HBAT-540B-TR2 [AGILENT]

High Performance Schottky Diode for Transient Suppression; 高性能肖特基二极管瞬态抑制
HBAT-540B-TR2
型号: HBAT-540B-TR2
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

High Performance Schottky Diode for Transient Suppression
高性能肖特基二极管瞬态抑制

瞬态抑制器 肖特基二极管 光电二极管
文件: 总8页 (文件大小:113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance Schottky  
Diode for Transient Suppression  
Technical Data  
HBAT-5400/-5402  
HBAT-540B/-540C  
HBAT-540E/-540F  
Features  
• Ultra-low Series Resistance  
for Higher Current Handling  
Package Lead Code  
Identification  
(Top View)  
Description  
The HBAT-5400 series of Schottky  
diodes, commonly referred to as  
clipping/clamping diodes, are  
optimal for circuit and waveshape  
preservation applications with  
high speed switching. Low series  
resistance, RS, makes them ideal  
for protecting sensitive circuit  
elements against high current  
transients carried on data lines.  
With picosecond switching, the  
HBAT-540x can respond to noise  
spikes with rise times as fast as  
1 ns. Low capacitance minimizes  
waveshape loss that causes signal  
degradation.  
• Low Capacitance  
SINGLE  
3
SERIES  
3
• Low Series Resistance  
• Lead-free Option Available  
0, B  
2, C  
Applications  
1
2
1
2
RF and computer designs that  
require circuit protection, high-  
speed switching, and voltage  
clamping.  
COMMON  
ANODE  
3
COMMON  
CATHODE  
3
E
F
1
2
1
2
2
Absolute Maximum Ratings, TA= 25ºC  
Absolute Maximum[1]  
Symbol  
Parameter  
Unit  
HBAT-5400/-5402 HBAT-540B/-540C  
IF  
IF-peak  
PT  
DC Forward Current  
mA  
A
220  
1.0  
430  
1.0  
Peak Surge Current (1µs pulse)  
Total Power Dissipation  
Peak Inverse Voltage  
mW  
V
250  
825  
PINV  
TJ  
30  
30  
Junction Temperature  
°C  
150  
150  
TSTG  
θJC  
Storage Temperature  
°C  
°C/W  
-65 to 150  
500  
-65 to 150  
150  
Thermal Resistance, junction to lead  
Note:  
1. Operation in excess of any one of these conditions may result in permanent damage to the device.  
Linear and Non-linear SPICE Model[2]  
SPICE Parameters  
0.08 pF  
Parameter  
Unit  
V
Value  
40  
BV  
CJO  
EG  
IBV  
IS  
pF  
eV  
A
3.0  
0.55  
10E-4  
1.0E-7  
1.0  
2 nH  
R
S
A
SPICE model  
N
RS  
PB  
PT  
M
V
2.4  
Note:  
0.6  
2. To effectively model the packaged HBAT-540x  
product, please refer to Application Note AN1124.  
2
0.5  
HBAT-540x DC Electrical Specifications, TA = +25°C[1]  
Maximum Minimum  
Forward Breakdown  
Typical  
Series  
Maximum  
Eff. Carrier  
Part  
Package  
Typical  
Number Marking Lead  
HBAT-  
Voltage  
VF (mV)  
Voltage Capacitance Resistance Lifetime  
Code[2] Code Configuration  
Package  
VBR (V)  
CT (pF)  
RS ()  
τ (ps)  
-5400  
0
B
2
SOT-23  
V0  
V2  
Single  
Series  
SOT-323  
(3-lead SC-70)  
800[3]  
30[4]  
3.0[5]  
2.4  
100[6]  
-540B  
-5402  
-540C  
SOT-23  
SOT-323  
(3-lead SC-70)  
C
Common  
Anode  
SOT-323  
(3-lead SC-70)  
-540E  
-540F  
V3  
V4  
E
F
Common  
Cathode  
SOT-323  
(3-lead SC-70)  
Notes:  
1. TA = +25°C, where TA is defined to be the temperature at the package pins where contact is made to the circuit board.  
2. Package marking code is laser marked.  
3. IF = 100 mA; 100% tested  
4. IF = 100 µA; 100% tested  
5. VF = 0; f =1 MHz  
6. Measured with Karkauer method at 20 mA guaranteed by design.  
3
Typical Performance  
300  
100  
160  
140  
120  
100  
80  
500  
100  
Max. safe junction temp.  
10  
1
10  
1
60  
40  
0.1  
0.1  
TA = +75°C  
TA = +25°C  
TA = +75°C  
TA = +25°C  
TA = +75°C  
A = +25°C  
TA = –25°C  
T
20  
0
T
A = –25°C  
0.4 0.5  
– FORWARD VOLTAGE (V)  
T
A = –25°C  
150 200  
I – FORWARD CURRENT (mA)  
F
0.01  
0.01  
0
0.1  
0.2  
0.3  
0.6  
0
50  
100  
250  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
V
I
– FORWARD CURRENT (mA)  
F
F
Figure 1. Forward Current vs.  
Forward Voltage at Temperature for  
HBAT-5400 and HBAT-5402.  
Figure 2. Forward Current vs.  
Forward Voltage at Temperature for  
HBAT-540B, -540C, -540E, and -540F.  
Figure 3. Junction Temperature vs.  
Current as a Function of Heat Sink  
Temperature for HBAT-5400 and  
HBAT-5402. Note: Data is calculated  
from SPICE parameters.  
160  
3.0  
2.5  
2.0  
Max. safe junction temp.  
140  
120  
100  
80  
60  
1.5  
1.0  
40  
TA = +75°C  
T
T
A = +25°C  
A = –25°C  
20  
0
0
100 200 300 400 500 600  
– FORWARD CURRENT (mA)  
0
5
10  
V – REVERSE VOLTAGE (V)  
R
15  
20  
I
F
Figure 4. Junction Temperature vs.  
Current as a Function of Heat Sink  
Temperature for HBAT-540B, -540C,  
-540E, and -540F.  
Figure 5. Total Capacitance vs.  
Reverse Voltage.  
Note: Data is calculated from SPICE  
parameters.  
4
Device Orientation  
For Outlines SOT-23/323  
Package Dimensions  
Outline SOT-23  
REEL  
1.02 (0.040)  
0.89 (0.035)  
0.54 (0.021)  
0.37 (0.015)  
DATE CODE (X)  
PACKAGE  
MARKING  
CODE (XX)  
3
1.40 (0.055)  
1.20 (0.047)  
2.65 (0.104)  
2.10 (0.083)  
X X X  
CARRIER  
TAPE  
2
1
USER  
FEED  
DIRECTION  
0.60 (0.024)  
0.45 (0.018)  
2.04 (0.080)  
1.78 (0.070)  
TOP VIEW  
COVER TAPE  
0.152 (0.006)  
0.066 (0.003)  
3.06 (0.120)  
2.80 (0.110)  
TOP VIEW  
4 mm  
END VIEW  
1.02 (0.041)  
0.85 (0.033)  
0.69 (0.027)  
0.45 (0.018)  
0.10 (0.004)  
0.013 (0.0005)  
8 mm  
SIDE VIEW  
END VIEW  
ABC  
ABC  
ABC  
ABC  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
Note: "AB" represents package marking code.  
"C" represents date code.  
Tape Dimensions and Product Orientation  
For Outline SOT-23  
P
P
D
2
E
F
P
0
W
D
1
t1  
Ko  
13.5° MAX  
8° MAX  
9° MAX  
B
A
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
3.15 0.10  
2.77 0.10  
1.22 0.10  
4.00 0.10  
1.00 + 0.05  
0.124 0.004  
0.109 0.004  
0.048 0.004  
0.157 0.004  
0.039 0.002  
0
0
0
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
CARRIER TAPE  
DIAMETER  
PITCH  
POSITION  
D
1.50 + 0.10  
4.00 0.10  
1.75 0.10  
0.059 + 0.004  
0.157 0.004  
0.069 0.004  
P
E
0
WIDTH  
W
8.00+0.300.10 0.315+0.0120.004  
THICKNESS  
t1  
0.229 0.013  
0.009 0.0005  
DISTANCE  
BETWEEN  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
0.138 0.002  
CENTERLINE  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2.00 0.05  
0.079 0.002  
2
5
Package Dimensions  
Outline SOT-323 (SC-70 3 Lead)  
PACKAGE  
MARKING  
CODE (XX)  
1.30 (0.051)  
REF.  
DATE CODE (X)  
2.20 (0.087)  
2.00 (0.079)  
1.35 (0.053)  
1.15 (0.045)  
X X X  
0.650 BSC (0.025)  
0.425 (0.017)  
TYP.  
2.20 (0.087)  
1.80 (0.071)  
0.10 (0.004)  
0.00 (0.00)  
0.30 REF.  
0.20 (0.008)  
0.10 (0.004)  
1.00 (0.039)  
0.80 (0.031)  
0.25 (0.010)  
0.15 (0.006)  
10°  
0.30 (0.012)  
0.10 (0.004)  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
Tape Dimensions and Product Orientation  
For Outline SOT-323 (SC-70 3 Lead)  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
8° MAX.  
8° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
2.40 0.10  
2.40 0.10  
1.20 0.10  
4.00 0.10  
1.00 + 0.25  
0.094 0.004  
0.094 0.004  
0.047 0.004  
0.157 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
1.55 0.05  
4.00 0.10  
1.75 0.10  
0.061 0.002  
0.157 0.004  
0.069 0.004  
P
E
0
CARRIER TAPE  
COVER TAPE  
DISTANCE  
WIDTH  
THICKNESS  
W
8.00 0.30  
0.254 0.02  
0.315 0.012  
0.0100 0.0008  
t
1
WIDTH  
TAPE THICKNESS  
C
5.4 0.10  
0.062 0.001  
0.205 0.004  
0.0025 0.00004  
T
t
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
0.138 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2.00 0.05  
0.079 0.002  
2
6
cross the junction. The reverse  
leakage current will be in the  
nanoampere to microampere  
range, depending upon the diode  
type, the reverse voltage, and the  
temperature.  
Both diodes have similar barrier  
heights; and this is indicated by  
corresponding values of satura-  
tion current, IS. Yet, different  
contact diameters and epitaxial-  
layer thickness result in very  
different values of junction  
capacitance, CJ and RS. This is  
portrayed by their SPICE param-  
eters in Table 1.  
Applications Information  
Schottky Diode Fundamentals  
The HBAT-540x series of clipping/  
clamping diodes are Schottky  
devices. A Schottky device is a  
rectifying, metal-semiconductor  
contact formed between a metal  
and an n-doped or a p-doped  
semiconductor. When a metal-  
semiconductor junction is formed,  
free electrons flow across the  
junction from the semiconductor  
and fill the free-energy states in  
the metal. This flow of electrons  
creates a depletion or potential  
across the junction. The differ-  
ence in energy levels between  
semiconductor and metal is called  
a Schottky barrier.  
In contrast to a conventional p-n  
junction, current in the Schottky  
diode is carried only by majority  
carriers. Because no minority  
carrier charge storage effects are  
present, Schottky diodes have  
carrier lifetimes of less than  
100 ps and are extremely fast  
switching semiconductors.  
Schottky diodes are used as  
rectifiers at frequencies of 50 GHz  
and higher.  
Table 1. HBAT-540x and  
HSMS-270x SPICE Parameters.  
HBAT-  
540x  
HSMS-  
270x  
Parameter  
BV  
CJ0  
EG  
IBV  
IS  
40 V  
3.0 pF  
0.55 eV  
10E-4 A  
1.0E-7 A  
1.0  
25 V  
6.7 pF  
0.55 eV  
10E-4 A  
1.4E-7 A  
1.04  
Another significant difference  
between Schottky and p-n diodes  
is the forward voltage drop.  
Schottky diodes have a threshold  
of typically 0.3 V in comparison to  
that of 0.6 V in p-n junction  
diodes. See Figure 6.  
P-doped, Schottky-barrier diodes  
excel at applications requiring  
ultra low turn-on voltage (such as  
zero-biased RF detectors). But  
their very low, breakdown-voltage  
and high series-resistance make  
them unsuitable for the clipping  
and clamping applications involv-  
ing high forward currents and high  
reverse voltages. Therefore, this  
discussion will focus entirely on  
n-doped Schottky diodes.  
N
RS  
PB  
PT  
M
2.4 Ω  
0.6 V  
0.65 Ω  
0.6 V  
2
2
0.5  
0.5  
At low values of IF 1 mA, the  
forward voltages of the two  
diodes are nearly identical.  
However, as current rises above  
10 mA, the lower series resistance  
of the HSMS-270x allows for a  
much lower forward voltage. This  
gives the HSMS-270x a much  
higher current handling capability.  
The trade-off is a higher value of  
junction capacitance. The forward  
voltage and current plots illustrate  
the differences in these two  
Schottky diodes, as shown in  
Figure 7.  
P
N
METAL N  
CAPACITANCE  
CURRENT  
CURRENT  
0.3V  
CAPACITANCE  
Under a forward bias (metal  
connected to positive in an  
n-doped Schottky), or forward  
voltage, VF, there are many  
electrons with enough thermal  
energy to cross the barrier poten-  
tial into the metal. Once the  
applied bias exceeds the built-in  
potential of the junction, the  
forward current, IF, will increase  
rapidly as VF increases.  
0.6V  
+
+
BIAS VOLTAGE  
BIAS VOLTAGE  
PN JUNCTION  
SCHOTTKY JUNCTION  
Figure 6.  
Through the careful manipulation  
of the diameter of the Schottky  
contact and the choice of metal  
deposited on the n-doped silicon,  
the important characteristics of  
the diode (junction capacitance,  
When the Schottky diode is  
reverse biased, the potential  
barrier for electrons becomes  
large; hence, there is a small  
probability that an electron will  
have sufficient thermal energy to  
C ; parasitic series resistance, RS;  
J
breakdown voltage, V ; and  
BR  
forward voltage, VF,) can be  
optimized for specific applica-  
tions. The HSMS-270x series and  
HBAT-540x series of diodes are a  
case in point.  
7
300  
100  
Consider the circuit shown in  
Figure 8, in which two Schottky  
diodes are used to protect a  
11600 (V I R )  
F
F
S
HSMS-270x  
nT  
(1)  
J
I = I  
e
1  
F
S
HBAT-540x  
circuit from noise spikes on a  
stream of digital data. The ability  
of the diodes to limit the voltage  
spikes is related to their ability to  
sink the associated current spikes.  
The importance of current  
10  
1
2
1
T
J
1
298  
4060  
n
T
(2)  
(3)  
J
I = I  
e
S
0
298  
.1  
T = V I + T  
θ
J
F F JC A  
handling capacity is shown in  
Figure 9, where the forward  
.01  
where:  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
voltage generated by a forward  
current is compared in two  
IF = forward current  
IS = saturation current  
VF = forward voltage  
RS = series resistance  
TJ = junction temperature  
IO = saturation current at 25°C  
n = diode ideality factor  
V
FORWARD VOLTAGE (V)  
F
Figure 7. Forward Current vs.  
Forward Voltage at 25°C.  
diodes. The first is a conventional  
Schottky diode of the type gener-  
ally used in RF circuits, with an RS  
of 7.7 . The second is a Schottky  
diode of identical characteristics,  
save the RS of 1.0 . For the  
conventional diode, the relatively  
high value of RS causes the  
voltage across the diodes termi-  
nals to rise as current increases.  
The power dissipated in the diode  
heats the junction, causing RS to  
climb, giving rise to a runaway  
thermal condition. In the second  
diode with low RS , such heating  
does not take place and the  
Because the automatic, pick-and-  
place equipment used to assemble  
these products selects dice from  
adjacent sites on the wafer, the  
two diodes which go into the  
HBAT-5402 or HBAT-540C (series  
pair) are closely matched—  
without the added expense of  
testing and binning.  
θ
JC = thermal resistance from  
junction to case (diode lead)  
= θ + θ  
package  
chip  
TA = ambient (diode lead)  
temperature  
Equation (1) describes the for-  
ward V-I curve of a Schottky  
Current Handling in Clipping/  
Clamping Circuits  
diode. Equation (2) provides the  
value for the diodes saturation  
current, which value is plugged  
into (1). Equation (3) gives the  
value of junction temperature as a  
function of power dissipated in  
the diode and ambient (lead)  
temperature.  
The purpose of a clipping/clamp-  
ing diode is to handle high cur-  
rents, protecting delicate circuits  
downstream of the diode. Current  
handling capacity is determined  
by two sets of characteristics,  
those of the chip or device itself  
and those of the package into  
which it is mounted.  
voltage across the diode terminals  
is maintained at a low limit even  
at high values of current.  
Maximum reliability is obtained in  
a Schottky diode when the steady  
state junction temperature is  
maintained at or below 150°C,  
although brief excursions to  
higher junction temperatures can  
be tolerated with no significant  
impact upon mean-time-to-failure,  
MTTF. In order to compute the  
junction temperature, Equations  
(1) and (3) below must be simulta-  
neously solved.  
6
5
4
noisy data-spikes  
current  
Vs  
R
= 7.7  
s
limiting  
3
2
long cross-site cable  
pull-down  
R
= 1.0 Ω  
s
1
0
0V  
(or pull-up)  
voltage limited to  
Vs + Vd  
0V Vd  
0
0.1  
0.2  
0.3  
0.4  
0.5  
I
FORWARD CURRENT (mA)  
F
Figure 8. Two Schottky Diodes  
Are Used for Clipping/Clamping in  
a Circuit.  
Figure 9. Comparison of Two  
Diodes.  
The key factors in these equations package thermal resistance on the current of 330 mA when the  
are: RS, the series resistance of the current handling capability of  
diodes terminals are maintained  
at 75°C.  
diode where heat is generated  
under high current conditions;  
these diodes can be seen in  
Figures 3 and 4. Here the com-  
puted values of junction tempera-  
ture vs. forward current are  
θ
, the chip thermal resistance  
For pulsed currents and transient  
current spikes of less than one  
chip  
of the Schottky die; and θ  
,
package  
or the package thermal resistance. shown for three values of ambient microsecond in duration, the  
temperature. The SOT-323 prod-  
ucts, with their copper  
junction does not have time to  
reach thermal steady state.  
RS for the HBAT-540x family of  
diodes is typically 2.4 , other  
leadframes, can safely handle  
than the HSMS-270x family, this is almost twice the current of the  
Moreover, the diode junction may  
be taken to temperatures higher  
than 150°C for short timeperiods  
without impacting device MTTF.  
Because of these factors, higher  
currents can be safely handled.  
The HBAT-540x family has the  
second highest current handling  
capability of any Agilent diode,  
next to the HSMS-270x series.  
the lowest of any Schottky diode  
available. Chip thermal resistance the term ambient temperature”  
is typically 40°C/W; the thermal  
resistance of the iron-alloy-  
leadframe, SOT-23 package is  
typically 460°C/W; and the thermal that the HBAT-540B and  
resistance of the copper-  
leadframe, SOT-323 package is  
typically 110°C/W. The impact of  
larger SOT-23 diodes. Note that  
refers to the temperature of the  
diodes leads, not the air around  
the circuit board. It can be seen  
HBAT-540C products in the  
SOT-323 package will safely  
withstand a steady-state forward  
Part Number Ordering Information  
Part Number  
No. of Devices  
Container  
HBAT-5400-BLK  
HBAT-5400-TR1  
HBAT-5400-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
13" Reel  
HBAT-5402-BLK  
HBAT-5402-TR1  
HBAT-5402-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
13" Reel  
HBAT-540B-BLK  
HBAT-540B-TR1  
HBAT-540B-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
13" Reel  
www.agilent.com/semiconductors  
HBAT-540C-BLK  
HBAT-540C-TR1  
HBAT-540C-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
For product information and a complete list of  
distributors, please go to our web site.  
13" Reel  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916) 788-6763  
HBAT-540E-BLK  
HBAT-540E-TR1  
HBAT-540E-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
13" Reel  
Hong Kong: (65) 6756 2394  
HBAT-540F-BLK  
HBAT-540F-TR1  
HBAT-540F-TR2  
100  
3,000  
10,000  
Antistatic Bag  
7" Reel  
India, Australia, New Zealand: (65) 6755 1939  
Japan: (+81 3) 3335-8152(Domestic/International), or  
0120-61-1280(Domestic Only)  
13" Reel  
Korea: (65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand, Philippines,  
Indonesia: (65) 6755 2044  
Note: For lead-free option, the part number will have the character "G"  
Taiwan: (65) 6755 1843  
at the end, eg. HBAT-540x-TR2G for a 10,000 lead-free reel.  
Data subject to change.  
Copyright © 2003 Agilent Technologies, Inc.  
Obsoletes 5968-7959E  
March 24, 2004  
5989-0472EN  

相关型号:

HBAT-540B-TR2G

High Performance Schottky Diode for Transient Suppression
AVAGO

HBAT-540C

High Performance Schottky Diode for Transient Suppression
AGILENT

HBAT-540C

High Performance Schottky Diode for Transient Suppression
AVAGO

HBAT-540C-BLK

High Performance Schottky Diode for Transient Suppression
AGILENT

HBAT-540C-BLK

UNIDIRECTIONAL, 2 ELEMENT, SILICON, TVS DIODE, SC-70, 3 PIN
AVAGO

HBAT-540C-BLKG

High Performance Schottky Diode for Transient Suppression
AVAGO

HBAT-540C-TR1

High Performance Schottky Diode for Transient Suppression
AGILENT

HBAT-540C-TR1

UNIDIRECTIONAL, 2 ELEMENT, SILICON, TVS DIODE, SC-70, 3 PIN
AVAGO

HBAT-540C-TR1G

High Performance Schottky Diode for Transient Suppression
AVAGO

HBAT-540C-TR2

High Performance Schottky Diode for Transient Suppression
AGILENT

HBAT-540C-TR2

UNIDIRECTIONAL, 2 ELEMENT, SILICON, TVS DIODE, SC-70, 3 PIN
AVAGO

HBAT-540C-TR2G

High Performance Schottky Diode for Transient Suppression
AVAGO