HMPS-282X [AGILENT]

MiniPak Surface Mount RF Schottky Barrier Diodes; MINIPAK表面贴装射频肖特基势垒二极管
HMPS-282X
型号: HMPS-282X
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

MiniPak Surface Mount RF Schottky Barrier Diodes
MINIPAK表面贴装射频肖特基势垒二极管

二极管 射频
文件: 总8页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HMPS-282x Series  
MiniPak Surface Mount  
RF Schottky Barrier Diodes  
Data Sheet  
Features  
• Surface mount MiniPak package  
– low height, 0.7 mm (0.028") max.  
– small footprint, 1.75 mm2  
(0.0028 inch2)  
• Better thermal conductivity for  
higher power dissipation  
• Single and dual versions  
The HMPS-282x family of diodes  
offers the best all-around choice  
for most applications, featuring  
low series resistance, low forward  
voltage at all current levels and  
good RF characteristics.  
Description/Applications  
These ultra-miniature products  
represent the blending of Agilent  
Technologies’ proven semiconduc-  
tor and the latest in leadless  
packaging. This series of Schottky  
diodes is the most consistent and  
best all-round device available,  
and finds applications in mixing,  
detecting, switching, sampling,  
clamping and wave shaping at  
frequencies up to 6 GHz. The  
MiniPak package offers reduced  
parasitics when compared to  
conventional leaded diodes, and  
lower thermal resistance.  
• Matched diodes for consistent  
performance  
• Low turn-on voltage (as low as  
0.34 V at 1 mA)  
• Low FIT (Failure in Time) rate*  
• Six-sigma quality level  
Note that Agilent’s manufacturing  
techniques assure that dice found  
in pairs and quads are taken from  
adjacent sites on the wafer,  
assuring the highest degree of  
match.  
*
For more information, see the Surface  
Mount Schottky Reliability Data Sheet.  
Pin Connections and  
Package Marking  
3
4
1
Package Lead Code Identification  
(Top View)  
AA  
2
Single  
Anti-parallel  
Parallel  
3
2
4
1
3
2
4
1
3
2
4
1
Product code Date code  
Notes:  
#0  
#2  
#5  
1. Package marking provides orientation and  
identification.  
2. See “Electrical Specifications” for  
appropriate package marking.  
HMPS-282x Series Absolute Maximum Ratings[1], TC = 25°C  
ESD WARNING:  
Handling Precautions Should Be Taken To  
Avoid Static Discharge.  
Symbol  
Parameter  
Units  
MiniPak 1412  
If  
Forward Current (1 µs pulse)  
Peak Inverse Voltage  
Junction Temperature  
Storage Temperature  
Thermal Resistance[2]  
A
1
PIV  
Tj  
V
15  
°C  
°C  
°C/W  
150  
Tstg  
θjc  
-65 to +150  
150  
Notes:  
1. Operation in excess of any one of these conditions may result in permanent damage to the  
device.  
2. TC = +25°C, where TC is defined to be the temperature at the package pins where contact is  
made to the circuit board.  
Electrical Specifications, TC = +25°C, Single Diode[4]  
Maximum  
Maximum  
Minimum  
Breakdown  
Voltage  
Maximum  
Forward  
Voltage  
VF (mV)  
Forward  
Voltage  
VF (V) @  
IF (mA)  
Reverse  
Leakage  
IR (nA) @  
VR (V)  
Typical  
Part  
Number  
HMPS-  
Package  
Marking  
Code  
Maximum  
Capacitance  
CT (pF)  
Dynamic  
Resistance  
RD ()[4]  
Lead  
Code  
Configuration  
VBR (V)  
2820  
2822  
2825  
L
K
J
0
2
5
Single  
Anti-parallel  
Parallel  
15  
340  
0.5 10  
100  
1
1.0  
12  
Test Conditions  
IR = 100 µA  
IF = 1 mA[1]  
VF = 0 V  
IF = 5 mA  
f = 1 MHz[2]  
Notes:  
1. VF for diodes in pairs is 15 mV maximum at 1 mA.  
2. CTO for diodes in pairs is 0.2 pF maximum.  
3. Effective carrier lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA.  
4. RD = RS + 5.2at 25°C and If = 5 mA.  
2
SPICE Parameters  
Linear Equivalent Circuit Model Diode Chip  
R
Parameter  
Units  
HMPS-282x  
j
BV  
CJ0  
EG  
IBV  
IS  
V
15  
R
S
pF  
eV  
A
0.7  
0.60  
1E-4  
2.2E-8  
1.08  
8.0  
A
C
j
N
RS = series resistance (see Table of SPICE parameters)  
Cj = junction capacitance (see Table of SPICE parameters)  
RS  
PB  
PT  
M
V
0.65  
2
8.33 X 10-5 nT  
Rj =  
Ib + Is  
0.5  
where  
Ib = externally applied bias current in amps  
Is = saturation current (see table of SPICE parameters)  
T = temperature, °K  
n = ideality factor (see table of SPICE parameters)  
Linear Circuit Model of the Diode’s Package  
20 fF  
3
4
30 fF  
30 fF  
2
1.1 nH  
1
20 fF  
Single diode package (HMPx-x8x0)  
20 fF  
0.05 nH  
0.5 nH  
0.5 nH  
0.5 nH  
0.05 nH  
3
2
4
1
12 fF  
30 fF  
30 fF  
0.05 nH  
0.5 nH  
0.05 nH  
20 fF  
Anti-parallel diode package (HMPx-x8x2)  
20 fF  
0.05 nH  
0.5 nH  
0.5 nH  
0.5 nH  
0.05 nH  
3
2
4
1
12 fF  
30 fF  
30 fF  
0.05 nH  
0.5 nH  
0.05 nH  
20 fF  
Parallel diode package (HMPx-x8x5)  
3
HMPS-282x Series Typical Performance  
Tc = 25°C (unless otherwise noted), Single Diode  
1
100,000  
100  
TA = +125°C  
A = +75°C  
TA = +25°C  
T
0.8  
10,000  
10  
TA = –25°C  
0.6  
0.4  
1000  
100  
1
0.1  
TA = +125°C  
TA = +75°C  
0.2  
0
10  
1
TA = +25°C  
0.01  
0
2
4
6
8
0
5
10  
15  
0
0.10  
0.20  
0.30  
0.40  
0.50  
V
– REVERSE VOLTAGE (V)  
V
– REVERSE VOLTAGE (V)  
V – FORWARD VOLTAGE (V)  
R
R
F
Figure 3. Total Capacitance vs. Reverse  
Voltage.  
Figure 2. Reverse Current vs. Reverse Voltage  
at Temperatures.  
Figure 1. Forward Current vs. Forward  
Voltage at Temperatures.  
1000  
100  
30  
10  
30  
10  
100  
1.0  
I (Left Scale)  
F
I (Left Scale)  
F
10  
10  
1
V (Right Scale)  
F
1
1
V (Right Scale)  
F
0.3  
0.3  
1.4  
1
0.10  
0.1  
0.25  
0.1  
1
10  
100  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0.15  
0.20  
I
– FORWARD CURRENT (mA)  
V - FORWARD VOLTAGE (V)  
V - FORWARD VOLTAGE (V)  
F
F
F
Figure 4. Dynamic Resistance vs. Forward  
Current.  
Figure 5. Typical V Match, Series Pairs and  
f
Quads at Mixer Bias Levels.  
Figure 6. Typical V Match, Series Pairs at  
f
Detector Bias Levels.  
1
10  
1
10  
9
DC bias = 3 µA  
-25°C  
0.1  
+25°C  
+75°C  
0.1  
0.01  
8
18 nH HSMS-282B  
3.3 nH  
HSMS-282B  
100 pF  
+25°C  
RF in  
Vo  
RF in  
Vo  
0.001  
0.01  
7
68  
100 pF  
0.0001  
1E-005  
100 KΩ  
4.7 KΩ  
0.001  
6
-40  
-30  
-20  
-10  
0
-20  
-10  
P
0
10  
20  
30  
0
2
4
6
8
10  
12  
P
– INPUT POWER (dBm)  
– INPUT POWER (dBm)  
in  
LOCAL OSCILLATOR POWER (dBm)  
in  
Figure 7. Typical Output Voltage vs. Input  
Power, Small Signal Detector Operating at  
850 MHz.  
Figure 8. Typical Output Voltage vs. Input  
Power, Large Signal Detector Operating at  
915 MHz.  
Figure 9. Typical Conversion Loss vs. L.O.  
Drive, 2.0 GHz (Ref AN997).  
4
SMT Assembly  
passes through one or more  
Assembly Information  
Reliable assembly of surface  
mount components is a complex  
process that involves many  
material, process, and equipment  
factors, including: method of  
heating (e.g., IR or vapor phase  
reflow, wave soldering, etc.)  
circuit board material, conductor  
thickness and pattern, type of  
solder alloy, and the thermal  
conductivity and thermal mass of  
components. Components with a  
low mass, such as the MiniPak  
package, will reach solder reflow  
temperatures faster than those  
with a greater mass.  
preheat zones. The preheat zones  
increase the temperature of the  
board and components to prevent  
thermal shock and begin evaporat-  
ing solvents from the solder paste.  
The reflow zone briefly elevates  
the temperature sufficiently to  
produce a reflow of the solder.  
The MiniPak diode is mounted to  
the PCB or microstrip board using  
the pad pattern shown in  
Figure 10.  
0.4  
0.5  
0.4  
0.3  
0.5  
0.3  
The rates of change of tempera-  
ture for the ramp-up and cool-  
down zones are chosen to be low  
enough to not cause deformation  
of the board or damage to compo-  
nents due to thermal shock. The  
maximum temperature in the  
reflow zone (TMAX) should not  
exceed 255°C.  
Figure 10. PCB Pad Layout, MiniPak  
(dimensions in mm).  
Agilent’s diodes have been quali-  
fied to the time-temperature  
profile shown in Figure 12. This  
profile is representative of an IR  
reflow type of surface mount  
assembly process.  
This mounting pad pattern is  
satisfactory for most applications.  
However, there are applications  
where a high degree of isolation is  
required between one diode and  
the other is required. For such  
applications, the mounting pad  
pattern of Figure 11 is  
These parameters are typical for a  
surface mount assembly process  
for Agilent diodes. As a general  
guideline, the circuit board and  
components should be exposed  
only to the minimum temperatures  
and times necessary to achieve a  
uniform reflow of solder.  
After ramping up from room  
temperature, the circuit board  
with components attached to it  
(held in place with solder paste)  
recommended.  
0.40 mm via hole  
(4 places)  
350  
300  
0.20  
Peak Temperature  
Min. 240°C  
2.40  
0.8  
Max. 255°C  
250  
221  
200  
Reflow Time  
Min. 60 s  
Max. 90 s  
0.40  
150  
2.60  
Preheat 130170°C  
100  
Min. 60 s  
Figure 11. PCB Pad Layout, High Isolation  
MiniPak (dimensions in mm).  
Max. 150 s  
50  
0
This pattern uses four via holes,  
connecting the crossed ground  
strip pattern to the ground plane  
of the board.  
0
30  
60  
90  
120  
150  
180 210  
240  
270  
300  
330 360  
TIME (seconds)  
Figure 12. Surface Mount Assembly Temperature Profile.  
5
MiniPak Outline Drawing  
1.44 (0.058)  
1.40 (0.056)  
1.12 (0.045)  
1.08 (0.043)  
0.82 (0.033)  
0.78 (0.031)  
4
1
3
2
1.20 (0.048)  
1.16 (0.046)  
0.32 (0.013)  
0.28 (0.011)  
0.00  
Top view  
-0.07 (-0.003)  
-0.03 (-0.001)  
0.92 (0.037)  
0.88 (0.035)  
0.00  
-0.07 (-0.003) 0.42 (0.017)  
-0.03 (-0.001) 0.38 (0.015)  
1.32 (0.053)  
1.28 (0.051)  
0.70 (0.028)  
0.58 (0.023)  
Bottom view  
Side view  
6
Device Orientation  
REEL  
TOP VIEW  
4 mm  
END VIEW  
CARRIER  
TAPE  
8 mm  
USER  
FEED  
DIRECTION  
COVER TAPE  
Note: “AA” represents package marking code. Package marking is  
right side up with carrier tape perforations at top. Conforms to  
Electronic Industries RS-481, “Taping of Surface Mounted  
Components for Automated Placement.” Standard quantity is 3,000  
devices per reel.  
Tape Dimensions and Product Orientation  
For Outline 4T (MiniPak 1412)  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
5° MAX.  
5° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
1.40 ± 0.05  
1.63 ± 0.05  
0.80 ± 0.05  
4.00 ± 0.10  
0.80 ± 0.05  
0.055 ± 0.002  
0.064 ± 0.002  
0.031 ± 0.002  
0.157 ± 0.004  
0.031 ± 0.002  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.50 ± 0.10  
4.00 ± 0.10  
1.75 ± 0.10  
0.060 ± 0.004  
0.157 ± 0.004  
0.069 ± 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 + 0.30 - 0.10 0.315 + 0.012 - 0.004  
t
0.254 ± 0.02  
0.010 ± 0.001  
1
COVER TAPE  
WIDTH  
C
5.40 ± 0.10  
0.213 ± 0.004  
TAPE THICKNESS  
T
0.062 ± 0.001  
0.002 ± 0.00004  
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 ± 0.05  
0.138 ± 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 ± 0.05  
0.079 ± 0.002  
7
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2001 Agilent Technologies, Inc.  
January 22, 2001  
5988-1551EN  

相关型号:

HMPS1000L-60M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS1000MT-HU

Connectorized fixed frequency Synthesizer with Crystal Oscillator
BOWEI

HMPS100L-10M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS100MT-LU

Connectorized fixed frequency Synthesizer with Crystal Oscillator
BOWEI

HMPS140L-10M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS150L-20M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS1575.42L-10.23M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS2000L-100M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS2000MT-IU

Connectorized fixed frequency Synthesizer with Crystal Oscillator
BOWEI

HMPS2246.508L-15M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS2260L-80M

Connectorized fixed frequency Synthesizer
BOWEI

HMPS2565.648L-15M

Connectorized fixed frequency Synthesizer
BOWEI