TZ5DINS[7:0]  
TZ4DINS[7:0]  
Transmit Z3 Data Insert. Programmable Z3  
byte insert value.  
0x00  
0x00  
0x00  
0x00  
Transmit H4 Data Insert. Programmable H4  
byte insert value.  
158  
70  
Transmit Z5 Data Insert. Programmable Z5  
byte insert value.  
Transmit Z4 Data Insert. Programmable Z4  
byte insert value.  
* SS pointer interpretation algorithm is not implemented.  
Agere Systems Inc.  
205  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 105. Registers 0x0ACC0x0AD1: PT Signal Fail BER Algorithm Parameters (R/W)  
Reset default of registers 0x0ACC0x0AD1 = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0ACC  
158  
PT_SFMSET[7:0]  
Signal Fail M Set. Threshold of the number of  
bad monitoring blocks in an observation  
interval. If the number of bad blocks is below  
this threshold, then RHSSD is cleared.  
0x00  
74  
30  
Reserved. These bits must be written to their  
reset default value (0x0).  
0x0  
0x0  
PT_SFLSET[3:0]  
PT_SFNSSET[18:16]  
Signal Fail L Set. Error threshold for  
determining if a monitoring block is bad.  
0ACD  
1513  
12  
Signal Fail Ns Set. Number of frames in a  
monitoring block for RHSSD.  
000  
Reserved. This bit must be written to its reset  
0
default value (0).  
110  
150  
158  
PT_SFBSET[11:0]  
PT_SFNSSET[15:0]  
PT_SFMCLEAR[7:0]  
Signal Fail B Set. Number of monitoring  
blocks.  
0x000  
0x0000  
0x00  
0ACE  
0ACF  
Signal Fail Ns Set. Number of frames in a  
monitoring block for RHSSD.  
Signal Fail M Clear. Threshold of the number  
of bad monitoring blocks in an observation  
interval. If the number of bad blocks is below  
this threshold, then RHSSD is cleared.  
74  
30  
Reserved. These bits must be written to their  
reset default value (0x0).  
0x0  
0x0  
PT_SFLCLEAR[3:0]  
Signal Fail L Clear. Error threshold for  
determining if a monitoring block is bad.  
0AD0  
0AD1  
1513 PT_SFNSCLEAR[18:16] Signal Fail Ns Clear. Number of frames in a  
000  
monitoring block for RHSSD.  
12  
Reserved. This bit must be written to its reset  
0
default value (0).  
110  
150  
PT_SFBCLEAR[11:0]  
PT_SFNSCLEAR[15:0]  
Signal Fail B Clear. Number of monitoring  
blocks.  
0x000  
0x0000  
Signal Fail Ns Clear. Number of frames in a  
monitoring block for RHSSD.  
206  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 106. Registers 0x0AD20x0AD7: PT Signal Degrade BER Algorithm Parameters (R/W)  
Reset default of registers 0x0AD20x0AD7 = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AD2  
158  
PT_SDMSET[7:0]  
Signal Degrade M Set. Threshold of the number of  
bad monitoring blocks in an observation interval. If  
the number of bad blocks is below this threshold, then  
RHSSD is cleared.  
0x00  
74  
30  
Reserved. These bits must be written to their reset  
default value (0x0).  
0x0  
0x0  
000  
0
PT_SDLSET[3:0]  
Signal Degrade L Set. Error threshold for  
determining if a monitoring block is bad.  
0AD3  
1513 PT_SDNSSET[18:16] Signal Degrade Ns Set. Number of frames in a  
monitoring block for RHSSD.  
12  
Reserved. This bit must be written to its reset default  
value (0).  
110  
150  
PT_SDBSET[11:0]  
Signal Degrade B Set. Number of monitoring blocks. 0x000  
0AD4  
0AD5  
PT_SDNSSET[15:0] Signal Degrade Ns Set. Number of frames in a  
0x0000  
monitoring block for RHSSD.  
158 PT_SDMCLEAR[7:0] Signal Degrade M Clear. Threshold of the number of  
bad monitoring blocks in an observation interval. If  
the number of bad blocks is below this threshold, then  
RHSSD is cleared.  
0x00  
74  
30  
1513  
12  
Reserved. These bits must be written to their reset  
default value (0x0).  
0x0  
0x0  
PT_SDLCLEAR[3:0] Signal Degrade L Clear. Error threshold for  
determining if a monitoring block is bad.  
0AD6  
0AD7  
PT_SDNSCLEAR  
[18:16]  
Signal Degrade Ns Clear. Number of frames in a  
monitoring block for RHSSD.  
000  
Reserved. This bit must be written to its reset default  
value (0).  
0
110 PT_SDBCLEAR[11:0] Signal Degrade B Clear. Number of monitoring  
0x000  
0x0000  
blocks.  
150  
PT_SDNSCLEAR  
[15:0]  
Signal Degrade Ns Clear. Number of frames in a  
monitoring block for RHSSD.  
Agere Systems Inc.  
207  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 107 and Table 108 show values of Ns, L, M, and B for STS-3/STM-1, STS-12/STM-4, and STS-48/STM-16 to  
set and clear the BER indicator. SF registers are 0x0ACC0x0AD1, and SD registers are 0x0AD20x0AD7. All  
SF/SD set and clear values are hexadecimal.  
Table 107. Ns, L, M, and B Values to Set the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Declaring  
SF/SD (%)  
Integra-  
tion  
Time  
(s)  
Max-  
imum  
Number  
of Frames  
Ns*  
L*  
M*  
B*  
@BER @BER/2 @BER @BER/2  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
6
9
3D  
3
3D  
7
62  
48  
99.96  
72.70  
71.34  
71.34  
69.74  
68.07  
56.90  
85.13  
7.28  
10.08  
10.09  
9.44  
8.82  
11.25  
97.68  
96.06  
95.19  
95.19  
95.07  
98.47  
96.52  
0.00  
0.16  
0.52  
0.52  
0.13  
0.82  
0.60  
0.008  
0.013  
0.1  
1
64  
104  
30  
7
3
7
384  
800  
1E0  
1275  
B5A4  
3F7A0  
7
3
7
3840  
47250  
465000  
4160000  
8000  
80000  
664000  
5336000  
7
4
9
10  
7
3
9
83  
4
5
F
667  
STS-12/  
STM-4  
64  
100.00  
88.43  
100.00  
0.04  
0.008  
64  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
2
D
B
8
6
3
A
8
22  
117  
84.92  
67.93  
66.19  
65.75  
65.75  
65.75  
9.64  
7.17  
6.66  
6.53  
6.53  
6.53  
98.38  
96.48  
95.46  
95.16  
95.16  
95.16  
0.00  
0.25  
0.19  
0.18  
0.18  
0.18  
0.008  
0.025  
0.25  
2.5  
64  
200  
80  
8
3
8
1152  
2000  
4FB  
31CE  
1F20C  
8
3
8
11475  
114750  
1147500  
20000  
168000  
1336000  
8
3
8
21  
8
3
8
167  
STS-48/  
STM-16  
64  
100.00  
100.00  
100.00  
100.00  
0.008  
64  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
5
E
A
7
3F  
35  
8
3F  
3F  
E
64  
320  
99.95  
90.60  
77.55  
75.80  
74.58  
82.92  
58.97  
16.25  
13.09  
12.15  
11.54  
19.71  
96.89  
96.47  
96.69  
95.17  
98.09  
97.29  
0.00  
0.00  
0.00  
0.00  
0.01  
0.18  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
64  
20  
480  
500  
13A  
C1C  
765C  
7
8
E
4710  
46500  
333300  
5000  
41600  
336000  
7
7
E
6
6
A
42  
* These are the numbers to be provisioned inTDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
208  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 108. Ns, L, M, and B Values to Clear the BER Indicator  
Mode  
BER  
SF/SD Set Values  
Actual  
Number of  
Frames  
Probability of  
Detecting L  
Errors (%)  
Probability of  
Clearing  
SF/SD (%)  
Integra-  
tion  
Time  
(s)  
Max-  
imum  
Number  
of Frames  
Ns*  
L*  
M*  
B*  
@BER*5 @BER @BER*5 @BER  
STS-3/  
STM-1  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
6
2
2
2
2
2
2
3
3
3
3
4
3
2
7
8
0.013  
0.1  
104  
85.13  
93.01  
84.42  
84.42  
83.66  
82.86  
46.31  
0.39  
11.33  
6.84  
6.84  
6.59  
6.35  
1.48  
0.27  
0.01  
0.34  
0.34  
0.22  
0.03  
0.50  
100.00  
99.21  
99.88  
99.88  
99.98  
99.75  
99.84  
6
7
48  
800  
30  
7
384  
1
8000  
1E05  
1275  
B5A4  
3F7A0  
7
3840  
47250  
465000  
4160000  
10  
80000  
664000  
5336000  
53360000  
9
83  
9
667  
6670  
F
STS-12/  
STM-4  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
2
7
2
2
2
2
2
2
6
8
3
3
3
3
3
6
A
8
8
8
8
8
7
100.00  
98.36  
87.99  
87.34  
87.17  
87.17  
87.17  
51.54  
20.51  
8.23  
7.94  
7.87  
7.87  
7.87  
0.00  
0.07  
0.02  
0.02  
0.03  
0.03  
0.03  
99.03  
100.00  
99.59  
99.64  
99.65  
99.65  
99.65  
0.008  
0.025  
0.25  
2.5  
64  
200  
22  
D
117  
2000  
80  
1152  
20000  
168000  
1336000  
13360000  
4FB  
31CE  
1F20C  
11475  
114750  
1147500  
21  
167  
1670  
STS-48/  
STM-16  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
1.00E-07  
1.00E-08  
1.00E-09  
1.00E-10  
1
2
3
2
2
2
2
D
D
6
64  
15  
100.00  
100.00  
95.07  
87.34  
86.52  
85.95  
84.89  
45.99  
60.11  
7.28  
7.94  
7.61  
7.38  
7.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.03  
99.42  
99.47  
99.98  
99.94  
99.95  
99.96  
99.95  
0.008  
0.008  
0.0625  
0.625  
5.2  
64  
64  
E
5
3F  
13  
13  
13  
A
320  
500  
20  
640  
5000  
13A  
C1C  
765C  
6
6280  
62000  
333300  
41600  
336000  
3360000  
6
42  
4
420  
* These are the numbers to be provisioned in TDAT042G5. The actual values of the BER algorithm are 1 greater than the actual values shown.  
These BER values cannot be provisioned because the maximum value of L is 0xF (i.e., L is a 4-bit register).  
Agere Systems Inc.  
209  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
PT Registers (continued)  
Table 109. Registers 0x0AD80x0AF7: Transmit J1 Data Insert (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AD8—  
150 TJ1DINS[164][7:0] Transmit J1 Data Insert. Insert values for the  
0x0000  
0AF7  
selected J1 bytes.  
Table 110. Register 0x0AF8: Scratch Register (R/W)  
Reset default of register = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
0AF8  
150  
PT_SCRATCH[15:0] Scratch Register. Diagnostic register used by the  
microprocessor. Has no effect on the macro  
operation.  
0x0000  
210  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers  
This section gives a brief description of each register bit and its functionality. All algorithms are described in the  
main text of the document. The abbreviations after each register indicate if the register is read only (RO), read/write  
(R/W), write only (WO), or clear-on-read or clear-on-write (COR/W).  
0x indicates a hexadecimal value in the Reset Default column. Otherwise, the entry is binary. This is true for every  
register table in the document.  
Table 111. Register 0x1000: DE Macrocell Version Number (RO)  
Reset default of register = 0x0001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1000  
150  
DE_VERSION  
Macrocell Version Number. The version of the macrocell will  
increment each time a change occurs to the macrocell  
functionality.  
0x0001  
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W)  
Reset default of registers = 0x0000.  
Note:Register 0x1001 is cleared by accessing the source register of the interrupt. The source register must be  
read and cleared to clear these registers.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1001  
155  
Reserved. These bits must be written to their reset default  
value (00000000000).  
000  
0000  
0000  
4
DEINT_SDLMS SDL Message Sent Interrupt.  
Note: This bit indicates that the SDL frame inserter is  
0
experiencing an interrupt. This bit will not clear on a  
read or a write of this register, but will clear when the  
SDL SDLMSI register (0x1606, bit 0) is read.  
These interrupts will generate a DE interrupt.  
30  
DEINTCH[3:0] Channel Interrupt. Active-high interrupt bit on a per-  
channel basis. These bits are the ORing of all interrupt bits  
associated with the error counters described in registers  
0x11000x111F (pages 238page 143). The error counter  
can be inhibited from contributing to the interrupt by setting the  
appropriate mask bit in register  
0x0  
DEDINTM[03] (addresses 0x1180, 0x1182, 0x1184, 0x1186  
on page 243).  
The following interrupts will generate a DE interrupt:  
Bit 0 corresponds to channel 0 interrupt.  
Bit 1 corresponds to channel 1 interrupt.  
Bit 2 corresponds to channel 2 interrupt.  
Bit 3 corresponds to channel 3 interrupt.  
Note: This bit indicates that the channel is experiencing an  
interrupt. This bit will not clear on a read or a write of  
this register, but will clear when the counter interrupt  
register DEDINTM[03] (addresses 0x1181, 0x1183,  
0x1185, 0x1187 on page 244) is read or written.  
Agere Systems Inc.  
211  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) (continued)  
Reset default of registers = 0x0000.  
Notes: Register 0x1002 must be used only in the COR mode, where core register 0x0010, bit 6 = 1.  
Bits 1512, SDL Rx frame state interrupt (DEINT_SDLRxFS), are read only. Bits 1512 are cleared by  
reading and clearing the corresponding interrupt source registers, 0x14E00x14E3.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1002  
1512  
DEINT_SDLRxFS  
SDL Rx Frame State Interrupt. This interrupt  
is generated when the SDL frame state is  
transitioned from sync to hunt. This bit is  
cleared when read only.  
0x0  
The following interrupts will generate a DE  
interrupt:  
Bit 12 corresponds to channel 0 interrupt.  
Bit 13 corresponds to channel 1 interrupt.  
Bit 14 corresponds to channel 2 interrupt.  
Bit 15 corresponds to channel 3 interrupt.  
118  
DEINT_ATMRxAC  
ATM Rx All-Cool Interrupt. This interrupt is  
generated when the payload of received null/  
idle cells is correctly incrementing. This bit may  
clear when read or written. This interrupt is  
used in conjunction with the optional  
0x0  
incrementing payload sequence mode for  
debug purposes and is used in conjunction with  
DE register 0x12F0.  
Bit 8 corresponds to channel 0 interrupt.  
Bit 9 corresponds to channel 1 interrupt.  
Bit 10 corresponds to channel 2 interrupt.  
Bit 11 corresponds to channel 3 interrupt.  
Note: This signal does not generate a DE  
interrupt under any circumstances.  
212  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 112. Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and COR/W) (continued)  
Reset default of registers = 0x0000.  
Note:Register 0x1002 must be used only in the COR mode, where core register 0x0010, bit 6 = 1.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1002  
74  
DEINT_ATMRxF  
ATM Rx Frame State Interrupt. This interrupt is  
generated when the ATM frame state is  
transitioned from sync to hunt. This bit may clear  
when read or written.  
0x0  
The following interrupts will generate a DE  
interrupt:  
Bit 0 corresponds to channel 0 interrupt.  
Bit 1 corresponds to channel 1 interrupt.  
Bit 2 corresponds to channel 2 interrupt.  
Bit 3 corresponds to channel 3 interrupt.  
ATM Rx X31Scrambler State Interrupt. This  
interrupt is generated when the ATM scrambler  
state is transitioned from synchronization to  
verification. This bit may clear when read or  
written.  
30  
DEINT_ATMRxS  
0x0  
The following interrupts will generate a DE  
interrupt:  
Bit 4 corresponds to channel 0 interrupt.  
Bit 5 corresponds to channel 1 interrupt.  
Bit 6 corresponds to channel 2 interrupt.  
Bit 7 corresponds to channel 3 interrupt.  
Table 113. Register 0x1004: Dry Escape Marker (R/W)  
Reset default of register = 0x0020.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1004  
158  
70  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
DRYESCAPE[7:0]  
Dry Escape Value. This 8-bit value, attached  
with 0x7D, sets the dry marker value. The default  
dry marker value would then be 0x7D20.  
0x20  
Agere Systems Inc.  
213  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 114. Registers 0x10100x1015: Sequencer Provisioning Registers (R/W) (continued)  
Reset default of register 0x1010 = 0x0002.  
Reset default of register 0x1011 = 0x2210.  
Reset default of registers 0x1012, 0x1014 = 0x0435.  
Reset default of registers 0x1013, 0x1015 = 0x0025.  
Note: The settings of these registers must be consistent with core mode register (address 0x0010).  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1010  
SEQ_CTRL  
Sequencer Control. Selects STS-3/STM-1, STS-  
12/STM-4, or STS-48/STM-16 mode for the data  
engine. Allowed values are as follows:  
STS-3/STM-1 = 0x0001  
0x0002  
STS-12/STM-4 = 0x0003  
STS-48/STM-16 = 0x0002  
152  
Reserved. These bits must be written to their reset  
default value (00000000000000).  
00  
0000  
0000  
0000  
1
1
SEQ_RATE  
Sequencer Rate. Configures internal clock  
derived from TxCKP/TxCKN.  
0 = STS-3/STM-1 (internal clock = 19.440 MHz)  
1 = STS-12/STM-4 or STS-48/STM-16  
(internal clock = 77.760 MHz)  
0
SEQ_MODE  
Sequencer Mode. Used with bit 1 above to select  
the mode.  
0
0 = STS-48/STM-16  
1 = STS-3/STM-1 or STS-12/STM-4  
Initial Counts. This register must be set to the  
default value (0x2210).  
OHP Marker Low. This register must be  
programmed as follows:  
1011  
1012  
150  
150  
INIT_CNTS  
0x2210  
0x0435  
OH_MARKER_LO  
STS-48/STM-16 = 0x0435  
STS-12/STM-4 = 0x0435  
STS-3/STM-1 = 0x010B  
1013  
1014  
1015  
150  
150  
150  
OH_MARKER_HI  
SOH_MARKER_LO  
SOH_MARKER_HI  
OHP Marker High. This register must be  
programmed as follows:  
STS-48/STM-16 = 0x0025  
STS-12/STM-4 = 0x0025  
STS-3/STM-1 = 0x0007  
Sequence Provisioning for OHP Marker Low.  
This register must be programmed as follows:  
STS-48/STM-16 = 0x0435  
STS-12/STM-4 = 0x0435  
STS-3/STM-1 = 0x010B  
0x0025  
0x0435  
0x0025  
Sequence Provisioning for OHP Marker High.  
This register must be programmed as follows:  
STS-48/STM-16 = 0x0025  
STS-12/STM-4 = 0x0025  
STS-3/STM-1 = 0x0007  
214  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 115. Registers 0x10160x1021: Egress Configuration (R/W)  
Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444.  
Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555.  
Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666.  
Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10161021 150  
Tx_TS[112]  
Egress Time Slot [112]. These 12 registers  
define the egress time slots. The default is set to  
quad channel STS-48/STM-16. The payload bits  
may be set low to account for any unused slots.  
See  
below.  
Possible configurations are as follows:  
I Multichannel STS-48/STM-16. Each time slot will  
use only one channel, but the channel will vary  
for each time slot.  
I Single-channel STS-48/STM-16. Each time slot  
will use only one channel for every time slot.  
I STS-3/STM-1 or STS-12/STM-4. Each of four  
channels will be defined once for each time slot.  
Agere Systems Inc.  
215  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 115. Registers 0x10160x1021: Egress Configuration (R/W) (continued)  
Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444.  
Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555.  
Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666.  
Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Egress Time Slot 1.  
Reset  
Default  
1016  
Tx_TS1  
0x444  
0x4  
Tx_TS1[15:12]: Byte 1/1A : Byte 1 transmit  
sequence map and channel.  
15  
14  
Reserved. This bit must be written to its reset  
default value (0).  
0
1
Tx_PLD1  
PLD. Defines the validity of the payload in the time  
slot.  
1 = valid  
0 = invalid  
1312  
Tx_CH1  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Tx_TS1[11:8]: Byte 4/1B: Byte 4 transmit  
sequence map and channel.  
0x4  
11  
10  
Reserved. This bit must be written to its reset  
default value (0).  
0
1
Tx_PLD4  
PLD. Defines the validity of the payload in the time  
slot.  
1 = valid  
0 = invalid  
98  
Tx_CH4  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Tx_TS1[7:4]: Byte 7/1C: Byte 7 transmit sequence  
map and channel.  
0x4  
7
6
Reserved. This bit must be written to its reset  
default value (0).  
0
1
Tx_PLD7  
PLD. Defines the validity of the payload in the time  
slot.  
1 = valid  
0 = invalid  
54  
Tx_CH7  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Tx_TS1[3:0]: Byte 10/1D: Byte 10 transmit  
sequence map and channel.  
0x4  
3
2
Reserved. This bit must be written to its reset  
default value (0x4).  
Tx_PLD10  
PLD. Defines the validity of the payload in the time  
slot.  
1 = valid  
0 = invalid  
10  
Tx_CH10  
CH. Defines one of four channels (00, 01, 10, 11).  
216  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 115. Registers 0x10160x1021: Egress Configuration (R/W) (continued)  
Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444.  
Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555.  
Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666.  
Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1017  
1018  
1019  
101A  
101B  
101C  
1512  
118  
74  
30  
Tx_TS2  
Egress Time Slot 2. Refer to egress time slot 1.  
Byte 13/4A definition.  
0x5555  
0x6666  
0x7777  
0x4444  
0x5555  
0x6666  
Byte 16/4B definition.  
Byte 19/4C definition.  
Byte 22/4D definition.  
Tx_TS3  
Egress Time Slot 3. Refer to egress time slot 1.  
Byte 25/7A definition.  
1512  
118  
74  
30  
Byte 28/7B definition.  
Byte 31/7C definition.  
Byte 34/7D definition.  
Tx_TS4  
Egress Time Slot 4. Refer to egress time slot 1.  
Byte 37/10A definition.  
1512  
118  
74  
30  
Byte 40/10B definition.  
Byte 43/10C definition.  
Byte 46/10D definition.  
Tx_TS5  
Egress Time Slot 5. Refer to egress time slot 1.  
Byte 2/2A definition.  
1512  
118  
74  
30  
Byte 5/2B definition.  
Byte 8/2C definition.  
Byte 11/2D definition.  
Tx_TS6  
Egress Time Slot 6. Refer to egress time slot 1.  
Byte 14/5A definition.  
1512  
118  
74  
30  
Byte 17/5B definition.  
Byte 20/5C definition.  
Byte 23/5D definition.  
Tx_TS7  
Egress Time Slot 7. Refer to egress time slot 1.  
Byte 26/8A definition.  
1512  
118  
74  
30  
Byte 29/8B definition.  
Byte 32/8C definition.  
Byte 35/8D definition.  
Agere Systems Inc.  
217  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 115. Registers 0x10160x1021: Egress Configuration (R/W) (continued)  
Reset default of registers 0x1016, 0x101A, 0x101E = 0x4444.  
Reset default of registers 0x1017, 0x101B, 0x101F = 0x5555.  
Reset default of registers 0x1018, 0x101C, 0x1020 = 0x6666.  
Reset default of registers 0x1019, 0x101D, 0x1021 = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
101D  
101E  
101F  
1020  
1021  
1512  
118  
74  
30  
Tx_TS8  
Egress Time Slot 8. Refer to egress time slot 1.  
Byte 38/11A definition.  
0x7777  
0x4444  
0x5555  
0x6666  
0x7777  
Byte 41/11B definition.  
Byte 44/11C definition.  
Byte 47/11D definition.  
Tx_TS9  
Egress Time Slot 9. Refer to egress time slot 1.  
Byte 3/3A definition.  
1512  
118  
74  
30  
Byte 6/3B definition.  
Byte 9/3C definition.  
Byte 12/3D definition.  
Tx_TS10  
Egress Time Slot 10. Refer to egress time slot 1.  
Byte 15/6A definition.  
1512  
118  
74  
30  
Byte 18/6B definition.  
Byte 21/6C definition.  
Byte 24/6D definition.  
Tx_TS11  
Egress Time Slot 11. Refer to egress time slot 1.  
Byte 27/9A definition.  
1512  
118  
74  
30  
Byte 30/9B definition.  
Byte 33/9C definition.  
Byte 36/9D definition.  
Tx_TS12  
Egress Time Slot 12. Refer to egress time slot 1.  
Byte 39/12A definition.  
1512  
118  
74  
30  
Byte 42/12B definition.  
Byte 45/12C definition.  
Byte 48/12D definition.  
218  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W)  
Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444.  
Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555.  
Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666.  
Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1022102D 150  
Rx_TS[112]  
Ingress Time Slot [112]. These 12 registers  
define the ingress time slots. The default is set to  
quad channel STS-48/STM-16. The payload bits  
may be turned low to account for any unused slots.  
See  
below.  
Possible configurations are as follows:  
I Multichannel STS-48/STM-16. Each time slot will  
use only one channel, but the channel will vary  
for each time slot.  
I Single-channel STS-48/STM-16. Each time slot  
will use only one channel for every time slot.  
I STS-3/STM-1 or STS-12/STM-4. Each of four  
channels will be defined once for each time slot.  
Agere Systems Inc.  
219  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W) (continued)  
Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444.  
Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555.  
Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666.  
Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Ingress Time Slot 1.  
Reset  
Default  
1022  
Rx_TS1  
0x4444  
0x4  
Rx_TS1[15:12]. Byte 1/Byte 1A: Byte 1 receive  
sequence map and channel.  
15  
14  
Reserved. This bit must be written to its reset  
default value (0).  
PLD. Defines the validity of the payload in the time  
0
1
Rx_PLD1  
slot.  
1 = valid  
0 = invalid  
1312  
Rx_CH1  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Rx_TS1[11:8]. Byte 4/Byte 1B: Byte 4 receive  
0x4  
sequence map and channel.  
11  
10  
Reserved. This bit must be written to its reset  
default value (0).  
PLD. Defines the validity of the payload in the time  
0
1
Rx_PLD4  
slot.  
1 = valid  
0 = invalid  
98  
Rx_CH4  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Rx_TS1[7:4]. Byte 7/Byte 1C: Byte 7 receive  
0x4  
sequence map and channel.  
7
6
Reserved. This bit must be written to its reset  
default value (0).  
PLD. Defines the validity of the payload in the time  
0
1
Rx_PLD7  
slot.  
1 = valid  
0 = invalid  
54  
Rx_CH7  
CH. Defines one of four channels (00, 01, 10, 11).  
00  
Rx_TS1[3:0]. Byte 10/Byte 1D: Byte 10 receive  
0x4  
sequence map and channel.  
3
2
Reserved. This bit must be written to its reset  
default value (0).  
PLD. Defines the validity of the payload in the time  
0
1
Rx_PLD10  
slot.  
1 = valid  
0 = invalid  
10  
Rx_CH10  
CH. Defines one of four channels(00, 01, 10, 11).  
00  
220  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W) (continued)  
Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444.  
Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555.  
Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666.  
Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1023  
1024  
1025  
1026  
1027  
1028  
1512  
118  
74  
30  
Rx_TS2  
Ingress Time Slot 2. Refer to ingress time slot 1.  
Byte 13/4A definition.  
0x5555  
0x6666  
0x7777  
0x4444  
0x5555  
0x6666  
Byte 16/4B definition.  
Byte 19/4C definition.  
Byte 22/4D definition.  
Rx_TS3  
Ingress Time Slot 3. Refer to ingress time slot 1.  
Byte 25/7A definition.  
1512  
118  
74  
30  
Byte 28/7B definition.  
Byte 31/7C definition.  
Byte 34/7D definition.  
Rx_TS4  
Ingress Time Slot 4. Refer to ingress time slot 1.  
Byte 37/10A definition.  
1512  
118  
74  
30  
Byte 40/10B definition.  
Byte 43/10C definition.  
Byte 46/10D definition.  
Rx_TS5  
Ingress Time Slot 5. Refer to ingress time slot 1.  
Byte 2/2A definition.  
1512  
118  
74  
30  
Byte 5/2B definition.  
Byte 8/2C definition.  
Byte 11/2D definition.  
Rx_TS6  
Ingress Time Slot 6. Refer to ingress time slot 1.  
Byte 14/5A definition.  
1512  
118  
74  
30  
Byte 17/5B definition.  
Byte 20/5C definition.  
Byte 23/5D definition.  
Rx_TS7  
Ingress Time Slot 7. Refer to ingress time slot 1.  
Byte 26/8A definition.  
1512  
118  
74  
30  
Byte 29/8B definition.  
Byte 32/8C definition.  
Byte 35/8D definition.  
Agere Systems Inc.  
221  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 116. Registers 0x10220x102D: Ingress Configuration (R/W) (continued)  
Reset default of registers 0x1022, 0x1026, 0x102A = 0x4444.  
Reset default of registers 0x1023, 0x1027, 0x102B = 0x5555.  
Reset default of registers 0x1024, 0x1028, 0x102C = 0x6666.  
Reset default of registers 0x1025, 0x1029, 0x102D = 0x7777.  
Note:See Figures 1720, pages 7881. The notation X/Y means the following: X = STS-48/STM-16 byte,  
Y = STS-12/STM-4 or STS-3/STM-1 byte.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1029  
102A  
102B  
102C  
102D  
1512  
118  
74  
30  
Rx_TS8  
Ingress Time Slot 8. Refer to ingress time slot 1.  
Byte 38/11A definition.  
0x7777  
Byte 41/11B definition.  
Byte 44/11C definition.  
Byte 47/11D definition.  
Rx_TS9  
Ingress Time Slot 9. Refer to ingress time slot 1.  
Byte 3/3A definition.  
0x4444  
1512  
118  
74  
30  
Byte 6/3B definition.  
Byte 9/3C definition.  
Byte 12/3D definition.  
Rx_TS10  
Ingress Time Slot 10. Refer to ingress time slot 1. 0x5555  
Byte 15/6A definition.  
1512  
118  
74  
30  
Byte 18/6B definition.  
Byte 21/6C definition.  
Byte 24/6D definition.  
Rx_TS11  
Ingress Time Slot 11. Refer to ingress time slot 1. 0x6666  
Byte 27/9A definition.  
1512  
118  
74  
30  
Byte 30/9B definition.  
Byte 33/9C definition.  
Byte 36/9D definition.  
Rx_TS12  
Ingress Time Slot 12. Refer to ingress time slot 1. 0x7777  
Byte 39/12A definition.  
1512  
118  
74  
30  
Byte 42/12B definition.  
Byte 45/12C definition.  
Byte 48/12D definition.  
222  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 117. Registers 0x102E0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
102E  
Rx_OF_CTRL  
Ingress Over-Fiber Mode Register. This register  
will define the channels, if any, that are carrying  
over-fiber payload in the ingress direction.  
0x0000  
0 = SONET  
1 = over-fiber mode  
(For specific bits, see register Rx_TS[112],  
page 219.)  
15  
Reserved. These bits must be written to their reset  
default value (0).  
14  
Physical channel (line) A mode.  
1312  
Reserved. These bits must be written to their reset  
default value (00).  
10  
Physical channel (line) B mode.  
97  
Reserved. These bits must be written to their reset  
default value (000).  
6
Physical channel (line) C mode.  
53  
Reserved. These bits must be written to their reset  
default value (000).  
2
Physical channel (line) D mode.  
10  
Reserved. These bits must be written to their reset  
default value (00).  
102F  
Tx_OF_CTRL  
Egress Over-Fiber Mode Register. This register  
will define the channels, if any, that are carrying  
over-fiber payload in the egress direction.  
0x0000  
0 = SONET  
1 = over-fiber mode  
(For specific bits, see register Tx_TS[112],  
page 215.)  
15  
Reserved. These bits must be written to their reset  
default value (0).  
14  
Physical channel (line) A mode.  
1312  
Reserved. These bits must be written to their reset  
default value (00).  
10  
Physical channel (line) B mode.  
97  
Reserved. These bits must be written to their reset  
default value (000).  
6
Physical channel (line) C mode.  
53  
Reserved. These bits must be written to their reset  
default value (000).  
2
Physical channel (line) D mode.  
10  
Reserved. These bits must be written to their reset  
default value (00).  
Agere Systems Inc.  
223  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 117. Registers 0x102E0x1031: Over-Fiber Mode (Packet-Over-Fiber or POF) Control (R/W)  
(continued)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1030  
Rx_CHCD_FM[15:0] Receive Channel C/D Framer Mode. This  
register is used in over-fiber mode to give the Rx  
sequencer prior knowledge of the time slot and  
byte location within a time slot of the valid byte of a  
transparent packet for a given frame.  
0x0000  
1514  
Reserved. These bits must be written to their reset  
default value (00).  
1310  
98  
Time slot having the last payload for channel C.  
Last byte location out of 4-byte output for  
channel C.  
76  
Reserved. These bits must be written to their reset  
default value (00).  
52  
10  
Time slot having the last payload for channel D.  
Last byte location out of 4-byte output for  
channel D.  
1031  
Rx_CHAB_FM[15:0]  
Receive Channel A/B Framer Mode. This  
register is used in over-fiber mode to give the Rx  
sequencer prior knowledge of the time slot and  
byte location within a time slot of the valid byte of a  
transparent packet for a given frame.  
0x0000  
1514  
Reserved. These bits must be written to their reset  
default value (00).  
1310  
98  
Time slot having the last payload for channel A.  
Last byte location out of 4-byte output for  
channel A.  
76  
Reserved. These bits must be written to their reset  
default value (00).  
52  
10  
Time slot having the last payload for channel B.  
Last byte location out of 4-byte output for  
channel B.  
224  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 118. Registers 0x10320x1036: Sequencer Cell State Registers (R/W)  
Reset default of registers 0x10320x1035 = 0x0000.  
Reset default of register 0x1036 = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10321035  
Rx_CELL[AD]_FM Rx Channel [AD] Cell Register. This register is 0x0000  
used in over-fiber mode to give the Rx sequencer  
prior knowledge of the cell in which the last byte of  
a transparent packet for a given frame is located.  
1510  
90  
Reserved. These bits must be written to their reset  
default value (000000).  
00  
0000  
RxLBCF  
Rx Last Byte of Current Frame. Defines which of  
the 810 SONET cells has the last byte of the  
current frame in channel [AD].  
00  
0000  
0000  
1036  
Tx_SEQ_DISABLE  
Tx Sequencer Disable. This register is used to  
enable or disable channels. The default is all four  
channels are disabled. In other words, the disables  
on the channels must be cleared or the sequencer  
will not operate.  
0x000F  
1 = the channel is disabled; 0 = the channel is  
enabled.  
154  
Reserved. These bits must be written to their reset  
default value (0x000).  
0x000  
3
2
1
0
Channel A Disable.  
Channel B Disable.  
Channel C Disable.  
Channel D Disable.  
1
1
1
1
Table 119. Registers 0x10400x1043: Ingress Payload Type and Mode Control (R/W)  
Reset default of registers = 0x0700.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10401043  
Rx_PCTL_[03]  
Channel [03] Payload Type and Control.  
0x0700  
See Table 120 for receive type and mode  
control summary.  
1511  
108  
70  
Reserved. These bits must be written to their  
reset default value (00000).  
00000  
111  
Payload Type. Defines the payload type being  
received.  
Payload Control. Allows for different options  
when receiving data, such as pre- or post-  
unscrambling, PPP header discard, etc.  
0x00  
Agere Systems Inc.  
225  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 120. Receive Type and Mode Control Summary Table (Registers 0x10400x1043)  
Payload  
Type, Bits  
[10:8]  
Payload Control, Bits [7:0]  
7
6
5
4
3
2
1
0
000  
PPP  
0 = discard  
0 = header  
stripped  
0 = CRC-16 0 = CRC  
0 = CRC reversed 0 = no dry mode 00 = no unscrambling  
stripped  
1 = no discard  
1 = CRC-32  
1 = CRC normal  
1 = dry mode  
01 = post-unscrambling  
10 = pre-unscrambling  
11 = undefined  
1 = header  
on  
1 = CRC on  
001  
HDLC with  
CRC  
0
0
0
0
0
0 = CRC-16 0 = CRC  
0 = CRC reversed 0 = no dry mode 00 = no unscrambling  
stripped  
1 = CRC-32  
1 = CRC normal  
1 = dry mode  
01 = post-unscrambling  
10 = pre-unscrambling  
11 = undefined  
1 = CRC on  
010  
HDLC  
without CRC  
0
0
0
0 = no dry mode 00 = no unscrambling  
1 = dry mode  
01 = post-unscrambling  
10 = pre-unscrambling  
11 = undefined  
43  
0 = unassigned  
cell discard  
011  
ATM  
0 = byte sync  
1 = bit sync  
0 = idle cell  
discard  
00 = no discard*  
00 = X unscrambling  
01 = no unscrambling  
01 = discard  
1 = idle cell  
passthrough  
31  
10 = X unscrambling  
10 = smart discard  
1 = unassigned  
cell pass-  
11 = no unscrambling  
11 = discard, no  
through  
§
correction  
100  
SDL without  
CRC  
0 = byte sync 0 = length  
0
0
Length offset (0x0 to 0xF)  
stripped  
1 = bit sync  
1 = length on  
101  
SDL with  
CRC  
0 = byte sync 0 = length  
0 = CRC-16 0 = CRC  
Length offset (0x0 to 0xF)  
stripped  
stripped  
1 = bit sync  
1 = CRC-32  
1 = length on  
1 = CRC on  
110  
Transparent  
payload  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
111  
0
Not defined  
(reset mode)  
* No discardPass alATM cells with no error correction.  
DiscardDiscard cells with multiple-bit header errors. Correct and pass all cells with single-bit header errors.  
Smart discardDiscard cells with multiple-bit header errors, and only correct and pass the first of back-to-back single-bit header errors.  
§Discard, no correctionDiscard all cells with header errors.  
226  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 121. Registers 0x10800x1087: ATM Framer Idle Cell Match Mask (R/W)  
Reset default of registers = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10801087  
ATM_IDM_[03][31:0]  
ATM Idle Cell Match Mask Channel [03].  
0xFFFF  
This 32-bit register defines which of the 32 bits  
will be used for comparison between the idle  
cell register and the header data in the ATM  
framer. A value of 1 enables the comparison  
with the corresponding bit in the ATM idle cell  
register.  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
150  
150  
150  
150  
150  
150  
150  
150  
ATM_IDM_0[31:16]  
ATM_IDM_0[15:0]  
ATM_IDM_1[31:16]  
ATM_IDM_1[15:0]  
ATM_IDM_2[31:16]  
ATM_IDM_2[15:0]  
ATM_IDM_3[31:16]  
ATM_IDM_3[15:0]  
[31:24] is the MSByte of ATM_IDM_0.  
[7:0] is the LSByte ofATM_IDM_0.  
[31:24] is the MSByte of ATM_IDM_1.  
[7:0] is the LSByte ofATM_IDM_1.  
[31:24] is the MSByte of ATM_IDM_2.  
[7:0] is the LSByte ofATM_IDM_2.  
[31:24] is the MSByte of ATM_IDM_3.  
[7:0] is the LSByte ofATM_IDM_3.  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
Table 122. Registers 0x10880x108F: ATM Idle Cell Registers (R/W)  
Reset default of registers 0x1088, 0x108A, 0x108C, 0x108E = 0x0000.  
Reset default of registers 0x1089, 0x108B, 0x108D, 0x108F = 0x0001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
1088108F  
ATM_IDC_[03][31:0] ATM Idle Cell Register Channel [03].  
This 32-bit register will store the expected  
header value for idle cells. If the ATM framer  
sees a header for an ATM packet which  
See below.  
matches this register at the bit positions  
designated by the ATM idle cell match mask,  
the packet will be treated as an idle cell.  
1088  
1089  
108A  
108B  
108C  
108D  
108E  
108F  
150  
150  
150  
150  
150  
150  
150  
150  
ATM_IDC_0[31:16]  
ATM_IDC_0[15:0]  
ATM_IDC_1[31:16]  
ATM_IDC_1[15:0]  
ATM_IDC_2[31:16]  
ATM_IDC_2[15:0]  
ATM_IDC_3[31:16]  
ATM_IDC_3[15:0]  
[31:24] is the MSByte of ATM_IDC_0.  
[7:0] is the LSByte ofATM_IDC_0.  
[31:24] is the MSByte of ATM_IDC_1.  
[7:0] is the LSByte ofATM_IDC_1.  
[31:24] is the MSByte of ATM_IDC_2.  
[7:0] is the LSByte ofATM_IDC_2.  
[31:24] is the MSByte of ATM_IDC_3.  
[7:0] is the LSByte ofATM_IDC_3.  
0x0000  
0x0001  
0x0000  
0x0001  
0x0000  
0x0001  
0x0000  
0x0001  
Agere Systems Inc.  
227  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 123. Registers 0x10900x1097: ATM Unassigned Cell Match Mask (R/W)  
Reset default of registers = 0xFFFF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
10901097  
ATM_USM_[03][31:0] ATM Unassigned Cell Match Mask  
Channel [03]. This 32-bit register defines  
which of the 32 bits will be used for  
0xFFFF  
comparison between the unassigned cell  
register and the header data in theATM  
framer. A value of 1 enables the comparison  
with the corresponding bit in the ATM  
unassigned cell register.  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
150  
150  
150  
150  
150  
150  
150  
150  
ATM_USM_0[31:16]  
ATM_USM_0[15:0]  
ATM_USM_1[31:16]  
ATM_USM_1[15:0]  
ATM_USM_2[31:16]  
ATM_USM_2[15:0]  
ATM_USM_3[31:16]  
ATM_USM_3[15:0]  
[31:24] is the MSByte ofATM_USM_0.  
[7:0] is the LSByte of ATM_USM_0.  
[31:24] is the MSByte ofATM_USM_1.  
[7:0] is the LSByte of ATM_USM_1.  
[31:24] is the MSByte ofATM_USM_2.  
[7:0] is the LSByte of ATM_USM_2.  
[31:24] is the MSByte ofATM_USM_3.  
[7:0] is the LSByte of ATM_USM_3.  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
Table 124. Registers 0x10980x109F: ATM Unassigned Cell Registers (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1098109F  
ATM_USG_[03][31:0]  
ATM Unassigned Cell Register Channel 0.  
0x0000  
This 32-bit register will store the expected  
header value for unassigned cells. If the ATM  
framer sees a header for an ATM packet which  
matches this register at the bit positions  
designated by the ATM unassigned cell match  
mask, the packet will be treated as an  
unassigned cell.  
1098  
1099  
109A  
109B  
109C  
109D  
109E  
109F  
150  
150  
150  
150  
150  
150  
150  
150  
ATM_USG_0[31:16]  
ATM_USG_0[15:0]  
ATM_USG_1[31:16]  
ATM_USG_1[15:0]  
ATM_USG_2[31:16]  
ATM_USG_2[15:0]  
ATM_USG_3[31:16]  
ATM_USG_3[15:0]  
[31:24] is the MSByte ofATM_USG_0.  
[7:0] is the LSByte of ATM_USG_0.  
[31:24] is the MSByte ofATM_USG_1.  
[7:0] is the LSByte of ATM_USG_1.  
[31:24] is the MSByte ofATM_USG_2.  
[7:0] is the LSByte of ATM_USG_2.  
[31:24] is the MSByte ofATM_USG_3.  
[7:0] is the LSByte of ATM_USG_3.  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
228  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 125. Registers 0x10A00x10A3: ATM Framer State Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10A010A3  
ATM_ST_[03]  
Channel [03] ATM Scrambler Framer  
State.  
0x0000  
0x000  
00  
154  
32  
Reserved. These bits must be written to their  
reset default value (0x000).  
ATM Framer Sync State. These bits indicate  
the X31 sync state of each channel.  
ATM_ST_[03][3:2] = 00 Acquisition  
ATM_ST_[03][3:2] = 01 Verification  
ATM_ST_[03][3:2] = 10 Synchronized  
ATM_ST_[03][3:2] = 11 Undefined  
10  
ATM Frame State. These bits indicate the  
00  
frame state of each channel.  
ATM_ST_[03][1:0] = 00 Hunt  
ATM_ST_[03][1:0] = 01 Presync  
ATM_ST_[03][1:0] = 10 Sync  
ATM_ST_[03][1:0] = 11 Undefined  
Table 126. Register 0x10A4: ATM X43 Frame Control (R/W)  
Reset default of register = 0x01C6.  
Address  
(Hex)  
Bit #  
Name  
Function  
ATM X43 Frame Control.  
Reset  
Default  
10A4  
ATM_X43[11:0]  
0x01C6  
0x0  
1512  
Reserved. These bits must be written to their  
reset default value (0x0).  
116  
X43-Alpha. This register will define the alpha  
value for the X43 alpha-delta framer which is  
the number of consecutive incorrect ATM cells  
that must be received in order to transition from  
the sync state to the hunt state.  
000111  
000110  
50  
X43-Delta. This register will define the delta  
value for the X43 alpha-delta framer which is  
the number of consecutive correct ATM cells  
that must be received in order to transition from  
the presync state to the sync state.  
Agere Systems Inc.  
229  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 127. Register 0x10A5: ATM X31 Frame Control (R/W)  
Reset default of register = 0x01C8.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10A5  
ATM_X31[11:0]  
ATM X31 Framer Control.  
0x01C8  
0x0  
1512  
Reserved. These bits must be written to their  
reset default value (0x0).  
116  
X31-Alpha. This register will define the alpha  
value for the X31 alpha-delta framer which is  
the number of consecutive incorrectATM cells  
that must be received in order to transition from  
the sync state to the hunt state.  
000111  
001000  
50  
X31-Delta. This register will define the delta  
value for the X31 alpha-delta framer which is  
the number of consecutive correctATM cells  
that must be received in order to transition from  
the presync state to the sync state.  
Table 128. Register 0x10A6: ATM X31 V/W Values (R/W)  
Reset default of register = 0x0210.  
Address  
(Hex)  
Bit #  
Name  
Function  
X31 V and W Values.  
Reset  
Default  
10A6  
ATM_X31VW[11:0]  
0x0210  
0x0  
1512  
Reserved. These bits must be written to their  
reset default value (0x0).  
116  
X31 V Value. This register specifies the value  
001000  
the confidence counter in the X31 scrambler  
synchronization process must drop below in  
order to transition to the acquisition state from  
the verification state. The confidence counter is  
incremented every time the local scrambler  
samples match the received samples, and  
decremented when they do not (see standard  
I.432).  
50  
X31 W Value. This register specifies the value  
010000  
the confidence counter in the X31 scrambler  
synchronization process must drop below in  
order to declare loss of synchronization and  
transition to the acquisition state. The  
confidence counter is incremented every time  
the local scrambler samples match the received  
samples, and decremented when they do not  
(see standard I.432).  
230  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 129. Register 0x10A7: ATM X31 X/Y Values (R/W)  
Reset default of register = 0x0418.  
Address  
(Hex)  
Bit #  
Name  
Function  
X31 X and Y Values.  
Reset  
Default  
10A7  
ATM_X31XY[11:0]  
0x0418  
0x0  
1512  
Reserved. These bits must be written to their  
reset default value (0x0).  
116  
X31 X Value. This register specifies the  
010000  
minimum value the confidence counter in the  
X31 scrambler synchronization process must  
reach in order to transition to the verification  
state from the acquisition state. The confidence  
counter is incremented every time the local  
scrambler samples match the received  
samples, and decremented when they do not  
(see standard I.432).  
50  
X31 Y Value. This register specifies the  
011000  
minimum value the confidence counter in the  
X31 scrambler synchronization process must  
reach in order to transition to the synchronized  
state from the verification state. The confidence  
counter is incremented every time the local  
scrambler samples match the received  
samples, and decremented when they do not  
(see standard I.432).  
Table 130. Register 0x10A8: ATM X31 Z Value (R/W)  
Reset default of register = 0x0018.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10A8  
ATM_X31Z[5:0]  
X31 Z Value.  
0x0018  
156  
Reserved. These bits must be written to their  
00  
reset default value (0000000000).  
0000  
0000  
50  
X31 Z Value. This register specifies the  
011000  
maximum value the confidence counter in the  
X31 scrambler synchronization process can  
achieve. The confidence counter is  
incremented every time the local scrambler  
samples match the received samples, and  
decremented when they do not (see standard  
I.432).  
Agere Systems Inc.  
231  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 131. Register 0x10A9: Frame State Interrupt Mask (R/W)  
Reset default of register = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10A9  
FS_INT_MASK[3:0]  
Frame State Interrupt Mask. When active  
(logic 1), the associated event/delta is inhibited  
from contributing to the interrupt on a per-  
channel basis. Otherwise, an interrupt is  
generated when the ATM frame state transitions  
from sync to hunt state.  
0x000F  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
2
1
0
Channel 3 Mask Value.  
Channel 2 Mask Value.  
Channel 1 Mask Value.  
Channel 0 Mask Value.  
1
1
1
1
Table 132. Register 0x10AA: Scrambler State Interrupt Mask (R/W)  
Reset default of register = 0x000F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10AA  
SS_INT_MASK[3:0]  
Scrambler State Interrupt Mask. When active 0x000F  
(logic 1), the associated event/delta is inhibited  
from contributing to the interrupt on a per-  
channel basis. Otherwise, an interrupt is  
generated when the ATM frame state transitions  
from synchronization to verification state.  
154  
Reserved. These bits must be written to their  
0x000  
reset default value (0x000).  
3
2
1
0
Channel 3 Mask Value.  
Channel 2 Mask Value.  
Channel 1 Mask Value.  
Channel 0 Mask Value.  
1
1
1
1
232  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 133. Register 0x10AB: ATM Receive Debug Register (R/W)  
Reset default of register = 0x003C.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
ATM_Rx_DEBUG_REG[5:0]  
10AB  
ATM Receive Debug Register.  
0x003C  
156  
Reserved. These bits must be written to their  
00  
reset default value (0000000000).  
0000  
0000  
5
4
3
2
1
Channel 3 All Cool-Interrupt Mask Value.  
When active (logic 1), the associated event/  
delta is inhibited from contributing to the  
interrupt on a per-channel basis.  
1
1
1
1
0
Channel 2 All-Cool Interrupt Mask Value.  
When active (logic 1), the associated event/  
delta is inhibited from contributing to the  
interrupt on a per-channel basis.  
Channel 1 All-Cool Interrupt Mask Value.  
When active (logic 1), the associated event/  
delta is inhibited from contributing to the  
interrupt on a per-channel basis.  
Channel 0 All-Cool Interrupt Mask Value.  
When active (logic 1), the associated event/  
delta is inhibited from contributing to the  
interrupt on a per-channel basis.  
Incrementing NULL Cell Payload Sequence.  
This bit governs whether 0x6A is used for the  
payload of NULL cells, or whether an  
incrementing 8-bit count is used (0x00 →  
0xFF). A value of 1 selects the incrementing  
sequence. This can be used with the All_Cool  
interrupt.  
X31_Sync_Compare. In X31 mode, when this  
value is 0, the ATM framer does 6-bit  
comparisons of the HEC, which does not allow  
for error correction. When this value is 1, all 8  
bits of the HEC are used, which does allow for  
error correction.  
0
0
Agere Systems Inc.  
233  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 134. Registers 0x10B00x10B3: PPP Attach (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10B010B3 150  
PPP_Tx_CHAN[03]  
Channel [03] PPP Header. This register  
defines the 2 bytes that will be generated as the  
PPP header in compressed header PPP mode.  
In uncompressed header PPP mode, they will  
serve as the third and fourth bytes of the 4-byte  
header, with 0xFF03 being the first and second  
bytes.  
0x0000  
Table 135. Registers 0x10E00x10E3: Egress PayloadType and Mode Control (R/W)  
Reset default of registers = 0x0700.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10E010E3  
Tx_PCTL_[03][10:0]  
Channel [03] Payload Type and Control.  
See Table 136 for transmit type and mode  
control summary.  
0x0700  
1511  
108  
70  
Reserved. These bits must be written to their  
reset default value (00000).  
00000  
111  
Payload Type. Defines the payload type being  
received.  
Payload Control. Allows for different options  
when transmitting data, such as pre- or  
postscrambling, dry mode, PPP header  
discard, etc.  
0x00  
234  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 136. Transmit Type and Mode Control Summary Table (Registers 0x10E00x10E3)  
Note: In the table below, X indicates the bit may either be 0 or 1.  
Payload  
Type, Bits  
[10:8]  
Payload Control, Bits [7:0]  
7
6
5
4
3
2
1
0
000  
PPP  
0 = compression  
0
0
0
0
0 = CRC-16  
1 = CRC-32  
0
0
0
0 = CRC reversed 0 = no dry  
00 = no scrambling  
01 = postscrambling  
10 = pre-scrambling  
mode  
1 = no compression  
1 = CRC normal  
1 = dry mode  
11 = undefined  
001  
0
0
0
0 = CRC-16  
1 = CRC-32  
0 = CRC reversed 0 = no dry  
00 = no scrambling  
HDLC with CRC  
mode  
1 = CRC normal  
01 = postscrambling  
10 = prescrambling  
1 = dry mode  
11 = undefined  
010  
HDLC  
without CRC  
0
0
0
0 = no dry  
mode  
00 = no scrambling  
01 = postscrambling  
10 = prescrambling  
11 = undefined  
1 = dry mode  
43  
011  
ATM  
0
0
0
00 = X scrambling  
01 = no scrambling  
31  
10 = X scrambling  
11 = no scrambling  
100  
X
0
X
0
X
X
X
0
X
0
X
0
X
0
SDL without CRC  
101  
0 = CRC-16  
0
SDL with CRC  
1 = CRC-32  
0
110  
Transparent  
payload  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
111  
0
Not defined  
(reset mode)  
Table 137. Registers 0x10F010FB: PPP Header Value Detach (R/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
10F010FB  
150  
PPP_Rx_HDR  
[011][15:0]  
Register [011] PPP Header. This register  
defines the 2 bytes that can be used by all  
four channels to validate a PPP packet. Byte  
[15:8] is the MSByte and byte [7:0] is the  
LSByte. The register defining the valid PPP  
header is determined by the settings of  
registers 0x0FC0x0FF. Any channel can  
compare the received PPP header to this  
value. If there is a mismatch, then the PPP  
mismatched header counter (addresses  
0x11180x111F) will increment.  
0x0000  
Agere Systems Inc.  
235  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 138. Registers 0x10FC0x10FF: PPP Header Detach Search (R/W)  
Reset default of register 10FC = 0xC001.  
Reset default of register 10FD = 0xC002.  
Reset default of register 10FE = 0xC004.  
Reset default of register 10FF = 0xC008.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10FC10FF  
PPP_Rx_CHK_CH Channel [03] PPP Header Search. This register  
See  
[03][15:0]  
will control the headers that channel [03] PPP  
detach block looks for. Mismatched headers will be  
noted in a separate counter (addresses 0x1118—  
0x111F).  
below.  
1514  
Controls the way the PPP headers are searched for  
and passed through.  
11  
00 = Pass any 32-bit header where the first 16 bits  
are 0xFF03. The 0xFF03 (2 bytes) is stripped, and  
the protocol field remains.  
01 = Pass only specified uncompressed patterns  
(first 16 bits are 0xFF03; last 16 bits are defined by  
fixed patterns and/or register values). A 32-bit match  
is performed, and the 32 bits are all stripped. See  
below.  
10 = Pass only specified compressed pattern (all 16  
bits are defined by fixed patterns and/or register  
values). A search is made for one of the provisioned  
headers, and those 16 bits are stripped. See below.  
11 = Pass any pattern defined by fixed patterns and/  
or registers values. See below.  
13  
12  
11  
10  
9
A value of 1 in this bit will enable a search for the  
16-bit fixed value 0x8021.  
0
0
0
0
0
0
0
0
0
0
A value of 1 in this bit will enable a search for the  
16-bit fixed value 0x0021.  
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10FB.  
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10FA.  
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F9.  
8
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F8.  
7
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F7.  
6
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F6.  
5
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F5.  
4
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F4.  
236  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 138. Registers 0x10FC0x10FF: PPP Header Detach Search (R/W) (continued)  
Reset default of register 10FC = 0xC001.  
Reset default of register 10FD = 0xC002.  
Reset default of register 10FE = 0xC004.  
Reset default of register 10FF = 0xC008.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
10FC  
10FD  
10FE  
10FF  
10FC  
10FD  
10FE  
10FF  
10FC  
10FD  
10FE  
10FF  
10FC  
10FD  
10FE  
10FF  
3
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F3.  
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
2
1
0
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F2.  
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F1.  
A value of 1 in this bit will enable a search of the  
16-bit value in register address 0x10F0.  
Agere Systems Inc.  
237  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 139. Registers 0x11000x1107:ATM/HDLC/SDL FramerCondition Counter 1 (PMRST Update) (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
11001107  
PM_FC1_[03][27:0] ATM/HDLC/SDL Counter 1  
Channel [03]. Keeps a count of  
0x0000  
conditions detected by the data framer in the  
particular channel. This register can  
represent only one of the following based  
upon the channels payload type:  
I HDLC invalid sequences (as defined in  
IETF RFC 1622 below)  
I ATM corrected cells  
I SDL corrected header  
This value is updated upon assertion of  
PMRST, and the real-time counter value is  
reset to zero.  
From IETF RFC 1622, invalid sequences are  
the following:  
1. Frames which are too short (less than 4  
data bytes). See register PM_FC2_0  
(addresses 0x11080x110F).  
2. Frames which end with a control escape  
octet followed immediately by a coding flag  
sequence (0x7D7E).  
3. Frames in which octet framing is violated  
by transmitting a 0 stop bit where a 1 bit is  
expected.  
1100  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_FC1_0[27:16]  
PM_FC1_0[15:0]  
[11:4] is the MSByte of PM_FC1_0.  
[7:0] is the LSByte of PM_FC1_0.  
0x000  
0x0000  
0x0  
1101  
1102  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC1_1[27:16]  
PM_FC1_1[15:0]  
[11:4] is the MSByte PM_FC1_1.  
[7:0] is the LSByte of PM_FC1_1.  
0x000  
0x0000  
0x0  
1103  
1104  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC1_2[27:16]  
PM_FC1_2[15:0]  
[11:4] is the MSByte of PM_FC1_2.  
[7:0] is the LSByte of PM_FC1_2.  
0x000  
0x0000  
0x0  
1105  
1106  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC1_3[27:16]  
PM_FC1_3[15:0]  
[11:4] is the MSByte of PM_FC1_3.  
[7:0] is the LSByte of PM_FC1_3.  
0x000  
1107  
0x0000  
238  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 140. Registers 0x11080x110F: ATM/HDLC/SDL FramerCondition Counter 2 (PMRST Update)  
(RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
1108110F  
PM_FC2_[03][27:0] ATM/HDLC/SDL Counter 2  
Channel [03]. Keeps a count of  
0x0000  
conditions detected by the data framer in the  
particular channel. This register can  
represent only one of the following based  
upon the channels payload type:  
I HDLC short packets (packet < 4 data  
bytes)  
I ATM discarded cells  
I SDL errored header  
This value is updated upon PMRST, and the  
real-time counter value is reset to zero.  
1108  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_FC2_0[27:16]  
PM_FC2_0[15:0]  
[11:4] is the MSByte of PM_FC2_0.  
[7:0] is the LSByte of PM_FC2_0.  
0x000  
0x0000  
0x0  
1109  
110A  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC2_1[27:16]  
PM_FC2_1[15:0]  
[11:4] is the MSByte of PM_FC2_1.  
[7:0] is the LSByte of PM_FC2_1.  
0x000  
0x0000  
0x0  
110B  
110C  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC2_2[27:16]  
PM_FC2_2[15:0]  
[11:4] is the MSByte of PM_FC2_2.  
[7:0] is the LSByte of PM_FC2_2.  
0x000  
0x0000  
0x0  
110D  
110E  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_FC2_3[27:16]  
PM_FC2_3[15:0]  
[11:4] is the MSByte of PM_FC2_3.  
[7:0] is the LSByte of PM_FC2_3.  
0x000  
110F  
0x0000  
Agere Systems Inc.  
239  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 141. Registers 0x11100x1117: CRC CheckerBad Packet Counter (PMRST Update) (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
11101117  
PM_BPC_[03][27:0] CRC Bad Packet Counter Channel [03].  
Keeps a count of bad packets detected by  
the CRC checker. This value is updated  
upon PMRST, and the real-time counter  
value is reset to zero.  
0x0000  
1110  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_BPC_0[27:16]  
PM_BPC_0[15:0]  
[11:4] is the MSByte of PM_BPC_0.  
[7:0] is the LSByte of PM_BPC_0.  
0x000  
0x0000  
0x0  
1111  
1112  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_BPC_1[27:16]  
PM_BPC_1[15:0]  
[11:4] is the MSByte of PM_BPC_1.  
[7:0] is the LSByte of PM_BPC_1.  
0x000  
0x0000  
0x0  
1113  
1114  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_BPC_2[27:16]  
PM_BPC_2[15:0]  
[11:4] is the MSByte of PM_BPC_2.  
[7:0] is the LSByte of PM_BPC_2.  
0x000  
0x0000  
0x0  
1115  
1116  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_BPC_3[27:16]  
PM_BPC_3[15:0]  
[11:4] is the MSByte of PM_BPC_3  
[7:0] is the LSByte of PM_BPC_3  
0x000  
1117  
0x0000  
240  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 142. Registers 0x11180x111F: PPP DetachMismatched Header Counter (PMRST Update) (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
1118111F  
PM_MHC_[03][27:0] PPP Mismatched Header Counter  
Channel [03]. Keeps a count of packets  
with a mismatched header detected by the  
PPP detach block. This value is updated  
upon PMRST, and the real-time counter  
value is reset to zero.  
0x0000  
1118  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_MHC_0[27:16]  
PM_MHC_0[15:0]  
[11:4] is the MSByte of PM_MHC_0.  
[7:0] is the LSByte of PM_MHC_0.  
0x000  
0x0000  
0x0  
1119  
111A  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_MHC_1[27:16]  
PM_MHC_1[15:0]  
[11:4] is the MSByte of PM_MHC_1.  
[7:0] is the LSByte of PM_MHC_1.  
0x000  
0x0000  
0x0  
111B  
111C  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_MHC_2[27:16]  
PM_MHC_2[15:0]  
[11:4] is the MSByte of PM_MHC_2.  
[7:0] is the LSByte of PM_MHC_2.  
0x000  
0x0000  
0x0  
111D  
111E  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_MHC_3[27:16]  
PM_MHC_3[15:0]  
[11:4] is the MSByte of PM_MHC_3.  
[7:0] is the LSByte of PM_MHC_3.  
0x000  
111F  
0x0000  
Agere Systems Inc.  
241  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 143. Registers 0x11200x1127: Receive Good Packet/Cell Counter (PMRST Update) (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
11201127  
PM_GPC_RX_[03] Good Packet/Cell Counter Channel  
0x0000  
[27:0]  
[03]. Keeps a count of good packets  
detected by the receive data engine. This  
value is updated upon PMRST, and the real-  
time counter value is reset to zero. In ATM  
mode, this counter counts the number of  
good ATM cells received.  
1120  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_GPC_RX_0[27:16] [11:4] is the MSByte of PM_GPC_RX_0.  
PM_GPC_RX_0[15:0] [7:0] is the LSByte of PM_GPC_RX_0.  
0x000  
0x0000  
0x0  
1121  
1122  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_RX_1[27:16] [11:4] is the MSByte of PM_GPC_RX_1.  
PM_GPC_RX_1[15:0] [7:0] is the LSByte of PM_GPC_RX_1.  
0x000  
0x0000  
0x0  
1123  
1124  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_RX_2[27:16] [11:4] is the MSByte of PM_GPC_RX_2.  
PM_GPC_RX_2[15:0] [7:0] is the LSByte of PM_GPC_RX_2.  
0x000  
0x0000  
0x0  
1125  
1126  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_RX_3[27:16] [11:4] is the MSByte of PM_GPC_RX_3.  
PM_GPC_RX_3[15:0] [7:0] is the LSByte of PM_GPC_RX_3.  
0x000  
1127  
0x0000  
242  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 144. Registers 0x11280x112F: Transmit Good Packet/Cell Counter (PMRST Update) (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset Default  
1128112F  
PM_GPC_TX_[03] Good Packet/Cell Counter Channel  
0x0000  
[27:0]  
[03]. Keeps a count of good packets  
detected by the transmit data engine. This  
value is updated upon PMRST, and the real-  
time counter value is reset to zero. In ATM  
mode, this counter counts the number of  
good ATM cells transmitted.  
1128  
1512  
Reserved. These bits must be written to  
0x0  
their reset default value (0x0).  
110  
150  
PM_GPC_TX_0[27:16] [11:4] is the MSByte of PM_GPC_TX_0.  
PM_GPC_TX_0[15:0] [7:0] is the LSByte of PM_GPC_TX_0.  
0x000  
0x0000  
0x0  
1129  
112A  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_TX_1[27:16] [11:4] is the MSByte of PM_GPC_TX_1.  
PM_GPC_TX_1[15:0] [7:0] is the LSByte of PM_GPC_TX_1.  
0x000  
0x0000  
0x0  
112B  
112C  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_TX_2[27:16] [11:4] is the MSByte of PM_GPC_TX_2.  
PM_GPC_TX_2[15:0] [7:0] is the LSByte of PM_GPC_TX_2.  
0x000  
0x0000  
0x0  
112D  
112E  
1512  
Reserved. These bits must be written to  
their reset default value (0x0).  
110  
150  
PM_GPC_TX_3[27:16] [11:4] is the MSByte of PM_GPC_TX_3.  
PM_GPC_TX_3[15:0] [7:0] is the LSByte of PM_GPC_TX_3.  
0x000  
112F  
0x0000  
Table 145. Registers 0x11800x1186: Interrupt Masks for Packet Counters (R/W)  
Reset default of registers = 0x001F.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1180, 1182,  
1184, 1186  
DEDINTM[03]  
Data Interrupt Mask Channel [03]. When  
active (logic 1), the associated event/delta is  
inhibited from contributing to the interrupt on a  
per-channel basis.  
0x001F  
155  
Reserved. These bits must be written to their  
reset default value (00000000000).  
000  
0000  
0000  
4
3
2
1
0
Rx-Side Good Packet.  
PPP Mismatched Header.  
CRC Bad Packet.  
1
1
1
1
1
ATM/HDLC/SDL Counter 2.  
ATM/HDLC/SDL Counter 1.  
Agere Systems Inc.  
243  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 146. Registers 0x11810x1187: Interrupts for Packet Counters (COR/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1181, 1183,  
1185, 1187  
DEDINT[03]  
Data Interrupt Channel [03]. Stores bits that 0x0000  
describe which conditions of corrupted data  
exist in channel [03].  
155  
Reserved. These bits must be written to their  
reset default value (00000000000).  
000  
0000  
0000  
4
3
2
1
0
Rx-Side Good Packet.  
PPP Mismatched Header.  
CRC Bad Packet.  
0
0
0
0
0
ATM/HDLC/SDL Counter 2.  
ATM/HDLC/SDL Counter 1.  
Table 147. Registers 0x12000x1213, 0x12F0: ATM Transmit Registers (R/W)  
Reset default of registers 0x12000x1203, 0x12F0 = 0x0000.  
Reset default of registers 0x12100x1213 = 0x0001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1200, 1201, 150  
1202, 1203  
NULLCELL1[03]  
ATM Null (Idle) Cell MSB Channel [03]. This  
defines the first 2 bytes of a NULL ATM cell (i.e.,  
15:0 = h0h1).  
0x0000  
1210, 1211, 150  
1212, 1213  
NULLCELL2[03]  
ATM Null (Idle) Cell LSB Channel [03]. This  
defines the second 2 bytes of a NULL ATM cell  
(i.e., 15:0 = h2h3).  
0x0001  
244  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 147. Registers 0x12000x1213, 0x12F0: ATM Transmit Registers (R/W) (continued)  
Reset default of registers 0x12000x1203, 0x12F0 = 0x0000.  
Reset default of registers 0x12100x1213 = 0x0001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
12F0  
ATM_HEADER_ERROR ATM Tx Debug Control. Used for debug  
purposes to inject errors, and to increment the  
payload sequence for NULL cells.  
0x0000  
158  
Reserved. These bits must be written to their  
reset default value (0x00).  
0x00  
0
7
Incrementing Null (Idle) Cell Payload  
Sequence. This bit governs whether 0x6A is  
used for the payload of NULL cells, or whether an  
incrementing 8-bit count is used (0x00 0xFF).  
A value of 1 selects the incrementing sequence.  
This is used with DE register 0x1002 bits [11:8].  
6
Error Strobe. Writing a value of 1 to this register  
initiates the injection of a single or double shot  
error injection, assuming one of these two modes  
is selected.  
0
54  
Error Injection Mode. These bits control the  
00  
mode of operation of the error injection.  
00 = continuous injection  
01 = single shot (isolated cell)  
10, 11 = double shot (i.e., two back-to-back cells)  
32  
10  
Error Type. These bits control the injection of a  
walking error pattern into the headers of all  
outgoing cells.  
00  
00  
00 = no errors  
01 = single bit errors  
10, 11 = double bit errors  
Error Channel ID. The logical channel in which  
to inject the header errors.  
Agere Systems Inc.  
245  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 148. Registers 0x14000x1403: SDL State Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1400, 1401,  
1402, 1403  
SDL_ST[03]  
SDL State Channel [03]. These registers  
describe the SDL framer and scrambler states.  
0x0000  
0x000  
00  
154  
32  
Reserved. These bits must be written to their  
reset default value (0x000).  
SDL Frame State. Indicates the frame state of  
each channel.  
SDL_ST[03][3:2] = 00. Out-of-Frame. The  
SDL framer is in search of a successful SDL  
framing.  
SDL_ST[03][3:2] = 01. Presync. The SDL  
framer has transitioned from the out of frame to  
the presync state. The SDL framer has  
successfully framed one SDL header.  
SDL_ST[03][3:2] = 10. Sync. The SDL  
framer has transitioned from the presync to the  
sync state. The framer has successfully  
detected the second consecutive SDL packet.  
The SDL framer is correctly framed on the SDL  
signal. The SDL framer remains in the sync  
state until a bad packet frame is detected.  
Detection of a bad packet frame places the SDL  
framer in the out-of-frame state.  
SDL_ST[03][3:2] = 11. Undefined.  
10  
SDL Scram State. Indicates the X48 sync state  
00  
of each channel.  
SDL_ST[03][1:0] = 00. Hunt. The SDL  
scrambler has yet to detect a valid scrambler  
state.  
SDL_ST[03][1:0] = 01. Sync. The SDL  
scrambler is in sync.  
SDL_ST[03][1:0] = 10. Postsync. The SDL  
scrambler was in sync, but detected an SDL  
state that did not match the expected state. If  
two consecutive nonmatching states are  
detected, then (1) the SDL framer is reset with  
the scrambler state received in the bit stream,  
and (2) a sync slip interrupt is generated.  
SDL_ST[03][1:0] = 11. Undefined.  
246  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 149. Registers 0x14700x1473: A Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1470, 1471, 150  
1472, 1473  
SDL_AMM1[03]  
A Message Mailbox 1: Channel [03]. These 0x0000  
registers will store the first 16 bits of a valid A  
message header. A maskable interrupt will be  
generated if the SDL framer receives an A  
message.  
Table 150. Registers 0x14800x1483: A Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1480, 1481, 150  
1482, 1483  
SDL_AMM2[03]  
A Message Mailbox 2: Channel [03]. These 0x0000  
registers will store the middle 16 bits of a valid  
A message header. A maskable interrupt will be  
generated if the SDL framer receives an A  
message.  
Table 151. Registers 0x14900x1493: A Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1490, 1491, 150  
1492, 1493  
SDL_AMM3[03]  
A Message Mailbox 3: Channel [03]. These 0x0000  
registers will store the last 16 bits of a valid A  
message header. A maskable interrupt will be  
generated if the SDL framer receives an A  
message.  
Table 152. Registers 0x14A00x14A3: B Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14A0, 14A1, 150  
14A2, 14A3  
SDL_BMM1[03]  
B Message Mailbox 1: Channel [03]. These 0x0000  
registers will store the first 16 bits of a valid B  
message header. A maskable interrupt will be  
generated if the SDL framer receives a B  
message.  
Agere Systems Inc.  
247  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 153. Registers 0x14B00x14B3: B Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14B0, 14B1, 150  
14B2, 14B3  
SDL_BMM2[03]  
B Message Mailbox 2: Channel [03]. These 0x0000  
registers will store the middle 16 bits of a valid  
B message header. A maskable interrupt will be  
generated if the SDL framer receives a B  
message.  
Table 154. Registers 0x14C00x14C3: B Message Mailbox Registers (RO)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14C0, 14C1, 150  
14C2, 14C3  
SDL_BMM3[03]  
B Message Mailbox 3: Channel [03]. These 0x0000  
registers will store the last 16 bits of a valid B  
message header. A maskable interrupt will be  
generated if the SDL framer receives a B  
message.  
Table 155. Registers 0x14D00x14D3: SDL Interrupt Masks (R/W)  
Reset default of registers = 0x00FF.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14D0, 14D1,  
14D2, 14D3  
SDLINTM[03]  
SDL Interrupt Mask Channel [03]. When  
active (logic 1), the associated event/delta is  
inhibited from contributing to the interrupt on a  
per-channel basis.  
0x00FF  
158  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
7
6
5
4
3
B_Message Reception.  
1
1
1
1
1
A_Message Reception.  
Uncorrectable Special Payload Error.  
Uncorrectable Bit Error.  
Reserved. This bit must be written to its reset  
default value (1).  
2
1
0
Single Bit Error.  
1
1
1
Scrambler Out of Sync.  
Framer Out of Sync.  
248  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 156. Registers 0x14E00x14E3: SDL Interrupts (COR/W)  
Reset default of registers = 0x0000.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14E0, 14E1,  
14E2, 14E3  
SDLINT[03]  
SDL Interrupt Channel [03]. Used to record 0x0000  
various occurrences within the SDL framer. The  
bits will generate an interrupt if defined by the  
interrupt mask, but the register values here are  
independent of the interrupt mask values.  
158  
Reserved. These bits must be written to their  
0x00  
reset default value (0x00).  
7
6
5
B_Message Reception.  
A_Message Reception.  
0
0
0
Uncorrectable Special Payload Error.  
Indicates occurrence of two or more special  
payload errors.  
4
3
Uncorrectable Header Bit Error. Indicates  
occurrence of two or more header errors.  
0
0
Reserved. This bit must be written to its reset  
default value (0).  
2
1
Single Bit Header Error.  
0
0
Scrambler Out of Sync. Indicates a scrambler  
sync slip.  
0
Framer Out of Sync.  
0
Table 157. Register 0x14F0: SDL Receive Configuration Registers (R/W)  
Reset default of registers = 0x0001.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
14F0  
SDL_DELTA  
SDL Receive Frame Configuration Register.  
0x0001  
157  
Reserved. These bits must be written to their  
0000  
reset default value (000000000).  
00000  
6
Disable Scrambling. When this value is 1, the  
SDL framer will not unscramble the data prior to  
framing.  
0
5
4
Reserved. These bits must be written to their  
reset default value (0).  
0
0
Sync Mode. When bit 4 has a value of 1, then  
only one framer is used at all times to frame  
SDL data. Normally, this bit is 0, and four  
coordinated framers are active simultaneously  
to synchronize the scrambler process.  
30  
Framer Delta. This register will define the delta  
0x1  
value for the CRC-16 framer.  
Agere Systems Inc.  
249  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 158. Registers 0x16000x1607: SDLTransmit Registers (R/W)  
Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000.  
Reset default of register 0x1604 = 0x0008.  
Reset default of register 0x1605 = 0x8000.  
Note:These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register  
0x1603 is a clear-on-write (COW) register.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1600  
1601  
1602  
150  
SDLFI_MSG1  
SDL Message. These registers will store the  
first 16 bits of a header of an outgoing A or B  
message.  
0x0000  
0x0000  
0x0000  
150  
150  
SDLFI_MSG2  
SDLFI_MSG3  
SDL Message. These registers will store the  
middle 16 bits of a header of an outgoing A or B  
message.  
SDL Message. These registers will store the  
last 16 bits of a header of an outgoing A or B  
message. Writing to this register causes the  
message to be sent.  
1603  
SDLFI_MSG_TYPE  
SDLMTB  
SDL Message Type.  
Message Type Bit.  
0x0000  
0
15  
0 = A Message  
1 = B Message  
142  
Reserved. These bits must be written to their  
0
reset default value (00000000000000).  
0000  
0000  
0000  
10  
SDLCHID[1:0]  
SDLFI_INT  
Channel ID. Defines on which channel the  
special message will be transmitted.  
00  
1604  
150  
SDL State Transmit Interval. Defines the  
number of packets (or dWords) separating  
scrambler state transmissions. Use register  
0x1605 to determine if units are packets or  
dwords.  
0x0008  
250  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 158. Registers 0x16000x1607: SDL Transmit Registers (R/W) (continued)  
Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000.  
Reset default of register 0x1604 = 0x0008.  
Reset default of register 0x1605 = 0x8000.  
Note:These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register  
0x1603 is a clear-on-write (COW) register.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1605  
SDLFI_MODE  
SDLSMIE  
SDL State Transmit Mode.  
0x8000  
1
15  
Special Message Interrupt Enable. The SDL  
line transmitter generates an interrupt when  
transmission of a special message is complete.  
In this case, used to signal the sending of a  
special message (A or B message).  
142  
Reserved. These bits must be written to their  
0
reset default value (0000000000000).  
0000  
0000  
0000  
1
0
SDLSC  
Scrambler Control.  
0
0
1 = disables data scrambling  
0 = enables data scrambling  
SDLSSTMS  
Scrambler State Transmit Mode Select.  
0 = packets  
1 = dWord (32 bits)  
Agere Systems Inc.  
251  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Register Descriptions (continued)  
DE Registers (continued)  
Table 158. Registers 0x16000x1607: SDL Transmit Registers (R/W) (continued)  
Reset default of registers 0x1600, 0x1601, 0x1602, 0x1603, 0x1606 = 0x0000.  
Reset default of register 0x1604 = 0x0008.  
Reset default of register 0x1605 = 0x8000.  
Note:These registers must be written in the following order: 0x1603, then 0x1600, 0x1601, 0x1602. Register  
0x1603 is a clear-on-write (COW) register.  
Address  
(Hex)  
Bit #  
Name  
Function  
Reset  
Default  
1606  
SDLFI_INTR  
Status Register.  
0x0000  
152  
Reserved. These bits must be written to their  
00  
reset default value (000000000000000).  
0000  
0000  
0000  
1
0
SDLFDO  
SDLMSI  
SDLFIFO Depth Out. When this bit has a value  
of 1, it indicates that the FIFO in the SDL Tx  
data buffer is over half full.  
0
Message Sent Interrupt. When this bit has a  
value of 1, it indicates that an SDL A/B  
message has been sent. This value may be  
cleared when read or written.  
0
1607  
SDLFI_DEBUG  
SDL Debug Register.  
0x0000  
156  
Reserved. These bits must be written to their  
00  
reset default value (0000000000).  
0000  
0000  
54  
32  
10  
SDLHE[1:0]  
Header Error. This value indicates the number  
of errors to insert into the SDL header on a  
given channel for debug purposes. The error  
injection is done using a walking ones pattern  
to cover all possibilities.  
00  
00  
00  
0x0 = no errors  
0x1 = single error  
0x2 = double error  
0x3 = double error  
SDLPE[1:0]  
Payload Error. This value indicates the number  
of errors to insert into the payload of special  
packets on a given channel for debug purposes.  
The error injection is done using a walking ones  
pattern to cover all possibilities.  
00 = no errors  
01 = single error  
10 = double error  
11 = double error  
SDLECID[1:0]  
Error Channel ID. This value specifies the  
channel on which the errors are to be sent.  
252  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Min  
Max  
Unit  
Power Supply Voltage  
Storage Temperature  
Pin Voltage (3.3 V)  
0.5  
65  
4.2  
125  
V
°C  
V
GND 0.5  
GND 0.5  
VDD + 0.5  
5.5  
Pin Voltage (5 V tolerant)  
V
Note: VDD = VDDA = VDDD.  
Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid expo-  
sure to electrostatic discharge (ESD) during handling and mounting. Agere employs a human-body model (HBM)  
and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage  
thresholds are dependent on the circuit parameters used in the defined model. No industry-wide standard has  
been adopted for the CDM. However, a standard HBM (resistance = 1500 , capacitance = 100 pF) is widely used  
and, therefore, can be used for comparison purposes:  
Device  
Voltage  
TDAT042G5  
TBD  
TBD  
TDAT042G51A  
Operating Conditions  
Table 159. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply (dc voltage)  
Ground  
VDD  
3.135  
3.465  
V
V
Input Voltage:  
Low  
VIL  
1.0  
V
V
GND  
High  
VIH  
VDD  
VDD 1.0  
40  
Ambient Temperature  
85  
°C  
Power Dissipation (VDD = 3.465 V)  
PD  
7.5  
W
Note: VDD = VDDA = VDDD.  
Agere Systems Inc.  
253  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Electrical Characteristics  
The following characteristics are guaranteed over the recommended operating conditions, unless otherwise speci-  
fied in the test conditions.  
Table 160. 3.3 V Logic Interface Characteristics  
These logic levels are TTL 5 V compliant.  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Input Leakage  
IL  
1.0  
µA  
Output Voltage:  
Low  
High  
VOL  
VOH  
5.0 mA  
5.0 mA  
GND  
VDD 1.0  
0.5  
VDD  
V
V
Input Capacitance  
Load Capacitance  
CI  
pF  
pF  
CL  
*
* Load for the UTOPIA ports are given in Table 170, page 269. Load for all microprocessor outputs is 50pF.  
Note: VDD = VDDA = VDDD.  
Table 161. LVPECL Interface Characteristics  
The range for VDD in this table is as follows: 3.0 V < VDD < 3.63 V, and VDD nominal = 3.30 V.  
Parameter  
Symbol  
Test  
Min  
Nominal  
Max  
Unit  
Conditions  
Output Voltage:  
Low  
High  
VOL  
VOH  
VDD 1.810  
VDD 1.025  
VDD 1.620  
VDD 0.880  
V
V
Input Voltage:  
Low  
High  
VIL  
VIH  
VDD 1.810  
VDD 1.165  
VDD 1.475  
VDD 0.880  
V
V
Input Capacitance  
Load Capacitance  
Input Buffer Gain  
CI  
CL  
VG  
2.5  
0.4  
pF  
pF  
dB  
125  
Note: VDD = VDDA = VDDD.  
254  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Electrical Characteristics (continued)  
Table 162. LVPECL 3.3 V Logic Interface Characteristics  
VDDD has a range of 3.0 V < VDDD < 3.63 V, VDDD typical = 3.3 V.  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Input Leakage Current  
Input Common Mode Voltage Range1  
IL  
20  
µA  
V
VCMR  
1
2.75  
Output Voltage:  
Low  
High  
VDDD 1.97  
VDDD 1.025  
VDDD 1.620  
VDDD 0.72  
V
V
VOLLVPECL  
VOHLVPECL  
Output Voltage Swing  
Input Capacitance  
Load Capacitance  
Input Buffer Gain  
VOSWING  
0.595  
1.25  
2.3  
0.4  
V
CI  
CL  
VG  
pF  
pF  
dB  
125  
1. With a swing of 300 mV: VID = 300 mV where VIL (min) = 0.85 V and VIH (max) = 2.9 V.  
Agere Systems Inc.  
255  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications  
This section specifies the interface timing requirements for the microprocessor interface, line interface, UTOPIA  
interface, and SONET transport overhead (TOAC) interface.  
Microprocessor Interface Timing  
In all modes of the microprocessor interface, the CS may be held active continuously without affecting the function-  
ality of TDAT042G5. There is no minimum time between successive microprocessor accesses to TDAT042G5, i.e.,  
successive reads or writes may be back to back.  
Synchronous Mode  
The synchronous microprocessor interface mode is selected when MPMODE (pin D8) = 1. Interface timing for the  
synchronous mode write cycle is given in Figure 38 and in Table 163 (pages 256257), and for the read cycle in  
Figure 39 and in Table 164 (pages 258259).  
T0  
T1  
T2  
T3  
T4  
T5  
MPCLK  
(66 MHz MAX)  
t1  
t2  
ADDR[15:0]  
CS  
t3  
t4  
t5  
ADS  
R/W  
t2  
t1  
t2  
t1  
DATA[15:0]  
(INPUT)  
t7  
t6  
HIGH Z  
HIGH Z  
DT  
5-7659(F)r.2  
Figure 38. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin D8) = 1)  
256  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Synchronous Mode (continued)  
ADDR[15:0] The address will be available throughout the entire cycle.  
DATA[15:0] Data will be available during cycles T1 through T5.  
R/W (Input) The read (H) write (L) signal is always high except during a write cycle.  
CS (Input) Chip select is an active-low signal.  
DT (Output) Data transfer acknowledge is active-low on the host bus interface. It is initiated in timing cycle T5.  
DT is 3-stated when CS is high.  
ADS (Input) Address strobe is active-low for one clock cycle, T0. When used with the Power PC* (Motorola†  
MPC860), this is TS (transfer start).  
* PowerPC is a registered trademark of International Business Machines Corporation.  
Motorola is a registered trademark of Motorola, Inc.  
Table 163. Microprocessor Interface Synchronous Write Cycle Specifications  
(See Figure 38 on page 256 for the timing diagram.)  
Symbol  
Parameter  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
(Min)  
(Min)  
(Max)  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
ADDR, R/W, DATA (write) Valid to MPCLK  
MPCLK to ADDR, R/W, DATA (write) Invalid  
CS Valid to MPCLK  
3
5
8
3.5  
5.5  
5
ADS Valid to MPCLK  
MPCLK to ADS Invalid  
MPCLK to DT Valid  
1
MPCLK to DT Invalid  
Agere Systems Inc.  
257  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Synchronous Mode (continued)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
MPCLK  
(66 MHz MAX)  
t8  
t10  
t11  
t9  
ADDR[15:0]  
CS  
t12  
ADS  
R/W  
t13  
t14  
t16  
HIGH Z  
HIGH Z  
HIGH Z  
HIGH Z  
DT  
t15  
DATA[15:0]  
(OUTPUT)  
5-7660(F)r.6  
Figure 39. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin D8) = 1)  
ADDR[15:0] The address will be available throughout the entire cycle.  
DATA[15:0] Read data is available in T6.  
R/W (Input) The read (H) write (L) signal is always high during the read cycle.  
CS (Input)  
Chip select is an active-low signal.  
DT (Output) Data transfer acknowledge on the host bus interface is initiated on T6. DT is 3-stated when CS is  
high.  
ADS (Input) Address strobe is active-low for one clock cycle, T0. When used with the Power PC (Motorola  
MPC860), this is TS (transfer start).  
258  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Synchronous Mode (continued)  
Table 164. Microprocessor Interface Synchronous Read Cycle Specifications  
(See Figure 39 on page 258 for the timing diagram.)  
Symbol  
Parameter  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
(Min)  
(Min)  
(Max)  
t8  
ADDR Valid to MPCLK  
3
5
8
t9  
MPCLK to ADDR Invalid  
CS Valid to MPCLK  
3.5  
5.5  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
5
ADS Valid to MPCLK  
MPCLK to ADS Invalid  
MPCLK to DT Valid  
1
MPCLK to DT Invalid  
MPCLK to DATA Valid  
MPCLK to DATA 3-state  
24  
1
Agere Systems Inc.  
259  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Asynchronous Mode  
The asynchronous microprocessor interface mode is selected when MPMODE (pin D8) = 0. Interface timing for the  
asynchronous mode write cycle is given in Figure 40 and in Table 165 (see pages 260261), and for the read  
cycle in Figure 41 and in Table 166 (see pages 262263).  
ADDR[15:0]  
t17  
t18  
CS  
t19  
t20  
ADS  
t21  
t22  
DS  
t23  
t24  
t26  
R/W  
t25  
DATA[15:0]  
(INPUT)  
t29  
t27  
HIGH Z  
t30  
t28  
HIGH Z  
DT  
5-7661(F)r.3  
Figure 40. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin D8) = 0)  
ADDR[15:0] The address must be valid when ADS is low.  
DATA[15:0] Data must be valid when DS is low.  
R/W (Input) The read (H) write (L) signal is always high except during a write cycle.  
CS (Input)  
Chip select is an active-low signal.  
DT (Output) Data transfer acknowledge (active-low). DT is driven asynchronously based on the arrival of CS.  
DT is driven high until the internal transaction is done. DT is driven high again when ADS is deas-  
serted. DT will become 3-stated when CS is high.  
ADS (Input) Address strobe is active-low. The microprocessor can pull ADS high after DT goes high.  
DS (Input)  
Data strobe is active-low.  
260  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Asynchronous Mode (continued)  
Table 165. Microprocessor Interface Asynchronous Write Cycle Specifications  
(See Figure 40 on page 260 for the timing diagram.)  
Symbol  
Parameter  
Min Interval Max Interval  
(ns)  
(ns)  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
t30  
CS Fall to DS Fall  
0
0
ADDR Invalid to CS Rise  
ADDR Valid to ADS Fall  
ADS Rise to ADDR Invalid  
ADDR Valid to DS Fall  
DS Rise to ADDR Invalid  
R/W Fall to DS Fall  
0
5
0
0
0
DS Rise to R/W Rise  
DATA Valid to DS Fall  
DS Rise to DATA Invalid  
CS Fall to DT High  
0
0
0
0
DS Fall to DT Fall  
77  
0
103  
37.5  
ADS Rise to DT Rise  
CS Rise to DT 3-state  
0
Agere Systems Inc.  
261  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Asynchronous Mode (continued)  
ADDR[15:0]  
t32  
t31  
CS  
t34  
t33  
ADS  
t36  
t35  
DS  
R/W  
t37  
t40  
t38  
t39  
HIGH Z  
DT  
HIGH Z  
HIGH Z  
t41  
t42  
HIGH Z  
DATA[15:0]  
5-7662(F)r.6  
Figure 41. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin D8) = 0)  
ADDR[15:0] The address must be valid when ADS is low.  
DATA[15:0] Read data becomes available after DT goes low. It will be 3-stated when ADS goes high.  
R/W (Input) The read (H) write (L) signal is always high during a read cycle.  
CS (Input)  
Chip select is an active-low signal.  
DT (Output) Data transfer acknowledge (active-low). DT is driven asynchronously based on the arrival of CS, DS,  
and ADS. DT is driven high while the internal bus transaction is in progress. There is no need to pro-  
vide synchronization to outgoing signals in this mode. DT is driven high and then placed in a high-  
impedance state when either ADS or DS is deasserted. DT will become 3-stated when CS is high.  
ADS (Input) Address strobe is active-low. The microprocessor can pull ADS high after DT goes high.  
DS (Input)  
Data strobe is active-low.  
262  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Microprocessor Interface Timing (continued)  
Asynchronous Mode (continued)  
Table 166. Microprocessor Interface Asynchronous Read Cycle Specifications  
(See Figure 41 on page 262 for the timing diagram.)  
Symbol  
Parameter  
Min Interval Max Interval  
(ns)  
(ns)  
t31  
t32  
t33  
t34  
t35  
t36  
t37  
t38  
t39  
t40  
t41  
t42  
CS Fall to DS Fall  
0
0
ADDR Invalid to CS Rise  
ADDR Valid to ADS Fall  
ADS Rise to ADDR Invalid  
ADDR Valid to DS Fall  
DS Rise to ADDR Invalid  
CS Fall to DT High  
0
5
0
0
0
DS Fall to DT Fall  
90  
0
115  
37.5  
ADS Rise to DT Rise  
CS Rise to DT 3-state  
DT Valid to DATA Valid  
ADS Rise to DATA 3-state  
0
12  
Reset  
Software Reset. Writing the binary value 101 to SWRST (core register 0x000E, bits 20) causes a 0 to 1 transi-  
tion on the internal PMRST signal. This pulse will be high for 100 clock cycles and then low for 100 clock cycles of  
the 77.76 MHz internal clock. Writing a logic 1 to these bits during this 200 clock-cycle interval (2.57 µs) has no  
effect.  
Interrupt. Occurrence of an interrupt is event driven. The interrupt pin, INT (B7), will be deasserted after a mini-  
mum of either one MPU clock cycle in the synchronous microprocessor mode or 13 ns in the asynchronous micro-  
processor mode after clearing the interrupt register.  
Agere Systems Inc.  
263  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Line Interface I/O Timing  
Note: VDD = VDDA = VDDD (3.300 volts nominal) in this section.  
Figure 42Figure 45, Table 167, and Table 168 give the timing specifications for the STS-3/STM-1,  
STS-12/STM-4, and STS-48/STM-16 interfaces.  
t43  
t44  
t45  
RxCKP/RxCLK[D:A]P  
VIH (MIN)  
50%  
VIL (MAX)  
RxCKN/RxCLK[D:A]N  
t46  
t47  
t48  
t49  
RxD[15:0]P/RxD[D:A]P  
RxD[15:0]N/RxD[D:A]N  
5-9252 (F)r.4  
Figure 42. Receive Line-Side Timing Waveform  
264  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Line Interface I/O Timing (continued)  
t50  
t51  
t52  
TxCKP  
VIH (MIN)  
50%  
VIL (MAX)  
TxCKN  
t53  
t54  
t55  
TxD[15:0]P/TxD[D:A]P*  
50%  
TxD[15:0]N/TxD[D:A]N*  
5-9253(F).i  
* Loading of TxD[15:4]P/N is12 pF. Loading of TxD[3:0]P/N / TxD[D:A]P/N is 8 pF with the PLL on, and 12 pF with the PLL off.  
Figure 43.Transmit Line-Side Timing WaveformSTS-48/STM-16 Contraclocking  
TxCKP  
VIH (MIN)  
50%  
VIL (MAX)  
TxCKN  
t59  
t60  
TxFSYNCN  
TxFSYNCP  
t61  
5-9253(F).g  
Figure 44. Transmit Line-Side Timing WaveformFrame Synch  
TxCKP  
VIH (MIN)  
50%  
VIL (MAX)  
TxCKN  
t56  
TxCKQP  
50%  
TxCKQN  
t57  
TxD[15:0]P/TxD[D:A]P*  
50%  
TxD[15:0]N/TxD[D:A]N*  
t58  
5-9253(F).h  
* Loading of TxD[15:4]P/N is12 pF. Loading of TxD[3:0]P/N / TxD[D:A]P/N is 8 pF with the PLL on, and 12 pF with the PLL off.  
Figure 45. Transmit Line-Side Timing WaveformSTS-48/STM-16 Forward Clocking  
Agere Systems Inc.  
265  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Line Interface I/O Timing (continued)  
For the following tables,  
VIL (max) = (VDD 1.475) volts, nominal of 1.825 volts;  
VIH (min) = (VDD 1.165) volts, nominal of 2.135 volts;  
VOH (min) = (VDD 1.025) volts, nominal of 2.275 volts;  
VOL (max) = (VDD 1.620) volts, nominal of 1.680 volts.  
Table 167. Receive Line-Side Timing Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
t43  
Receive Clock-Cycle Period:  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
6.4300  
1.60751  
ns  
ns  
t44  
t45  
t46  
Receive Clock Rise  
Receive Clock Fall  
500  
500  
ps  
ps  
Receive Clock Pulse Low (for P input):  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
2.800  
700  
3.2150  
803.75  
3.630  
907  
ns  
ps  
t47  
Receive Clock Pulse High (for P input):  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
2.800  
700  
3.2150  
803.75  
3.630  
907  
ns  
ps  
t48  
t49  
RxD[15:0]P/N / RxD[D:A]P/N Setup  
RxD[15:0]P/N / RxD[D:A]P/N Hold  
100  
100  
ps  
ps  
266  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Line Interface I/O Timing (continued)  
Table 168. Transmit Line-Side Timing Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
t50  
Transmit Clock-Cycle Period:  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
6.4300  
1.60751  
ns  
ns  
t51  
t52  
t53  
Transmit Clock Rise  
Transmit Clock Fall  
500  
500  
ps  
ps  
Transmit Clock Pulse Low (for P input):  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
2.800  
700  
3.2150  
803.75  
3.630  
907  
ns  
ps  
t54  
Transmit Clock Pulse High (for P input):  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
2.800  
700  
3.2150  
803.75  
3.630  
907  
ns  
ps  
t55  
t56  
t57  
t58  
Propagation Delaycontra clocking:  
(TxCKP/N to TxD[15:0]P/N, with PLL)  
1
3
ns  
ns  
ns  
Propagation Delayforward clocking:  
(TxCKP/N to TxCKQP/N)*  
1.5  
0.5  
4.5  
1.5  
Propagation Delayforward clocking:  
(TxCKQP/N to TxD[15:0]P/N, no PLL)*  
Propagation Delayforward clocking:  
(TxCKP/N to TxD[15:0]P/N, no PLL)  
2
5
ns  
ps  
ps  
t59  
t60  
t61  
TxFSYNC Setup  
TxFSYNC Hold  
100  
100  
Transmit TxFSYNC width:  
STS-3/STM-1 and STS-48/STM-16  
STS-12/STM-4  
6.430  
1.608  
19,438  
77,758  
clock cycles  
clock cycles  
* TxCKQP/N is used in STS-48/STM-16 mode only.  
TxFSYNCP/N must be synchronized to TxCKP/N; it must be at least one TxCKP/N clock-cycle wide, but less than one frame  
period minus two TxCKP/N clock-cycles wide.  
Agere Systems Inc.  
267  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
UTOPIA Interface Timing  
UTOPIA interface timing specifications are given for the transmit direction in Figure 46 and in Table 169, and for  
the receive direction in Figure 47 and in Table 170 (see page 269). Specifications for the UTOPIA clock interface  
are given in Table 171 (see page 270).  
INPUT  
TxCLK[D:A]  
t62  
t63  
TxENB[D:A]  
TxSZ[D:A]  
TxPRTY[D:A]  
TxSOP[D:A]  
TxEOP[D:A]  
INPUTS  
TxERR[D:A]  
TxDATA[D:A][15:0]  
t64  
OUTPUT  
TxPA[D:A]  
5-7663(F)r.5  
Figure 46.Transmit UTOPIA Interface Timing  
Table 169. Transmit UTOPIA Interface Timing Specifications  
Symbol  
Test Conditions  
Setup  
(Min)  
Hold  
(Min)  
Propagation  
Delay  
Unit  
(Min)  
(Max)  
t62  
t63  
t64  
U3, U3+  
U2, U2+  
U3, U3+  
U2, U2+  
U3, U3+  
U2, U2+  
2.5  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
0.0  
1.0  
2.0  
2.0  
5.0  
13.0  
268  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
UTOPIA Interface Timing (continued)  
INPUT  
TxCLK[D:A]  
t65  
INPUT/OUTPUT  
RxCLK[D:A]  
t66  
t67  
INPUT  
RxENB[D:A]  
t68  
RxPA[D:A]  
RxSZ[D:A]  
RxPRTY[D:A]  
RxSOP[D:A]  
RxEOP[D:A]  
RxERR[D:A]  
OUTPUTS  
RxDATA[D:A][15:0]  
5-7664(F)r.4  
Figure 47. Receive UTOPIA Interface Timing  
Table 170. Receive UTOPIA Interface Timing Specifications  
Symbol  
Test Conditions  
Setup Hold  
(Min) (Min)  
Propagation Delay Range  
Unit  
52 MHz RxCLK RxCLK 52 MHz  
104 MHz  
(Min) (Max) (Min) (Max)  
t65  
t66  
*
*
2.3  
5.0  
ns  
ns  
CL = 25 pF†  
2.5  
CL = 50 pF†  
4.0  
0.0  
1.0  
ns  
ns  
ns  
ns  
ns  
CL = 25 pF†  
t67  
t68  
CL = 50 pF†  
CL = 25 pF†  
2.0  
4.0  
6.5  
13.0  
CL = 50 pF†  
* TxCLK[D:A] of the corresponding port is the source for RxCLK[D:A]. RxCLK[D:A] is an output in this case.  
CL is the load on the outputs listed in Figure47. The UTOPIA Level 2 standard specifies a loading of 50 pF at 52 MHz. The UTOPIA L evel 3  
standard specifies a loading of 25 pF in point-to-point configuration (only two devices involved).  
Agere Systems Inc.  
269  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
UTOPIA Interface Timing (continued)  
Table 171. UTOPIA Interface Clock Specifications  
Mode  
Signal  
Name  
Parameter  
Test Conditions  
Transmit  
Min  
Max  
Unit  
U3+  
TxCLK[D:A] TxCLK Frequency  
TxCLK Duty Cycle  
104 MHz,  
Multi-PHY Signal  
0
104  
60  
2
MHz  
%
40  
TxCLK Peak-to-Peak Jitter  
%
TxCLK Rise/Fall Time  
TxCLK Skew  
2
ns  
1
ns  
Receive  
U3+  
RxCLK[D:A] RxCLK Frequency  
RxCLK Duty Cycle  
104 MHz,  
Multi-PHY Signal  
0
104  
60  
2
MHz  
%
40  
RxCLK Peak-to-Peak Jitter  
RxCLK Rise/Fall Time  
RxCLK Skew  
%
2
ns  
ns  
ps  
1
RxCLK-toRxCLK Skew  
(Source Mode)  
700  
Transmit  
U2+  
U2+  
TxCLK[D:A] TxCLK Frequency  
52 MHz,  
Multi-PHY Signal  
0
50  
60  
5
MHz  
%
TxCLK Duty Cycle  
TxCLK Peak-to-Peak Jitter  
TxCLK Rise/Fall Time  
TxCLK Skew  
40  
%
2
ns  
1
ns  
Receive  
RxCLK[D:A] RxCLK Frequency  
52 MHz,  
Multi-PHY Signal  
0
50  
60  
5
MHz  
%
RxCLK Duty Cycle  
RxCLK Peak-to-Peak Jitter  
RxCLK Rise/Fall Time  
RxCLK Skew  
40  
%
2
ns  
ns  
ps  
1
RxCLK-toRxCLK Skew  
(Source Mode)  
700  
270  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Transport Overhead Access Channel (TOAC) Interface Timing  
Transport overhead access channel (TOAC) interface timing specifications are given for the transmit direction in  
Figure 48 and in Table 172. The specifications for the receive direction are given in Figur e49, Figur e50, and in  
Table 173.  
33%  
66%  
50%  
50%  
50%  
50%  
50%  
50%  
33%  
66%  
OUTPUTTxTOHCK  
DUTY CYCLE CLOCK  
5.184 MHz (STS-3/STM-1)  
20.736 MHz (STS-12/STM-4)  
(STS-48/STM-16)  
(0.75)tCP*  
tCP  
t69  
t70  
INPUTTxTOHD[D:A]  
t71  
OUTPUTTxTOHF 8 kHz  
0151(F).a  
* Clock pulse tCP = x/y, where:  
x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16;  
y = clock frequency in MHz on the transmit line clock pins TxCKP/N.  
Note: Duty cycles shown are nominal.  
Figure 48.Transmit TOAC Interface Timing  
Table 172. Transmit TOAC Interface Timing Specifications  
Symbol Test Conditions Setup  
(Min)  
Hold Propagation Delay Unit  
(Min)  
(Min)  
(Max)  
t69  
t70  
t71  
10  
10  
0
10  
ns  
ns  
ns  
CL = 50 pF  
Agere Systems Inc.  
271  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Interface Timing Specifications (continued)  
Transport Overhead Access Channel (TOAC) Interface Timing (continued)  
33%  
66%  
50%  
50%  
50%  
50%  
50%  
50%  
33%  
66%  
OUTPUTRxTOHCK[D:A]  
DUTY CYCLE CLOCK  
20.736 MHz (STS-12/STM-4)  
(STS-48/STM-16)  
(0.75)tCP  
*
tCP  
t72  
RxTOHD[D:A]  
OUTPUTS  
t73  
RxTOHF[D:A] 8 kHz  
0152(F).a  
* Clock pulse tCP = x/y, where:  
x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16;  
y = clock frequency in MHz on the transmit line clock pins TxCKP/N.  
Note: Duty cycles shown are nominal.  
Figure 49. STS-12/STM-4 and STS-48/STM-16 Receive TOAC Interface Timing  
33%  
66%  
50%  
50%  
50%  
50%  
50%  
50%  
33%  
66%  
OUTPUTRxTOHCK[D:A]  
DUTY CYCLE CLOCK  
5.184 MHz (STS-3/STM-1)  
tCP  
(0.75)tCP*  
t72  
RxTOHD[D:A]  
OUTPUTS  
t73  
RxTOHF[D:A] 8 kHz  
0153(F).a  
* Clock pulse tCP = x/y, where:  
x = 32 for STS-3/STM-1 and STS-12/STM-4, or x = 8 for STS-48/STM-16;  
y = clock frequency in MHz on the transmit line clock pins TxCKP/N.  
Note: Duty cycles shown are nominal.  
Figure 50. STS-3/STM-1 Receive TOAC Interface Timing  
Table 173. Receive TOAC Interface Timing Specifications  
Symbol Test Conditions Propagation Delay  
Unit  
(Min)  
(Max)  
t72  
t73  
CL = 50 pF  
CL = 50 pF  
0
0
10  
10  
ns  
ns  
272  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Reference of SONET/SDH Terms and Comparisons  
Definitions of SONET/SDH Bytes  
I A1: Framing byte 0xF6  
I A2: Framing byte 0x28  
I B1: BIP-8 parity for section (regenerator section)  
I B2: BIP-8xN parity for STS-N signal for line (multiplexer section)  
I B3: BIP-8 parity for path  
I C1: Redefined to J0/Z0  
I D1D3: Section (regenerator section) data communication channels  
I D4D12: Line (multiplexer section) data communication channels  
I E1: Section (regenerator section) orderwire  
I E2: Line (multiplexer section) orderwire  
I F1: Section user channel  
I F2, F3: Path user channels  
I G1: Path status byte  
I H1, H2: Higher-order (AU) pointer  
I H3: Pointer action byte  
I H4: Multiframe indicator  
I J0: Section (regenerator section) trace  
I J1: Path trace  
I J2: Lower-order path trace  
I K1, K2: Automatic protection switching (APS) channel and line (multiplexer section) RDI  
I K3: Path APS  
I K4: Lower-order path APS  
I M1: Line (multiplexer section) REI  
I N1: Higher-order tandem connection  
I N2: Lower-order tandem connection  
I S1: Synchronization status  
I V1, V2: Lower-order (TU) pointer  
I V3: Lower-order pointer action byte  
I V4: Reserved  
I V5: Lower-order BIP-2, SLM, and status  
I Z0, Z1, Z2: Growth bytes  
Agere Systems Inc.  
273  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Reference of SONET/SDH Terms and Comparisons (continued)  
SONET/SDH Comparisons  
Table 174. SONET/SDH Comparisons  
SONET  
SDH  
SPE  
VC  
SPE and Pointer  
STS-3xN  
AU  
STM-N  
TU-11  
TU-12  
TU-2  
TUG-2  
VT1.5  
VT2  
VT6  
VTG  
Transport Overhead  
Section Overhead  
Line Overhead  
Section Overhead  
Regenerator Section Overhead  
Multiplexer Section Overhead  
SONET/SDH NewTerminology  
Table 175. SONET/SDH NewTerminology  
Was  
Is  
FERF: Far-End Receive Failure  
FEBE: Far-End Block Error  
Path Yellow Alarm  
C1: STS-1 Identifier  
First Z1: Growth  
Third Z1: Growth  
Z3: Growth  
RDI: Remote Defect Indicator  
REI: Remote Error Indicator (SDH only)  
RAI: Remote Alarm Indicator  
J0: Section Trace /Z0: Growth  
S1: Synchronization  
M1: Line REI  
F3: User Channel (SDH only)  
K3: APS (SDH only)  
Z4: Growth  
Z5: Growth  
N1: Tandem Connection (SDH only)  
N2: Tandem Connection (SDH only)  
K4: LO APS (SDH only)  
Z6: Growth  
Z7: Growth  
274  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Outline Diagram  
600-Pin LBGA  
Dimensions are in millimeters.  
45.00 0.10  
A1 BALL  
IDENTIFIER ZONE  
45.00  
0.10  
ELECTRICALLY ISOLATED  
HEAT SPREADER  
2.17/3.28  
1.43/1.92  
SEATING PLANE  
0.20  
1.71/2.58  
0.60 0.10  
SOLDER BALL  
34 SPACES @ 1.27 = 43.18  
AR  
AN  
AL  
AJ  
AP  
AM  
AK  
AH  
AF  
AG  
AE  
0.75 0.15  
AD  
AB  
Y
AC  
AA  
W
U
34 SPACES  
@ 1.27 = 43.18  
V
T
R
P
N
M
K
L
J
H
G
E
F
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29 31 33 35  
A1 BALL  
CORNER  
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30 32 34  
5-9212 (F)r.2  
The dimensions in this outline diagram are intended for informational purposes only. For detailed schematics to  
assist your design efforts, please contact your Agere Sales Representative.  
Agere Systems Inc.  
275  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Ordering Information  
Device Code  
Package  
600-pin LBGA  
Temperature  
Comcode  
(Ordering Number)  
TDAT042G51A-3BLL1  
40 °C to +85 °C  
108696006  
276  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following Updates  
1. Globally numbered all the transmit sequencer time slots the same, from 1 to 12. Affects Figures 13, 14,  
and 16, DE egress configuration registers Tx_TS (0x10160x1021), and DE ingress configuration registers  
Rx_TS (0x10220x102D).  
2. Bad PPP header counter changed to mismatched PPP header counter globally.  
3. Changed bit TRDIP_LCDINH[AD] to TRDIP_LCD[AD] thorughout document.  
4. Page 1, the number of the IETF RFC standard was corrected from 1619 to 2615; the title is still the same.  
5. Page 11, moved Description section from page 1 for readability.  
6. Page 24, added the note about the TDAT042G5s internal circuitry under Table 3.  
7. Page 25, Table 3, Pin DescriptionsLine Interface Signals, TxFSYNCP and TxFSYNCN pins. Corrected the  
inadvertent switch of Iu and Id in the I/O column, provided values for all Iu and Id, corrected cycle width in last  
sentence.  
8. Page 27, Table 4, Pin DescriptionsTOH Interface Signals, clarified RxREF pin.  
9. Pages 32, 38, and 164, TxSIZE_[D:A] and RxSIZE_[D:A] bits (address 0x0226), corrected bit and pin names in  
the register description and pin descriptions.  
10.Page 33, Table 5, Pin AM18, AM30, AA35, and H32, under the Name/Description column, second paragraph,  
changed the wording to include the TxERR[A] and the TxERR[B] input pins.  
11.Page 33page 39, Table 5, Pin DescriptionsEnhanced UTOPIA Interface Signals, added These pins are  
used only in U2+ and U3+ (packet) modesto size, end-of-packet, and error receive pins and transmit pins.  
12.Page 38, Table 5, Pin DescriptionsEnhanced UTOPIA Interface Signals, corrected must be placedto will be  
placedin the paragraph beginning with, In U3+ (32-bit mode)...”  
13.Page 39, Table 5, Pin DescriptionsEnhanced UTOPIA Interface Signals, clarified RxERR pin.  
14.Page 40, Table 6, Pin DescriptionsMicroprocessor Interface Signals, clarified PMRST pin.  
15.Page 42, Table 8, Pin DescriptionsJTAG Interface Signals, corrected TMS pin to be active-high.  
16.Page 42, Table 8, Pin DescriptionsJTAG Interface Signals, expanded TRST description.  
17.Page 45, Overview, corrected and expanded second paragraph.  
18.Page 46, Overview, deleted any reference to cell-based UNI since not supported by this device.  
19.Page 49, Overview, Over-Fiber Mode section, corrected transparent mode to over-fiber mode in this section.  
20.Page 52, Transmit Line Interface Summary section, updated TxFSYNCP/N bullet item.  
21.Page 53, SONET Framer, added section.  
22.Page 55 (in revision 3 of data sheet), Table 16, Values of SFNSSET[AD][18:0], SFMSET[AD][7:0],  
SFLSET[AD][3:0], SFBSET[AD][15:0] in Terms of Equivalent BER for BIP-24 Case, removed table.  
23.Pages 5758, pages 187188, and pages 208209;Table 16,Table 17,Table 86,Table 87, Table 107, and  
Table 108; Ns, L, M, and B Values to Set the BER Indicator, Ns, L, M, and BValues to Clear the BER Indicator,  
updated tables and added them to the PT Registers section, also.  
24.Pages 63, 200, and 205, SS pointer interpretation algorithm not implemented. Affects bit 5 of registers 0x0AA6,  
0x0AAE, 0x0AB6, 0x0ABE; corrected from RSSPTRNORM[AD] to Reserved in Register Maps and Register  
Descriptions sections. Also affects bits 10 of register 0x0AC7; corrected from RSSEXP[1:0] to Reserved in  
Register Maps and Register Descriptions sections. Removed item 4 from the normal pointer description on  
page 63.  
25.Page 65Page 68, SPE Generate section, corrected and expanded.  
26.Page 70, Data Engine (DE) Block section, expanded second paragraph.  
Agere Systems Inc.  
277  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following  
Updates (continued)  
27.Page 71, ATM Cell Processor section under Data Engine (DE) Block, expanded.  
28.Page 75, PPP Header Detach section, added footnote and updated Figure 16, Uncompressed and Com-  
pressed PPP Packets.  
29.Page 77 and page 94, HDLC Inserter in the Data Engine (DE) Block section and FIFO in the UT Transmit Input  
Path (Egress) section, corrected description of 0x7D20.  
30.Page 82, Data Engine (DE) Block, Over-Fiber Modes section, clarified description.  
31.Page 83, Transparent Payload Mode section, updated.  
32.Page 85, Table 24, UTOPIA Traffic Types, updated.  
33.Page 86, UTOPIA ATM Cell Processing section, added.  
34.Page 88, added UT Clocking, UT Transmit Path (Egress) Clock, UT Receive Path (Ingress) Clock sections;  
removed Clocks section on page 91.  
35.Page 90, Two-Cycle Delay Mode section, provided reference for RxPA[D:A] definition.  
36.Page 91 and page 92, updated Figure 23, Receive-Side Interface Handshaking in Point-to-Point, Single Cycle  
Mode; added Figure 24, Receive-Side Interface Handshaking in Point-to-Point, Two-Cycle Mode.  
37.Page 93, Transmit Cell/Packet Available (TxPA) section, expanded definition.  
38.Page 94, Table 29, Egress High Watermark Thresholds, added.  
39.Page 95, Figure 25, Transmit-Side Interface Handshaking in Point-to-Point, Single Cycle Mode, updated.  
40.Page 96, Multi-PHY Support section, clarified the concept of point-to-point vs. polled mode configuration.  
41.Page 100, JTAG (Boundary-Scan) Test Block section, added second paragraph.  
42.Page 100, Reset of JTAG Logic section, added.  
43.Page 100, Line Interface section added to document (including Table 30).  
44.Page 102, General-Purpose I/O Bus (GPIO) section, expanded.  
45.Page 105, Performance Monitor Reset (PMRST) section, expanded.  
46.Page 106, Far-End Loopback,Terminal Loopback, Facility Loopback, expanded sections.  
47.Page 108page 110, Figur e34, SingleATM UTOPIA 3; Figur e36, Single POS UTOPIA 3, updated.  
48.Page 112 and p age152, GPIO Output Configuration register (addresses 0x0014 and 0x0015), updated in Reg-  
ister Maps and Register Descriptions sections.  
49.Pages 124125, 191, TZ0DINS[AD][212][7:0] registers (addresses 0x05AA0x05C1), updated in the  
Register Maps and Register Descriptions sections.  
50.Page 119, Register Maps section, corrected subtitle in OHP map from Signal Degrade Set/Clear Control Regis-  
ters to Signal Degrade BER Algorithm Parameters.  
51.Page 120, Register Maps section, corrected subtitle in OHP map from Signal Fail Set/Clear Control Registers to  
Signal Fail BER Algorithm Parameters.  
52.Pages 119121, 136, 185186, 198, Register Maps and Register Descriptions sections, differentiated bit-  
names in OHP sections from bitnames in PT sections for signal degrade and signal fail BER algorithm parame-  
ters.  
53.Pages 134135, 199, changed bits [15:9] from Reserved to RPOHMONSEL[AD][3:0] and RCONC_ALLOR  
FIRST[AD] in the Register Maps and Register Descriptions sections.  
278  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following  
Updates (continued)  
54.Page 143, Register Maps section, corrected subtitle in DE map from PPP DetachRx Good Packet/Cell  
Counter (PMRST Update) to Receive Good Packet/Cell Counter (PMRST Update).  
55.Page 143, Register Maps section, corrected subtitle in DE map from PPP AttachTx Good Packet/Cell  
Counter (PMRST Update) to Transmit Good Packet/Cell Counter (PMRST Update).  
56.Page 150, updated register description of PLL_MODE bit (address 0x0010).  
57.Page 151, Table 50, Register 0x0012: Loopback Control (R/W), updated description of valid combinations.  
58.Page 157 and page158, clarified UTOPIA_MODE_Rx bit (addresses 0x020F, 0x0213, 0x0217, 0x021B) in the  
Register Maps and Register Descriptions sections.  
59.Page 158, Table 61, Registers 0x020F, 0x0213, 0x0217, 0x021B: Channel [AD] Receive Provisioning Regis-  
ter (R/W), corrected the reset default value of register 0x0217 from 0x0020 to 0x0220.  
60.Page 158, clarified ATM_SIZE_Rx[AD] bits (addresses 0x020F, 0x0213, 0x0217, 0x021B).  
61.Page 160, corrected description ofPARITY_Tx[A] bit (addresses 0x0210, 0x0214, 0x0218, 0x021C). Corrected  
even parity from bit = 1 to bit = 0.  
62.Page 160, clarified PARITY_Tx[BD] bits (addresses 0x0210, 0x0214, 0x0218, 0x021C).  
63.Page 160, clarified ATM_SIZE_Tx[AD] bits (addresses 0x0210, 0x0214, 0x0218, 0x021C) and corrected  
receivedto transmitted.”  
64.Page 161, Table 63, Bits 138, INGRESS_WATERMARK_HIGH_[AD][6:0], changed the function definition  
to current one.  
65.Pages 165page 167, Table 72, Registers 0x04020x0409: Delta/Event (COR/W), deleted statement that the  
delta bits clear when read (or written).  
66.Page 171, Table 76, Registers 0x04160x0419:Toggles (R/W), corrected and expanded note.  
67.Page 173, LOS_AISINH[AD] bit (addresses 0x0422, 0x0424, 0x0426, 0x0428), clarified the description.  
68.Page 177 and page181, TJ0INS and TTOAC_J0 bits (addresses 0x042E, 0x0430, 0x0432, 0x0434), updated  
description.  
69.Page 179 and page183, TM1_ERR_INS and TM1_REIL_INH bits (addresses 0x042E, 0x0430, 0x0432,  
0x0434), updated description.  
70.Page 200 and page201, RFORCE_LOP[AD][112] and RFORCE_AIS[AD] [112] bits  
(addresses 0x0AA7, 0x0AA8, 0x0AA9), updated description.  
71.Page 201, Table 103, address 0AAA, 0AB2, 0ABA, OAC2, bit 9, name TRDIP_LCD[AD], changed the func-  
tion definition to the current one.  
72.Page 201 and page 202, TRDIP_LCD[AD], TRDIP_PLMPINH[AD], TRDIP_UNEQUIPINH [AD] bits, cor-  
rected the bit numbers from 7, 9, 8, to the bit numbers 9, 8, 7, respectively.  
73.Page 212 and page 213,Table 112, Register 0x1001, 0x1002: DE Interrupts (0x1001 is RO, 0x1002 is RO and  
COR/W), register 0x1002, updated note, added footnote, and corrected the placement of bits of 74 and 30  
which were interposed.  
74.Page 226, Table 120, ReceiveType and Mode Control SummaryTable (Registers 0x10400x1043), clarified  
bits [1:0] for ATM.  
75.Page 235, PPP_Rx_HDR [011][15:0] registers (addresses 0x10F00x10FB), corrected name and descrip-  
tion.  
76.Page 236, PPP_Rx_CHK_CH [03][15:0] registers (addresses 0x10FC0x10FF), bits 1514, updated  
description.  
Agere Systems Inc.  
279  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
DS98-193SONT-4 Replaces DS98-193SONT-3 to Incorporate the Following  
Updates (continued)  
77.Page 241, PM_MHC_[03][27:0] registers (addresses 0x11180x111F), updated name and description.  
78.Page 250, Table 158, Registers 0x16000x1607: SDL Transmit Registers (R/W), updated note.  
79.Page 253, Absolute Maximum Ratings, corrected text above table to refer to permanent damage and to the data  
sheet; removed typical power supply value.  
80.Page 253, Table 159, Recommended Operating Conditions, updated power dissipation.  
81.Page 254, Table 160, 3.3 V Logic Interface Characteristics, updated load capacitance.  
82.Page 255, Table 162, added table to document.  
83.Pages 256, 258, 262, Microprocessor Interface Timing section, updated figures (Figure 38, Figure 39,  
Figure 41) and text in section.  
84.Page 260, Asynchronous Mode in Microprocessor Interface Timing section, updated text and corrected t28 in  
Table 165, Microprocessor Interface Asynchronous Write Cycle Specifications. Corrected t28 min from 0 ns to  
77 ns. Corrected t28 max from 72 ns to 103 ns.  
85.Page 263, Asynchronous Mode in Microprocessor Interface Timing section, corrected t38 in Table 166, Micro-  
processor Interface Asynchronous Read Cycle Specifications. Corrected t38 min from 0 ns to 90 ns. Corrected  
t38 max from 34 ns to 115 ns.  
86.Pages 264page 265, Figure 42, Receive Line-Side Timing WaveformFigure 45, Transmit Line-Side Timing  
WaveformSTS-48/STM-16 Forward Clocking, updated.  
87.Page 266, Table 167, Receive Line-Side Timing Specifications and Table 168, Transmit Line-Side Timing Spec-  
ifications; replaced tables labeled Clock Input Specifications, Line Input Specifications, and Line Output Specifi-  
cations with these tables.  
88.Page 268 and page 269, UTOPIA Interface Timing section, updated receive and transmit figures and tables.  
89.Page 271,Transport Overhead Access Channel (TOAC) Interface Timing section, updated transmit and receive  
figures and tables.  
90.Page 275, updated 600-pin LBGA package outline.  
280  
Agere Systems Inc.  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
Agere Systems Inc.  
281  
TDAT042G5 SONET/SDH  
155/622/2488 Mbits/s Data Interface  
Data Sheet  
May 2001  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@micro.lucent.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Agere Systems Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Agere Systems (Shanghai) Co., Ltd., 33/F Jin Mao Tower, 88 Century Boulevard Pudong, Shanghai 200121 PRC  
Tel. (86) 21 50471212, FAX (86) 21 50472266  
JAPAN:  
Agere Systems Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
EUROPE:  
Data Requests: DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Copyright © 2001 Agere Systems Inc.  
All Rights Reserved  
Printed in U.S.A.  
May 2001  
DS98-193SONT-04 (Replaces DS98-193SONT-03 Must Acompany DA01-010SONT and AY01-015SONT)  

相关型号:

TDAT12622-BA23

MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
AGERE

TDAT161G2-BA23

MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
AGERE

TDAT162G52

MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
AGERE

TDAT162G52-3BA

MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
AGERE

TDAT162G52-BA23

MARS㈢2G5 P-Pro (TDAT162G52) SONET/SDH 155/622/2488 Mbits/s Data Interface
AGERE

TDB-08

BARRIER TERMINAL STRIPS
ADAM-TECH

TDB-XX

DUAL ROW BARRIER BLOCK
ADAM-TECH

TDB-XX-1

DUAL ROW BARRIER BLOCK
ADAM-TECH

TDB0117

voltage regulators
ETC

TDB0123

voltage regulators
ETC

TDB0137

voltage regulators
ETC