HCPL-0611 [AGILENT]

Small Outline, 5 Lead, High CMR, High Speed, Logic Gate Optocouplers; 小外形, 5铅,高CMR ,高速逻辑门光电耦合器
HCPL-0611
型号: HCPL-0611
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Small Outline, 5 Lead, High CMR, High Speed, Logic Gate Optocouplers
小外形, 5铅,高CMR ,高速逻辑门光电耦合器

光电 输出元件 栅
文件: 总10页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Small Outline, 5 Lead, High  
CMR, High Speed, Logic Gate  
Optocouplers  
Technical Data  
HCPL-M600  
HCPL-M601  
HCPL-M611  
Description  
Features  
ThesesmalloutlinehighCMR,  
high speed, logic gate optocoup-  
lersaresinglechanneldevicesin  
afiveleadminiaturefootprint.  
Theyareelectricallyequivalentto  
thefollowingAgilent  
SurfaceMountable  
VerySmall,LowProfile  
JEDECRegisteredPackage  
Outline  
CompatiblewithInfrared  
VaporPhaseReflowand  
WaveSolderingProcesses  
InternalShieldforHigh  
CommonModeRejection  
(CMR)  
HCPL-M601:10,000V/µsat  
VCM = 50 V  
optocouplers (except there is no  
outputenablefeature):  
SO-5 Package  
HCPL-M600  
HCPL-M601  
HCPL-M611  
Standard DIP  
SO-8 Package  
6N137  
HCPL-0600  
HCPL-0601  
HCPL-0611  
HCPL-2601  
HCPL-2611  
HCPL-M611:15,000V/µsat  
VCM = 1000 V  
HighSpeed:10Mbd  
LSTTL/TTLCompatible  
LowInputCurrent  
Capability:5mA  
Guaranteedacanddc  
Performanceover  
TheSO-5JEDECregistered(MO-  
155) package outline does not  
requirethroughholesinaPCB.  
Thispackageoccupies  
approximatelyonefourththe  
footprintareaofthestandard  
dual-in-linepackage.Thelead  
profile is designed to be com-  
patiblewithstandardsurface  
mountprocesses.  
Schottky-clampedtransistor.The  
internalshieldprovidesa  
guaranteedcommonmode  
transientimmunityspecificationof  
5,000V/µsfortheHCPL-M601,  
and10,000V/µsfortheHCPL-  
M611.  
Temperature:-40°Cto85°C  
Recognizedunderthe  
ComponentProgramofU.L.  
(File No. E55361) for  
DielectricWithstandProof  
Test Voltageof2500 Vac, 1  
Minute  
Thisuniquedesignprovides  
maximumacanddccircuit  
isolationwhileachievingTTL  
compatibility.Theoptocouplerac  
anddcoperationalparametersare  
guaranteedfrom-40°Cto85°C  
allowingtroublefreesystem  
performance.  
TheHCPL-M600/01/11optically  
coupledgatescombineaGaAsP  
lightemittingdiodeandan  
integratedhighgainphoton  
detector.Theoutputofthe  
detectorI.C.isanOpen-collector  
CAUTION: The small device geometries inherent to the design of this bipolar component increase the component's  
susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken  
in handling and assembly of this component to prevent damage and/or degradation which may be induced by  
ESD.  
2
TheHCPL-M600/01/11are  
suitableforhighspeedlogic  
interfacing,input/output  
buffering,aslinereceiversin  
environmentsthatconventional  
linereceiverscannottolerate,and  
arerecommendedforusein  
extremelyhighgroundorinduced  
noiseenvironments.  
Applications  
IsolatedLineReceiver  
Simplex/MultiplexData  
Transmission  
Computer-Peripheral  
Interface  
MicroprocessorSystem  
Interface  
OutlineDrawing(JEDECMO-155)  
DigitalIsolationforA/D,D/A  
Conversion  
SwitchingPowerSupply  
InstrumentInput/Output  
Isolation  
GroundLoopElimination  
ANODE  
1
3
6
5
V
V
CC  
MXXX  
XXX  
7.0 ± 0.2  
(0.276 ± 0.008)  
4.4 ± 0.1  
(0.173 ± 0.004)  
OUT  
CATHODE  
4
GND  
PulseTransformer  
Replacement  
0.4 ± 0.05  
(0.016 ± 0.002)  
3.6 ± 0.1*  
(0.142 ± 0.004)  
0.102 ± 0.102  
(0.004 ± 0.004)  
0.15 ± 0.025  
(0.006 ± 0.001)  
2.5 ± 0.1  
(0.098 ± 0.004)  
7° MAX.  
1.27  
(0.050)  
0.71  
BSG  
MIN.  
(0.028)  
MAX. LEAD COPLANARITY  
= 0.102 (0.004)  
DIMENSIONS IN MILLIMETERS (INCHES)  
"Agilent" IS MARKED ON THE  
UNDERSIDE OF THE PACKAGE  
* MAXIMUM MOLD FLASH ON EACH SIDE IS 0.15 mm (0.006)  
PinLocation(forreferenceonly)  
Schematic  
0.3  
(0.01)  
I
+
1
I
CC  
F
4.4  
(0.17)  
V
V
CC  
O
6
5
I
O
1.3  
(0.05)  
2.5  
(0.10)  
3
GND  
4
HCPL-M601/11 SHIELD  
0.9  
(0.04)  
TRUTH TABLE  
(POSITIVE LOGIC)  
0.5  
(0.02)  
USE OF A 0.1 µF BYPASS CAPACITOR  
MUST BE CONNECTED BETWEEN PINS  
6 AND 4 (SEE NOTE 1).  
7.2  
(0.28)  
LED  
ON  
OUTPUT  
L
OFF  
H
3
RecommendedOperatingConditions  
Parameter  
Symbol  
IFL*  
Min.  
0
Max.  
250  
15  
Units  
µA  
InputCurrent,LowLevel  
InputCurrent,HighLevel  
SupplyVoltage,Output  
Fan Out (RL = 1 k)  
IFH  
5
mA  
V
V
CC  
4.5  
5.5  
5
N
TTL  
Loads  
OutputPull-UpResistor  
OperatingTemperature  
RL  
330  
-40  
4,000  
85  
T
A
°C  
* The off condition can also be guaranteed by ensuring that VF(off) 0.8 volts.  
AbsoluteMaximumRatings  
(NoDeratingRequiredupto85°C)  
StorageTemperature .................................................... -55°C to +125°C  
OperatingTemperature .................................................. -40°C to +85°C  
ForwardInputCurrent-IF (seeNote2) ....................................... 20mA  
ReverseInputVoltage-VR ................................................................. 5 V  
SupplyVoltage-VCC (1MinuteMaximum) ........................................ 7 V  
OutputCollectorCurrent-IO........................................................ 50mA  
OutputCollectorPowerDissipation ............................................ 85 mW  
OutputCollectorVoltage-VO ............................................................ 7 V  
(Selectionforhigheroutputvoltagesupto20Visavailable)  
InfraredandVaporPhaseReflowTemperature ....................... see below  
260  
240  
T = 145°C, 1°C/SEC  
220  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
Maximum Solder Reflow Thermal Profile.  
(Note: Use of Non-Chlorine Activated Fluxes is Recommended.)  
4
Insulation Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Min. External Air Gap  
(Clearance)  
L(IO1)  
5  
mm  
mm  
mm  
V
Measured from input terminals  
to output terminals  
Min. External Tracking Path  
(Creepage)  
L(IO2)  
5  
Measured from input terminals  
to output terminals  
Min. Internal Plastic Gap  
(Clearance)  
0.08  
Through insulation distance  
conductor to conductor  
Tracking Resistance  
CTI  
175  
IIIa  
DIN IEC 112/VDE 0303 Part 1  
Material Group DIN VDE 0109  
Isolation Group (per DIN VDE 0109)  
Electrical Specifications  
Over recommended temperature (T = -40°C to 85°C) unless otherwise specified. (See note 1.)  
A
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Input Threshold  
Current  
ITH  
IOH  
VOL  
ICCH  
ICCL  
VF  
2
5.5  
0.4  
4
5
mA  
µA  
V
VCC = 5.5 V, IO 13 mA,  
VO = 0.6 V  
13  
High Level Output  
Current  
100  
0.6  
VCC = 5.5 V, VO = 5.5 V  
IF = 250 µA  
1
Low Level Output  
Voltage  
VCC = 5.5 V, IF = 5 mA,  
IOL (Sinking) = 13 mA  
2, 4,  
5, 13  
High Level Supply  
Current  
7.5  
mA  
VCC = 5.5 V, IF = 0 mA,  
Low Level Supply  
Current  
6
10.5  
VCC = 5.5 V, IF = 10 mA,  
Input Forward  
Voltage  
1.4  
1.75  
1.85  
V
T = 25°C  
A
3
1.5  
1.3  
5
IF = 10 mA  
Input Reverse  
BVR  
IR = 10 µA  
Breakdown Voltage  
Input Capacitance  
CIN  
60  
pF  
VF = 0V, f = 1 MHz  
Input Diode  
Temperature  
Coefficient  
VF/TA  
-1.6  
mV/°C IF = 10 mA  
12  
Input-Output  
Insulation  
V
2500  
VRMS  
RH 50%, t = 1 min.  
3, 4  
3
ISO  
Resistance  
(Input-Output)  
RI-O  
CI-O  
1012  
0.6  
VI-O = 500 V  
f = 1 MHz  
Capacitance  
pF  
3
(Input-Output)  
*All typicals at T = 25°C, VCC = 5 V.  
A
5
Switching Specifications  
Over recommended temperature (TA = -40°C to 85°C), VCC = 5 V, IF = 7.5 mA unless otherwise specified.  
Device  
Parameter Symbol HCPL- Min. Typ.* Max. Unit  
Test Conditions  
Fig. Note  
Propagation  
Delay Time  
to High  
tPLH  
tPHL  
tPSK  
20  
25  
48  
50  
75  
ns TA = 25°C  
6, 7  
5
6
100  
8
Output Level  
Propagation  
Delay Time  
to Low  
75  
TA = 25°C  
6, 7  
8
100  
RL = 350 Ω  
Output Level  
Propagation  
Delay Skew  
40  
35  
10,  
11  
Pulse Width |tPHL - tPLH  
Distortion  
|
3.5  
24  
CL = 15 pF  
9
10  
Output Rise  
Time  
(10%-90%)  
trise  
10  
10  
Output Fall  
Time  
tfall  
10  
(10%-90%)  
Common  
Mode  
Transient  
Immunity at  
High Output  
Level  
|CMH|  
M600  
10,000  
V/µs VCM = 10 V VO(min) = 2 V  
11 7, 9  
RL = 350 Ω  
IF = 0 mA  
M601 5,000 10,000  
M611 10,000 15,000  
VCM = 50 V  
VCM =1000V TA = 25°C  
Common  
Mode  
Transient  
Immunity at  
Low Output  
Level  
|CMH|  
M600  
10,000  
VCM = 10 V VO(max) = 0.8 V 11 8, 9  
RL = 350 Ω  
IF = 7.5 mA  
M601 5,000 10,000  
M611 10,000 15,000  
VCM = 50 V  
VCM = 1000V  
TA = 25°C  
*All typicals at TA = 25°C, VCC = 5 V.  
Notes:  
1. Bypassing of the power supply line is required with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler. The total lead  
length between both ends of the capacitor and the isolator pins should not exceed 10 mm.  
2. Peaking circuits may produce transient input currents up to 50 mA, 50 ns maximum pulse width, provided average current  
does not exceed 20 mA.  
3. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.  
4. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 VRMS for 1 second  
(Leakage detection current limit, II-O 5 µA).  
5. The tPLH propagation delay is measured from 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the  
rising edge of the output pulse.  
6. The tPHL propagation delay is measured from 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the  
falling edge of the output pulse.  
7. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic  
state (i.e., VOUT > 2.0 V).  
8. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic  
state (i.e., VOUT > 0.8 V).  
9. For sinusoidal voltages, (|dVCM|/dt)max = πfCMVCM(p-p)  
.
10. See application section; “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information.  
11. tPSK is equal to the worst case difference in tPHL and/or tPLH that will be seen between units at any given temperature within  
the worst case operating condition range.  
6
15  
10  
0.5  
0.4  
100  
V
= 5.5 V  
= 5.0 mA  
T = 25°C  
A
CC  
V
V
I
= 5.5 V  
CC  
= 5.5 V  
I
F
O
10  
= 250 µA  
I
F
F
+
V
I
= 12.8 mA  
O
1.0  
F
I
= 16 mA  
= 6.4 mA  
O
0.3  
0.2  
0.1  
0.1  
5
0
I
O
0.01  
I
= 9.6 mA  
O
0.001  
-60 -40 -20  
0
20 40 60 80 100  
1.10 1.20  
1.30 1.40  
1.50  
1.60  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
V
– FORWARD VOLTAGE – VOLTS  
A
F
Figure 1. High Level Output  
Current vs. Temperature.  
Figure 2. Low Level Output Voltage  
vs. Temperature.  
Figure 3. Input Diode Forward  
Characteristic.  
6
V
= 5 V  
CC  
= 25 °C  
T
A
5
4
3
2
R
= 350 Ω  
L
PULSE GEN.  
R
= 1 KΩ  
L
Z = 50 Ω  
O
+5 V  
t = t = 5 ns  
f
r
R
= 4 KΩ  
L
I
F
V
1
3
6
5
4
CC  
1
0
R
L
0.1µF  
BYPASS  
OUTPUT V  
O
MONITORING  
NODE  
0
1
2
3
4
6
5
*C  
L
INPUT  
MONITORING  
NODE  
I
– FORWARD INPUT CURRENT – mA  
F
GND  
R
M
Figure 4. Output Voltage vs.  
Forward Input current.  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
80  
V
V
= 5.0 V  
= 0.6 V  
CC  
OL  
I
I
= 7.5 mA  
F
F
INPUT  
= 3.75 mA  
I
60  
40  
F
I
I
= 10 mA, 15 mA  
= 5.0 mA  
F
F
t
t
PLH  
PHL  
OUTPUT  
V
O
1.5 V  
20  
0
Figure 6. Test Circuit for tPHL and tPLH  
.
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
A
Figure 5. Low Level Output Current  
vs. Temperature.  
7
100  
80  
105  
90  
40  
30  
20  
10  
V
I
= 5.0 V  
V
T
= 5.0 V  
CC  
= 7.5 mA  
CC  
= 25°C  
R
= 4 kΩ  
L
F
A
t
, R = 4 KΩ  
L
t
, R = 4 KΩ  
L
PLH  
PLH  
V
= 5.0 V  
CC  
= 7.5 mA  
t
, R = 350 Ω  
L
PHL  
I
F
1 KΩ  
4 KΩ  
60  
40  
75  
60  
t
PLH  
, R = 350 Ω  
L
R
= 350 kΩ  
L
t
, R = 1 KΩ  
L
PLH  
t
, R = 1 KΩ  
L
PLH  
t
, R = 350 Ω  
L
PLH  
45  
30  
0
20  
0
t
, R = 350 Ω  
PHL  
L
R
= 1 kΩ  
L
1 KΩ  
4 KΩ  
-10  
-60 -40 -20  
0
20 40  
80 100  
5
7
9
11  
13  
15  
-60 -40 -20  
0
20 40  
80 100  
60  
60  
I
– PULSE INPUT CURRENT – mA  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
F
A
A
Figure 7. Propagation Delay vs.  
Temperature.  
Figure 8. Propagation Delay vs.  
Pulse Input Current.  
Figure 9. Pulse Width Distortion vs.  
Temperature.  
V
= 5.0 V  
t
t
CC  
= 7.5 mA  
RISE  
FALL  
I
F
I
F
+5 V  
B
A
R
= 4 kΩ  
= 1 kΩ  
V
300  
290  
60  
L
1
3
CC  
6
350 Ω  
OUTPUT V  
0.1 µF  
BYPASS  
O
5
4
MONITORING  
NODE  
V
R
FF  
L
40  
GND  
R
R
= 350 Ω  
L
20  
0
= 350 Ω, 1 k, 4 kΩ  
L
0
_
+
-60 -40 -20  
20 40 60 80 100  
PULSE  
GENERATOR  
= 50 Ω  
T
– TEMPERATURE – °C  
A
Z
O
Figure 10. Rise and Fall Time vs.  
Temperature.  
V
(PEAK)  
CM  
V
CM  
0 V  
5 V  
SWITCH AT A: I = 0 mA  
F
CM  
H
V
V
O
V
(MIN.)  
O
SWITCH AT B: I = 7.5 mA  
F
-2.4  
-2.2  
V
(MAX.)  
O
O
CM  
0.5 V  
L
-2.0  
-1.8  
-1.6  
Figure 11. Test Circuit for Common  
Mode Transient Immunity and  
Typical Waveforms.  
-1.4  
-1.2  
0.1  
1
10  
100  
I
– PULSE INPUT CURRENT – mA  
F
Figure 12. Temperature Coefficient  
for Forward Voltage vs. Input  
Current.  
8
PropagationDelay,Pulse- beingsentthroughagroupof  
only one edge were used, the  
clock signal would need to be  
twiceasfast.  
WidthDistortionand  
optocouplers,differencesin  
propagationdelayswillcausethe  
datatoarriveattheoutputsofthe  
optocouplersatdifferenttimes.If  
thisdifferenceinpropagation  
delaysislargeenough,itwill  
determinethemaximumrateat  
whichparalleldatacanbesent  
throughtheoptocouplers.  
PropagationDelaySkew  
Propagationdelayisafigureof  
meritwhichdescribeshow  
quicklyalogicsignalpropagates  
throughasystem.Thepropaga-  
Propagationdelayskew  
representstheuncertaintyof  
whereanedgemightbeafter  
beingsentthroughan  
tiondelayfromlowtohigh(tPLH  
istheamountoftimerequiredfor  
aninputsignaltopropagateto  
theoutput,causingtheoutputto  
change from low to high.  
)
optocoupler. Figure16shows  
thattherewillbeuncertaintyin  
boththedataandtheclocklines.  
Itisimportantthatthesetwo  
areasofuncertaintynotoverlap,  
otherwisetheclocksignalmight  
arrivebeforeallofthedata  
outputshavesettled,orsomeof  
thedataoutputsmaystartto  
changebeforetheclocksignal  
hasarrived.Fromthese  
considerations,theabsolute  
minimumpulsewidththatcanbe  
sentthroughoptocouplersina  
parallelapplicationistwicetPSK.A  
cautiousdesignshouldusea  
slightlylongerpulsewidthto  
ensurethatanyadditional  
Propagationdelayskewisdefined  
asthedifferencebetweenthe  
minimumandmaximum  
propagationdelays,eithertPLH or  
tPHL, for any given group of  
optocouplerswhichareoperating  
underthesameconditions(i.e.,  
thesamedrivecurrent,supply  
voltage,outputload,and  
Similarly,thepropagationdelay  
from high to low (tPHL) is the  
amountoftimerequiredforthe  
inputsignaltopropagatetothe  
output,causingtheoutputto  
change from high to low (see  
Figure7).  
operatingtemperature).As  
Pulse-widthdistortion(PWD)  
resultswhentPLHandtPHLdifferin  
value.PWDisdefinedasthe  
differencebetweentPLH andtPHL  
andoftendeterminesthemaxi-  
mumdataratecapabilityofa  
transmissionsystem.PWD can  
be expressed in percent by  
dividingthePWD(inns)bythe  
minimumpulsewidth(inns)  
beingtransmitted.Typically,PWD  
on the order of 20-30% of the  
minimumpulsewidthistolerable;  
theexactfiguredependsonthe  
particularapplication(RS232,  
RS422, T-1, etc.).  
illustratedinFigure15,ifthe  
inputs of a group of optocouplers  
areswitchedeitherONorOFFat  
thesametime,tPSK isthe  
differencebetweentheshortest  
propagationdelay,eithertPLHor  
tPHL,andthelongestpropagation  
uncertaintyintherestofthe  
circuit does not cause aproblem.  
delay,eithertPLH ortPHL  
.
ThetPSK specifiedoptocouplers  
offertheadvantagesof  
Asmentionedearlier,tPSK can  
determinethemaximumparallel  
datatransmissionrate.Figure11  
isthetimingdiagramofatypical  
paralleldataapplicationwithboth  
theclockandthedatalinesbeing  
sentthroughoptocouplers.The  
figureshowsdataandclock  
signalsattheinputsandoutputs  
of the optocouplers. To obtain the  
maximumdatatransmissionrate,  
both edges of the clock signal are  
being used to clock the data; if  
guaranteedspecificationsfor  
propagationdelays,pulse-width  
distortionandpropagationdelay  
skewovertherecommended  
temperature,andinputcurrent,  
andpowersupplyranges.  
Propagationdelayskew,tPSK,is  
animportantparameterto  
considerinparalleldataappli-  
cationswheresynchronizationof  
signalsonparalleldatalinesisa  
concern.Iftheparalleldatais  
9
6
5
4
3
2
V
V
= 5.0 V  
CC  
= 0.6 V  
5 V  
6
5
5 V  
V
1
V
2
CC  
CC  
O
390 Ω  
470  
*D1  
I
F
1
3
R
= 350 Ω  
L
R
R
= 1 kΩ  
V
0.1 µF  
BYPASS  
L
F
4
GND 1  
GND 2  
SHIELD  
1
0
1
2
= 4 kΩ  
L
* DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED  
FOR UNITS WITH OPEN COLLECTOR OUTPUT.  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
A
Figure 13. Input Threshold Current  
vs. Temperature.  
Figure 14. Recommended TTL/LSTTL to TTL/LSTTL Interface Circuit.  
DATA  
INPUTS  
I
F
50%  
50%  
CLOCK  
1.5 V  
V
O
DATA  
I
F
OUTPUTS  
t
PSK  
V
1.5 V  
O
CLOCK  
t
PSK  
t
PSK  
Figure 15. Illustration of  
Propagation Delay Skew – tPSK  
Figure16.ParallelDataTransmissionExample.  
.
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 1999 Agilent Technologies  
Obsoletes 5091-9635E (10/93)  
5966-4942E (11/99)  

相关型号:

HCPL-0611#060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, SOIC-8
AVAGO

HCPL-0611#500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, SOIC-8
AVAGO

HCPL-0611#560

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, SOIC-8
AVAGO

HCPL-0611-000E

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-0611-020E

IC Output Optocoupler, 1-Element, 5000V Isolation
AGILENT

HCPL-0611-060E

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-0611-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, SURFACE MOUNT, SOP-8
AVAGO

HCPL-0611-500E

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-0611-500E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, LEAD FREE, SOIC-8
AGILENT

HCPL-0611-520E

IC Output Optocoupler, 1-Element, 5000V Isolation,
AGILENT

HCPL-0611-560E

High CMR, High Speed TTL Compatible Optocouplers
AVAGO

HCPL-0611500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, SOIC-8
AGILENT