HCPL-90XX [AGILENT]

High Speed Digital Isolators; 高速数字隔离器
HCPL-90XX
型号: HCPL-90XX
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

High Speed Digital Isolators
高速数字隔离器

文件: 总12页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HCPL-9000/-0900, -9030/-0930,  
HCPL-9031/-0931, -900J/-090J,  
HCPL-901J/-091J, -902J/-092J  
High Speed Digital Isolators  
Data Sheet  
Features  
• +3.3V and +5V TTL/CMOS  
compatible  
• 3 ns max. pulse width distortion  
6 ns max. propagation delay skew  
• 15 ns max. propagation delay  
• High speed: 100 MBd  
Description  
tional (HCPL-900J/-090J), two  
channels in one direction and  
two channels in opposite direc-  
tion (HCPL-901J/-091J), and one  
channel in one direction and  
three channels in opposite  
direction (HCPL-902J/-092J).  
These high channel density make  
them ideally suited to isolating  
data conversion devices, parallel  
buses and peripheral interfaces.  
The HCPL-90xx and HCPL-09xx  
CMOS digital isolators feature  
high speed performance and  
excellent transient immunity  
specifications. The symmetric  
magnetic coupling barrier gives  
these devices a typical pulse  
width distortion of 2 ns, a typical  
propagation delay skew of 4 ns  
and 100 Mbaud data rate, making  
them the industrys fastest  
digital isolators.  
• 15 kV/µs min. common mode  
rejection  
• Tri-state output  
(HCPL-9000/-0900)  
• 2500V RMS isolation  
• UL1577 and IEC 61010-1 approved  
Applications  
• Digital fieldbus isolation  
They are available in 8-pin PDIP,  
8-pin Gull Wing, 8-pin SOIC  
packages, and 16pin SOIC  
narrow-body and wide-body  
packages. They are specified over  
the temperature range of -40°C  
to +100°C.  
The single channel digital isola-  
tors (HCPL-9000/-0900) features  
an active-low logic output enable.  
The dual channel digital isolators  
are configured as unidirectional  
(HCPL-9030/-0930) and bi-  
directional (HCPL-9031/-0931),  
operating in full duplex mode  
making it ideal for digital  
• Multiplexed data transmission  
• Computer peripheral interface  
• High speed digital systems  
• Isolated data interfaces  
• Logic level shifting  
CAUTION: It is advised that  
normal static precautions be  
taken in handling and assembly  
of this component to prevent  
damage and/or degradation,  
which may be induced by ESD.  
fieldbus applications.  
The quad channel digital isola-  
tors are configured as unidirec-  
Selection Guide  
Device Number  
Channel Configuration  
Package  
HCPL-9000  
HCPL-0900  
HCPL-9030  
HCPL-0930  
HCPL-9031  
HCPL-0931  
HCPL-900J  
HCPL-090J  
HCPL-901J  
HCPL-091J  
HCPL-902J  
HCPL-092J  
Single  
8-pin DIP (300 Mil)  
Single  
8-pin Small Outline  
Dual  
8-pin DIP (300 Mil)  
Dual  
8-pin Small Outline  
Dual, Bi-Directional  
Dual, Bi-Directional  
Quad  
8-pin DIP (300 Mil)  
8-pin Small Outline  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
16-pin Small Outline, Wide Body  
16-pin Small Outline, Narrow Body  
Quad  
Quad, 2/2, Bi-Directional  
Quad, 2/2, Bi-Directional  
Quad, 1/3, Bi-Directional  
Quad, 1/3, Bi-Directional  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Examples:  
HCPL-90xx-xxx  
xxx:  
No option = 300 Mil PDIP-8 package, 50 units per tube.  
300 = Gull Wing Surface Mount Option, 50 units per tube.  
500 = Tape and Reel Packaging Option, 1000 units per reel.  
HCPL-09xx-xxx  
xxx:  
No option = SO-8 package, 100 units per tube.  
500 = Tape and Reel Packaging Option, 1500 units per reel.  
HCPL-90xJ-xxx  
xxx:  
No option = Wide Body SOIC-16 package, 50 units per tube.  
500 = Tape and Reel Packaging Option, 1000 units per reel.  
HCPL-09xJ-xxx  
xxx:  
No option = Narrow Body SOIC-16 package, 50 per tube.  
500 = Tape and Reel Packaging Option, 1000 units per reel.  
2
Pin Description  
Functional Diagrams  
Symbol  
Description  
Single Channel  
VDD1  
VDD2  
INX  
Power Supply 1  
Truth Table  
IN1  
8
VDD2  
VDD1  
1
Power Supply 2  
VOE  
OUT1  
IN1  
2
3
4
VOE  
7
6
5
Logic Input Signal  
Logic Output Signal  
Power Supply Ground 1  
Power Supply Ground 2  
L
L
L
OUTX  
GND1  
GND2  
VOE  
OUT1  
GND2  
NC  
H
L
L
H
Z
Z
GND1  
H
H
H
Logic Output Enable  
(Single Channel), Active Low  
HCPL-9000/0900  
NC  
Not Connected  
Dual Channel  
8
8
VDD2  
OUT1  
IN2  
VDD2  
VDD1  
IN1  
VDD1  
1
2
1
IN1  
2
3
4
OUT1  
OUT2  
GND2  
7
6
5
7
6
5
3
4
IN2  
OUT2  
GND1  
GND1  
GND2  
HCPL-9030/0930  
HCPL-9031/0931  
Quad Channel  
VDD1  
GND1  
IN1  
1
VDD1  
GND1  
IN1  
1
16  
VDD1  
GND1  
IN1  
16  
1
16  
VDD2  
VDD2  
VDD2  
GND2  
GND2  
15  
14  
13  
12  
11  
GND2  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
OUT1  
OUT2  
IN3  
OUT1  
OUT2  
OUT3  
OUT1  
OUT2  
OUT3  
IN2  
IN2  
IN3  
IN2  
IN3  
OUT3  
OUT4  
NC  
OUT4  
NC  
IN4  
NC  
IN4  
IN4  
OUT4  
NC  
10  
9
10  
9
10  
9
NC  
NC  
GND1  
GND1  
GND1  
GND2  
GND2  
GND2  
HCPL-901J/-091J  
HCPL-902J/-092J  
HCPL-900J/-090J  
3
Package Outline Drawings  
HCPL-9000, HCPL-9030 and HCPL-9031 Standard DIP Packages  
8
7
6
5
0.240 (6.096)  
0.260 (6.604)  
1
2
3
4
0.370 (9.398)  
0.400 (10.160)  
0.55 (1.397)  
0.65 (1.651)  
0.290 (7.366)  
0.310 (7.874)  
0.120 (3.048)  
0.150 (3.810)  
0.008 (0.203)  
0.015 (0.381)  
0.015 (0.381)  
0.035 (0.889)  
3°  
8°  
0.030 (0.762)  
0.045 (1.143)  
0.300 (7.620)  
0.370 (9.398)  
0.090 (2.286)  
0.110 (2.794)  
0.015 (0.380)  
0.023 (0.584)  
0.045 (1.143)  
0.065 (1.651)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
HCPL-9000, HCPL-9030 and HCPL-9031 Gull Wing Surface Mount Option 300  
PAD LOCATION (for reference only)  
0.370 (9.400)  
0.390 (9.900)  
0.040 (1.016)  
0.047 (1.194)  
8
7
6
5
0.190  
(4.826)  
TYP.  
0.240 (6.100)  
0.260 (6.600)  
0.370 (9.398)  
0.390 (9.906)  
1
2
3
4
0.015 (0.381)  
0.025 (0.635)  
0.047 (1.194)  
0.070 (1.778)  
0.045 (1.143)  
0.370 (9.400)  
0.065 (1.651)  
0.390 (9.900)  
0.030 (0.762)  
0.045 (1.143)  
0.290 (7.370)  
0.310 (7.870)  
0.008 (0.203)  
0.013 (0.330)  
0.120 (3.048)  
0.150 (3.810)  
0.030 (0.760)  
0.056 (1.400)  
0.015 (0.385)  
0.035 (0.885)  
12° NOM.  
0.025 (0.632)  
0.035 (0.892)  
0.100  
(2.540)  
BSC  
MIN  
DIMENSIONS INCHES (MILLIMETERS)  
MAX  
LEAD COPLANARITY = 0.004 INCHES (0.10 mm)  
4
HCPL-0900, HCPL-0930 and HCPL-0931 Small Outline SO-8 Package  
0.189 (4.80)  
0.197 (5.00)  
8
7
6
5
4
0.228 (5.80)  
0.244 (6.20)  
0.150 (3.80)  
0.157 (4.00)  
2
1
3
0.013 (0.33)  
0.020 (0.51)  
0.010 (0.25)  
0.020 (0.50)  
x 45°  
0.008 (0.19)  
0.010 (0.25)  
0.004 (0.10)  
0.010 (0.25)  
0.054 (1.37)  
0.069 (1.75)  
0°  
8°  
0.040 (1.016)  
0.060 (1.524)  
0.016 (0.40)  
0.050 (1.27)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
HCPL-900J, HCPL-901J and HCPL-902J Wide Body SOIC-16 Package  
0.397 (10.084)  
0.413 (10.490)  
Pin 1 indent  
8
1
0.394 (10.007)  
0.419 (10.643)  
0.291 (7.391)  
0.299 (7.595)  
0.013 (0.330)  
0.020 (0.508)  
0.092 (2.337)  
0.104 (2.642)  
0.287 (7.290)  
0.297 (7.544)  
0.010 (0.254)  
0.020 (0.508)  
7° TYP  
x 45°  
7° TYP  
0.080 (2.032)  
0.100 (2.54)  
0° 8° TYP  
0.040 (1.016)  
0.060 (1.524)  
0.009 (0.229)  
0.012 (0.305)  
0.016 (0.40)  
0.050 (1.27)  
0.004 (0.1016)  
0.011 (0.279)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
5
HCPL-090J, HCPL-091J and HCPL-092J Narrow Body SOIC-16 Package  
0.386 (9.802)  
0.394 (9.999)  
Pin 1 indent  
8
1
0.228 (5.791)  
0.244 (6.197)  
0.152 (3.861)  
0.157 (3.988)  
0.013 (0.330)  
0.020 (0.508)  
0.054 (1.372)  
0.068 (1.727)  
0.010 (0.245)  
0.020 (0.508)  
x 45°  
0.008 (0.191)  
0.010 (0.249)  
0.050 (1.270)  
0.060 (1.524)  
0° 8° TYP  
0.040 (1.016)  
0.060 (1.524)  
0.016 (0.406)  
0.050 (1.270)  
0.004 (0.102)  
0.010 (0.249)  
MIN  
MAX  
DIMENSIONS: INCHES (MILLIMETERS)  
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Capacitance (Input-Output)[1]  
Single Channel  
CI-O  
pF  
f = 1 MHz  
1.1  
2.0  
4.0  
Dual Channel  
Quad Channel  
Thermal Resistance  
8-Pin PDIP  
θJCT  
°C/W  
Thermocouple located at  
center underside of package  
150  
240  
8-Pin SOIC  
Package Power Dissipation  
8-Pin PDIP  
PPD  
mW  
150  
150  
8-Pin SOIC  
Notes:  
1. Single and dual channels device are considered two-terminal devices: pins 1-4 shorted and pins 5-8 shorted. Quad channel devices are considered  
two-terminal devices: pins 1-8 shorted and pins 9-16 shorted.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
6
Insulation and Safety Related Specifications  
Parameters  
Condition  
Min.  
Typ.  
Max.  
Units  
Barrier Impedance  
||pF  
Single Channel  
Dual Channel  
Quad Channel  
>1014||3  
>1014||3  
>1014||7  
Creepage Distance (External)  
mm  
8-Pin PDIP  
8-Pin SOIC  
16-Pin SOIC Narrow Body  
16-Pin SOIC Wide Body  
7.036  
4.026  
4.026  
8.077  
Leakage Current  
240 VRMS  
60 Hz  
0.2  
µA  
Absolute Maximum Ratings  
Parameters  
Symbol  
Min.  
Max.  
Units  
Storage Temperature  
Ambient Operating Temperature[1]  
Supply Voltage  
TS  
–55  
–55  
–0.5  
–0.5  
–0.5  
–0.5  
175  
°C  
°C  
V
TA  
125  
VDD1, VDD2  
VIN  
7
Input Voltage  
VDD1 +0.5  
VDD2 +0.5  
VDD2 +0.5  
10  
V
Voltage Output Enable (HCPL-9000/-0900)  
Output Voltage  
VOE  
V
VOUT  
IOUT  
V
Output Current Drive  
Lead Solder Temperature (10s)  
ESD  
mA  
°C  
260  
2 kV Human Body Model  
Notes:  
1. Absolute Maximum ambient operating temperature means the device will not be damaged if operated under these conditions. It does not  
guarantee performance.  
Recommended Operating Conditions  
Parameters  
Symbol  
Min.  
Max.  
Units  
Ambient Operating Temperature  
Supply Voltage  
TA  
–40  
3.0  
2.4  
0
100  
5.5  
VDD1  
0.8  
1
°C  
V
VDD1, VDD2  
VIH  
Logic High Input Voltage  
Logic Low Input Voltage  
Input Signal Rise and Fall Times  
V
VIL  
V
tIR, tIF  
µs  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
7
Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA=+25°C, VDD1 = VDD2 = +3.3V.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
Quiescent Supply Current 1  
IDD1  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
0.008  
0.008  
1.5  
0.016  
3.3  
0.01  
0.01  
2.0  
0.02  
4.0  
1.5  
2.0  
Quiescent Supply Current 2  
IDD2  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
3.3  
3.3  
1.5  
5.5  
3.3  
3.0  
4.0  
4.0  
2.0  
8.0  
4.0  
6.0  
Logic Input Current  
IIN  
-10  
10  
µA  
V
Logic High Output Voltage  
VOH  
VDD2 0.1  
VDD2  
IOUT = -20 µA, VIN= VIH  
IOUT = -4 mA, VIN= VIH  
IOUT = 20 µA, VIN= VIL  
IOUT = 4 mA, VIN= VIL  
0.8 V  
*
VDD2 0.5  
V
DD2  
Logic Low Output Voltage  
VOL  
0
0.1  
0.8  
V
0.5  
V
Switching Specifications  
Maximum Data Rate  
100  
110  
MBd  
MHz  
ns  
CL = 15 pF  
Clock Frequency  
fmax  
tPHL  
50  
18  
Propagation Delay Time to Logic  
Low Output  
12  
12  
Propagation Delay Time toLogic  
High Output  
tPLH  
18  
3
ns  
Pulse Width  
tPW  
10  
ns  
ns  
Pulse Width Distortion[1]  
|PWD|  
2
|tPHL tPLH  
|
Propagation Delay Skew[2]  
Output Rise Time (10 90%)  
Output Fall Time (10 90%)  
tPSK  
tR  
4
2
2
6
4
4
ns  
ns  
ns  
tF  
Propagation Delay Enable to Output (Single Channel)  
High to High Impedance  
Low to High Impedance  
High Impedance to High  
High Impedance to Low  
tPHZ  
tPLZ  
tPZH  
tPZL  
tCSK  
3
3
3
3
2
5
5
5
5
3
ns  
ns  
ns  
ns  
ns  
Channel-to-Channel Skew  
(Dual and Quad Channels)  
Common Mode Transient Immunity  
(Output Logic High or Logic Low)[3]  
|CMH|  
|CML|  
15  
18  
kV/µs Vcm = 1000V  
Notes:  
1. PWD is defined as |tPHL -tPLH|. %PWD is equal to the PWD divided by the pulse width.  
2. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
3. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8VDD2. CML is the maximum common mode  
input voltage that can be sustained while maintaining VOUT < 0.8V. The common mode voltage slew rates apply to both rising and falling common mode  
voltage edges.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
8
Electrical Specifications  
Test conditions that are not specified can be anywhere within the recommended operating range.  
All typical specifications are at TA=+25°C, VDD1 = VDD2 = +5.0V.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units Test Conditions  
Quiescent Supply Current 1  
IDD1  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
0.012  
0.012  
2.5  
0.024  
5.0  
0.018  
0.018  
3.0  
0.036  
6.0  
2.5  
3.0  
Quiescent Supply Current 2  
IDD2  
mA  
VIN = 0V  
HCPL-9000/-0900  
HCPL-9030/-0930  
HCPL-9031/-0931  
HCPL-900J/-090J  
HCPL-901J/-091J  
HCPL-902J/-092J  
5.0  
5.0  
2.5  
8.0  
5.0  
6.0  
6.0  
6.0  
3.0  
12.0  
6.0  
9.0  
Logic Input Current  
IIN  
-10  
10  
µA  
V
Logic High Output Voltage  
VOH  
VDD2 0.1  
VDD2  
IOUT= -20 µA, VIN= VIH  
IOUT= -4 mA, VIN= VIH  
IOUT= 20 µA, VIN= VIL  
IOUT= 4 mA, VIN= VIL  
0.8 V  
*
VDD2 0.5  
V
DD2  
Logic Low Output Voltage  
VOL  
0
0.1  
0.8  
V
0.5  
V
Switching Specifications  
Maximum Data Rate  
100  
110  
MBd  
MHz  
ns  
CL = 15 pF  
Clock Frequency  
fmax  
tPHL  
50  
15  
Propagation Delay Time to Logic  
Low Output  
10  
10  
Propagation Delay Time to Logic  
High Output  
tPLH  
15  
3
ns  
Pulse Width  
tPW  
10  
ns  
ns  
Pulse Width Distortion[1]  
|PWD|  
2
|tPHL tPLH  
|
Propagation Delay Skew[2]  
Output Rise Time (10 90%)  
Output Fall Time (10 90%)  
tPSK  
tR  
4
1
1
6
3
3
ns  
ns  
ns  
tF  
Propagation Delay Enable to Output (Single Channel)  
High to High Impedance  
Low to High Impedance  
High Impedance to High  
High Impedance to Low  
tPHZ  
tPLZ  
tPZH  
tPZL  
tCSK  
3
3
3
3
2
5
5
5
5
3
ns  
ns  
ns  
ns  
ns  
Channel-to-Channel Skew  
(Dual and Quad Channels)  
Common Mode Transient Immunity  
(Output Logic High or Logic Low)[3]  
|CMH|  
|CML|  
15  
18  
kV/µs Vcm = 1000V  
Notes:  
1. PWD is defined as |tPHL -tPLH|. %PWD is equal to the PWD divided by the pulse width.  
2. tPSK is equal to the magnitude of the worst case difference in tPHL and/or tPLH that will be seen between units at 25°C.  
3. CMH is the maximum common mode voltage slew rate that can be sustained while maintaining VOUT > 0.8VDD2. CML is the maximum common mode  
input voltage that can be sustained while maintaining VOUT < 0.8V. The common mode voltage slew rates apply to both rising and falling common mode  
voltage edges.  
This product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, Agilent recommends that all integrated circuits  
be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to  
complete failure.  
9
Applications Information  
Signal Status on Start-up and  
Shut Down  
to be connected directly to the  
inputs and outputs. As shown in  
Figure 1, the only external  
Power Consumption  
To minimize power dissipation,  
the input signals to the channels  
of HCPL-90xx and HCPL-09xx  
digital isolators are differenti-  
ated and then latched on the  
output side of the isolation  
barrier to reconstruct the signal.  
This could result in an ambigu-  
ous output state depending on  
power up, shutdown and power  
loss sequencing. Therefore, the  
designer should consider the  
inclusion of an initialization  
signal in this start-up circuit.  
The HCPL-90xx and HCPL-09xx  
CMOS digital isolators achieves  
low power consumption from the  
manner by which they transmit  
data across isolation barrier. By  
detecting the edge transitions of  
the input logic signal and con-  
verting this to a narrow current  
pulse, which drives the isolation  
barrier, the isolator then latches  
the input logic state in the output  
latch. Since the current pulses  
are narrow, about 2.5 ns wide, the  
power consumption is indepen-  
dent of mark-to-space ratio and  
solely dependent on frequency.  
components required for proper  
operation are two 47 nF ceramic  
capacitors for decoupling the  
power supplies. For each capaci-  
tor, the total lead length between  
both ends of the capacitor and the  
power-supply pins should not  
exceed 20 mm. Figure 2 illustrates  
the recommended printed circuit  
board layout for the HCPL-9000  
or HCPL-0900. For data rates in  
excess of 10MBd, use of ground  
planes for both GND1 and GND2 is  
highly recommended.  
Bypassing and PC Board Layout  
The HCPL-90xx and HCPL-09xx  
digital isolators are extremely  
easy to use. No external interface  
circuitry is required because the  
isolators use high-speed CMOS IC  
technology allowing CMOS logic  
The approximate power supply  
current per channel is:  
I(Input) = 40(f/fmax)(1/4) mA  
where f = operating frequency,  
fmax = 50 MHz.  
VDD1  
IN1  
VDD2  
8
1
C2  
C1  
2
NC 3  
4
7
6
VOE  
OUT1  
GND2  
GND1  
5
Note: C1, C2 = 47 nF ceramic capacitors  
Figure 1. Functional Diagram of Single Channel HCPL-0900 or HCPL-0900.  
VDD1  
VDD2  
IN1  
VOE  
C2  
C1  
OUT1  
GND2  
GND1  
Figure 2. Recommended Printed Circuit Board Layout.  
10  
Propagation Delay, Pulse Width  
Distortion and Propagation Delay Skew the difference between tPHL and  
Propagation Delay is a figure of  
merit, which describes how  
quickly a logic signal propagates  
Pulse Width Distortion, PWD, is  
If the parallel data is being sent  
through channels of the digital  
isolators, differences in propaga-  
tion delays will cause the data to  
arrive at the outputs of the  
digital isolators at different  
times. If this difference in  
tPLH and often determines the  
maximum data rate capability of  
a transmission system. PWD can  
through a system as illustrated in be expressed in percent by  
Figure 3.  
dividing the PWD (in ns) by the  
minimum pulse width (in ns)  
propagation delay is large  
The propagation delay from low to being transmitted. Typically, PWD enough, it will limit the maxi-  
high, tPLH, is the amount of time  
required for an input signal to  
propagate to the output, causing  
the output to change from low to  
high. Similarly, the propagation  
delay from high to low, tPHL, is the  
amount of time required for the  
input signal to propagate to the  
output, causing the output to  
change from high to low.  
on the order of 2030% of the  
minimum pulse width is tolerable. parallel data can be sent through  
the digital isolators.  
mum transmission rate at which  
Propagation Delay Skew, tPSK  
,
and Channel-to-Channel Skew,  
tCSK, are critical parameters to  
consider in parallel data trans-  
mission applications where  
synchronization of signals on  
parallel data lines is a concern.  
tPSK is defined as the difference  
between the minimum and  
maximum propagation delays,  
either tPLH or tPHL, among two or  
more devices which are operating  
under the same conditions (i.e.,  
the same drive current, supply  
voltage, output load, and operat-  
ing temperature). tCSK is defined  
as the difference between the  
minimum and maximum propaga-  
5 V CMOS  
INPUT  
tion delays, either tPLH or tPHL  
,
50%  
V
IN  
among two or more channels  
within a single device (applicable  
to dual and quad channel de-  
vices) which are operating under  
the same conditions.  
0 V  
t
t
PHL  
PLH  
V
OH  
2.5 V CMOS  
OUTPUT  
90%  
90%  
V
OUT  
10%  
10%  
V
OL  
As illustrated in Figure 4, if the  
inputs of two or more devices are  
switched either ON or OFF at the  
same time, tPSK is the difference  
between the minimum propaga-  
tion delay, either tPLH or tPHL, and  
the maximum propagation delay,  
Figure 3. Timing Diagrams to Illustrate Propagation Delay, tPLH and tPHL  
.
VIN  
DATA  
50%  
INPUTS  
either tPLH or tPHL  
.
CLOCK  
2.5 V  
CMOS  
VOUT  
As mentioned earlier, tPSK, can  
determine the maximum parallel  
data transmission rate. Figure 5  
shows the timing diagram of a  
typical parallel data transmission  
application with both the clock  
and data lines being sent through  
the digital isolators. The figure  
shows data and clock signals at  
the inputs and outputs of the  
digital isolators. In this case, the  
data is clocked off the rising edge  
of the clock.  
tPSK  
DATA  
50%  
OUTPUTS  
CLOCK  
VIN  
tPSK  
tPSK  
2.5 V  
CMOS  
VOUT  
Figure 5. Parallel Data Transmission.  
Figure 4. Timing Diagrams to Illustrate  
Propagation Delay Skew.  
11  
Propagation delay skew repre-  
sents the uncertainty of where  
an edge might be after being sent start to change before the clock  
the data outputs have settled, or  
some of the data outputs may  
ensure that any additional  
uncertainty in the rest of the  
circuit does not cause a problem.  
through a digital isolator. Figure  
5 shows that there will be uncer-  
tainty in both the data and clock  
lines. It is important that these  
two areas of uncertainty not  
overlap, otherwise the clock  
signal might arrive before all of  
signal has arrived. From these  
considerations, the absolute  
minimum pulse width that can be pulse width, rise and fall time,  
sent through digital isolators in a and propagation delay enable to  
parallel application is twice tPSK  
A cautious design should use a  
slightly longer pulse width to  
Figure 6 shows the minimum  
.
output waveforms for HCPL-9000  
or HCPL-0900.  
50%  
VIN  
tPZL  
90%  
90%  
tPLZ  
50%  
tPHZ  
VOUT  
10%  
10%  
tPZH  
tPW  
tF  
tR  
VOE  
tPW  
tPLZ  
tPZH  
Minimum Pulse Width  
Propagation Delay, Low to High Impedance  
Propagation Delay, High Impedance to High  
tPHZ  
tPZL  
tR  
Propagation Delay, High to High Impedance  
Propagation Delay, High Impedance to Low  
Rise Time  
tF  
Fall Time  
Figure 6. Timing Diagrams to Illustrate the Minimum Pulse Width, Rise and Fall Time, and Propagation Delay Enable to  
Output Waveforms for HCPL-9000 or HCPL-0900.  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(408) 654-8675  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6271 2451  
India, Australia, New Zealand: (+65) 6271 2394  
Japan: (+81 3) 3335-8152(Domestic/International), or  
0120-61-1280(Domestic Only)  
Korea: (+65) 6271 2194  
Malaysia, Singapore: (+65) 6271 2054  
Taiwan: (+65) 6271 2654  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
October 31, 2002  
5988-5626EN  

相关型号:

HCPL-J312

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J312#500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8
AGILENT

HCPL-J312-000E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J312-300E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J312-500E

2.5 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J314

0.4 Amp Output Current IGBT Gate Drive Optocoupler
AGILENT

HCPL-J314

0.6 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J314#300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-J314-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8
AVAGO

HCPL-J314-300

0.4 Amp Output Current IGBT Gate Drive Optocoupler
AGILENT

HCPL-J314-300E

0.6 Amp Output Current IGBT Gate Drive Optocoupler
AVAGO

HCPL-J314-300E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT