HCPL-4506#560E [AGILENT]

IC Output Optocoupler, 1-Element;
HCPL-4506#560E
型号: HCPL-4506#560E
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

IC Output Optocoupler, 1-Element

文件: 总21页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent Power Module  
and Gate Drive Interface  
Optocouplers  
HCPL-4506  
HCPL-J456  
HCPL-0466  
HCNW4506  
Technical Data  
Features  
CSA Approved  
IEC/EN/DIN EN 60747-5-2  
Approved  
-VIORM = 560 Vpeak for  
HCPL-0466 Option 060  
-VIORM = 630 Vpeak for  
HCPL-4506 Option 060  
-VIORM = 891 Vpeak for  
HCPL-J456  
Applications  
• IPM Isolation  
• Isolated IGBT/MOSFET Gate  
Drive  
• AC and Brushless DC Motor  
Drives  
• Performance Specified for  
Common IPM Applications  
over Industrial Temperature  
Range: -40°C to 100°C  
• Fast Maximum Propagation  
Delays  
tPHL = 480 ns  
tPLH = 550 ns  
• Minimized Pulse Width  
Distortion  
• Industrial Inverters  
-VIORM = 1414 Vpeak for  
HCNW4506  
PWD = 450 ns  
• 15 kV/µs Minimum Common  
Mode Transient Immunity  
at VCM = 1500 V  
• CTR > 44% at IF = 10 mA  
• Safety Approval  
UL Recognized  
Functional Diagram  
Truth Table  
-3750 V rms / 1 min. for  
HCPL-4506/0466/J456  
-5000 V rms / 1 min. for  
HCPL-4506 Option 020  
and HCNW4506  
LED  
ON  
VO  
L
OFF  
H
NC  
1
2
8
7
V
V
CC  
L
20 k  
ANODE  
3
4
6
5
CATHODE  
NC  
V
O
GND  
SHIELD  
The connection of a 0.1 µF bypass capacitor between pins 5 and 8 is recommended.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
2
Description  
shorting output pins 6 and 7, thus  
eliminating the need for an  
external pull-up resistor in  
common IPM applications.  
Specifications and performance  
plots are given for typical IPM  
applications.  
difference between devices makes  
these optocouplers excellent  
solutions for improving inverter  
efficiency through reduced  
switching dead time.  
The HCPL-4506 and HCPL-0466  
contain a GaAsP LED while the  
HCPL-J456 and the HCNW4506  
contain an AlGaAs LED. The LED  
is optically coupled to an inte-  
grated high gain photo detector.  
Minimized propagation delay  
An on chip 20 koutput pull-up  
resistor can be enabled by  
Selection Guide  
Standard  
White Mold  
Package  
Type  
8-Pin DIP  
(300 Mil)  
8-Pin DIP  
(300 Mil)  
Small Outline  
SO8  
Widebody  
(400 Mil)  
Hermetic*  
Part  
Number  
HCPL-4506  
HCPL-J456  
HCPL-0466  
HCNW4506  
HCPL-5300  
HCPL-5301  
IEC/EN/DIN VIORM = 630 Vpeak VIORM = 891 Vpeak VIORM = 560 Vpeak VIORM = 1414 Vpeak  
EN 60747-  
5-2  
(Option 060)  
(Option 060)  
Approval  
*Technical data for these products are on separate Agilent publications.  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-4506#XXXX  
020 = UL 5000 V rms/1 minute Option** for HCPL-4506 Only.  
060 = IEC/EN/DIN EN 60747-5-2 Option** for HCPL-4506/0466.  
300 = Gull Wing Lead Option for HCPL-4506/J456, HCNW4506.  
500 = Tape and Reel Packaging Option  
XXXE = Lead Free Option  
Option data sheets are available. Contact Agilent sales representative or authorized distributor  
for information.  
**Combination of Option 020 and Option 060 is not available.  
Remarks: The notation “#” is used for existing products, while (new) products launched since 15th July  
2001 and lead free option will use “-”  
3
Package Outline Drawings  
HCPL-4506 Outline Drawing  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
HCPL-4506 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
4
Package Outline Drawings  
HCPL-J456 Outline Drawing  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.80 ± 0.25  
(0.386 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
HCPL-J456 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.80 ± 0.25  
1.016 (0.040)  
(0.386 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2.0 (0.080)  
2
3
4
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
5
HCPL-0466 Outline Drawing (8-Pin Small Outline Package)  
LAND PATTERN RECOMMENDATION  
8
1
7
2
6
5
4
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
7.49 (0.295)  
DATE CODE  
3
PIN ONE  
1.9 (0.075)  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSC  
0.64 (0.025)  
0.432  
(0.017)  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.  
HCNW4506 Outline Drawing (8-Pin Widebody Package)  
11.00  
MAX.  
11.15 ± 0.15  
(0.442 ± 0.006)  
(0.433)  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
6
HCNW4506 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
7
6
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
1.3  
(0.09)  
(0.051)  
12.30 ± 0.30  
(0.484 ± 0.012)  
1.55  
(0.061)  
MAX.  
11.00  
MAX.  
(0.433)  
4.00  
MAX.  
(0.158)  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
7
Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
2.5°C ± 0.5°C/SEC.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
100  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAK TEMPERATURE  
t
p
15 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
8
Regulatory Information  
The devices contained in this data sheet have been approved by the following agencies:  
Agency/Standard  
HCPL-4506 HCPL-J456 HCPL-0466 HCNW4506  
Underwriters Laboratories (UL)  
UL 1577  
Recognized under UL 1577, Component  
Recognized Program, Category FPQU2,  
File E55361  
Canadian Standards  
Association (CSA)  
File CA88324  
Verband Deutscher  
Electrotechniker (VDE)  
Component  
Acceptance  
Notice #5  
DIN VDE 0884  
(June 1992)  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01  
Insulation and Safety Related Specifications  
Value  
Parameter  
Symbol HCPL-4506 HCPL-J456 HCPL-0466 HCNW4506 Units  
Conditions  
Minimum External L(101)  
Air Gap (External  
Clearance)  
7.1  
7.4  
8.0  
0.5  
4.9  
9.6  
10.0  
1.0  
mm Measured from input  
terminals to output  
terminals, shortest  
distance through air.  
Minimum External L(102)  
Tracking (External  
Creepage)  
7.4  
4.8  
mm Measured from input  
terminals to output  
terminals, shortest  
distance path along body.  
Minimum Internal  
Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
mm Through insulation  
distance, conductor to  
conductor, usually the  
direct distance between  
the photoemitter and  
photodetector inside the  
optocoupler cavity.  
Minimum Internal  
Tracking (Internal  
Creepage)  
NA  
NA  
NA  
4.0  
mm Measured from input  
terminals to output  
terminals, along internal  
cavity.  
Tracking Resistance CTI  
(Comparative  
Tracing Index)  
175  
175  
175  
200  
Volts DIN IEC 112/VDE 0303  
Part 1  
Isolation Group  
IIIa  
IIIa  
IIIa  
IIIa  
Material Group (DIN  
VDE 0110, 1/89, Table 1)  
All Agilent data sheets report the creepage and clearance inherent to the optocoupler component itself. These  
dimensions are needed as a starting point for the equipment designer when determining the circuit insulation require-  
ments. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be  
met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a  
printed circuit board between the solder fillets of the input and output leads must be considered. There are recom-  
mended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage  
and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and  
insulation level.  
9
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
HCPL-0466 HCPL-4506  
Symbol Option 060 Option 060 HCPL-J456 HCNW4506 Unit  
Description  
Installation classification per  
DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 V rms  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
for rated mains voltage 600 V rms  
for rated mains voltage 1000 V rms  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-IV  
I-IV  
I-IV  
I-III  
Climatic Classification  
Pollution Degree  
55/100/21  
2
55/100/21  
2
55/100/21  
2
55/100/21  
2
(DIN VDE 0110/1.89)  
Maximum Working  
Insulation Voltage  
VIORM  
560  
630  
891  
1414  
Vpeak  
Input to Output Test Voltage,  
Method b* VIORM x 1.875 = VPR,  
100% Production Test with tm =  
1 sec, Partial Discharge < 5pC  
VPR  
1050  
1181  
1670  
2652  
Vpeak  
Input to Output Test Voltage,  
Method a* VIORM x 1.5 = VPR,  
Type and Sample Test, tm = 60 sec,  
Partial Discharge < 5pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
VPR  
840  
945  
1336  
6000  
2121  
8000  
Vpeak  
Vpeak  
VIOTM  
4000  
6000  
Safety Limiting Values – maximum  
values allowed in the event of a fail-  
ure, also see Thermal Derating curve.  
Case Temperature  
Input Current  
Output Power  
Insulation Resistance at TS,  
VIO = 500 V  
TS  
IS INPUT  
PS OUTPUT  
150  
150  
600  
109  
175  
230  
600  
109  
175  
400  
600  
109  
150  
400  
700  
109  
°C  
mA  
mW  
RS  
*Refer to the optocoupler section of the Designer's Catalog, under regulatory information (IEC/EN/DIN EN 60747-5-2) for a detailed  
description of Method a and Method b partial discharge test profiles.  
Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data  
shall be ensured by means of protective circuits.  
Note: Insulation Characteristics are per IEC/EN/DIN EN 60747-5-2.  
Note: Surface mount classification is Class A in accordance with CECC 00802.  
10  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
-55  
Max.  
125  
100  
25  
Units  
°C  
Operating Temperature  
Average Input Current[1]  
Peak Input Current[2] (50% duty cycle, 1 ms pulse width)  
TA  
-40  
°C  
IF(avg)  
IF(peak)  
IF(tran)  
VR  
mA  
mA  
A
50  
Peak Transient Input Current (<1 µs pulse width, 300 pps)  
1.0  
5
Reverse Input Voltage (Pin 3-2)  
HCPL-4506, HCPL-0466  
HCPL-J456, HCNW4506  
Volts  
3
Average Output Current (Pin 6)  
Resistor Voltage (Pin 7)  
IO(avg)  
V7  
15  
mA  
Volts  
Volts  
Volts  
mW  
-0.5  
-0.5  
-0.5  
VCC  
30  
Output Voltage (Pin 6-5)  
Supply Voltage (Pin 8-5)  
Output Power Dissipation[3]  
Total Power Dissipation[4]  
VO  
VCC  
PO  
30  
100  
145  
PT  
mW  
Lead Solder Temperature (HCPL-4506, HCPL-J456)  
Lead Solder Temperature (HCNW4506)  
260°C for 10 s, 1.6 mm below seating plane  
260°C for 10 s  
(up to seating plane)  
Infrared and Vapor Phase Reflow Temperature  
(HCPL-0466 and Option 300)  
See Package Outline Drawings Section  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
Min.  
4.5  
0
10  
-5  
Max.  
30  
Units  
Power Supply Voltage  
Output Voltage  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
Volts  
Volts  
mA  
V
VO  
IF(on)  
30  
20  
0.8  
100  
VF(off)  
*
TA  
-40  
°C  
*Recommended VF(OFF) = -3 V to 0.8 V for HCPL-J456, HCNW4506.  
11  
Electrical Specifications  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Device  
Min. Typ.* Max. Units Test Conditions Fig. Note  
Current Transfer Ratio  
CTR  
44  
90  
%
IF = 10 mA,  
VO = 0.6 V  
5
Low Level Output Current  
IOL  
4.4  
9.0  
mA IF = 10 mA,  
VO = 0.6 V  
1, 2  
1
Low Level Output Voltage  
Input Threshold Current  
VOL  
0.3  
1.5  
0.6  
5
V
IO = 2.4 mA  
ITH  
HCPL-4506  
HCPL-0466  
HCNW4506  
mA VO = 0.8 V,  
IO = 0.75 mA  
16  
HCPL-J456  
0.6  
5
High Level Output Current  
High Level Supply Current  
IOH  
50  
µA VF = 0.8 V  
3
ICCH  
0.6  
1.3  
mA VF = 0.8 V,  
VO = Open  
16  
16  
Low Level Supply Current  
Input Forward Voltage  
ICCL  
VF  
0.6  
1.5  
1.3  
1.8  
mA IF = 10 mA,  
VO = Open  
HCPL-4506  
HCPL-0466  
V
IF = 10 mA  
4
5
HCPL-J456 1.2  
HCNW4506  
1.6 1.95  
1.6 1.85  
-1.6 mV/°C IF = 10 mA  
Temperature Coefficient  
of Forward Voltage  
VF/TA HCPL-4506  
HCPL-0466  
HCPL-J456  
HCNW4506  
-1.3  
Input Reverse Breakdown  
Voltage  
BVR HCPL-4506  
HCPL-0466  
5
3
V
IR = 10 µA  
HCPL-J456  
HCNW4506  
IR = 100 µA  
Input Capacitance  
CIN  
HCPL-4506  
HCPL-0466  
60  
72  
pF f = 1 MHz,  
VF = 0 V  
HCPL-J456  
HCNW4506  
Internal Pull-up Resistor  
RL  
14  
20  
25  
kTA = 25°C  
k/°C  
12, 13  
Internal Pull-up Resistor  
Temperature Coefficient  
RL/TA  
0.014  
*All typical values at 25°C, VCC = 15 V.  
†VF(off) = -3 V to 0.8 V for HCPL-J456, HCNW4506.  
12  
Switching Specifications (RL= 20 kExternal)  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation Delay  
Time to Logic HCPL-J456  
Low at Output  
TPHL  
30 200  
400 ns  
480  
CL = 100 pF IF(on) = 10 mA, 6, 8,  
11,  
14,  
16  
VF(off) = 0.8 V,  
10-  
13  
100  
CL = 10 pF VCC = 15.0 V,  
Propagation Delay  
Time to High  
Output Level  
TPLH 270 400  
130  
550 ns  
CL = 100 pF VTHLH = 2.0 V,  
VTHHL = 1.5 V  
CL = 10 pF  
Pulse Width  
Distortion  
Propagation Delay  
Difference Between  
Any 2 Parts  
PWD  
200  
450 ns  
450 ns  
CL = 100 pF  
20  
17  
tPLH-tPHL -150 200  
Output High Level  
Common Mode  
Transient Immunity  
Output Low Level  
Common Mode  
|CMH| 15  
|CML| 15  
30  
30  
kV/µs IF = 0 mA,  
VCC = 15.0 V,  
VO > 3.0 V CL = 100 pF,  
VCM = 1500 Vp-p  
7
18  
19  
kV/µs IF = 10 mA TA = 25°C  
VO < 1.0 V  
Transient Immunity  
Switching Specifications (RL= Internal Pull-up)  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation Delay  
Time to Logic HCPL-J456  
Low at Output  
Propagation Delay Time  
to High Output Level  
Pulse Width  
Distortion  
Propagation Delay  
Difference Between  
Any 2 Parts  
tPHL  
20 200 400 ns IF(on) = 10 mA, VF(off) = 0.8 V, 6, 9 11-14,  
485  
220 450 650 ns  
250 500 ns  
VCC = 15.0 V, CL = 100 pF,  
VTHLH = 2.0 V, VTHHL = 1.5 V  
16  
tPLH  
PWD  
20  
17  
tPLH-tPHL -150 250 500 ns  
Output High Level  
Common Mode  
Transient Immunity  
Output Low Level  
Common Mode  
Transient Immunity  
|CMH|  
|CML|  
PSR  
30  
30  
kV/µs IF = 0 mA, VCC = 15.0 V,  
VO > 3.0 V CL = 100 pF,  
VCM = 1500 Vp-p  
7
18  
19  
16  
,
kV/µs IF = 16 mA, TA = 25°C  
VO < 1.0 V  
Power Supply  
Rejection  
1.0  
Vp-p Square Wave, tRISE, tFALL  
> 5 ns, no bypass capacitors  
*All typical values at 25°C, VCC = 15 V.  
†VF(off) = -3 V to 0.8 V for HCPL-J456, HCNW4506.  
13  
Package Characteristics  
Over recommended temperature (TA = -40°C to 100°C) unless otherwise specified.  
Parameter Sym. Device Min. Typ.* Max. Units Test Conditions Fig. Note  
Input-Output Momentary VISO HCPL-4506 3750  
V rms RH < 50%  
t = 1 min.  
6,7,10  
Withstand Voltage†  
HCPL-0466  
HCPL-J456 3750  
TA = 25°C  
6,8,10  
HCPL-4506 5000  
Option020  
6,9,  
15  
HCNW4506 5000  
RI-O HCPL-4506  
6,9,10  
6
Resistance  
1012  
VI-O = 500 Vdc  
(Input-Output)  
HCPL-J456  
HCPL-0466  
HCNW4506 1012 1013  
Capacitance  
CI-O HCPL-4506  
0.6  
pF  
f = 1 MHz  
6
(Input-Output)  
HCPL-0466  
HCPL-J456  
HCNW4506  
0.8  
0.5  
*All typical values at 25°C, VCC = 15 V.  
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics  
Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output  
Endurance Voltage,” publication number 5963-2203E.  
Notes:  
1. Derate linearly above 90°C free-air  
temperature at a rate of 0.8 mA/°C.  
2. Derate linearly above 90°C free-air  
temperature at a rate of 1.6 mA/°C.  
3. Derate linearly above 90°C free-air  
temperature at a rate of 3.0 mW/°C.  
4. Derate linearly above 90°C free-air  
temperature at a rate of 4.2 mW/°C.  
5. CURRENT TRANSFER RATIO in  
percent is defined as the ratio of  
output collector current (IO) to the  
forward LED input current (IF) times  
100.  
6. Device considered a two-terminal  
device: Pins 1, 2, 3, and 4 shorted  
together and Pins 5, 6, 7, and 8  
shorted together.  
7. In accordance with UL 1577, each  
optocoupler is proof tested by  
16. Use of a 0.1 µF bypass capacitor  
connected between pins 5 and 8 can  
improve performance by filtering  
power supply line noise.  
17. The difference between tPLH and tPHL  
between any two devices under the  
same test condition. (See IPM Dead  
Time and Propagation Delay  
9. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage ≥  
6000 V rms for 1 second (leakage  
detection current limit, II-O 5 µA).  
10. This test is performed before the  
100% Production test shown in the  
IEC/EN/DIN EN 60747-5-2 Insulation  
Related Characteristics Table, if  
applicable.  
Specifications section.)  
18. Common mode transient immunity in  
a Logic High level is the maximum  
tolerable dVCM/dt of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic High  
state (i.e., VO > 3.0 V).  
19. Common mode transient immunity in  
a Logic Low level is the maximum  
tolerable dVCM/dt of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic Low  
state(i.e., VO < 1.0 V).  
11. Pulse: f = 20 kHz, Duty Cycle = 10%.  
12. The internal 20 kresistor can be  
used by shorting pins 6 and 7  
together.  
13. Due to tolerance of the internal  
resistor, and since propagation delay  
is dependent on the load resistor  
value, performance can be improved  
by using an external 20 k1% load  
resistor. For more information on  
how propagation delay varies with  
load resistance, see Figure 8.  
14. The RL = 20 k, CL = 100 pF load  
represents a typical IPM (Intelligent  
Power Module) load.  
applying an insulation test voltage  
4500 V rms for 1 second (leakage  
detection current limit, II-O 5 µA).  
8. In accordance with UL 1577, each  
optocoupler is proof tested by  
20. Pulse Width Distortion (PWD) is  
defined as |tPHL - tPLH| for any given  
device.  
applying an insulation test voltage ≥  
4500 V rms for 1 second (leakage  
detection current limit, Ii-o 5 µA).  
15. See Option 020 data sheet for more  
information.  
14  
10  
1.05  
1.00  
0.95  
0.90  
20.0  
V
V
= 0.8 V  
F
= V = 4.5 V OR 30 V  
CC  
O
8
6
4
15.0  
10.0  
5.0  
0
4.5 V  
30 V  
I
V
= 10 mA  
F
V
= 0.6 V  
O
= 0.6 V  
O
2
0
0.85  
0.80  
100 °C  
25 °C  
-40 °C  
20  
– TEMPERATURE – °C  
20  
T – TEMPERATURE – °C  
A
0
5
10  
15  
20  
-40 -20  
0
40  
60 80 100  
-40 -20  
0
40  
60 80 100  
I
– FORWARD LED CURRENT – mA  
T
F
A
Figure 1. Typical Transfer  
Characteristics.  
Figure 2. Normalized Output Current  
vs. Temperature.  
Figure 3. High Level Output  
Current vs. Temperature.  
HCPL-4506/0466  
1000  
HCPL-J456/HCNW4506  
100  
T
= 25°C  
A
T
= 25 °C  
A
100  
10  
10  
1
I
F
I
F
+
V
+
F
V
F
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
1.10 1.20  
1.30  
1.40  
1.50  
1.60  
V
– INPUT FORWARD VOLTAGE – V  
V
– FORWARD VOLTAGE – VOLTS  
F
F
Figure 4. HCPL-4506 and HCPL-0466  
Input Current vs. Forward Voltage.  
Figure 5. HCPL-J456 and HCNW4506  
Input Current vs. Forward Voltage.  
1
8
7
20 k  
0.1 µF  
20 kΩ  
I
=10 mA  
5 V  
F(ON)  
+
+
2
3
4
I
f
V
= 15 V  
t
t
r
CC  
f
V
O
6
5
V
OUT  
90%  
10%  
90%  
10%  
C *  
L
V
V
THHL  
THLH  
SHIELD  
*TOTAL LOAD CAPACITANCE  
t
t
PLH  
PHL  
Figure 6. Propagation Delay Test Circuit.  
15  
V
CM  
1
2
8
7
0.1 µF  
V
20 kΩ  
δV  
δt  
CM  
t  
20 k  
I
=
F
+
OV  
V
= 15 V  
CC  
A
B
t  
3
4
6
5
V
OUT  
100 pF*  
V
O
V
V
CC  
+
SWITCH AT A: I = 0 mA  
SHIELD  
F
V
FF  
*100 pF TOTAL  
CAPACITANCE  
V
O
OL  
SWITCH AT B: I = 10 mA  
F
+
V
= 1500 V  
CM  
Figure 7. CMR Test Circuit. Typical CMR Waveform.  
500  
400  
300  
200  
100  
600  
500  
400  
300  
800  
I
V
= 10 mA  
= 15 V  
F
CC  
t
t
PLH  
PHL  
I
V
= 10 mA  
= 15 V  
F
CL = 100 pF  
RL = 20 k  
(INTERNAL)  
CC  
CL = 100 pF  
= 25 °C  
600  
400  
200  
T
A
t
t
PLH  
PHL  
I
V
= 10 mA  
= 15 V  
CL = 100 pF  
RL = 20 k(EXTERNAL)  
F
CC  
t
t
PLH  
PHL  
200  
100  
20  
– TEMPERATURE – °C  
20  
-40 -20  
0
40  
60 80 100  
20  
– TEMPERATURE – °C  
0
10  
30  
40  
50  
-40 -20  
0
40  
60 80 100  
T
RL – LOAD RESISTANCE – k  
T
A
A
Figure 8. Propagation Delay with  
External 20 kRL vs. Temperature.  
Figure 9. Propagation Delay with  
Internal 20 kRL vs. Temperature.  
Figure 10. Propagation Delay vs. Load  
Resistance.  
1400  
500  
1400  
I
V
= 10 mA  
= 15 V  
I
= 10 mA  
F
CC  
F
t
t
PLH  
PHL  
CL = 100 pF  
RL = 20 k  
T
1200  
1000  
800  
RL = 20 kΩ  
= 25°C  
1200  
1000  
800  
T
= 25°C  
A
A
400  
300  
200  
100  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
V
= 15 V  
CC  
CL = 100 pF  
RL = 20 kΩ  
600  
600  
T
= 25°C  
A
400  
400  
200  
0
200  
0
0
100  
200  
300  
400  
500  
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
CL – LOAD CAPACITANCE – pF  
V
– SUPPLY VOLTAGE – V  
I
– FORWARD LED CURRENT – mA  
CC  
F
Figure 11. Propagation Delay vs. Load  
Capacitance.  
Figure 12. Propagation Delay vs.  
Supply Voltage.  
Figure 13. Propagation Delay vs. Input  
Current.  
16  
HCPL-0466 OPTION 060/HCNW4506  
HCPL-4506 OPTION 060/HCPL-J456  
1000  
800  
700  
600  
500  
400  
300  
P
(mW) FOR HCNW4506  
(mA) FOR HCNW4506  
S
P
(mW)  
S
900  
800  
700  
600  
500  
400  
300  
I
S
I
(mA) FOR HCPL-4506  
S
P
(mW) FOR HCPL-0466  
OPTION 060  
S
OPTION 060  
(mA) FOR HCPL-0466  
I
(mA) FOR HCPL-J456  
S
I
S
OPTION 060  
(230)  
200  
200  
(150)  
100  
100  
0
0
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
0
25  
50 75 100 125 150 175  
T
T – CASE TEMPERATURE – °C  
S
S
Figure 14. Thermal Derating Curve, Dependence of Safety Limiting Value with  
Case Temperature per IEC/EN/DIN EN 60747-5-2.  
1
2
8
7
1
2
8
7
20 k  
0.1 µF  
20 kΩ  
20 kΩ  
C
LEDP  
+
+5 V  
310 Ω  
CMOS  
V
= 15 V  
CC  
3
4
6
5
3
4
6
5
V
OUT  
C
LEDN  
100 pF  
SHIELD  
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
Figure 15. Recommended LED Drive Circuit.  
Figure 16. Optocoupler Input to  
Output Capacitance Model for  
Unshielded Optocouplers.  
1
2
8
7
1
8
7
+5 V  
20 kΩ  
20 k  
0.1 µF  
20 kΩ  
C
LEDP  
+
C
2
3
4
LED02  
V
= 15 V  
CC  
310 Ω  
C
LED01  
3
4
6
5
6
5
V
OUT  
C
LEDN  
CMOS  
100 pF  
SHIELD  
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
Figure 17. Optocoupler Input to  
Output Capacitance Model for  
Shielded Optocouplers.  
Figure 18. LED Drive Circuit with Resistor Connected to LED Anode (Not  
Recommended).  
17  
1
2
8
7
1
2
8
7
20  
20  
20 k  
I
I
TOTAL*  
CLEDP  
kΩ  
k  
C
20 kΩ  
LEDP  
C
C
LED02  
LED02  
C
I
LEDP  
F
310 Ω  
C
C
LED01  
LED01  
I
CLED01  
310 Ω  
V
OUT  
V
C
LEDN  
OUT  
3
4
6
5
3
4
6
5
C
LEDN  
I
CLEDN*  
100 pF  
100 pF  
+ V ** –  
R
SHIELD  
SHIELD  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR +dV /dt TRANSIENTS.  
FLOW FOR +dV /dt TRANSIENTS.  
CM  
CM  
** OPTIONAL CLAMPING DIODE FOR IMPROVED CMH  
+
PERFORMANCE.  
V
< V  
DURING +dV /dt.  
R
F (OFF)  
CM  
V
CM  
+
V
CM  
Figure 19. AC Equivalent Circuit for Figure 18 During  
Common Mode Transients.  
Figure 20. AC Equivalent Circuit for Figure 15 During  
Common Mode Transients.  
1
2
8
7
20  
kΩ  
C
20 kΩ  
LEDP  
C
LED02  
1
2
8
7
C
LED01  
+5 V  
20 kΩ  
V
C
Q1  
OUT  
LEDN  
3
4
6
5
I
CLEDN*  
100 pF  
3
4
6
5
SHIELD  
Q1  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR +dV /dt TRANSIENTS.  
CM  
SHIELD  
+
V
CM  
Figure 21. Not Recommended Open  
Collector LED Drive Circuit.  
Figure 22. AC Equivalent Circuit for Figure 21 During  
Common Mode Transients.  
1
8
7
+5 V  
20 kΩ  
2
3
6
5
4
SHIELD  
Figure 23. Recommended LED Drive  
Circuit for Ultra High CMR.  
18  
HCPL-4506  
1
2
8
7
V
CC1  
0.1 µF  
20 k  
IPM  
I
LED1  
20 k  
+5 V  
+HV  
V
310 Ω  
CMOS  
OUT1  
3
4
6
5
Q1  
Q2  
M
SHIELD  
HCPL-4506  
HCPL-4506  
1
2
8
7
V
CC2  
-HV  
0.1 µF  
20 kΩ  
HCPL-4506  
HCPL-4506  
HCPL-4506  
HCPL-4506  
I
LED2  
20 kΩ  
+5 V  
310 Ω  
CMOS  
V
OUT2  
3
4
6
5
SHIELD  
Figure 24. Typical Application Circuit.  
I
LED1  
Q1 OFF  
Q2 ON  
Q1 ON  
Q2 OFF  
V
V
OUT1  
OUT2  
I
LED1  
I
LED2  
t
PLH  
MIN.  
Q1 OFF  
Q2 ON  
t
Q1 ON  
PLH  
V
V
OUT1  
OUT2  
MAX.  
Q2 OFF  
t
PHL  
PDD*  
MAX.  
MIN.  
t
PHL  
MAX.  
I
LED2  
MAX.  
DEAD TIME  
t
PLH MAX.  
t
MAXIMUM DEAD TIME (DUE TO OPTOCOUPLER)  
PHL  
MIN.  
= (t  
= (t  
t
t
) + (t  
) - (t  
t
)
PLH MAX.  
-
-
PLH MIN.  
PHL MAX.  
-
t
PHL MIN.  
)
PLH MAX.  
PHL MIN.  
PLH MIN.  
-
PHL MAX.  
PDD* MAX. =  
(t  
= PDD* MAX. - PDD* MIN.  
t
)
t
t
PLH- PHL MAX. = PLH MAX. - PHL MIN.  
*PDD = PROPAGATION DELAY DIFFERENCE  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE  
PDD ARE TAKEN AT EQUAL TEMPERATURES.  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE THE MAXIMUM  
DEAD TIME ARE TAKEN AT EQUAL TEMPERATURES.  
Figure 25. Minimum LED Skew for Zero Dead Time.  
Figure 26. Waveforms for Dead Time Calculation.  
19  
LED Drive Circuit  
connection of the unused input  
package pins, and the value of the  
capacitor at the optocoupler  
output (CL).  
trying to pull the output high  
(toward a CMR failure) at the  
same time the LED current is  
being reduced. For this reason,  
the recommended LED drive  
circuit (Figure 15) places the  
current setting resistor in series  
with the LED cathode. Figure 20  
is the AC equivalent circuit for  
Figure 15 during common mode  
transients. In this case, the LED  
current is not reduced during a  
+dVcm/dt transient because the  
current flowing through the  
package capacitance is supplied  
by the power supply. During a  
-dVcm/dt transient, however, the  
LED current is reduced by the  
amount of current flowing  
Considerations for Ultra  
High CMR Performance  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive coupl-  
ing from the input side of the  
optocoupler, through the  
Techniques to keep the LED in  
the proper state and minimize the  
effect of the direct coupling are  
discussed in the next two  
sections.  
package, to the detector IC  
as shown in Figure 16. The  
HCPL-4506 series improve  
CMR performance by using a  
detector IC with an optically  
transparent Faraday shield, which  
diverts the capacitively coupled  
current away from the sensitive  
IC circuitry. However, this shield  
does not eliminate the capacitive  
coupling between the LED and  
the optocoupler output pins and  
output ground as shown in Figure  
17. This capacitive coupling  
causes perturbations in the LED  
current during common mode  
transients and becomes the  
major source of CMR failures  
for a shielded optocoupler. The  
main design objective of a high  
CMR LED drive circuit becomes  
keeping the LED in the proper  
state (on or off) during common  
mode transients. For example,  
the recommended application  
circuit (Figure 15), can achieve  
15 kV/µs CMR while minimizing  
component complexity. Note that  
a CMOS gate is recommended  
in Figure 15 to keep the LED  
off when the gate is in the high  
state.  
CMR with the LED On  
(CMRL)  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This is  
achieved by overdriving the LED  
current beyond the input  
threshold so that it is not pulled  
below the threshold during a  
transient. The recommended  
minimum LED current of 10 mA  
provides adequate margin over  
the maximum ITH of 5.0 mA (see  
Figure 1) to achieve 15 kV/µs  
CMR. Capacitive coupling is  
higher when the internal load  
through CLEDN. But, better CMR  
performance is achieved since the  
current flowing in CLEDO1 during a  
negative transient acts to keep the  
output low.  
Coupling to the LED and output  
pins is also affected by the con-  
nection of pins 1 and 4. If CMR is  
limited by perturbations in the  
LED on current, as it is for the  
recommended drive circuit  
(Figure 15), pins 1 and 4 should  
be connected to the input circuit  
common. However, if CMR  
performance is limited by direct  
coupling to the output when the  
LED is off, pins 1 and 4 should be  
left unconnected.  
resistor is used (due to CLEDO2  
)
and an IF = 16 mA is required to  
obtain 10 kV/µs CMR.  
The placement of the LED current  
setting resistor effects the ability  
of the drive circuit to keep the  
LED on during transients and  
interacts with the direct coupling  
to the optocoupler output. For  
example, the LED resistor in  
Figure 18 is connected to the  
anode. Figure 19 shows the AC  
equivalent circuit for Figure 18  
during common mode transients.  
During a +dVcm/dt in Figure 19,  
the current available at the LED  
anode (Itotal) is limited by the  
series resistor. The LED current  
(IF) is reduced from its DC value  
by an amount equal to the current  
that flows through CLEDP and  
CLEDO1. The situation is made  
worse because the current  
CMR with the LED Off  
(CMRH)  
A high CMR LED drive circuit  
must keep the LED off  
(VF VF(OFF)) during common  
mode transients. For example,  
during a +dVcm/dt transient in  
Figure 20, the current flowing  
through CLEDN is supplied by the  
parallel combination of the LED  
and series resistor. As long as the  
voltage developed across the  
resistor is less than VF(OFF) the  
Another cause of CMR failure for  
a shielded optocoupler is direct  
coupling to the optocoupler  
output pins through CLEDO1 and  
CLEDO2 in Figure 17. Many factors  
influence the effect and magni-  
tude of the direct coupling  
including: the use of an internal  
or external output pull-up  
resistor, the position of the LED  
current setting resistor, the  
through CLEDO1 has the effect of  
20  
LED will remain off and no  
IPM Dead Time and  
Propagation Delay  
Specifications  
is delayed by (tPLH max - tPHL min)  
common mode failure will occur.  
Even if the LED momentarily  
turns on, the 100 pF capacitor  
from pins 6-5 will keep the output  
from dipping below the threshold.  
The recommended LED drive  
circuit (Figure 15) provides about  
10 V of margin between the  
lowest optocoupler output voltage  
and a 3 V IPM threshold during  
a 15 kV/µs transient with  
VCM = 1500 V. Additional margin  
can be obtained by adding a diode  
in parallel with the resistor, as  
shown by the dashed line con-  
nection in Figure 20, to clamp  
the voltage across the LED  
from the LED1 turn off. Note that  
the propagation delays used to  
calculate PDD are taken at equal  
temperatures since the opto-  
couplers under consideration  
are typically mounted in close  
proximity to each other.  
(Specifically, tPLH max and tPHL min  
in the previous equation are not  
the same as the tPLH max and  
tPHL min, over the full operating  
temperature range, specified in  
the data sheet.) This delay is the  
maximum value for the propaga-  
tion delay difference specification  
which is specified at 450 ns for  
the HCPL-4506 series over an  
operating temperature range of  
-40°C to 100°C.  
The HCPL-4506 series include  
a Propagation Delay Difference  
specification intended to help  
designers minimize “dead time”  
in their power inverter designs.  
Dead time is the time period  
during which both the high and  
low side power transistors (Q1  
and Q2 in Figure 24) are off. Any  
overlap in Q1 and Q2 conduction  
will result in large currents flow-  
ing through the power devices  
between the high and low voltage  
motor rails.  
below VF(OFF)  
.
To minimize dead time the  
designer must consider the propa-  
gation delay characteristics of the  
optocoupler as well as the charac-  
teristics of the IPM IGBT gate  
drive circuit. Considering only the  
delay characteristics of the opto-  
coupler (the characteristics of the  
IPM IGBT gate drive circuit can  
be analyzed in the same way) it is  
important to know the minimum  
and maximum turn-on (tPHL) and  
turn-off (tPLH) propagation delay  
specifications, preferably over the  
desired operating temperature  
range.  
Since the open collector drive  
circuit, shown in Figure 21,  
cannot keep the LED off during  
a +dVcm/dt transient, it is  
not desirable for applications  
requiring ultra high CMRH  
performance. Figure 22 is the AC  
equivalent circuit for Figure 21  
during common mode transients.  
Essentially all the current flowing  
through CLEDN during a +dVcm/dt  
transient must be supplied by  
the LED. CMRH failures can occur  
at dV/dt rates where the current  
through the LED and CLEDN  
exceeds the input threshold.  
Figure 23 is an alternative drive  
circuit which does achieve ultra  
high CMR performance by  
Delaying the LED signal by the  
maximum propagation delay dif-  
ference ensures that the minimum  
dead time is zero, but it does not  
tell a designer what the maximum  
dead time will be. The maximum  
dead time occurs in the highly  
unlikely case where one opto-  
coupler with the fastest tPLH and  
another with the slowest tPHL  
are in the same inverter leg. The  
maximum dead time in this case  
becomes the sum of the spread  
in the tPLH and tPHL propagation  
delays as shown in Figure 26.  
The maximum dead time is also  
equivalent to the difference  
between the maximum and mini-  
mum propagation delay difference  
specifications. The maximum  
dead time (due to the optocoup-  
lers) for the HCPL-4506 series  
is 600 ns (= 450 ns - (-150 ns) )  
over an operating temperature  
range of -40°C to 100°C.  
The limiting case of zero dead  
time occurs when the input to Q1  
turns off at the same time that the  
input to Q2 turns on. This case  
determines the minimum delay  
between LED1 turn-off and LED2  
turn-on, which is related to the  
worst case optocoupler propaga-  
tion delay waveforms, as shown in  
Figure 25. A minimum dead time  
of zero is achieved in Figure 25  
when the signal to turn on LED2  
shunting the LED in the off state.  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916)788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152 (Domestic/Interna-  
tional), or 0120-61-1280 (Domestic Only)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand,  
Philippines, Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2004 Agilent Technologies, Inc.  
Obsoletes 5988-8709EN  
January 27, 2004  
5989-0307EN  

相关型号:

HCPL-4506-000E

Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

HCPL-4506-020

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, DIP-8
AGILENT

HCPL-4506-020E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, LEAD FREE, DIP-8
AVAGO

HCPL-4506-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8
AVAGO

HCPL-4506-060E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, DIP-8
AGILENT

HCPL-4506-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-4506-300

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-4506-300E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-4506-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8
AVAGO

HCPL-4506-500E

Intelligent Power Module and Gate Drive Interface Optocouplers
AVAGO

HCPL-4506-500E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, DIP-8
AGILENT

HCPL-4506-560E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, LEAD FREE, DIP-8
AVAGO