AIC164227XBG

更新时间:2024-09-18 01:54:11
品牌:AIC
描述:3-Pin One-Cell Step-Up DC/DC Converter

AIC164227XBG 概述

3-Pin One-Cell Step-Up DC/DC Converter 3引脚单节升压型DC / DC转换器

AIC164227XBG 数据手册

通过下载AIC164227XBG数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
AIC1642  
3-Pin One-Cell Step-Up DC/DC Converter  
FEATURES  
DESCRIPTION  
A Guaranteed Start-Up from less than 0.9 V.  
l
l
l
l
l
l
l
The AIC1642 is a high efficiency step-up  
DC/DC converter for applications using 1 to 4  
battery cells. Only three external components  
are required to deliver a fixed output voltage of  
2.7V, 3.0V, 3.3V, or 5V. The AIC1642 starts up  
from less than 0.9V input with 1mA load. Pulse  
Frequency Modulation scheme brings optimized  
performance for applications with light output  
loading and low input voltages. The output rip-  
ple and noise are lower compared with the cir-  
cuits operating in PSM mode.  
High Efficiency.  
Low Quiescent Current.  
Less Number of External Components needed.  
Low Ripple and Low Noise.  
Fixed Output Voltage: 2.7V, 3.0V, 3.3V, and 5V.  
Space Saving Packages: SOT-89 and TO-92  
APPLICATIONS  
Pagers.  
l
Cameras.  
l
The PFM control circuit operating in 100KHz  
(max.) switching rate results in smaller passive  
components. The space saving SOT-89 and  
TO-92 packages make the AIC1642 is an ideal  
choice of DC/DC converter for space conscious  
applications, like pagers, electronic cameras,  
and wireless microphones.  
Wireless Microphones.  
l
Pocket Organizers.  
l
Battery Backup Suppliers.  
l
Portable Instruments.  
l
TYPICAL APPLICATION CIRCUIT  
VIN  
VOUT  
D1  
GS SS12  
L1  
100mH  
AIC1642-27  
AIC1642-30  
AIC1642-33  
AIC1642-50  
+
+
C1  
47mF  
C2  
22mF  
SW  
VOUT  
GND  
One Cell Step-Up DC/DC Converter  
Analog Integrations Corporation  
4F, 9 Industry E. 9th Rd, Science-Based Industrial Park, Hsinchu, Taiwan  
TEL: 886-3-5772500 FAX: 886-3-5772510 www.analog.com.tw  
DS-1642-01 012102  
1
AIC1642  
ORDERING INFORMATION  
AIC1642-XXCXXX  
PIN CONFIGURATION  
PACKING TYPE  
TR: TAPE & REEL  
TB: TUBE  
SOT-89  
TOP VIEW  
1: GND  
2: VOUT  
3: SW  
BG: BAG  
PACKAGE TYPE  
X: SOT-89  
1
2
3
Z: TO-92  
OUTPUT VOLTAGE  
27: 2.7V  
30: 3.0V  
33: 3.3V  
50: 5.0V  
1
2
3
TO-92  
TOP VIEW  
1: GND  
2: VOUT  
3: SW  
Example: AIC1642-27COTR  
à2.7V Version, in MSOP8 Package  
& Tape & Reel Packing Type  
ABSOLUATE MAXIMUM RATINGS  
Supply Voltage ……………………………………………………………………………….12V  
SW pin Voltage ……………………………………………………………………………….12V  
SW pin Switch Current ………………………………………………………………………0.6A  
Operating Temperature Range ………………………………..…………….… .--40°C to 85°C  
Storage Temperature Range ………………………………………………… -65°C to 150 °C  
Lead Temperature (Soldering 10 Sec.) …………………………………………………260°C  
TEST CIRCUIT  
AIC1642  
100  
FOUT  
2.5V  
VOUT  
SW  
GND  
Oscillator Test Circuit  
2
AIC1642  
ELECTRICAL CHARACTERISTICS  
specified)  
(TA=25°C, IOUT=10mA, Unless otherwise  
n
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN.  
2.633  
2.925  
3.218  
4.875  
TYP.  
2.700  
3.000  
3.300  
5.000  
MAX. UNIT  
2.767  
V =1.8V, AIC1642-27  
IN  
V =1.8V, AIC1642-30  
3.075  
IN  
Output Voltage  
V
OUT  
V
V =2.0V, AIC1642-33  
3.382  
IN  
V =3.0V, AIC1642-50  
5.125  
IN  
8
Input Voltage  
V
V
V
IN  
V
START  
0.8  
0.9  
0.7  
Start-Up Voltage  
Hold-on Voltage  
No-Load Input Current  
I
I
I
=1mA, V :0® 2V  
OUT  
OUT  
OUT  
IN  
=1mA, V :2® 0V  
V
V
IN  
HOLD  
15  
42  
50  
60  
90  
=0mA  
I
IN  
mA  
AIC1642-27  
AIC1642-30  
AIC1642-33  
AIC1642-50  
Supply Current  
I
I
mA  
DD1  
V =V  
x 0.95  
IN  
OUT  
Measurement of the IC input  
current (VOUT pin)  
V =V  
+ 0.5V  
IN  
OUT  
8
Supply Current  
mA  
mA  
DD2  
Measurement of the IC input  
current (VOUT pin)  
0.5  
SW Leakage Current  
VSW=10V, VIN=VOUT + 0.5V  
AIC1642-27  
AIC1642-30  
AIC1642-33  
AIC1642-50  
2.2  
2.1  
2.0  
1.9  
SW Switch-On Resis-  
tance  
R
W
ON  
V =V  
x 0.95, V =0.4V  
SW  
IN  
SW  
V =V  
x 0.95  
IN  
OUT  
65  
80  
75  
85  
Oscillator Duty Cycle  
DUTY  
%
Measurement of the SW Pin  
Waveform  
V =V  
x 0.95  
IN  
OUT  
105  
80  
130  
Max. Oscillator Freq.  
Efficiency  
F
KHz  
%
OSC  
Measurement of the SW Pin  
Waveform  
h
3
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
n
Capacitor (C1) : 47 m F (Tantalum Type)  
Diode (D1) : 1N5819 Schottky Type  
85  
2.8  
80  
2.7  
VIN=2.0V  
75  
2.6  
V =1.8V  
IN  
VIN=1.5V  
VIN=2.0V  
V =1.2V  
IN  
70  
65  
60  
55  
V =1.8V  
IN  
2.5  
2.4  
2.3  
2.2  
V =1.5V  
IN  
VIN=1.2V  
V =0.9V  
IN  
VIN=0.9V  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Output Current (mA)  
Output current (mA)  
Fig. 2 AIC1642-27 Efficiency (L=100mH CD54)  
Fig. 1 AIC1642-27 Load Regulation (L=100mH CD54)  
1.0  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
2.64  
2.62  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Start up  
No Load  
Hold on  
0
2
4
6
8
10  
12  
14  
16  
18  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 4 AIC1642-27 Output Voltage vs. Temperature  
Output Current (mA)  
Fig. 3 AIC1642-27 Start-up & Hold-on Voltage (L=100mH)  
82  
80  
78  
76  
74  
72  
70  
68  
66  
160  
140  
120  
100  
80  
60  
40  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 6 AIC1642-27 Maximum Duty Cycle vs. Temperature  
Temperature (°C)  
Fig. 5 AIC1642-27 Switching Frequency vs. Temperature  
4
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
52  
48  
44  
40  
36  
32  
28  
24  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 8 AIC1642-27 Supply Current IDD1 vs. Temperature  
Temperature (°C)  
Fig. 7 AIC1642-27 SW On Resistance vs. Temperature  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
85  
VIN=2.0V  
80  
75  
70  
65  
60  
55  
50  
VIN=.8V  
VIN=1.5V  
VIN=2.0V  
VIN=1.8V  
VIN=1.2V  
VIN=1.5V  
VIN=1.2V  
VIN=0.9V  
VIN=0.9  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Output Current (mA)  
Output Current (mA)  
Fig. 9 AIC1642-30 Load Regulation (L=100mH CD54)  
Fig. 10 AIC1642-30 Efficiency (L=100mH CD54)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
3.06  
3.04  
3.02  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
Start up  
No Load  
Hold on  
0.00  
2
4
6
8
10  
12  
14  
16  
18  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Temperature (°C)  
Fig. 12 AIC1642-30 Output Voltage vs. Temperature  
Fig. 11 AIC1642-30 Start-up & Hold-on Voltage (L=100mH)  
5
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
160  
140  
120  
100  
80  
82  
80  
78  
76  
74  
72  
70  
68  
66  
60  
40  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 13 AIC1642-30 Switching Frequency vs. Temperature  
Temperature (°C)  
Fig. 14 AIC1642-30 Maximum Duty Cycle vs. Temperature  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
52  
48  
44  
40  
36  
32  
28  
24  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 16 AIC1642-30 Supply Current vs. Temperature  
Temperature (°C)  
Fig. 15 AIC1642-30 SW On Resistance vs. Temperature  
90  
85  
80  
75  
70  
65  
60  
55  
50  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
V
=2.0V  
IN  
V
=1.8  
IN  
V
IN  
=2.0V  
V
=1.5V  
IN  
V
=1.2  
IN  
V
=1.8V  
IN  
V
=1.5V  
IN  
V
=1.2V  
IN  
V
=0.9  
V
=0.9V  
IN  
IN  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
Output Current (mA)  
Fig. 18 AIC1642-33 Efficiency (L=100mH CD54)  
Output Current (mA)  
Fig. 17 AIC1642-33 Load Regulation (L=100mH CD54)  
6
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
1.1  
3.50  
1.0  
3.45  
0.9  
Start up  
3.40  
0.8  
3.35  
No Load  
0.7  
3.30  
0.6  
3.25  
0.5  
3.20  
0.4  
3.15  
3.10  
3.05  
0.3  
0.2  
0.1  
Hold on  
0.0  
3.00  
0
20  
40  
60  
80  
100  
-
-
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
40  
Temperature (°C)  
Fig. 20 AIC1642-33 Output Voltage vs. Temperature  
Output Current (mA)  
Fig. 19 AIC1642-33 Start-up & Hold-on Voltage (L=100mH)  
150  
82  
80  
78  
76  
74  
72  
70  
68  
66  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
°
Temperature ( C)  
Fig. 21 AIC1642-33 Switching Frequency vs. Temperature  
Fig. 22 AIC1642-33 Maximum Duty Cycle vs. Temperature  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 24 AIC1642-33 Supply Current vs. Temperature  
Temperature (°C)  
Fig. 23 AIC1642-33 SW On Resistance vs. Temperature  
7
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
V
=3.0V  
IN  
V
=2.0V  
IN  
V
=3.0V  
IN  
V
=2.0V  
IN  
V
=1.5V  
IN  
V =1.5V  
IN  
V
=1.2V  
IN  
V
=0.9V  
IN  
V
=0.9  
V
=1.2  
IN  
IN  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Output Current (mA)  
Output Current (mA)  
Fig. 25 AIC1642-50 Load Regulation ( L=100mH CD54)  
Fig. 26 AIC1642-50 Efficiency (L=100mH, CD54)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
No Load  
Start up  
Hold on  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Fig. 27 AIC1642-50 Start-up & Hold-on Voltage (L=100mH)  
Temperature (°C)  
Fig. 28 AIC1642-50 Output Voltage vs. Temperature  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 29 AIC1642-50 Switching Frequency vs. Temperature  
Temperature (°C)  
Fig. 30 AIC1642-50 Maximum Duty Cycle vs. Temperature  
8
AIC1642  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Continued)  
n
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Fig. 31 AIC1642-50 SW On Resistance vs. Temperature  
°
Temperature ( C)  
Fig. 34 AIC1642-50 Supply Current vs. Temperature  
BLOCK DIAGRAM  
SW  
1.25V REF.  
VOUT  
1M  
-
+
Enable  
OSC, 100KHz  
GND  
PIN DESCRIPTIONS  
PIN1 : GND - Ground. Must be low imped-  
ance; sorer directly to ground  
plane.  
PIN3 : SW – Internal drain of N-MOSFET  
switch.  
PIN2 : VOUT - IC supply pin. Connect VOUT  
to the regulator output.  
9
AIC1642  
APPLICATION INFORMATION  
tinuous conduction mode. Continuous conduction  
mode means that the inductor current does not  
ramp to zero during each cycle.  
GENERAL DESCRIPTION  
AIC1642 PFM (pulse frequency modulation) control-  
ler ICs combine a switch mode regulator, N-channel  
power MOSFET, precision voltage reference, and  
voltage detector in a single monolithic device. They  
offer extreme low quiescient current, high efficiency,  
and very low gate threshold voltage to ensure start-  
up with low battery voltage (0.8V typ.). Designed to  
maximize battery life in portable products, and  
minimize switching losses by only switching as  
needed service the load.  
VIN  
IIN  
ID  
IOUT  
SW  
VOUT  
+
EXT  
Isw  
Ico  
PFM controllers transfer a discrete amount of en-  
ergy per cycle and regulate the output voltage by  
modulating switching frequency with the constant  
turn-on time. Switching frequency depends on load,  
input voltage, and inductor value, and it can range  
up to 100KHz. The SW on-resistance is typically 1.9  
to 2.2W to minimize switch losses.  
VEXT  
IIN  
IPK  
When the output voltage drops, the error compara-  
tor enables 100kHz oscillator that turns on the  
MOSFET around 7.5us and 2.5us off time. Turning  
on the MOSFET allows inductor current to ramp up,  
storing energy in a magnetic field. When MOSFET  
turns off that force inductor current through diode to  
the output capacitor and load. As the stored energy  
is depleted, the current ramp down until the diode  
turns off. At this point, inductor may ring due to re-  
sidual energy and stray capacitance. The output ca-  
pacitor stores charge when current flowing through  
the diode is high, and release it when current is low,  
thereby maintaining a steady voltage across the  
load.  
ISW  
Charge Co.  
ID  
IOUT  
TDIS  
Discharge Co.  
VSW  
t
Discontinuous Conduction Mode  
As the load increases, the output capacitor dis-  
charges faster and the error comparator initiates cy-  
cles sooner, increasing the switching frequency.  
The maximum duty cycle ensure adequate time for  
energy transfer to output during the second half  
each cycle. Depending on circuit, PFM controller  
can operate in either discontinuous mode or con-  
10  
AIC1642  
In the continuous mode, the switching fre-  
quency is  
VEXT  
1
(
VOUT + VD - VIN  
TON (VOUT + VD - VSW)  
VIN - VSW  
2 VOUT + VD - VSW  
VOUT + VD - VIN  
)
fSW =  
IIN  
IPK  
x
* [1+  
(
)]  
1
æ
ö
@
ç
÷
TON VOUT + VD - VSW  
è
ø
ISW  
where Vsw = switch drop and proportion to out-  
put current.  
ID  
IOUT  
Inductor Selection  
To operate as an efficient energy transfer ele-  
ment, the inductor must fulfill three require-  
ments. First, the inductance must be low  
enough for the inductor to store adequate en-  
ergy under the worst case condition of minimum  
input voltage and switch ON time. Second, the  
inductance must also be high enough so maxi-  
mum current rating of AIC1642 and inductor are  
not exceed at the other worst case condition of  
maximum input voltage and ON time. Lastly, the  
inductor must have sufficiently low DC resis-  
tance so excessive power is not lost as heat in  
the windings. But unfortunately this is inversely  
related to physical size.  
VSW  
t
Continuous Conduction Mode  
Continuous Conduction Mode  
At the boundary between continuous and dis-  
continuous mode, output current (I ) is deter-  
OB  
mined by  
Minimum and maximum input voltage, output  
voltage and output current must be established  
in advance and then inductor can be selected.  
VIN  
1
2
IOB =  
*
*
VIN * TON * (1- x)  
æ
ö
÷
ø
ç
VOUT  
L
è
In discontinuous mode operation, at the end of  
the switch ON time, peak current and energy in  
the inductor build according to  
where Vd is the diode drop,  
TON  
x = (RON + RS) *  
L
VIN  
RON + Rs  
æ
ö æ  
ö
÷
IPK =  
* 1- exp(-  
* TON)  
ç
÷ ç  
R
= Switch turn on resistance, R = Inductor  
ON S  
RON + Rs  
L
è
ø è  
ø
DC resistance  
VIN  
x
æ
ö
æ
ö
÷
T
= Switch ON time  
@
*
(
TON  
)
* 1-  
ç
÷
ø
ç
ON  
L
2
è
è
ø
In the discontinuous mode, the switching fre-  
quency (Fsw) is  
@
VIN TON  
(simple loss equation),  
L
2 * (L) * (VOUT + VD - VIN) * (IOUT)  
Fsw =  
(1+ x)  
2
2
TON  
VIN ´ TON  
where x = (RON + RS) *  
L
11  
AIC1642  
1
VOUT+VD- VSW x  
VIN- VSW  
x
æ
ö
æ
ö
æ
ö
÷
ø
E = L ´ Ipk2  
IPK=  
-
*IOUT+  
*TON * 1-  
ç
è
÷
ç
è
÷
ç
L
VIN- VSW  
2
2L  
2
ø
ø
è
2
Power required from the inductor per cycle must  
be equal or greater than  
Valley current (Iv) is  
1
VOUT+VD- VSW x  
VIN- VSW  
x
æ
ö
æ
ö
æ
ö
÷
ø
PL/fSW = (VOUT + VD - VIN) * (IOUT) * (  
)
IV =  
-
*IOUT-  
*TON* 1-  
ç
è
÷
ç
è
÷
ç
fsw  
VIN- VSW  
2
2L  
2
ø
ø
è
In order for the converter to regulate the output.  
When loading is over IOB, PFM controller oper-  
ates in continuous mode. Inductor peak current  
can be derived from  
Table 1 Indicates resistance and height for each coil.  
Inductance  
Rated Current  
Height  
(mm)  
Power Inductor Type  
Resistance ( W )  
( mH )  
(A)  
0.7  
0.5  
0.3  
2.7  
1.8  
0.7  
0.5  
0.7  
0.5  
1.2  
22  
0.10  
0.18  
0.38  
0.08  
0.14  
0.25  
0.50  
0.25  
0.50  
0.11  
DS1608  
DO3316  
2.9  
47  
100  
22  
Coilcraft SMT Type  
(www.coilcraft.com)  
5.2  
4.5  
47  
47  
Sumida SMT Type CD54  
100  
47  
Hold SMT Type PM54  
Hold SMT Type PM75  
4.5  
5.0  
100  
33  
Capacitor Selection  
Most of the input supply is supplied by the input  
bypass capacitor, the capacitor voltage rating  
should be at least 1.25 times greater than a  
maximum input voltage.  
A poor choice for an output capacitor can result in  
poor efficiency and high output ripple. Ordinary  
aluminum electrolytic, while inexpensive may  
have unacceptably poor ESR and ESL. There are  
low ESR aluminum capacitors for switch mode  
DC-DC converters which work much well than  
general unit. Tantalum capacitors provide still bet-  
ter performance at more expensive. OS-CON ca-  
pacitors have extremely low ESR in a small size.  
If capacitance is reduced, output ripple will in-  
crease.  
Diode Selection  
Speed, forward drop, and leakage current are the  
three main considerations in selecting a rectifier  
diode. Best performance is obtained with Schot-  
tky rectifier diode such 1N5819. Motorola makes  
MBR0530 in surface mount. For lower output  
power a 1N4148 can be used although efficiency  
and start-up voltage will suffer substantially.  
12  
AIC1642  
V = Diode drop.  
D
Component Power Dissipation  
The power dissipated in a switch loss is  
Operating in discontinuous mode, power loss in  
the winding resistance of inductor can be ap-  
proximate equal to  
2 TON  
VOUT + VD - VIN  
æ
ö
÷
ø
æ
ö
÷
ø
PDSW =  
*
(
RON  
)
*
*
(
POUT  
)
ç
ç
è
3
L
VOUT  
è
The power dissipated in rectifier diode is  
2 TON  
VOUT + VF  
æ
ö
÷
æ
ö
÷
ø
PDL  
=
*
(
RD  
)
*
*
(
POUT  
)
ç
ç
è
3
L
VOUT  
è
ø
VD  
æ
ö
÷
PDd =  
*
(
POUT  
)
ç
VOUT  
è
ø
where P =V  
OUT  
* I  
; R =Inductor DC R;  
OUT S  
OUT  
PHYSICAL DIMENSIONS  
l
SOT-89 (unit: mm)  
A
D
SYMBOL  
MIN  
1.40  
0.36  
0.35  
4.40  
1.62  
2.29  
MAX  
1.60  
0.48  
0.44  
4.60  
1.83  
2.60  
D1  
A
B
C
C
D
H
E
D1  
E
L
e
1.50 (TYP.)  
3.00 (TYP.)  
B
e
e1  
H
e1  
3.94  
0.89  
4.25  
1.20  
L
l
SOT-89 MARKING  
Part No.  
Marking  
AM27  
AM30  
AM33  
AM50  
AIC1642-27  
AIC1642-30  
AIC1642-33  
AIC1642-50  
13  
AIC1642  
l TO-92 (unit: mm)  
SYMBOL  
MIN  
4.32  
MAX  
5.33  
E
L
A
A
C
C
0.38 (TYP.)  
e1  
D
4.40  
3.17  
5.20  
4.20  
D
E
e1  
1.27 (TYP.)  
14  

AIC164227XBG 相关器件

型号 制造商 描述 价格 文档
AIC164227XTB AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164227XTR AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164227ZBG AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164227ZTB AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164227ZTR AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164230XBG AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164230XTB AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164230XTR AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164230ZBG AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格
AIC164230ZTB AIC 3-Pin One-Cell Step-Up DC/DC Converter 获取价格

AIC164227XBG 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6