HCPL-0302-560E [AGILENT]

IC Output Optocoupler;
HCPL-0302-560E
型号: HCPL-0302-560E
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

IC Output Optocoupler

文件: 总16页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HCPL-3020/HCPL-0302  
0.4 Amp Output Current IGBT  
Gate Drive Optocoupler  
Data Sheet  
Features  
• 0.4 A maximum peak output  
current  
• 0.2 A minimum peak output  
current  
• High speed response: 0.7 µs  
Functional Diagram  
Description  
maximum propagation delay over  
temperature range  
The HCPL-3020 and HCPL-  
0302 consist of a GaAsP LED  
optically coupled to an  
integrated circuit with a power  
output stage. These  
optocouplers are ideally suited  
for driving power IGBTs and  
MOSFETs used in motor  
control inverter applications.  
The high operating voltage  
range of the output stage  
provides the drive voltages  
required by gate-controlled  
devices. The voltage and  
N/C  
ANODE  
CATHODE  
N/C  
1
8
V
CC  
• Ultra high CMR: minimum 10 kV/  
µs at VCM = 1000 V  
N/C  
2
3
4
7
6
5
• Bootstrappable supply current:  
maximum 3 mA  
V
V
O
• Wide operating temperature  
range: –40°C to 100°C  
EE  
• Wide VCC operating range: 10 V to  
30 V over temperature range  
SHIELD  
• Available in DIP 8 and SO-8  
packages  
Truth Table  
LED  
• Safety approvals: UL approval,  
3750 VRMS for 1 minute  
current supplied by this  
V
O
optocoupler makes it ideally  
suited for directly driving  
small or medium power  
IGBTs. For IGBTs with higher  
ratings, the HCPL-0314/3140  
(0.6 A), HCPL-3150 (0.6 A) or  
HCPL-3120 (2.5 A) gate drive  
opto-couplers can be used.  
• CSA approval  
OFF  
LOW  
HIGH  
• IEC/EN/DIN EN 60747-5-2  
approval  
ON  
VIORM = 630 VPEAK (HCPL-3020),  
VIORM = 566 VPEAK (HCPL-0302)  
Note:  
A 0.1 uF bypass capacitor must be  
connected between pins VCC and  
VEE.  
Applications  
• Isolated IGBT/power MOSFET  
gate drive  
• AC and brushless DC motor drives  
• Industrial inverters  
• Air conditioner  
• Washing machine  
• Induction heater for cooker  
• Switching power supplies (SPS)  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of  
this component to prevent damage and /or degradation which may be induced by ESD.  
Ordering Information  
Specify part number followed by option number (if desired).  
Example:  
HCPL-3020-XXXX  
No option = Standard DIP package, 50 per tube  
300 = Gull Wing Surface Mount Option, 50 per tube  
500 = Tape and Reel Packaging Option  
060 = IEC/EN/DIN EN 60747-5-2, V  
XXXE = Lead Free Option  
= 630 V  
IORM  
PEAK  
HCPL-0302-XXXX  
No option = Standard SO-8 package, 100 per tube  
500 = Tape and Reel Packaging Option  
060 = IEC/EN/DIN EN 60747-5-2, V  
XXXE = Lead Free Option  
= 566 V  
IORM  
PEAK  
Package Outline Drawings  
HCPL-3020 Standard DIP Package  
7.62 0.25  
(0.300 0.010)  
9.65 0.25  
(0.380 0.010)  
8
1
7
6
5
6.35 0.25  
(0.250 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
(0.010  
3.56 0.13  
(0.140 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
2.92 (0.115) MIN.  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
1.080 0.320  
0.65 (0.025) MAX.  
(0.043 0.013)  
NOTE:  
2.54 0.25  
FLOATING LEAD PROTUSION IS 0.25 mm (10 mils) MAX.  
(0.100 0.010)  
2
HCPL-3020 Gull Wing Surface Mount Option 300  
Land Pattern Recommendation  
1.016 (0.040)  
9.65 0.25  
(0.380 0.010)  
6
7
5
8
1
6.350 0.25  
(0.250 0.010)  
10.9 (0.430)  
3
2
4
2.0 (0.080)  
1.27 (0.050)  
9.65 0.25  
1.780  
(0.380 0.010)  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 0.25  
(0.300 0.010)  
0.20 (0.008)  
0.33 (0.013)  
3.56 0.13  
(0.140 0.005)  
0.635 0.25  
(0.025 0.010)  
1.080 0.320  
(0.043 0.013)  
0.635 0.130  
(0.025 0.005)  
12 NOM.  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTUSION IS 0.25 mm (10 mils) MAX.  
Land Pattern Recommendation  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
HCPL-0302 Small Outline SO-8 Package  
8
7
2
6
5
5.994 0.203  
(0.236 0.008)  
XXX  
YWW  
3.937 0.127  
TYPE NUMBER  
(LAST 3 DIGITS)  
(0.155 0.005)  
7.49 (0.295)  
1.9 (0.075)  
DATE CODE  
1
3
4
PIN ONE  
0.406 0.076  
(0.016 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
*
5.080 0.127  
(0.200 0.005)  
0.432  
(0.017)  
7
45 X  
3.175 0.127  
(0.125 0.005)  
0 ~ 7  
0.228 0.025  
(0.009 0.001)  
1.524  
(0.060)  
0.203 0.102  
(0.008 0.004)  
*
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 0.254 (0.205 0.010)  
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTUSION IS 0.15 mm (6 mils) MAX.  
3
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3˚C + 1˚C/–0.5˚C/SEC.  
REFLOW HEATING RATE 2.5˚C 0.5˚C/SEC.  
PEAK  
TEMP.  
245˚C  
PEAK  
TEMP.  
240˚C  
PEAK  
TEMP.  
230˚C  
200  
100  
0
2.5˚C 0.5˚C/SEC.  
SOLDERING  
TIME  
200˚C  
30  
160˚C  
150˚C  
140˚C  
SEC.  
30  
SEC.  
3˚C + 1˚C/–0.5˚C  
PREHEATING TIME  
150˚C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
0
50  
100  
150  
200  
250  
ROOM TEMPERATURE  
TIME (SECONDS)  
Recommended Solder Reflow Temperature Profile (Lead free)  
TIME WITHIN 5 ˚C of ACTUAL  
PEAK TEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 ˚C  
T
p
217 ˚C  
T
L
RAMP-UP  
3 ˚C/SEC. MAX.  
150 - 200 ˚C  
RAMP-DOWN  
6 ˚C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 ˚C to PEAK  
TIME (SECONDS)  
NOTES:  
THE TIME FROM 25 ˚C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 ˚C, T = 150 ˚C  
T
smax  
smin  
4
Regulatory Information  
The HCPL-0302/3020 has been approved by the following organizations:  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
UL  
Approval under UL 1577, component recognition  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01.  
(Option 060 only)  
program up to V  
= 3750 V  
. File E55361.  
ISO  
RMS  
CSA  
Approval under CSA Component Acceptance  
Notice #5, File CA 88324.  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (HCPL-3020 and HCPL-0302 Option 060)  
Description  
Symbol  
HCPL-3020 HCPL-0302 Unit  
Installation Classification per DIN VDE 0110/1.89, Table 1  
for Rated Mains Voltage - 150 V  
for Rated Mains Voltage - 300 V  
for Rated Mains Voltage - 600 V  
I – IV  
I – III  
I – II  
I – IV  
I – III  
rms  
rms  
rms  
Climatic Classification  
55/100/21 55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b  
2
2
V
V
630  
566  
V
V
IORM  
PR  
peak  
peak  
[1]  
[1]  
V
x 1.875 = V , 100% Production Test with t = 1 sec,  
IORM  
PR  
m
Partial Discharge < 5 pC  
1181  
1050  
Input to Output Test Voltage, Method a  
V
x 1.5 = V , Type and Sample Test, t = 60 sec,  
PR m  
IORM  
Partial Discharge < 5 pC  
V
V
945  
840  
V
V
PR  
peak  
peak  
Highest Allowable Overvoltage  
(Transient Overvoltage t = 10 sec)  
6000  
4000  
ini  
IOTM  
Safety-Limiting Values – Maximum Values Allowed in the Event of a  
Failure.  
Case Temperature  
T
175  
230  
600  
150  
150  
600  
°C  
mA  
mW  
S
[2]  
Input Current  
I
S, INPUT  
[2]  
Output Power  
P
S, OUTPUT  
9
9
Insulation Resistance at T , V = 500 V  
R
>10  
>10  
S
IO  
S
800  
700  
600  
500  
400  
300  
1. Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog,  
under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2), for a detailed  
description of Method a and Method b partial discharge test profiles.  
P
(mW)  
S
I
(mA)  
S
2. Refer to the following figure for dependence of P and I on ambient temperature.  
S
S
200  
100  
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – C  
T
S
5
Insulation and Safety Related Specifications  
Parameter  
Symbol HCPL-3020 HCPL-0302 Units Conditions  
Minimum External Air Gap  
(Clearance)  
L(101) 7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(Creepage)  
L(102) 7.4  
4.8  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Through insulation distance conductor to  
conductor, usually the straight line distance  
thickness between the emitter and detector.  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
>175  
IIIa  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
–55  
Max.  
125  
100  
20  
Units  
°C  
°C  
mA  
A
Note  
Storage Temperature  
Operating Temperature  
Average Input Current  
T
T
S
–40  
A
I
I
1
F(AVG)  
F(TRAN)  
Peak Transient Input Current (<1 µs pulse width, 300 pps)  
Reverse Input Voltage  
1.0  
5
V
R
V
“High” Peak Output Current  
“Low” Peak Output Current  
Supply Voltage  
I
I
0.4  
0.4  
35  
A
2
2
OH(PEAK)  
OL(PEAK)  
A
V
V
P
– V  
–0.5  
–0.5  
V
CC  
EE  
Output Voltage  
V
CC  
V
O(PEAK)  
Output Power Dissipation  
Input Power Dissipation  
250  
45  
mW  
mW  
3
4
O
I
P
Lead Solder Temperature  
Solder Reflow Temperature Profile  
260°C for 10 sec., 1.6 mm below seating plane  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
V - V  
CC  
Min.  
10  
Max.  
30  
Units  
V
Note  
Power Supply  
EE  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
I
7
12  
mA  
V
F(ON)  
V
–3.0  
–40  
0.8  
F(OFF)  
T
100  
°C  
A
6
Electrical Specifications (DC)  
Over recommended operating conditions unless otherwise specified.  
Parameter  
Symbol Min.  
Typ.  
Max. Units Test Conditions Fig.  
Note  
High Level Output Current  
I
0.15  
0.2  
A
V = V – 4  
5
OH  
OL  
O
CC  
0.3  
A
V = V – 10  
2
2
O
CC  
Low Level Output Current  
I
0.15  
0.2  
A
V = V + 2.5  
5
O
EE  
0.3  
A
V = V + 10  
4
2
O
EE  
High Level Output Voltage  
Low Level Output Voltage  
V
V
V
– 4  
V
– 1.8  
V
I = –100 mA  
1
6, 7  
OH  
CC  
CC  
O
0.4  
0.7  
1.2  
1
3
3
6
V
I = 100 mA  
O
3
OL  
High Level Supply Current  
Low Level Supply Current  
I
I
I
mA  
mA  
mA  
V
I = 0 mA  
O
5, 6  
14  
CCH  
CCL  
FLH  
I = 0 mA  
O
Threshold Input Current Low to High  
Threshold Input Voltage High to Low  
Input Forward Voltage  
I = 0 mA,  
7, 13  
14  
O
V > 5 V  
O
V
V
0.8  
1.2  
FHL  
F
1.5  
1.8  
V
I = 10 mA  
F
Temperature Coefficient of Input  
Forward Voltage  
DV /DT  
–1.6  
mV/°C  
F
A
Input Reverse Breakdown Voltage  
Input Capacitance  
BV  
5
V
I = 10 µA  
R
R
C
60  
pF  
f = 1 MHz,  
IN  
V = 0 V  
F
Switching Specifications (AC)  
Over recommended operating conditions unless otherwise specified.  
Parameter  
Symbol Min. Typ. Max. Units Test Conditions  
Fig.  
Note  
Propagation Delay Time to High  
Output Level  
t
t
0.1  
0.2 0.7  
µs  
R =75, C = 1.5 nF,  
8, 9  
14  
PLH  
g
g
f = 10 kHz, Duty Cycle = 50%, 10, 11  
I = 7 mA, V = 30 V  
12, 15  
F
CC  
Propagation Delay Time to Low  
Output Level  
0.1  
0.2 0.7  
0.5  
µs  
µs  
PHL  
Propagation Delay Difference  
PDD  
–0.5  
10  
Between Any Two Parts or Channels  
Rise Time  
Fall Time  
t
t
50  
50  
ns  
ns  
R
F
Output High Level Common Mode  
Transient Immunity  
|CM | 10  
kV/µs T = 25°C, V = 1000 V  
16  
16  
11  
12  
H
A
CM  
Output Low Level Common Mode  
Transient Immunity  
|CM | 10  
kV/µs  
L
7
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ. Max. Units  
Test Conditions  
T = 25°C, RH < 50%  
Fig. Note  
Input-Output Momentary  
Withstand Voltage  
V
ISO  
3750  
V
rms  
8, 9  
A
12  
Input-Output Resistance  
Input-Output Capacitance  
R
C
10  
V
= 500 V  
I-O  
9
I-O  
I-O  
0.6  
pF  
Freq = 1 MHz  
Notes:  
1. Derate linearly above 70°C free air temperature at a rate of 0.3 mA/°C.  
2. Maximum pulse width = 10 µs, maximum duty cycle = 0.2%. This value is intended to allow for component tolerances for designs with I peak  
O
minimum = 0.2 A. See Application section for additional details on limiting I peak.  
OL  
3. Derate linearly above 85°C, free air temperature at the rate of 4.0 mW/°C.  
4. Input power dissipation does not require derating.  
5. Maximum pulse width = 50 µs, maximum duty cycle = 0.5%.  
6. In this test, V is measured with a DC load current. When driving capacitive load V will approach V as I approaches zero amps.  
OH  
OH  
CC  
OH  
7. Maximum pulse width = 1 µs, maximum duty cycle = 20%.  
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage >4500 V for 1 second (leakage detection  
rms  
current limit I < 5 µA). This test is performed before 100% production test for partial discharge (method B) shown in the IEC/EN/DIN EN 60747-5-2  
I-O  
Insulation Characteristics Table, if applicable.  
9. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.  
10. PDD is the difference between t  
and t  
between any two parts or channels under the same test conditions.  
PLH  
PHL  
11. Common mode transient immunity in the high state is the maximum tolerable |dV /dt| of the common mode pulse V to assure that the output  
CM  
CM  
will remain in the high state (i.e. V > 6.0 V).  
O
12. Common mode transient immunity in a low state is the maximum tolerable |dV /dt| of the common mode pulse, V , to assure that the output will  
CM  
CM  
remain in a low state (i.e. V < 1.0 V).  
O
13. This load condition approximates the gate load of a 1200 V/20 A IGBT.  
14. The power supply current increases when operating frequency and C of the driven IGBT increases.  
g
0
0
0.44  
-0.5  
0.43  
0.42  
0.41  
0.40  
0.39  
-1  
-1.0  
-2  
-1.5  
-2.0  
-3  
-2.5  
-50 -25  
0
25  
50  
75 100 125  
-4  
T
– TEMPERATURE – C  
0
0.2  
0.4  
-50 -25  
0
25  
50  
75 100 125  
A
I
– OUTPUT HIGH CURRENT – A  
T
– TEMPERATURE – C  
OH  
A
Figure 3. V vs. temperature.  
Figure 1. V vs. temperature.  
Figure 2. V vs. I  
.
OH  
OH  
OH  
OL  
8
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.0  
4
3
2
1
0
0.8  
0.6  
0.4  
0.2  
0
I
I
L
CC  
I
I
L
CC  
0.2  
0
H
CC  
H
CC  
0
0.1  
0.2  
0.3  
0.4  
-50 -25  
0
25  
– TEMPERATURE – C  
A
50  
75 100 125  
10  
15  
CC  
20  
25  
30  
I
– OUTPUT LOW CURRENT – A  
T
V
– SUPPLY VOLTAGE – V  
OL  
Figure 4. V vs. I  
.
Figure 5. I vs. temperature.  
Figure 6. I vs. V .  
CC  
OL  
OL  
CC  
CC  
3.5  
3.0  
2.5  
2.0  
400  
300  
200  
400  
300  
200  
100  
0
100  
0
T
T
PLH  
PHL  
1.5  
-50 -25  
0
25  
50  
75 100 125  
10  
15  
CC  
20  
25  
30  
6
9
12  
I – FORWARD LED CURRENT – mA  
F
15  
18  
T
– TEMPERATURE – C  
V
– SUPPLY VOLTAGE – V  
A
Figure 7. I vs. temperature.  
Figure 8. Propagation delay vs. V  
.
Figure 9. Propagation delay vs. I .  
FLH  
CC  
F
500  
400  
350  
300  
400  
300  
200  
400  
300  
200  
100  
0
T
T
PLH  
PHL  
250  
200  
100  
0
T
T
PLH  
PHL  
T
T
PLH  
PHL  
-50 -25  
0
25  
50  
75 100 125  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
T
– TEMPERATURE – C  
Rg – SERIES LOAD RESISTANCE –  
Cg – LOAD CAPACITANCE – nF  
A
Figure 10. Propagation delay vs. temperature.  
Figure 11. Propagation delay vs. R .  
Figure 12. Propagation delay vs. C  
g.  
g
9
35  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
5
0
-5  
0
1.2  
0
1
2
3
4
5
6
1.4  
1.6  
1.8  
I
– FORWARD LED CURRENT – mA  
F
V – FORWARD VOLTAGE – V  
F
Figure 13. Transfer characteristics.  
Figure 14. Input current vs. forward voltage.  
1
8
I
0.1 µF  
F
I
= 7 to 16 mA  
F
V
= 15  
CC  
+
to 30 V  
2
3
4
7
6
5
t
t
f
r
500  
+
V
O
90%  
10 KHz  
50% DUTY  
CYCLE  
75 Ω  
1.5 nF  
50%  
10%  
V
OUT  
t
t
PHL  
PLH  
Figure 15. Propagation delay test circuits and waveforms.  
V
CM  
δV  
V
CM  
1
2
3
4
8
7
6
5
=
δt  
t  
I
F
0.1 µF  
A
B
0 V  
t  
+
+
V
O
5 V  
V
= 30 V  
CC  
V
V
OH  
OL  
V
O
SWITCH AT A: I = 10 mA  
F
V
O
SWITCH AT B: I = 0 mA  
F
+
V
= 1000 V  
CM  
Figure 16. CMR test circuits and waveforms.  
10  
Applications Information Eliminating  
Negative IGBT Gate Drive  
a small PC board directly  
above the IGBT) can eliminate  
the need for negative IGBT  
gate drive in many  
applications as shown in  
Figure 17. Care should be  
taken with such a PC board  
design to avoid routing the  
IGBT collector or emitter  
traces close to the HCPL-3020  
or HCPL-0302 input as this  
can result in unwanted  
coupling of transient signals  
into the input of HCPL-3020  
or HCPL-0302 and degrade  
performance. (If the IGBT  
drain must be routed near the  
HCPL-3020 or HCPL-0302  
input, then the LED should be  
reverse biased when in the off  
state, to prevent the transient  
signals coupled from the IGBT  
drain from turning on the  
HCPL-3020 or HCPL-0302.  
To keep the IGBT firmly off,  
the HCPL-3020 and HCPL-  
0302 have a very low  
maximum V specification of  
OL  
1.0 V. Minimizing R and the  
g
lead inductance from the  
HCPL-3020 or HCPL-0302 to  
the IGBT gate and emitter  
(possibly by mounting the  
HCPL-3020 or HCPL-0302 on  
HCPL-3020/0302  
8
+5 V  
1
V
= 15 V  
CC  
+ HVDC  
270  
0.1 µF  
7
+
2
Rg  
Q1  
Q2  
3-PHASE  
AC  
CONTROL  
3
6
5
INPUT  
74XXX  
OPEN  
4
COLLECTOR  
- HVDC  
Figure 17. Recommended LED drive and application circuit for HCPL-3020 and HCPL-0302.  
11  
Selecting the Gate Resistor (Rg) for HCPL-3020  
Step 1: Calculate R minimum from the I peak specification. The IGBT and R in Figure 17 can  
g
OL  
g
be analyzed as a simple RC circuit with a voltage supplied by the HCPL-3020.  
R
=
=
V
– V  
CC OL  
g
I
OLPEAK  
24 - 1  
0.4  
57.5 Ω  
The V value of 1 V in the previous equation is the V at the peak current of 0.4 A. (See Figure  
OL  
OL  
4).  
Step 2: Check the HCPL-3020 power dissipation and increase R if necessary. The HCPL-3020 total  
g
power dissipation (P ) is equal to the sum of the emitter power (P ) and the output power (P ).  
T
E
O
P = P + P  
T
E
O
E
O
P
P
= I • V • Duty Cycle  
F F  
= P  
+ P  
= I • V + E  
(R ;Q ) • f  
SW g g  
O(BIAS)  
O(SWITCHING)  
CC  
CC  
= (I  
+ K  
• Q f) • V + E  
(R ;Q ) • f  
SW g g  
CCBIAS  
ICC  
g
CC  
where  
• Q • f is the increase in I due to switching and K is a constant of 0.001 mA/(nC*kHz).  
ICC  
K
ICC  
g
CC  
For the circuit in Figure 17 with I (worst case) = 10 mA, R = 57.5 , Max Duty Cycle = 80%,  
F
g
Q = 100 nC, f = 20 kHz and T  
g
= 85°C:  
AMAX  
P = 10 mA • 1.8 V • 0.8 = 14 mW  
E
P = [(3 mA + (0.001 mA/nC • kHz) • 20 kHz • 100 nC)] • 24 V + 0.31 • 20 kHz  
O
= 126 mW < 250 mW (P  
) @ 85°C  
O(MAX)  
The value of 3 mA for I in the previous equation is the max. I over entire operating  
CC  
CC  
temperature range.  
Since P for this case is less than P  
, R = 57.5 is alright for the power dissipation.  
O
O(MAX)  
g
4.0  
Qg = 50 nC  
3.5  
Qg = 100 nC  
Qg = 200 nC  
Qg = 400 nC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
20  
40  
60  
80  
100  
Rg – GATE RESISTANCE   
Figure 18. Energy dissipated in the HCPL-3020 and  
HCPL-0302 and for each IGBT switching cycle.  
12  
LED Drive Circuit Considerations for  
Ultra High CMR Performance  
C
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
LEDO1  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side  
of the optocoupler, through  
the package, to the detector IC  
as shown in Figure 19. The  
HCPL-3020 and HCPL-0302  
improve CMR performance by  
using a detector IC with an  
optically transparent Faraday  
shield, which diverts the  
C
C
C
C
LEDP  
LEDP  
C
LEDO2  
LEDN  
LEDN  
SHIELD  
Figure 19. Optocoupler input to output  
capacitance model for unshielded  
optocouplers.  
Figure 20. Optocoupler Input to output  
capacitance model for shielded optocouplers.  
capacitively coupled current  
away from the sensitive IC  
circuitry. However, this shield  
does not eliminate the  
+5 V  
1
8
capacitive coupling between  
the LED and optocoupler pins  
5-8 as shown in Figure 20.  
This capacitive coupling causes  
perturbations in the LED  
current during common mode  
transients and becomes the  
major source of CMR failures  
for a shielded optocoupler.  
The main design objective of a  
high CMR LED drive circuit  
becomes keeping the LED in  
the proper state (on or off)  
during common mode  
0.1  
µF  
+
C
LEDP  
V
= 18 V  
CC  
2
7
6
5
+
I
LEDP  
V
SAT  
3
4
• • •  
• • •  
C
LEDN  
Rg  
SHIELD  
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING –dV /dt.  
CM  
+
V
CM  
transients. For example, the  
recommended application  
circuit (Figure 17), can  
Figure 21. Equivalent circuit for figure 15 during common mode transient.  
achieve 10 kV/µs CMR while  
minimizing component  
complexity.  
Techniques to keep the LED in  
the proper state are discussed  
in the next two sections.  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
+5 V  
+5 V  
C
C
C
C
LEDP  
LEDP  
LEDN  
LEDN  
Q1  
LEDN  
I
SHIELD  
SHIELD  
Figure 22. Not recommended open collector  
drive circuit.  
Figure 23. Recommended LED drive circuit for  
ultra-high CMR IPM dead time and propagation  
delayspecifications.  
13  
CMR with the LED On (CMRH)  
Dead Time and Propagation Delay  
Specifications  
Note that the propagation delays  
used to calculate PDD and dead time  
are taken at equal temperatures and  
test conditions since the optocouplers  
under consideration are typically  
mounted in close proximity to each  
other and are switching identical  
IGBTs.  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This  
is achieved by overdriving the  
LED current beyond the input  
threshold so that it is not  
pulled below the threshold  
during a transient. A minimum  
LED current of 7 mA provides  
adequate margin over the  
The HCPL-3020 and HCPL-  
0302 include a Propagation  
Delay Difference (PDD)  
specification intended to help  
designers minimize “dead  
time” in their power inverter  
designs. Dead time is the time  
high and low side power  
transistors are off. Any  
maximum I  
of 6 mA to  
overlap in Ql and Q2  
FLH  
achieve 10 kV/µs CMR.  
conduction will result in large  
currents flowing through the  
power devices from the high  
voltage to the low-voltage  
motor rails. To minimize dead  
time in a given design, the  
turn on of LED2 should be  
delayed (relative to the turn  
off of LED1) so that under  
worst-case conditions,  
CMR with the LED Off (CMRL)  
A high CMR LED drive circuit  
must keep the LED off (V  
-
F
V
) during common mode  
F(OFF)  
transients. For example,  
during a -dV /dt transient in  
CM  
Figure 21, the current flowing  
through C  
also flows  
LEDP  
transistor Q1 has just turned  
off when transistor Q2 turns  
on, as shown in Figure 24.  
The amount of delay necessary  
to achieve this condition is  
equal to the maximum value  
of the propagation delay  
difference specification, PDD  
max, which is specified to be  
500 ns over the operating  
temperature range of –40° to  
100°C.  
through the R  
and V  
of  
SAT  
SAT  
the logic gate. As long as the  
low state voltage developed  
across the logic gate is less  
than V  
the LED will  
F(OFF)  
remain off and no common  
mode failure will occur.  
The open collector drive  
circuit, shown in Figure 22,  
cannot keep the LED off  
during a +dV /dt transient,  
CM  
since all the current flowing  
Delaying the LED signal by the  
maximum propagation delay  
difference ensures that the  
minimum dead time is zero,  
but it does not tell a designer  
what the maximum dead time  
will be. The maximum dead  
time is equivalent to the  
difference between the  
through C  
must be  
LEDN  
supplied by the LED, and it is  
not recommended for  
applications requiring ultra  
high CMR performance. The  
1
alternative drive circuit, which  
likes the recommended  
application circuit (Figure 17),  
does achieve ultra high CMR  
performance by shunting the  
LED in the off state.  
maximum and minimum  
propagation delay difference  
specification as shown in  
Figure 25. The maximum dead  
time for the HCPL-3020 and  
HCPL-0302 is 1 ms (= 0.5 µs  
– (–0.5 µs)) over the operating  
temperature range of –40°C to  
100°C.  
14  
I
LED1  
V
OUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
Q2 OFF  
V
OUT2  
I
LED2  
t
PHL MAX  
t
PLH MIN  
PDD* MAX = (t - t  
)
= t  
- t  
PHL PLH MAX PHL MAX PLH MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 24. Minimum LED skew for zero dead time.  
I
LED1  
V
OUT1  
Q1 ON  
Q2 OFF  
Q1 OFF  
Q2 ON  
V
OUT2  
I
LED2  
t
PHL MIN  
t
PHL MAX  
t
PLH  
MIN  
t
PLH MAX  
(t  
t
)
PHL- PLH MAX  
PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
= (t  
- t  
) + (t  
) – (t  
- t )  
PLH MAX PLH MIN  
PHL MAX PHL MIN  
= (t  
- t  
PHL MAX PLH MIN  
- t )  
PHL MIN PLH MAX  
= PDD* MAX – PDD* MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 25. Waveforms for dead time.  
15  
www.agilent.com/  
semiconductors  
For product information and a complete list  
of distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(408)654-8675  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152(Domestic/Intern-  
ational), or 0120-61-1280(Domestic Only)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand,  
Philippines, Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2005 Agilent Technologies, Inc.  
obsolete5989-2160EN  
July 13, 2005  
5989-2947EN  

相关型号:

HCPL-0314

0.4 Amp Output Current IGBT Gate Drive Optocoupler
AGILENT

HCPL-0314

0.4 Amp Output Current IGBT Gate Drive Optocoupler High speed response
AVAGO

HCPL-0314#560

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SOP-8
AVAGO

HCPL-0314-000E

0.4 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-0314-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO

HCPL-0314-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO

HCPL-0360E

8 MBd Low Input Current Optocoupler
AVAGO

HCPL-0370

AC/DC to Logic Interface Optocouplers
AGILENT

HCPL-0370

Isolated Voltage/Current Detectors
AVAGO

HCPL-0370-000E

IC Output Optocoupler, 1-Element, 3750V Isolation,
AGILENT

HCPL-0370-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, ROHS COMPLIANT, SOP-8
AVAGO

HCPL-0370-500

AC/DC to Logic Interface Optocouplers
AGILENT