AK4611 [AKM]

4/8-Channel Audio CODEC; 4/8声道音频编解码器
AK4611
型号: AK4611
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

4/8-Channel Audio CODEC
4/8声道音频编解码器

解码器 编解码器
文件: 总68页 (文件大小:986K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4611]  
AK4611  
4/8-Channel Audio CODEC  
GENERAL DESCRIPTION  
The AK4611 is a single chip audio CODEC that includes four ADC channels and eight DAC channels.  
The converters are designed with Enhanced Dual Bit architecture for the ADC’s, and Advanced Multi-Bit  
architecture for the DAC, enabling very low noise performance. Fabricated on a low power process, the  
AK4611 operates off of a +3.3V analog supply and a +1.8V digital supply. The AK4611 supports both  
single-ended and differential inputs and outputs. A wide range of applications can be realized, including  
home theater, pro audio and car audio. The AK4611 is available in an 80-pin LQFP package.  
FEATURES  
1. 4channel 24bit ADC  
- 128x Oversampling  
- Linear Phase Digital Anti-Alias Filter  
- Analog Anti-Alias Filter for Single-Ended Input and Differential Input  
- ADC S/(N+D)  
92dB: Single-Ended Input  
97dB: Differential Input  
- ADC DR, S/N  
103dB: Single-Ended Input  
104dB: Differential Input  
- Digital HPF for offset cancellation  
- I/F format: MSB justified, I2S or TDM  
- Overflow flag  
2. 8channel 24bit DAC  
- 128x Oversampling  
- Linear Phase 24bit 8 times Digital Filter  
- Analog Smoothing Filter for Single-Ended Output  
- DAC S/(N+D)  
94dB: Single-Ended Output  
100dB: Differential Output  
- DAC DR, S/N  
105dB: Single-Ended Output  
108dB: Differential Output  
- Individual channel digital volume with 256 levels and 0.5dB steps  
- Soft mute  
- De-emphasis for 32kHz, 44.1kHz and 48kHz  
- Zero Detect Function  
- I/F format: MSB justified, LSB justified (16bit, 20bit, 24bit), I2S or TDM  
3. Sampling Frequency  
- Normal Speed Mode: 32kHz to 48kHz  
- Double Speed Mode: 64kHz to 96kHz  
- Quad Speed Mode: 128kHz to 192kHz  
4. Master / Slave mode  
MS1050-E-02  
2010/06  
- 1 -  
[AK4611]  
5. Master clock  
- Slave mode: 256fs, 384fs or 512fs (Normal Speed Mode: fs=32kHz 48kHz)  
256fs  
128fs  
(Double Speed Mode: fs=64kHz 96kHz)  
(Quad Speed Mode: fs=128kHz 192kHz)  
(Normal Speed Mode: fs=32kHz 48kHz)  
(Double Speed Mode: fs=64kHz 96kHz)  
(Quad Speed Mode: fs=128kHz 192kHz)  
- Master mode: 256fs or 512fs  
256fs  
128fs  
6. 4-wire Serial and I2C Bus µP I/F for mode setting  
7. Power Supply  
- Analog Power Supply: AVDD1, AVDD2 = 3.0 3.6V  
- Digital Power Supply: DVDD = 1.6 2.0V  
- I/O Buffer Power Supply: TVDD1, TVDD2 = 1.6 3.6V  
8. Power Supply Current : 81 mA (fs=48kHz)  
9. Ta = -20 ~ 85ºC (AK4611EQ), - 40 105ºC (AK4611VQ)  
10. Package: 80pin LQFP (0.5mm pitch)  
MS1050-E-02  
2010/06  
- 2 -  
[AK4611]  
Block Diagram  
M/S  
LIN1+ / LIN1  
LIN1-  
ADC1  
ADC1  
ADC2  
ADC2  
HPF1  
HPF1  
HPF2  
HPF2  
PDN  
DVMPD  
RIN1+ / RIN1  
RIN1-  
XTI / MCKI  
LIN2+ / LIN2  
LIN2-  
X’tal  
Oscillation  
RIN2+ / RIN2  
RIN2-  
Audio  
I/F  
XTO  
MCKO  
Divider  
MCLK  
LRCK  
BICK  
LRCK  
BICK  
LOUT1+ / LOUT1  
LOUT1-  
DATT1  
DEM1  
SCF1  
SCF1  
SCF2  
DAC1  
DAC1  
DAC2  
TST1  
TST2  
TST3  
TST4  
TST5  
SDTO1  
ROUT1+ / ROUT1  
ROUT1-  
DATT1  
DEM1  
LOUT2+ / LOUT2  
LOUT2-  
DATT2  
DEM2  
SDOUT1  
SDOUT2  
SDTO2  
TST6  
ROUT2+ / ROUT2  
ROUT2-  
DATT2  
DEM2  
SCF2  
SCF3  
SCF3  
SCF4  
DAC2  
DAC3  
DAC3  
LOUT3+ / LOUT3  
LOUT3-  
DATT3  
DEM3  
OVF1 / DZF1  
OVF2 / DZF2  
VCOM  
ROUT3+ / ROUT3  
ROUT3-  
DATT3  
DEM3  
SDTI1  
SDTI2  
SDTI3  
SDIN1  
SDIN2  
SDIN3  
SDIN4  
LOUT4+ / LOUT4  
LOUT4-  
DATT4  
DEM4  
DAC4  
DAC4  
ROUT4+ / ROUT4  
ROUT4-  
DATT4  
DEM4  
SDTI4  
TST7  
SCF4  
TST8  
CAD0  
CAD1  
uP I/F  
I2C  
CSN  
CCLK / SCL  
CDTI / SDA  
CDTO  
VREFH1  
VREFH2  
AVDD1 VSS1 AVDD2 VSS2 DVDD  
VSS3 TVDD1 VSS4 TVDD2  
Figure 1. Block Diagram  
MS1050-E-02  
2010/06  
- 3 -  
[AK4611]  
Ordering Guide  
AK4611EQ  
-20 +85°C  
-40 +105°C  
Evaluation Board for AK4611  
80pin LQFP (0.5mm pitch)  
80pin LQFP (0.5mm pitch)  
AK4611VQ  
AKD4611  
Pin Layout  
TST15  
TST16  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
LOUT2+ / LOUT2  
ROUT1-  
ROUT1+ / ROUT1  
LOUT1-  
LOUT1+ / LOUT1  
DVMPD  
TST8  
OVF1 / DZF1  
OVF2 / DZF2  
LIN1+ / LIN1  
LIN1-  
RIN1+ / RIN1  
RIN1-  
TST7  
LIN2+ / LIN2  
LIN2-  
SDTI4  
SDTI3  
80 pin LQFP  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RIN2+ / RIN2  
RIN2-  
SDTI2  
SDTI1  
(TOP VIEW)  
TST17  
BICK  
TST18  
LRCK  
VSS1  
TST6  
AVDD1  
SDTO2  
SDTO1  
VSS4  
VREFH1  
VCOM  
TST19  
TVDD1  
XTI / MCKI  
TST20  
Figure 2. Pin Layout  
MS1050-E-02  
2010/06  
- 4 -  
[AK4611]  
Compatibility with AK4628  
1. Functions  
Function  
AK4628  
AK4611  
Number of ADC channel  
Number of DAC channel  
Input  
Output  
I/F Format  
2-channel  
8-channel  
Single  
Single  
I2S, LJ, RJ(20/24bit), TDM  
No  
No  
4-channel  
8-channel  
Single or Diff  
Single or Diff  
I2S, LJ, RJ(16/20/24bit), TDM  
Fs=48kHz  
Yes  
TDM512  
XTAL OSC  
Parallel / Serial Select Pin  
Control Data Output Pin  
Ta  
Yes  
No  
-40 +85°C  
44pinLQFP  
No  
Yes  
-40 +105°C  
80pinLQFP  
Package  
2. Power Supply  
Voltage Name  
AVDD  
AVDD1  
AVDD2  
DVDD  
TVDD  
TVDD1  
TVDD2  
AK4628  
AK4611  
No  
3.0 3.6V  
3.0 3.6V  
1.6 2.0V  
No  
4.5 5.5V  
No  
No  
4.5 5.5V  
2.7 5.5V  
No  
1.6 3.6V  
1.6 3.6V  
No  
3. Specification  
Parameter  
AK4628  
AK4611  
Fs (AD/DA)  
THD+N (AD/DA)  
96k / 192k  
192k / 192k  
Single: 92 / 94  
Differential : 97 / 100  
Single: 103 / 105  
Differential: 104 / 108  
256 level  
Single: 92 / 90  
Differential : - / -  
Single: 102 / 106  
Differential : - / -  
128 level  
S/N (AD/DA)  
Output DATT  
µP I/F  
100k I2C, 3wire  
400k I2C, 4wire  
MS1050-E-02  
2010/06  
- 5 -  
[AK4611]  
PIN/FUNCTION  
No. Pin Name  
I/O  
I
Function  
Test Pin  
This pin must be connected to VSS4.  
Test Pin  
This pin must be connected to TVDD2.  
Test Pin  
This pin must be connected to VSS4.  
Test Pin  
1
2
3
4
TST1  
TST3  
TST4  
TST5  
I
I
I
This pin must be connected to VSS4.  
5
6
CAD0  
CAD1  
I
I
Chip Address 0 Pin  
Chip Address 1 Pin  
µP I/F Mode Select Pin  
7
I2C  
I
“L”: 4-wire Serial, “H”: I2C Bus  
Control Data Clock Pin in serial control mode  
I2C = “L”: CCLK (4-wire Serial)  
Control Data Clock Pin in serial control mode  
I2C = “H”: SCL (I2C Bus)  
CCLK  
SCL  
I
I
8
Chip Select Pin in 4-wire serial control mode  
This pin must be connected to TVDD2 at I2C bus control mode  
Control Data Input Pin in serial control mode  
I2C = “L”: CDTI (4-wire Serial)  
Control Data Input Pin in serial control mode  
I2C = “H”: SDA (I2C Bus)  
9
CSN  
CDTI  
SDA  
I
I
10  
I/O  
11 CDTO  
12 TVDD2  
13 VSS3  
O
-
Control Data Output Pin in 4-wire serial control mode  
Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V  
Ground Pin, 0V  
14 DVDD  
-
-
Digital Power Supply Pin, 1.6V2.0V  
No Connection.  
No internal bonding. This pin must be connected to the ground.  
15 NC  
Test Pin  
16 TST2  
I
This pin must be connected to VSS4.  
Master Mode Select Pin  
17 M/S  
I
“L”: Slave Mode “H”: Master Mode  
18 MCKO  
O
Master Clock Output Pin  
Power-Down & Reset Pin  
19 PDN  
20 XTO  
I
When “L”, the AK4611 is powered-down and the control registers are reset to default  
state. If the state of CAD1-0 changes, then the AK4611 must be reset by PDN.  
X’tal Output Pin  
X’tal Input Pin  
O
I
I
XTI  
21  
MCKI  
External Master Clock Input Pin  
22 TVDD1  
23 VSS4  
-
-
Input / Output Buffer Power Supply 1 Pin, 1.6V3.6V  
Digital Ground Pin, 0V  
24 SDTO1  
25 SDTO2  
O
O
Audio Serial Data Output 1 Pin  
Audio Serial Data Output 2 Pin  
Test Pin  
26 TST6  
O
This pin must be open.  
27 LRCK  
28 BICK  
29 SDTI1  
30 SDTI2  
31 SDTI3  
32 SDTI4  
I/O Input /Output Channel Clock Pin  
I/O Audio Serial Data Clock Pin  
I
I
I
I
Audio Serial Data Input 1 Pin  
Audio Serial Data Input 2 Pin  
Audio Serial Data Input 3 Pin  
Audio Serial Data Input 4 Pin  
Test Pin  
33 TST7  
I
This pin must be connected to VSS4.  
MS1050-E-02  
2010/06  
- 6 -  
[AK4611]  
No. Pin Name  
34 TST8  
I/O  
I
Function  
Test Pin  
This pin must be connected to VSS4.  
DAC output VCOM voltage power down pin  
35 DVMPD  
I
“L”: DAC outputs are VCOM voltage “H”: DAC outputs are Hi-Z.  
Lch Analog Positive Output 1 Pin (DOE1 bit = “H”)  
Lch Analog Output 1 Pin (DOE1 bit = “L”)  
Lch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.)  
Rch Analog Positive Output 1 Pin (DOE1 bit = “H”)  
Rch Analog Output 1 Pin (DOE1 bit = “L”)  
Rch Analog Negative Output 1 Pin (When DOE1 bit = “L”, this pin must be open.)  
Lch Analog Positive Output 2 Pin (DOE2 bit = “H”)  
Lch Analog Output 2 Pin (DOE2 bit = “L”)  
Lch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.)  
Rch Analog Positive Output 2 Pin (DOE2 bit = “H”)  
Rch Analog Output 2 Pin (DOE2 bit = “L”)  
Rch Analog Negative Output 2 Pin (When DOE2 bit = “L”, this pin must be open.)  
Lch Analog Positive Output 3 Pin (DOE3 bit = “H”)  
Lch Analog Output 3 Pin (DOE3 bit = “L”)  
Lch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.)  
Rch Analog Positive Output 3 Pin (DOE3 bit = “H”)  
Rch Analog Output 3 Pin (DOE3 bit = “L”)  
Rch Analog Negative Output 3 Pin (When DOE3 bit = “L”, this pin must be open.)  
Ground Pin, 0V  
LOUT1+  
36  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
LOUT1  
37 LOUT1-  
ROUT1+  
ROUT1  
38  
39 ROUT1-  
LOUT2+  
LOUT2  
40  
41 LOUT2-  
ROUT2+  
ROUT2  
42  
43 ROUT2-  
LOUT3+  
LOUT3  
44  
45 LOUT3-  
ROUT3+  
ROUT3  
46  
47 ROUT3-  
48 VSS2  
49 AVDD2  
50 VREFH2  
-
I
Analog Power Supply Pin, 3.0V3.6V  
Positive Voltage Reference Input Pin, AVDD2  
LOUT4+  
LOUT4  
52 LOUT4-  
ROUT4+  
ROUT4  
54 ROUT4-  
O
O
O
O
O
O
Lch Analog Positive Output 4 Pin (DOE4 bit = “H”)  
Lch Analog Output 4 Pin (DOE4 bit = “L”)  
Lch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.)  
Rch Analog Positive Output 4 Pin (DOE4 bit = “H”)  
Rch Analog Output 4 Pin (DOE4 bit = “L”)  
Rch Analog Negative Output 4 Pin (When DOE4 bit = “L”, this pin must be open.)  
51  
53  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
55 TST9  
O
O
O
O
O
O
O
O
O
56 TST10  
57 TST11  
58 TST12  
59 TST13  
60 TST14  
61 TST15  
62 TST16  
OVF1  
Analog Input Overflow Detect 1 Pin (Note 1)  
This pin goes to “H” if the analog input of Lch or Rch overflows.  
63  
Zero Input Detect 1 Pin  
(Note 2)  
DZF1  
O
When the input data of the group 1 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”.  
MS1050-E-02  
2010/06  
- 7 -  
[AK4611]  
No. Pin Name  
OVF2  
I/O  
O
Function  
Analog Input Overflow Detect 2 Pin (Note 1)  
This pin goes to “H” if the analog input of Lch or Rch overflows.  
Zero Input Detect 2 Pin (Note 2)  
64  
DZF2  
O
When the input data of the group 2 follow total 8192 LRCK cycles with “0” input data,  
this pin goes to “H”. And when RSTN bit is “0”, PMDAC bit is “0”, this pin goes to “H”.  
LIN1+  
65  
I
I
Lch Analog Positive Input 1 Pin (DIE1 bit = “H”)  
Lch Analog Input 1 Pin (DIE1 bit = “L”)  
LIN1  
Lch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.)  
(Note 3)  
66 LIN1-  
-
RIN1+  
67  
I
I
Rch Analog Positive Input 1 Pin (DIE1 bit = “H”)  
Rch Analog Input 1 Pin (DIE1 bit = “L”)  
RIN1  
Rch Analog Negative Input 1 Pin (When DIE1 bit = “L”, this pin must be open.)  
(Note 3)  
68 RIN1-  
-
LIN2+  
69  
I
I
Lch Analog Positive Input 2 Pin (DIE2 bit = “H”)  
Lch Analog Input 2 Pin (DIE2 bit = “L”)  
LIN2  
Lch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.)  
(Note 3)  
70 LIN2-  
-
RIN2+  
71  
I
I
Rch Analog Positive Input 2 Pin (DIE2 bit = “H”)  
Rch Analog Input 2 Pin (DIE2 bit = “L”)  
RIN2  
Rch Analog Negative Input 2 Pin (When DIE2 bit = “L”, this pin must be open.)  
(Note 3)  
Test Pin  
This pin must be open.  
Test Pin  
This pin must be open.  
Ground Pin, 0V  
Analog Power Supply Pin, 3.0V3.6V  
Positive Voltage Reference Input Pin, AVDD1  
Common Voltage Output Pin, AVDD1x1/2  
Large external capacitor around 2.2µF is used to reduce power-supply noise.  
Test Pin  
72 RIN2-  
73 TST17  
74 TST18  
-
I
I
75 VSS1  
76 AVDD1  
77 VREFH1  
-
-
I
78 VCOM  
79 TST19  
80 TST20  
O
I
This pin must be open.  
Test Pin  
This pin must be open.  
I
Note 1. This pin becomes OVF pin when OVFE bit is set to “1”.  
Note 2. This pin becomes DZF pin when OVFE bit is set to “0”.  
Note 3. This pin becomes analog negative input pin in differential input mode, and becomes output pin invert the positive  
input pin in single-end input mode. This pin must be open in single-end input mode.  
Note 4. All digital input pins except for pull-down must not be left floating.  
MS1050-E-02  
2010/06  
- 8 -  
 
[AK4611]  
ABSOLUTE MAXIMUM RATINGS  
(VSS1=VSS2=VSS3=VSS4=0V; Note 5)  
Parameter  
Power Supplies  
Symbol  
AVDD1,2  
DVDD  
TVDD1,2  
IIN  
min  
max  
4.2  
2.2  
4.2  
±10  
Units  
V
V
V
mA  
V
Analog  
Digital  
Output buffer  
-0.3  
-0.3  
-0.3  
-
Input Current (any pins except for supplies)  
Analog Input Voltage  
VINA  
-0.3  
AVDD1,2+0.3  
Digital Input Voltage  
(TST2,M/S,PDN,XTI/MCKI,LRCK,BICK,  
SDTI1,SDTI2,SDTI3,SDTI4,TST7,TST8,  
DVMPD pins)  
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,  
CCLK/SCL,CSN,CDTI/SDA pins)  
VIND1  
VIND2  
-0.3  
-0.3  
TVDD1+0.3  
TVDD2+0.3  
V
V
AK4611EQ  
AK4611VQ  
Ta  
Ta  
-20  
-40  
-65  
85  
105  
150  
°C  
°C  
°C  
Ambient Temperature (power applied)  
Storage Temperature  
Tstg  
Note 5. All voltages with respect to ground. VSS1, VSS2, VSS3 and VSS4 must be connected to the same analog ground  
plane. AVDD1 and AVDD2 must be the same voltage.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(VSS1=VSS2=VSS3=VSS4=0V; Note 5)  
Parameter  
Power Supplies Analog  
Symbol  
AVDD1,2  
DVDD  
min  
3.0  
1.6  
typ  
3.3  
1.8  
3.3  
max  
Units  
3.6  
2.0  
3.6  
V
V
V
(Note 6)  
Digital  
I/O buffer 1  
TVDD1  
DVDD  
(Stereo Mode & Normal Speed Mode)  
I/O buffer 1  
TVDD1  
3.0  
3.3  
3.6  
V
(Except Stereo Mode & Normal Speed Mode)  
I/O buffer 2  
TVDD2  
DVDD  
3.3  
3.6  
V
Note 6. The power up sequence between AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 is not critical. Each power  
supplies should be powered up during the PDN pin = “L”. The PDN pin should be “H” after all power supplies are  
powered up. All power supplies should be powered on, only a part of these power supplies cannot be powered off.  
(Power off means power supplies equal to ground or power supplies are floating.) Do not turn off only the  
AK4611 under the condition that a surrounding device is powered on and the I2C bus is in use.  
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS1050-E-02  
2010/06  
- 9 -  
 
[AK4611]  
ANALOG CHARACTERISTICS  
(Ta=25°C; AVDD1=AVDD2=TVDD1=TVDD2=3.3V, DVDD =1.8V; VSS1=VSS2=0V; VREFH1=AVDD1,  
VREFH2=AVDD2; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement  
Frequency=20Hz20kHz at 48kHz, 20Hz~40kHz at fs=96kHz, 20Hz~40kHz at fs=192kHz; unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
ADC Analog Input Characteristics (single inputs)  
Resolution  
S/(N+D)  
24  
Bits  
dB  
fs=48kHz  
BW=20kHz  
fs=96kHz  
BW=40kHz  
fs=192kHz  
BW=40kHz  
-1dBFS  
-60dBFS  
-1dBFS  
-60dBFS  
-1dBFS  
-60dBFS  
84  
83  
92  
40  
91  
37  
91  
dB  
37  
DR  
S/N  
(-60dBFS with A-weighted)  
(A-weighted)  
95  
95  
90  
103  
103  
110  
0.1  
40  
dB  
dB  
dB  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
Input Voltage  
Input Resistance  
0.5  
-
2.37  
dB  
ppm/°C  
Vpp  
kΩ  
AIN=0.65xVREFH1  
1.94  
7
2.15  
9
Power Supply Rejection  
(Note 7)  
50  
dB  
ADC Analog Input Characteristics (differential inputs)  
S/(N+D)  
fs=48kHz  
BW=20kHz  
-1dBFS  
-60dBFS  
-1dBFS  
-60dBFS  
-1dBFS  
-60dBFS  
88  
86  
97  
40  
94  
37  
94  
dB  
dB  
fs=96kHz  
BW=40kHz  
fs=192kHz  
BW=40kHz  
37  
DR  
S/N  
(-60dBFS with A-weighted)  
(A-weighted)  
96  
96  
90  
104  
104  
110  
0.1  
40  
dB  
dB  
dB  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
Input Voltage  
Input Resistance  
0.5  
-
±2.37  
dB  
ppm/°C  
Vpp  
kΩ  
AIN=0.65xVREFH1  
(Note 8)  
±1.94  
11  
±2.15  
13  
Power Supply Rejection  
(Note 7)  
(Note 9)  
50  
dB  
dB  
Common Mode Rejection Ratio (CMRR)  
DAC Analog Output Characteristics (single outputs)  
Resolution  
74  
24  
Bits  
dB  
S/(N+D)  
fs=48kHz  
BW=20kHz  
fs=96kHz  
0dBFS  
-60dBFS  
0dBFS  
84  
86  
94  
44  
92  
BW=40kHz  
fs=192kHz  
BW=40kHz  
-60dBFS  
0dBFS  
-60dBFS  
41  
92  
41  
DR  
S/N  
(-60dBFS with A-weighted)  
(A-weighted)  
97  
97  
90  
105  
105  
110  
0.1  
20  
dB  
dB  
dB  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
Output Voltage  
Load Resistance  
0.5  
-
2.29  
dB  
ppm/°C  
Vpp  
kΩ  
pF  
dB  
AOUT=0.63xVREFH2  
1.87  
5
2.08  
(AC Load)  
(Note 7)  
Load Capacitance  
Power Supply Rejection  
30  
50  
MS1050-E-02  
2010/06  
- 10 -  
[AK4611]  
DAC Analog Output Characteristics (differential outputs)  
S/(N+D)  
fs=48kHz  
BW=20kHz  
0dBFS  
-60dBFS  
0dBFS  
90  
88  
100  
45  
98  
dB  
fs=96kHz  
BW=40kHz  
-60dBFS  
0dBFS  
-60dBFS  
42  
98  
42  
fs=192kHz  
BW=40kHz  
DR  
S/N  
(-60dBFS with A-weighted)  
(A-weighted)  
100  
100  
90  
108  
108  
110  
0
dB  
dB  
dB  
dB  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
0.5  
-
20  
ppm/°C  
Output Voltage  
Load Resistance  
Load Capacitance  
Power Supply Rejection  
AOUT=0.63xVREFH2 (Note 8)  
(Note 10)  
±1.87  
2
±2.08  
±2.29  
Vpp  
kΩ  
pF  
dB  
30  
(Note 7)  
50  
Note 7. PSR is applied to AVDD1, AVDD2, DVDD, TVDD1 and TVDD2 with 1kHz, 50mVpp. VREFH1 and VREFH2  
pins are held a constant voltage +3.3V.  
Note 8. This value is (LIN+) – (LIN-) and (RIN+) – (RIN-). The voltage is proportional to VREFH1, VREFH2 voltage.  
Note 9. VREFH1 and VREFH2 are held +3.3V, the input bias voltage is set to AVDD1, 2 x 0.5. The 1kHz, 0.96Vpp  
signal is applied to LIN- and LIN+ with same phase (e.g. shorted) or RIN- and RIN+. The CMRR is measured as  
the attenuation level from 0dB = -7dBFS (since the normal 0.96Vpp = -7dBFS). This value is guaranteed but not  
tested.  
Note 10. For AC-load. In the case of DC-load is 5k.  
Note 11. This value is Load Capacitance for output pin to GND. In differential mode, this value should be estimated to be  
twice, because Load Capacitance exists to GND and between the differential pin.  
Parameter  
min  
typ  
max  
Units  
Power Supplies  
Power Supply Current  
Normal Operation (PDN pin = “H”)  
AVDD1+AVDD2  
DVDD  
fs=48kHz, 96kHz, 192kHz  
63.0  
12.0  
17.0  
28.0  
6.0  
125.0  
24.0  
35.0  
55.0  
8.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
fs=48kHz  
fs=96kHz  
fs=192kHz  
fs=48kHz  
fs=96kHz  
fs=192kHz  
TVDD1+TVDD2  
7.0  
7.0  
9.5  
9.5  
Power-down mode  
(PDN pin = “L”, DVMPD = “L”)  
AVDD1+AVDD2+DVDD+TVDD1+TVDD2  
(PDN pin = “L”, DVMPD = “H”)  
(Note 12)  
(Note 12)  
200  
10  
550  
200  
µA  
µA  
AVDD1+AVDD2+DVDD+TVDD1+TVDD2  
Note 12. In the power-down mode, all digital input pins including clock pins are held VSS3 (TST1, TST3, TST4, TST5,  
CAD0, CAD1, I2C, CSN, CCLK, CDTI pins), VSS4 (TST2, M/S, MCKI, LRCK, BICK, SDTI1, SDTI2, SDTI3,  
SDTI4,TST7, TST8).  
MS1050-E-02  
2010/06  
- 11 -  
 
[AK4611]  
FILTER CHARACTERISTICS (fs=48kHz)  
(Ta= Tmin Tmax; AVDD1=AVDD2=3.03.6V, DVDD=1.62.0V, TVDD1=TVDD2=1.63.6V; DEM=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 13) ±0.1dB  
0.2dB  
PB  
0
-
-
28  
-
68  
-
-
20.0  
23.0  
-
-
-
18.9  
-
-
-
kHz  
kHz  
kHz  
kHz  
dB  
dB  
μs  
3.0dB  
(Note 13)  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
SB  
PR  
SA  
ΔGD  
GD  
±0.1  
-
-
-
0
16  
(Note 14)  
-
1/fs  
ADC Digital Filter (HPF):  
Frequency Response (Note 13) 3dB  
0.1dB  
FR  
-
-
1.0  
6.5  
-
-
Hz  
Hz  
DAC Digital Filter (LPF):  
Passband  
(Note 13) ±0.06dB  
PB  
0
-
26.2  
-
54  
-
-
21.8  
-
-
kHz  
kHz  
kHz  
dB  
dB  
μs  
6.0dB  
(Note 13)  
24.0  
-
-
-
0
Stopband  
SB  
PR  
SA  
ΔGD  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
±0.06  
-
-
-
(Note 14)  
-
22  
1/fs  
DAC Digital Filter + Analog Filter:  
Frequency Response (Note 15) 20kHz  
FR  
-
-0.1  
-
dB  
FILTER CHARACTERISTICS (fs=96kHz)  
(Ta= Tmin Tmax; AVDD1=AVDD2=3.03.6V, DVDD=1.62.0V, TVDD1=TVDD2=1.63.6V; DEM=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 13) ±0.1dB  
0.2dB  
PB  
0
-
-
56  
-
68  
-
-
40.0  
46.0  
-
-
-
37.8  
-
-
-
kHz  
kHz  
kHz  
kHz  
dB  
dB  
μs  
3.0dB  
(Note 13)  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
SB  
PR  
SA  
ΔGD  
GD  
±0.1  
-
-
-
0
16  
(Note 14)  
-
1/fs  
ADC Digital Filter (HPF):  
Frequency Response (Note 13) 3dB  
0.1dB  
FR  
-
-
2.0  
13.0  
-
-
Hz  
Hz  
DAC Digital Filter (LPF):  
Passband  
(Note 13) ±0.06dB  
PB  
0
-
52.4  
-
54  
-
-
43.6  
-
-
kHz  
kHz  
kHz  
dB  
dB  
μs  
6.0dB  
(Note 13)  
48.0  
-
-
-
0
Stopband  
SB  
PR  
SA  
ΔGD  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
±0.06  
-
-
-
(Note 14)  
-
22  
1/fs  
DAC Digital Filter + Analog Filter:  
Frequency Response (Note 15) 40kHz  
FR  
-
-0.3  
-
dB  
MS1050-E-02  
2010/06  
- 12 -  
[AK4611]  
FILTER CHARACTERISTICS (fs=192kHz)  
(Ta= Tmin Tmax; AVDD1=AVDD2=3.03.6V, DVDD=1.62.0V, TVDD1=TVDD2=1.63.6V; DEM=OFF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 13) ±0.1dB  
0.2dB  
PB  
0
-
-
112  
-
70  
-
-
57.0  
90.3  
-
-
-
56.6  
-
-
-
kHz  
kHz  
kHz  
kHz  
dB  
dB  
μs  
3.0dB  
(Note 13)  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
SB  
PR  
SA  
ΔGD  
GD  
±0.1  
-
-
-
0
16  
(Note 14)  
-
1/fs  
ADC Digital Filter (HPF):  
Frequency Response (Note 13) 3dB  
0.1dB  
FR  
-
-
4.0  
26.0  
-
-
Hz  
Hz  
DAC Digital Filter (LPF):  
Passband  
(Note 13) ±0.06dB  
PB  
0
-
-
87.0  
-
-
kHz  
kHz  
kHz  
dB  
dB  
μs  
6.0dB  
(Note 13)  
96.0  
-
-
-
0
Stopband  
SB  
PR  
SA  
ΔGD  
GD  
104.9  
Passband Ripple  
Stopband Attenuation  
Group Delay Distortion  
Group Delay  
-
54  
-
±0.06  
-
-
-
(Note 14)  
-
22  
1/fs  
DAC Digital Filter + Analog Filter:  
Frequency Response (Note 15) 80kHz  
FR  
-
-1  
-
dB  
Note 13. The passband and stopband frequencies scale with fs (sampling frequency). For example, ADC: Passband  
(±0.1dB) = 0.39375 x fs (@ fs=48kHz), DAC: Passband (±0.06dB) = 0.45412 x fs.  
Note 14. The calculated delay time is resulting from digital filtering. For the ADC, this time is from the input of an analog  
signal to the setting of 24bit data for both channels to the ADC output register. For the DAC, this time is from  
setting the 24 bit data both channels at the input register to the output of an analog signal.  
Note 15. The reference frequency is 1kHz.  
MS1050-E-02  
2010/06  
- 13 -  
 
[AK4611]  
DC CHARACTERISTICS  
(Ta= Tmin Tmax; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=TVDD2=1.63.6V)  
Parameter  
Symbol  
min  
typ  
max  
Units  
TVDD1,TVDD2 2.2V  
High-Level Input Voltage  
(TST2, M/S, PDN, MCKI, LRCK, BICK,  
SDTI1, SDTI2, SDTI3, SDTI4,TST7, TST8,  
DVMPD pins)  
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,  
CSN,CCLK, CDTI pins)  
VIH  
VIH  
80%TVDD1  
80%TVDD2  
-
-
-
-
V
V
Low-Level Input Voltage  
(TST2, M/S, PDN, MCKI, LRCK, BICK,  
SDTI1, SDTI2, SDTI3, SDTI4,TST7, TST8,  
DVMPD pins)  
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,  
CSN,CCLK, CDTI pins)  
VIL  
VIL  
-
-
-
-
20%TVDD1  
20%TVDD2  
V
V
TVDD1,TVDD2 > 2.2V  
High-Level Input Voltage  
(TST2, M/S, PDN, MCKI, LRCK, BICK,  
SDTI1, SDTI2, SDTI3, SDTI4,TST7, TST8,  
DVMPD pins)  
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,  
CSN,CCLK, CDTI pins)  
VIH  
VIH  
70%TVDD1  
70%TVDD2  
-
-
-
-
V
V
Low-Level Input Voltage  
(TST2, M/S, PDN, MCKI, LRCK, BICK,  
SDTI1, SDTI2, SDTI3, SDTI4,TST7, TST8,  
DVMPD pins)  
(TST1,TST3,TST4,TST5,CAD0,CAD1,I2C,  
CSN,CCLK, CDTI pins)  
VIL  
VIL  
-
-
-
-
30%TVDD1  
30%TVDD2  
V
V
High-Level Output Voltage  
(SDTO1,SDTO2,TST6, LRCK, BICK,  
MCKO pins:  
(CDTO pin:  
(DZF1/OVF1, DZF2/OVF2 pins: Iout=-100µA)  
Low-Level Output Voltage  
Iout=-100µA)  
Iout=-100µA)  
VOH  
VOH  
TVDD1-0.5  
TVDD2-0.5  
AVDD2-0.5  
-
-
-
-
V
V
V
(SDTO1,SDTO2,TST6, LRCK, BICK,  
MCKO, CDTO, DZF1, DZF2/OVF pins:  
Iout= 100µA)  
VOL  
VOL  
VOL  
-
-
-
-
0.5  
0.4  
V
V
V
(SDA pin, 2.0VTVDD23.6V  
(SDA pin, 1.6VTVDD2<2.0V  
Input Leakage Current  
Iout= 3mA)  
Iout= 3mA)  
20%TVDD2  
Iin  
-
-
±10  
µA  
MS1050-E-02  
2010/06  
- 14 -  
[AK4611]  
SWITCHING CHARACTERISTICS  
(Ta= Tmin Tmax; AVDD1=AVDD2=3.03.6; DVDD=1.62.0V; TVDD1=1.63.6V, TVDD2=1.63.6V; CL=20pF;  
unless otherwise specified)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Master Clock Timing  
Crystal Resonator  
Frequency  
fXTAL  
11.2896  
24.576  
MHz  
MCKO Output  
Frequency (TVDD1 3.0V)  
Duty  
fMCK  
dMCK  
5.6448  
40  
24.576  
60  
MHz  
%
50  
External Clock  
256fsn:  
fCLK  
8.192  
32  
32  
12.288  
22  
22  
16.384  
16  
16  
12.288  
18.432  
24.576  
MHz  
ns  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
Pulse Width Low  
Pulse Width High  
384fsn:  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fCLK  
Pulse Width Low  
Pulse Width High  
512fsn, 256fsd, 128fsq:  
Pulse Width Low  
Pulse Width High  
MCKO Output  
tCLKL  
tCLKH  
Frequency  
fMCK  
fMCK  
dMCK  
4.096  
12.288  
40  
12.288  
24.576  
60  
MHz  
MHz  
%
(TVDD1 3.0V)  
Duty  
(Note 16)  
50  
LRCK Timing (Slave mode)  
Stereo mode  
(TDM0 bit = “0”, TDM1 bit = “0”)  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
fsn  
fsd  
fsq  
Duty  
32  
64  
128  
45  
48  
96  
192  
55  
kHz  
kHz  
kHz  
%
Duty Cycle  
TDM512 mode  
(Note 17)  
(TDM0 bit = “0”, TDM1 bit = “1”)  
LRCK frequency  
“H” time  
fsn  
tLRH  
tLRL  
32  
1/512fs  
1/512fs  
48  
96  
kHz  
ns  
ns  
“L” time  
TDM256 mode  
(TDM0 bit = “1”, TDM1 bit = “0”)  
LRCK frequency  
“H” time  
(Note 18)  
fsd  
tLRH  
tLRL  
64  
1/256fs  
1/256fs  
kHz  
ns  
ns  
“L” time  
TDM128 mode  
(TDM0 bit = “1”, TDM1 bit = “1”)  
LRCK frequency  
“H” time  
(Note 19)  
fsq  
tLRH  
tLRL  
128  
1/128fs  
1/128fs  
192  
kHz  
ns  
ns  
“L” time  
MS1050-E-02  
2010/06  
- 15 -  
[AK4611]  
Parameter  
Symbol  
min  
typ  
max  
Units  
LRCK Timing (Master Mode)  
Stereo mode  
(TDM0 bit = “0”, TDM1 bit = “0”)  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
fsn  
fsd  
fsq  
Duty  
32  
64  
128  
-
48  
96  
192  
-
kHz  
kHz  
kHz  
%
Duty Cycle  
50  
TDM512 mode  
(Note 17)  
(TDM0 bit = “0”, TDM1 bit = “1”)  
LRCK frequency  
fsn  
tLRH  
32  
64  
48  
96  
kHz  
ns  
“H” time  
(Note 20)  
1/16fs  
1/8fs  
1/4fs  
TDM256 mode  
(Note 18)  
(TDM0 bit = “1”, TDM1 bit = “0”)  
LRCK frequency  
fsd  
tLRH  
kHz  
ns  
“H” time  
(Note 20)  
TDM128 mode  
(Note 19)  
(TDM0 bit = “1”, TDM1 bit = “1”)  
LRCK frequency  
fsq  
tLRH  
128  
192  
kHz  
ns  
“H” time  
(Note 20)  
Note 16. Except the case of DIV bit = “0”.  
Note 17. Please use for Normal Speed mode. Master clock should be input the 512fs in Master mode.  
Note 18. Please use for Double Speed mode.  
Note 19. Please use for Quad Speed mode.  
Note 20. If the format is I2S, it is “L” time.  
MS1050-E-02  
2010/06  
- 16 -  
 
[AK4611]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Audio Interface Timing (Slave mode)  
Stereo mode (TDM0 bit = “0”, TDM1 bit = “0”)  
(TVDD1= 1.6V3.6V)  
BICK Period  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
tBSD  
tSDH  
tSDS  
324  
130  
130  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
(Note 21)  
(Note 21)  
20  
LRCK to SDTO(MSB) (Except I2S mode)  
BICK “” to SDTO  
80  
80  
SDTI Hold Time  
50  
50  
SDTI Setup Time  
(TVDD1= 3.0V3.6V)  
BICK Period  
BICK Pulse Width Low  
Pulse Width High  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
tBSD  
tSDH  
tSDS  
81  
33  
33  
23  
23  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
(Note 21)  
(Note 21)  
LRCK to SDTO(MSB) (Except I2S mode)  
BICK “” to SDTO  
23  
23  
SDTI Hold Time  
SDTI Setup Time  
10  
10  
TDM512 mode (TDM0 bit = “0”, TDM1 bit = “1”)  
(TVDD1= 3.0V3.6V)  
(Note 17)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICK Period  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSS  
tBSH  
tSDH  
tSDS  
40  
16  
16  
10  
10  
6
5
10  
10  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 21)  
(Note 21)  
SDTI Setup Time  
TDM256 mode (TDM0 bit = “1”, TDM1 bit = “0”)  
(TVDD1= 3.0V3.6V)  
(Note 18)  
BICK Period  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSS  
tBSH  
tSDH  
tSDS  
40  
16  
16  
10  
10  
6
5
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 21)  
(Note 21)  
SDTI Setup Time  
TDM128 mode (TDM0 bit = “1”, TDM1 bit = “1”)  
(TVDD1= 3.0V3.6V)  
(Note 19)  
BICK Period  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tBSS  
tBSH  
tSDH  
tSDS  
40  
16  
16  
10  
10  
6
5
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICK Pulse Width Low  
Pulse Width High  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 21)  
(Note 21)  
SDTI Setup Time  
MS1050-E-02  
2010/06  
- 17 -  
[AK4611]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Audio Interface Timing (Master mode)  
Stereo mode (TDM0 bit = “0”, TDM1 bit = “0”)  
(TVDD1= 1.6V3.6V)  
BICK Frequency  
BICK Duty  
BICK “” to LRCK  
BICK “” to SDTO  
SDTI Hold Time  
-
-
fBCK  
dBCK  
tMBLR  
tBSD  
tSDH  
tSDS  
64fs  
50  
-
-
-
-
-
40  
70  
-
Hz  
%
ns  
ns  
ns  
ns  
40  
70  
50  
50  
-
-
SDTI Setup Time  
(TVDD1= 3.0V3.6V)  
BICK Frequency  
BICK Duty  
BICK “” to LRCK  
BICK “” to SDTO  
SDTI Hold Time  
-
-
fBCK  
dBCK  
tMBLR  
tBSD  
tSDH  
tSDS  
64fs  
50  
-
-
-
-
-
23  
23  
-
Hz  
%
ns  
ns  
ns  
ns  
23  
23  
10  
10  
-
-
SDTI Setup Time  
TDM512 mode (TDM0 bit = “0”, TDM1 bit = “1”)  
(TVDD1= 3.0V3.6V)  
BICK Frequency  
BICK Duty  
BICK “” to LRCK  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 17)  
fBCK  
dBCK  
tMBLR  
tBSS  
tBSH  
tSDH  
tSDS  
-
-
512fs  
50  
-
-
10  
-
-
-
Hz  
%
-10  
6
5
10  
10  
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
SDTI Setup Time  
TDM256 mode (TDM0 bit = “1”, TDM1 bit = “0”)  
(TVDD1= 3.0V3.6V)  
BICK Frequency  
BICK Duty  
BICK “” to LRCK  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 18)  
-
-
fBCK  
dBCK  
tMBLR  
tBSS  
tBSH  
tSDH  
tSDS  
256fs  
50  
-
-
-
-
-
10  
-
-
-
Hz  
%
ns  
ns  
ns  
ns  
ns  
10  
6
5
10  
10  
-
-
-
SDTI Setup Time  
TDM128 mode (TDM0 bit = “1”, TDM1 bit = “1”)  
(TVDD1= 3.0V3.6V)  
BICK Frequency  
BICK Duty  
BICK “” to LRCK  
SDTO Setup time BICK “”  
SDTO Hold time BICK “”  
SDTI Hold Time  
(Note 19)  
-
-
fBCK  
dBCK  
tMBLR  
tBSS  
tBSH  
tSDH  
tSDS  
128fs  
50  
-
-
-
-
-
10  
-
-
-
Hz  
%
ns  
ns  
ns  
ns  
ns  
10  
6
5
10  
10  
-
-
-
SDTI Setup Time  
Note 21. BICK rising edge must not occur at the same time as LRCK edge.  
MS1050-E-02  
2010/06  
- 18 -  
 
[AK4611]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (4-wire Serial mode):  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
tCSH  
tDCD  
tCCZ  
200  
80  
80  
40  
40  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN “” to CCLK “”  
CCLK “” to CSN “”  
CDTO Delay  
50  
70  
CSN “” to CDTO Hi-Z  
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
400  
-
-
-
-
-
-
-
1.0  
0.3  
-
50  
400  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
Clock High Time  
Setup Time for Repeated Start Condition  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
SDA Hold Time from SCL Falling  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
(Note 22)  
tF  
tSU:STO  
tSP  
Cb  
0.6  
0
-
Pulse Width of Spike Noise Suppressed by Input Filter  
Capacitive load on bus  
pF  
Power-down & Reset Timing  
PDN Pulse Width  
PDN “” to SDTO valid  
(Note 23)  
(Note 24)  
tPD  
tPDV  
150  
ns  
1/fs  
518  
Note 22. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.  
Note 23. The AK4611 can be reset by setting the PDN pin to “L” upon power-up.  
Note 24. These cycles are the numbers of LRCK rising from the PDN pin rising.  
Note 25. I2C-bus is a trademark of NXP B.V.  
MS1050-E-02  
2010/06  
- 19 -  
 
[AK4611]  
Timing Diagram  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fsn, 1/fsd, 1/fsq  
VIH  
VIL  
LRCK  
tdLRKH  
tdLRKL  
Duty  
= tdLRKH (or tdLRKL) x fs x 100  
tBCK  
VIH  
VIL  
BICK  
tBCKH  
tBCKL  
Figure 3. Clock Timing (TDM1/0 bit = “00” & Slave mode)  
1/fCLK  
VIH  
VIL  
MCKI  
LRCK  
BICK  
tCLKH  
tCLKL  
1/fs  
VIH  
VIL  
tLRH  
tLRL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Figure 4. Clock Timing (Except TDM1/0 bit = “00” & Slave mode)  
MS1050-E-02  
2010/06  
- 20 -  
[AK4611]  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fMCK  
MCKO  
50%TVDD1  
tdMCKH  
tdMCKL  
dMCK  
= tdMCKH (or tdMCKL) x fMCK x 100  
1/fs  
LRCK  
50%TVDD1  
tdLRKH  
tdLRKL  
dLRK  
= tdLRKH (or tdLRKL) x fs x 100  
1/fBCK  
50%TVDD1  
BICK  
tdBCKH  
tdBCKL  
dBCK  
= tdBCKH (or tdBCKL) x fs x 100  
Figure 5. Clock Timing (TDM1/0 bit = “00” & Master mode)  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fMCK  
MCKO  
50%TVDD1  
tdMCKH  
tdMCKL  
dMCK  
= tdMCKH (or tdMCKL) x fMCK x 100  
1/fs  
LRCK  
50%TVDD1  
tLRH  
1/fBCK  
50%TVDD1  
BICK  
tdBCKH  
tdBCKL  
dBCK  
= tdBCKH (or tdBCKL) x fs x 100  
Figure 6. Clock Timing (Except TDM1/0 bit = “00” & Master mode)  
MS1050-E-02  
2010/06  
- 21 -  
[AK4611]  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRS  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD1  
tSDH  
tSDS  
VIH  
VIL  
SDTI  
Figure 7. Audio Interface Timing (TDM1/0 bit = “00” & Slave mode)  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRB  
VIH  
VIL  
tBSH  
tSDH  
tBSS  
SDTO  
50%TVDD1  
tSDS  
VIH  
VIL  
SDTI  
Figure 8. Audio Interface Timing (Except TDM1/0 bit = “00” & Slave mode)  
MS1050-E-02  
2010/06  
- 22 -  
[AK4611]  
LRCK  
BICK  
SDTO  
SDTI  
50%TVDD1  
50%TVDD1  
tMBLR  
tBSD  
50%TVDD1  
tSDS  
tSDH  
VIH  
VIL  
Figure 9. Audio Interface Timing (TDM1/0 bit = “00” & Master mode)  
LRCK  
BICK  
SDTO  
SDTI  
50%TVDD1  
tMBLR  
50%TVDD1  
50%TVDD1  
tBSS  
tSDS  
tBSH  
tSDH  
VIH  
VIL  
Figure 10. Audio Interface Timing (Except TDM1/0 bit = “00” & Master mode)  
MS1050-E-02  
2010/06  
- 23 -  
[AK4611]  
VIH  
CSN  
VIL  
tCSS  
tCCKL  
tCCKH  
tCSH  
VIH  
VIL  
CCLK  
tCDS  
tCDH  
VIH  
VIL  
CDTI  
C1  
C0  
R/W  
Hi-Z  
Figure 11. WRITE Command Input Timing (4-wire Serial mode)  
tCSW  
CDTO  
VIH  
VIL  
CSN  
tCSH  
tCSS  
VIH  
VIL  
CCLK  
VIH  
VIL  
CDTI  
D2  
D1  
D0  
Hi-Z  
Figure 12. WRITE Data Input Timing (4-wire Serial mode)  
CDTO  
MS1050-E-02  
2010/06  
- 24 -  
[AK4611]  
VIH  
VIL  
CSN  
VIH  
VIL  
CCLK  
CDTI  
CDTO  
VIH  
VIL  
A1  
A0  
tDCD  
Hi-Z  
D7  
D6  
50%TVDD2  
Figure 13. Read Data Output Timing1(4-wire Serial mode)  
tCSW  
VIH  
VIL  
CSN  
tCSS  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
CDTO  
VIH  
VIL  
tCCZ  
Hi-Z  
D2  
D1  
D0  
50%TVDD2  
Figure 14. Read Data Output Timing2(4-wire Serial mode)  
MS1050-E-02  
2010/06  
- 25 -  
[AK4611]  
VIH  
VIL  
SDA  
SCL  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
tHD:STA  
tHD:DAT  
tSU:DAT tSU:STA  
Start  
tSU:STO  
Stop  
Stop Start  
Figure 15. I2C Bus mode Timing  
tPD  
VIH  
VIL  
PDN  
tPDV  
SDTO  
50%TVDD1  
Figure 16. Power-down & Reset Timing  
MS1050-E-02  
2010/06  
- 26 -  
[AK4611]  
OPERATION OVERVIEW  
System Clock  
It is possible to select the clock source either extra clock input or X’tal input for the AK4611. (Figure 17, Figure 18) The  
external clocks which are required to operate the AK4611 in slave mode are MCLK, LRCK and BICK. MCLK should be  
synchronized with LRCK but the phase is not critical. There are two methods to set MCLK frequency. In Manual Setting  
Mode (ACKS bit= “0”: Default), the sampling speed is set by DFS0, DFS1 (Table 1). The frequency of MCLK at each  
sampling speed is set automatically. (Table 3, Table 4, Table 5). In Auto Setting Mode (ACKS bit= “1”), as MCLK  
frequency is detected automatically (Table 6) and the internal master clock attains the appropriate frequency (Table 7), so  
it is not necessary to set DFS.  
In master mode, only MCLK is required. Master Clock Input Frequency should be set with the CKS1-0 bits, and the  
sampling speed should be set by the DFS1-0 bits. The frequencies and the duties of the clocks (LRCK, BICK) are not  
stabile immediately after setting CKS1-0 bits and DFS1-0 bits up.  
After exiting reset at power-up in slave mode, the AK4611 is in power-down mode until MCLK and LRCK are input.  
If the clock is stopped, click noise occurs when restarting the clock. Mute the digital output externally if the click noise  
influences system applications.  
DFS1  
DFS0  
Sampling Speed Mode (fs)  
(default)  
0
0
1
1
0
1
0
1
Normal Speed Mode  
32kHz~48kHz  
64kHz~96kHz  
128kHz~192kHz  
-
Double Speed Mode  
Quad Speed Mode  
N/A  
(N/A: Not available)  
Table 1. Sampling Speed (Manual Setting Mode)  
CKS1  
CKS0  
Normal Speed  
Mode  
Double Speed  
Mode  
Quad Speed  
Mode  
128fs  
128fs  
128fs  
128fs  
0
0
1
1
0
1
0
1
256fs  
384fs  
512fs  
512fs  
256fs  
256fs  
256fs  
256fs  
(default)  
Table 2. Master Clock Input Frequency Select (Master Mode)  
LRCK  
fs  
32.0kHz  
44.1kHz  
48.0kHz  
MCLK (MHz)  
384fs  
BICK (MHz)  
256fs  
8.1920  
11.2896  
12.2880  
512fs  
64fs  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
2.0480  
2.8224  
3.0720  
Table 3. System Clock Example (Normal Speed Mode @Manual Setting Mode)  
MS1050-E-02  
2010/06  
- 27 -  
 
[AK4611]  
LRCK  
fs  
MCLK (MHz)  
256fs  
BICK (MHz)  
64fs  
88.2kHz  
96.0kHz  
22.5792  
24.5760  
5.6448  
6.1440  
Table 4. System Clock Example (Double Speed Mode @Manual Setting Mode)  
LRCK  
fs  
MCLK (MHz)  
128fs  
BICK (MHz)  
64fs  
176.4kHz  
192.0kHz  
22.5792  
24.5760  
11.2896  
12.2880  
Table 5. System Clock Example (Quad Speed Mode @Manual Setting Mode)  
MCLK  
512fs  
256fs  
128fs  
Sampling Speed Mode  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Table 6. Sampling Speed (Auto Setting Mode)  
MCLK (MHz)  
LRCK  
fs  
Sampling  
Speed Mode  
128fs  
256fs  
512fs  
32.0kHz  
44.1kHz  
48.0kHz  
88.2kHz  
96.0kHz  
176.4kHz  
192.0kHz  
-
-
-
-
-
-
-
16.3840  
22.5792  
24.5760  
Normal Speed  
Mode  
22.5792  
24.5760  
-
-
-
-
Double Speed  
Mode  
Quad Speed  
Mode  
-
22.5792  
24.5760  
-
-
Table 7. System Clock Example (Auto Setting Mode)  
MS1050-E-02  
2010/06  
- 28 -  
 
[AK4611]  
Clock Source  
The clock for the XTI pin can be generated by the two methods.  
1) External clock  
XTI  
External Clock  
AK4611  
XTO  
Figure 17. External clock mode  
Note: Input clock must not exceed TVDD1.  
2) X’tal  
XTI  
AK4611  
XTO  
Figure 18. X’tal mode  
Note: External capacitance depends on the crystal oscillator (Typ. 10pF)  
TVDD1 should be used in the range of 3.0 ~ 3.6V in X’tal mode.  
MS1050-E-02  
2010/06  
- 29 -  
 
[AK4611]  
Differential / Single-End Input selection  
The AK4611 supports the differential input (Figure 19) by setting DIE1-2 bits = “1”, supports the single-end input (Figure  
20) by setting DIE1-2 bits = “0”. In differential input mode, two input pins must not be connected to a signal input in  
combination with a VCOM voltage. When single-end input mode, L/RIN1-2 pins should be open, because L/RIN1-2 pins  
output an invert signal of the input signal. The AK4611 includes an anti-aliasing filter (RC filter) for both differential  
input and the single-end input.  
AK4611  
AK4611  
L/RIN+  
L/RIN  
LPF  
LPF  
SCF  
SCF  
LPF  
L/RIN-  
L/RIN-  
(Open)  
Figure 19. Differential Input (DIE1-2 bit = “1”)  
Figure 20. Single-end Input (DIE1-2 bit = “0”)  
Differential / Single-End Output selection  
The AK4611 supports the differential output (Figure 21) by setting DOE1-4 bits = “1”, and the single-end output (Figure  
22) by setting DOE1-4 bits = “0”. When single-end output mode, L/ROUT1-4 pins should be open, because of  
L/ROUT1-4 pins outputs VCOM voltage. The internal analog filters remove most of the noise beyond the audio passband  
generated by the delta-sigma modulator of a DAC in single-end input mode. There is no internal analog filter for  
differential output. Use external analog filters if needed to remove this noise.  
AK4611  
AK4611  
L/ROUT+  
L/ROUT  
LPF  
Diff  
to  
Single  
SCF  
SCF  
L/ROUT-  
L/ROUT-  
(Open)  
Figure 21. Differential Output (DOE1-4 bit = “1”)  
Figure 22. Single-end Output (DOE1-4 bit = “0”)  
MS1050-E-02  
2010/06  
- 30 -  
 
[AK4611]  
De-emphasis Filter  
The AK4611 has a digital de-emphasis filter (tc=50/15µs) by an IIR filter. The de-emphasis filter supports only Normal  
Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC  
can be set individually by registers, DAC1(SDTI1), DAC2(SDTI2), DAC3(SDTI3), DAC4(SDTI4).  
Mode  
Sampling Speed Mode  
DEM11  
DEM10  
DEM  
(DEM61-21)  
(DEM60-20)  
0
1
2
3
Normal Speed Mode  
Normal Speed Mode  
Normal Speed Mode  
Normal Speed Mode  
0
0
1
1
0
1
0
1
44.1kHz  
OFF  
48kHz  
32kHz  
(default)  
Table 8. De-emphasis control  
Digital High Pass Filter  
The ADC has a digital high pass filter for DC offset cancellation. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz  
and scales with the sampling rate (fs).  
Master Clock Output  
The AK4611 has a master clock output pin. If DIV bit = “1”, the MCKO pin output the frequency divided in half.  
DIV  
0
1
MCKO  
XTI x1  
XTI x1/2  
(default)  
Table 9. The select of Master clock output frequency  
Master Mode and Slave Mode  
Master Mode and Slave Mode are selected by setting the M/S pin. (Master Mode= “H”, Slave Mode= “L”)  
LRCK and BICK pins are outputs in Master Mode (M/S pin= “H”)  
LRCK and BICK pins are inputs in Slave Mode (M/S pin= “L”)  
PDN  
L
M/S pin  
LRCK pin  
Input  
“L” Output  
Input  
BICK pin  
Input  
“L” Output  
Input  
L
H
L
H
H
Output  
Output  
Table 10. LRCK and BICK pins  
MS1050-E-02  
2010/06  
- 31 -  
 
[AK4611]  
Audio Serial Interface Format  
(1) Stereo Mode  
When TDM1-0 bits = “00”, ten modes can be selected by the DIF2-0 bits as shown in Table 11. In all modes the serial data  
is MSB-first, 2’s compliment format. The data SDTO1-2 is clocked out on the falling edge of BICK and the SDTI1-4 is  
latched on the rising edge of BICK.  
Mode3/4/8/9/13/14/18/19/23/24/28/29/33/34/38/39 in SDTI input formats can be used for 16-20bit data by zeroing the  
unused LSBs.  
LRCK  
I/O  
BICK  
Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 SDTO1-2  
24bit, Left  
SDTI1-4  
I/O  
I
16bit, Right  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
H/L  
H/L  
H/L  
I
I
I
32fs  
justified  
24bit, Left  
justified  
24bit, Left  
justified  
I
I
48fs  
48fs  
24bit, Left  
justified  
24bit, Left  
justified  
3
4
5
0
0
1
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
H/L  
L/H  
H/L  
I
I
I
I
48fs  
48fs  
64fs  
24bit, I2S  
24bit, Left  
justified  
24bit, I2S  
16bit, Right  
justified  
(default)  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
6
7
1
1
0
0
0
0
0
0
0
1
1
0
H/L  
H/L  
O
O
64fs  
64fs  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
8
9
1
1
0
0
0
0
0
1
1
0
1
0
H/L  
L/H  
O
O
64fs  
64fs  
O
O
24bit, I2S  
24bit, I2S  
Table 11. Audio data formats (Stereo mode)  
Note. TVDD1 which is the Power of I/O buffer should be kept in the range of 1.6V~3.6V at Normal Speed Mode in Stereo  
Mode. TVDD1 should be kept in the range of 3.0V~3.6V at Double Speed Mode and Quad Speed Mode.  
MS1050-E-02  
2010/06  
- 32 -  
 
[AK4611]  
(2) TDM Mode  
The audio serial interface format is set in TDM mode by the TDM1-0 bits = “01”. Five modes can be selected by the  
DIF2-0 bits as shown in Table 12. In all modes the serial data is MSB-first, 2’s compliment format. The SDTO1 is clocked  
out on the rising edge of BICK and the SDTI1/2/3 are latched on the rising edge of BICK. In the TDM512 mode (fs =  
48kHz), the serial data of all ADC (four channels) is output to the SDTO1 pin. SDTO2 pin = “L”. And the serial data of all  
DAC (eight channels) is input to the SDTI1 pin. The input data to SDTI2-4 pins are ignored. BICK should be fixed to  
512fs. “H” time and “L” time of LRCK should be 1/512fs at least.  
TDM256 mode can be set by TDM1-0 bits as show in Table 13. In the TDM256 mode (fs = 48kHz), the serial data of all  
ADC (four channels) is output to the SDTO1 pin. SDTO2 pin = “L”. And the serial data of DAC (eight channels; L1, R1,  
L2, R2, L3, R3, L4, R4) is input to the SDTI1 pin. The input data to SDTI2-4 pins are ignored. BICK should be fixed to  
256fs. “H” time and “L” time of LRCK should be 1/256fs at least. TDM128 mode can be set by TDM1-0 bits as show in  
Table 14.  
In TDM128 mode (fs=192kHz), the serial data of four ADC (four channels; L1, R1, L2, R2) is output to the SDTO1 pin.  
The SDTO2 pin = “L”. And the serial data of DAC (four channels; L1, R1, L2, R2) is input to the SDTI1 pin and the serial  
data of DAC (four channels; L3, R3, L4, R4) is input to the SDTI2 pin. The input data to SDTI3-4 pins are ignored. BICK  
should be fixed to 128fs. “H” time and “L” time of LRCK should be 1/128fs at least.  
LRCK  
I/O  
BICK  
Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 SDTO1-2  
24bit, Left  
SDTI1-4  
I/O  
I
16bit, Right  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
10  
11  
12  
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
1
0
I
I
I
512fs  
justified  
24bit, Left  
justified  
24bit, Left  
justified  
512fs  
512fs  
I
I
24bit, Left  
justified  
24bit, Left  
justified  
13  
14  
15  
0
0
1
0
0
0
1
1
1
0
1
0
1
0
0
1
0
0
I
I
512fs  
512fs  
512fs  
I
I
24bit, I2S  
24bit, Left  
justified  
24bit, I2S  
16bit, Right  
justified  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
16  
17  
1
1
0
0
1
1
0
0
0
1
1
0
O
O
512fs  
512fs  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
18  
19  
1
1
0
0
1
1
0
1
1
0
1
0
O
O
512fs  
512fs  
O
O
24bit, I2S  
24bit, I2S  
Table 12. Audio data formats (TDM512 mode)  
MS1050-E-02  
2010/06  
- 33 -  
 
[AK4611]  
LRCK  
I/O  
BICK  
Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 SDTO1-2  
24bit, Left  
SDTI1-4  
I/O  
16bit, Right  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
20  
21  
22  
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
I
I
I
256fs  
I
I
I
justified  
24bit, Left  
justified  
24bit, Left  
justified  
256fs  
256fs  
24bit, Left  
justified  
24bit, Left  
justified  
23  
24  
25  
0
0
1
1
1
1
0
0
0
0
1
0
1
0
0
1
0
0
I
I
256fs  
256fs  
256fs  
I
I
24bit, I2S  
24bit, Left  
justified  
24bit, I2S  
16bit, Right  
justified  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
26  
27  
1
1
1
1
0
0
0
0
0
1
1
0
O
O
256fs  
256fs  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
28  
29  
1
1
1
1
0
0
0
1
1
0
1
0
O
O
256fs  
256fs  
O
O
24bit, I2S  
24bit, I2S  
Table 13. Audio data formats (TDM256 mode)  
LRCK  
BICK  
Mode M/S TDM1 TDM0 DIF2 DIF1 DIF0 SDTO1-2  
24bit, Left  
SDTI1-4  
I/O  
I/O  
I
16bit, Right  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
30  
31  
32  
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
0
1
0
I
128fs  
128fs  
128fs  
justified  
24bit, Left  
justified  
24bit, Left  
justified  
I
I
I
I
24bit, Left  
justified  
24bit, Left  
justified  
33  
34  
35  
0
0
1
1
1
1
1
1
1
0
1
0
1
0
0
1
0
0
I
I
128fs  
128fs  
128fs  
I
I
24bit, I2S  
24bit, Left  
justified  
24bit, I2S  
16bit, Right  
justified  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
20bit, Right  
justified  
24bit, Right  
justified  
36  
37  
1
1
1
1
1
1
0
0
0
1
1
0
O
O
128fs  
128fs  
O
O
24bit, Left  
justified  
24bit, Left  
justified  
38  
39  
1
1
1
1
1
1
0
1
1
0
1
0
O
O
128fs  
128fs  
O
O
24bit, I2S  
24bit, I2S  
Table 14. Audio data formats (TDM128 mode)  
Note. TVDD1 should be used in the range of 3.0V~3.6V in TDM mode.  
MS1050-E-02  
2010/06  
- 34 -  
 
[AK4611]  
LRCK  
0
1
2
16  
17  
18  
24  
25  
31  
0
1
2
16  
17  
18  
24  
25  
31  
0
1
BICK(64fs)  
SDTO(o)  
23 22  
8
7
6
0
23 22  
8
7
6
0
23  
15 14  
8
7
1
0
15 14  
Rch Data  
8
7
1
0
Don’t Care  
Don’t Care  
SDTI(i)  
SDTO-23:MSB, 0:LSB; SDTI-15:MSB, 0:LSB  
Lch Data  
Figure 23. Mode 0/5 Timing (Stereo Mode)  
LRCK  
0
0
0
1
2
12  
13  
14  
24  
25  
31  
0
1
2
12  
13  
14  
24  
24  
28  
25  
31  
31  
31  
0
0
0
1
BICK(64fs)  
SDTO(o)  
23 22  
12 11 10  
19 18  
0
23 22  
12 11 10  
19 18  
Don’t Care  
0
23  
8
7
1
0
8
7
1
0
Don’t Care  
SDTI(i)  
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 24. Mode 1/6 Timing (Stereo Mode)  
LRCK  
1
2
8
9
10  
24  
25  
31  
0
1
2
8
9
10  
25  
1
BICK(64fs)  
SDTO(o)  
23 22  
16 15 14  
23 22  
0
23 22  
16 15 14  
23 22  
Don’t Care  
0
23  
8
7
1
0
8
7
1
0
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 25. Mode 2/7 Timing (Stereo Mode)  
LRCK  
1
2
21  
22  
23  
24  
28  
29  
30  
31  
0
1
2
22  
23  
24  
29  
30  
1
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
23  
23  
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 26. Mode 3/8 Timing (Stereo Mode)  
MS1050-E-02  
2010/06  
- 35 -  
[AK4611]  
LRCK  
0
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 27. Mode 4/9 Timing (Stereo Mode)  
512BICK  
LRCK(Mode15)  
LRCK(Mode10)  
BICK(512fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK 32 BICK 32 BICK 32 BICK  
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15  
SDTI1(i)  
L1  
32 BICK  
R1  
L2  
R2  
L3  
R3  
L4  
R4  
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK  
Figure 28. Mode 10/15 Timing (TDM512 Mode)  
512BICK  
LRCK(Mode16)  
LRCK(Mode11)  
BICK(512fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK 32 BICK 32 BICK 32 BICK  
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
L1  
32 BICK  
R1  
L2  
R2  
L3  
R3  
L4  
R4  
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK  
Figure 29. Mode 11/16 Timing (TDM512 Mode)  
512BICK  
LRCK(Mode17)  
LRCK(Mode12)  
BICK(512fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK 32 BICK 32 BICK 32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23  
SDTI1(i)  
L1  
32 BICK  
R1  
L2  
R2  
L3  
R3  
L4  
R4  
32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK  
Figure 30. Mode 12/17 Timing (TDM512 Mode)  
MS1050-E-02  
2010/06  
- 36 -  
[AK4611]  
512BICK  
LRCK(Mode18)  
LRCK(Mode13)  
BICK(512fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK 32 BICK 32 BICK 32 BICK  
23 22  
0
23 22  
0
23 22  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
SDTI1(i)  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
L3  
32 BICK  
R3  
32 BICK  
L4  
32 BICK  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 31. Mode 13/18 Timing (TDM512 Mode)  
512BICK  
LRCK(Mode19)  
LRCK(Mode14)  
BICK(512fs)  
SDTO1(o)  
23  
0
23  
0
23  
0
23  
0
23  
23  
L1  
R1  
L2  
R2  
32 BICK 32 BICK 32 BICK 32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDTI1(i)  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
L3  
32 BICK  
R3  
32 BICK  
L4  
32 BICK  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 32. Mode 14/19 Timing (TDM512 Mode)  
256 BICK  
LRCK (Mode25)  
LRCK (Mode20)  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
23 22  
0
23 22  
0
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15 14  
0
15  
SDTI1(i)  
R1  
R2  
R3  
R4  
L1  
L2  
L3  
L4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 33. Mode 20/25 Timing (TDM256 Mode)  
MS1050-E-02  
2010/06  
- 37 -  
[AK4611]  
256 BICK  
LRCK (Mode26)  
LRCK (Mode21)  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
23 22  
0
23 22  
0
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19 18  
0
19  
SDTI1(i)  
R1  
R2  
R3  
R4  
L1  
L2  
L3  
L4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 34. Mode 21/26 Timing (TDM256 Mode)  
256 BICK  
LRCK (Mode27)  
LRCK (Mode22)  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23  
SDTI1(i)  
R1  
R2  
R3  
R4  
L1  
L2  
L3  
L4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 35. Mode 22/27 Timing (TDM256 Mode)  
256 BICK  
LRCK (Mode28)  
LRCK (Mode23)  
BICK(256fs)  
SDTO1(o)  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
0
23 22  
SDTI1(i)  
R1  
32 BICK  
R2  
32 BICK  
R3  
32 BICK  
R4  
32 BICK  
L1  
32 BICK  
L2  
32 BICK  
L3  
32 BICK  
L4  
32 BICK  
Figure 36. Mode 23/28 Timing (TDM256 Mode)  
MS1050-E-02  
2010/06  
- 38 -  
[AK4611]  
256 BICK  
LRCK (Mode29)  
LRCK (Mode24)  
BICK(256fs)  
SDTO1(o)  
23  
0
23  
0
23  
0
23  
0
23  
23  
L1  
32 BICK  
R1  
32 BICK  
L2  
32 BICK  
R2  
32 BICK  
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
23  
0
SDTI1(i)  
R1  
32 BICK  
R2  
32 BICK  
R3  
32 BICK  
R4  
L1  
32 BICK  
L2  
32 BICK  
L3  
32 BICK  
L4  
32 BICK  
32 BICK  
Figure 37. Mode 24/29 Timing (TDM256 Mode)  
128 BICK  
LRCK (Mode35)  
LRCK (Mode30)  
BICK(128fs)  
SDTO1(o)  
23 22  
23 22  
23 22  
23 22  
0
0
23 22  
0
0
L2  
R2  
L1  
R1  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
15 14  
0
0
0
0
15  
0
0
0
0
15  
15  
15 14  
14  
15 14  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
15 14  
15 14  
15 14  
15 14  
L3  
R3  
L4  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 38. Mode 30/35 Timing (TDM128 Mode)  
MS1050-E-02  
2010/06  
- 39 -  
[AK4611]  
128 BICK  
LRCK (Mode36)  
LRCK (Mode31)  
BICK(128fs)  
SDTO1(o)  
23 22  
23 22  
23 22  
23 22  
0
0
23 22  
0
0
L2  
R2  
L1  
R1  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19 18  
0
0
0
0
19  
0
0
0
0
19  
19  
19 18  
18  
19 18  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
19 18  
19 18  
19 18  
19 18  
L3  
R3  
L4  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 39. Mode 31/36 Timing (TDM128 Mode)  
128 BICK  
LRCK (Mode37)  
LRCK (Mode32)  
BICK(128fs)  
SDTO1(o)  
23 22  
23 22  
23 22  
23 22  
0
0
23 22  
0
0
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
0
0
0
23  
0
0
0
0
23  
23  
23 22  
22  
23 22  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
23 22  
23 22  
23 22  
L3  
R3  
L4  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 40. Mode 32/37 Timing (TDM128 Mode)  
MS1050-E-02  
2010/06  
- 40 -  
[AK4611]  
128 BICK  
LRCK (Mode38)  
LRCK (Mode33)  
BICK(128fs)  
SDTO1(o)  
23 22  
23 22  
23 22  
23 22  
0
0
23 22  
0
0
L1  
R1  
L2  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
23 22  
0
23  
0
0
23 22  
0
23 22  
0
22  
23 22  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
0
23  
0
0
23 22  
23 22  
22  
23 22  
23 22  
L3  
R3  
L4  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 41. Mode 33/38 Timing (TDM128 Mode)  
128 BICK  
LRCK (Mode39)  
LRCK (Mode34)  
BICK(128fs)  
SDTO1(o)  
23  
23  
0
0
23  
23  
22  
0
0
L2  
R2  
L1  
R1  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
0
0
0
23  
23  
0
0
23  
23  
0
0
23  
23  
23  
23  
23  
23  
SDTI1(i)  
SDTI2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
0
L3  
R3  
L4  
R4  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
Figure 42. Mode 34/39 Timing (TDM128 Mode)  
MS1050-E-02  
2010/06  
- 41 -  
[AK4611]  
Overflow Detection  
The AK4611 has an overflow detect function for the analog input. The overflow detect function is enabled when the  
OVFE bit is set to “1”. Overflow detection is applied to the analog input of each channel, and the result is OR’d. OVF1/2  
pins goes to “H” according to the group set by OVFM2-0 bits, if analog input of Lch or Rch overflows (more than  
-0.3dBFS). When the analog input is overflowed, the output signal of OVF1/2 pins have the same group delay as ADC  
(GD = 16/fs = 333μs @fs=48kHz). OVF1/2 pins are “L” for 518/fs (=11.8ms @fs=48kHz) after PDN = “”, and then  
overflow detection is enabled.  
Mode  
OVFM2  
OVFM1  
OVFM0  
LIN1 or RIN1  
OVF1  
OVF1  
-
LIN2 or RIN2  
OVF1  
OVF2  
OVF1  
-
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
OVF2  
OVF2  
OVF2  
disable (OVF2=OVF1= “L”)  
(default)  
Table 15. Overflow detect control (OVFE bit = “1”)  
Zero Detection  
The AK4611 has two pins for zero detect flag outputs. Zero detect function is enabled when the OVFE bit is set to “0”.  
Channel grouping can be selected by the DZFM3-0 bits. (Table 16) The DZF1 pin corresponds to the group 1 channels  
and the DZF2 pin corresponds to the group 2 channels. DZF1 is AND operation of all eight channels and DZF2 is disabled  
(“L”) at mode 0, “H” at mode 1-3. When the input data of all channels in the group 1(group 2) are continuously zeros for  
8192 LRCK cycles, the DZF1 (DZF2) pin goes to “H”. The DZF1 (DZF2) pin immediately returns to “L” if input data of  
any channels in the group 1(group 2) is not zero.  
DZFM  
AOUT  
Mode  
3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
L1  
R1  
L2  
R2  
L3  
R3  
L4  
R4  
0
1
2
3
4
5
6
7
8
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF1  
DZF1 DZF2  
DZF2 DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF1  
DZF1  
DZF1  
DZF1  
DZF1  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
DZF2  
9
10  
11  
12  
13  
14  
15  
disable (DZF1=DZF2= “L”)  
(default)  
Table 16. Zero detect control (OVFE bit = “0”)  
MS1050-E-02  
2010/06  
- 42 -  
 
[AK4611]  
Digital Attenuator  
AK4611 has a channel-independent digital attenuator (256 levels, 0.5dB steps). Attenuation level of each channel can be  
set by each the ATT7-0 bits (Table 17).  
ATT7-0  
00H  
01H  
02H  
:
Attenuation Level  
0dB  
(default)  
-0.5dB  
-1.0dB  
:
7DH  
7EH  
7FH  
-62.5dB  
-63.0dB  
-63.5dB  
:
FEH  
FFH  
-127.0dB  
MUTE (-)  
Table 17. Attenuation level of digital attenuator  
Transition time between set values of ATT7-0 bits can be selected by the ATS1-0 bits (Table 18). Transition between set  
values is the soft transition in Mode1/2/3 eliminating switching noise in the transition.  
Mode  
ATS1  
ATS0  
ATT speed  
4096/fs  
2048/fs  
512/fs  
(default)  
0
1
2
3
0
0
1
1
0
1
0
1
256/fs  
Table 18. Transition time between set values of ATT7-0 bits  
The transition between set values is a soft transition of 4096 levels in mode 0. It takes 4096/fs (85.3ms@fs=48kHz) from  
00H(0dB) to FFH(MUTE). If the PDN pin goes to “L”, the ATTs are initialized to 00H. The ATTs also become 00H when  
RSTN bit = “0”, and fade to their current value when RSTN bit returns to “1”.  
MS1050-E-02  
2010/06  
- 43 -  
 
[AK4611]  
Soft Mute Operation  
Soft mute operation is performed in the digital domain. When the SMUTE bit becomes “1”, the output signal is attenuated  
to -in the cycle set by ATS bits (Table 18) from the current ATT level. When the SMUTE bit is returned to “0”, the  
mute is cancelled and the output attenuation gradually changes to the ATT level in the cycle set by ATS bits. If the soft  
mute is cancelled before attenuating to -after starting the operation, attenuation is discontinued and it is returned to ATT  
level by the same cycle. Soft mute is effective for changing the signal source without stopping the signal transmission.  
SMUTE bit  
(1)  
(2)  
ATT Level  
Attenuation  
(4)  
-  
GD  
GD  
(3)  
AOUT  
(5)  
8192/fs  
DZF1,2  
Notes:  
(1) The time for input data attenuation to -(Table 18). For example, in Normal Speed Mode, this time is 4096LRCK  
cycles (4096/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH  
(2) The time for input data recovery to ATT level (Table 18). For example, in Normal Speed Mode, this time is  
4096LRCK cycles (4096/fs) at ATT-DATA=FFH. ATT transition of soft-mute is from FFH to 00H.  
(3) The analog output corresponding to the digital input has group delay, GD.  
(4) If the soft mute is cancelled before attenuating to -, the attenuation is discontinued and returned to ATT level by  
the same cycle.  
(5) When the input data at all the channels of the group are continuously zeros for 8192 LRCK cycles, DZF1, 2 pins of  
each channel goes to “H”. DZF1/2 pins immediately returns to “L” if the input data of either channel of the group  
are not zero after going “H”.  
Figure 43. Soft mute and zero detection  
System Reset  
The AK4611 should be reset once by bringing the PDN pin = “L” upon power-up. The AK4611 is powered up and the  
internal timing starts clocking by LRCK “” after exiting the power down state of reference voltage (such as VCOM) by  
MCLK. The AK4611 is in power-down mode until MCLK and LRCK are input.  
MS1050-E-02  
2010/06  
- 44 -  
[AK4611]  
Power-Down  
All ADCs and DACs of the AK4611 are placed in power-down mode by bringing the PDN pin “L” which resets both  
digital filters at the same time. The PDN pin “L” also resets the control registers to their default values. In power-down  
mode, when the DVMPD pin “L”, the analog outputs go to VCOM voltage, when the DVMPD pin =“H”, the analog  
outputs go to Hi-Z. The SDTO1-2, DZF1-2 pins go to “L” in the power-dwon mode. This reset should always be executed  
after power-up. For the ADC, an analog initialization cycle (518/fs) starts 3~4/fs after exiting power-down mode. The  
output data, SDTO1-2, is available after 521~522 cycles of the LRCK clock. For the DAC, an analog initialization cycle  
(516/fs) starts 3~4/fs after exiting power-down mode. The analog outputs are VCOM voltage when the DVMPD =pin  
“L”, and the analog outputs go to Hi-Z when the DVMPD pin =“H” during the initialization. Figure 44 shows the  
power-down and power-up sequences.  
Power  
(10)  
3~4/fs  
PDN  
(12)  
(1)  
518/fs  
ADC Internal  
State  
Init Cycle  
Normal Operation  
Normal Operation  
Power-down  
Power-down  
516/fs  
(2)  
DAC Internal  
State  
Init Cycle  
(3)  
GD  
GD  
ADC In  
(Analog)  
ADC Out  
(Digital)  
“0”data  
“0”data  
(6)  
(4)  
“0”data  
“0”data  
DAC In  
(Digital)  
(3)  
GD  
GD  
(5)  
(7)  
(7)  
DAC Out  
(Analog)  
(7)  
Clock In  
MCLK,LRCK,SCLK  
Don’t care  
Don’t care  
(11)  
10~11/fs  
(7)  
DZF1/DZF2  
Don’t care  
External  
Mute  
Mute ON  
(9)  
Mute ON  
Notes:  
(1) The analog part of ADC is initialized after exiting power-down state.  
(2) The analog part of DAC is initialized after exiting power-down state.  
(3) Digital output corresponds to analog input and analog output corresponds to digital input have group delay (GD).  
(4) ADC output is “0” data at power-down state.  
(5) The analog outputs are VCOM voltage when the DVMPD pin “L”, and the analog outputs go to Hi-Z when the  
DVMPD pin “H” in power-down mode.  
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise  
influences system applications.  
(7) Click noise occurs at the falling edge of PDN and at 519~520/fs after the rising edge of the PDN pin.  
(8) DZF1-2 pins are “L” in power-down mode (PDN pin = “L”).  
(9) Please mute the analog output externally if the click noise (7) influences system applications.  
(10) There is a delay, 3~4/fs from PDN pin “H” to the start of initial cycle.  
(11) DZF pin= “L” for 1011/fs after PDN pin = “”.  
(12) The PDN pin must be “L” when power up the AK4611 and set to “H” after all poweres are supplied.  
Figure 44. Pin power-down/Pin power-up sequence example  
MS1050-E-02  
2010/06  
- 45 -  
 
[AK4611]  
All ADCs and all DACs can be powered-down individually through the PMADC bits and PMDAC bits, when the PMVR  
bit “1”. ADC1-2 can be power-down individually through the PMAD2-1 bits. DAC1-4 can be power-down individually  
by PMDA4-1 bits. In this case, the internal register values are not initialized. When PMADC bit = “0”, SDTO1-2 goes to  
“L”. When PMDAC bit = “0”, the analog outputs go to VCOM voltage when the DVMPD pin is “L”, and the analog  
outputs go to Hi-Z when the DVMPD pin “H”. When PMDAC bit = “0”, DZF1-2 pins go to “H”. As some click noise  
occurs, the analog output should be muted externally if the click noise influences system applications. Figure 45 shows  
the power-down and power-up sequences.  
PMVR bit  
4~5/fs (10)  
3~4/fs (11)  
518/fs  
PMADC/PMDAC bit  
(1)  
ADC Internal  
State  
Normal Operation  
Normal Operation  
Power-down  
Power-down  
Init Cycle  
516/fs  
Normal Operation  
(2)  
DAC Internal  
State  
Init Cycle  
Normal Operation  
GD  
(3)  
GD  
ADC In  
(Analog)  
(4)  
ADC Out  
(Digital)  
(6)  
“0”data  
DAC In  
(Digital)  
“0”data  
(3)  
GD  
GD  
(7)  
(5)  
(7)  
DAC Out  
(Analog)  
Clock In  
MCLK,LRCK,SCLK  
Don’t care  
(8)  
89/fs (12)  
DZF1/DZF2  
External  
Mute  
(9)  
Mute ON  
Notes:  
(1) The analog section of ADC is initialized after exiting power-down state.  
(2) The analog section of DAC is initialized after exiting power-down state.  
(3) Digital output corresponding to the analog inputs and analog outputs corresponding to the digital inputs have group  
delay (GD).  
(4) ADC output is “0” data at power-down state.  
(5) The analog outputs are VCOM voltage when the DVMPD pin “L”, and the analog outputs go to Hi-Z when the  
DVMPD pin “H” in power-down mode.  
(6) Click noise occurs at the end of initialization of the analog part. Mute the digital output externally if the click noise  
influences system application.  
(7) Click noise occurs at 45/fs after PMDAC bit becomes “0”, and occurs at 519520/fs after PMDAC bit becomes  
“1”.  
(8) DZF1-2 pins are “H” in power-down mode (PMDAC bit = “0”).  
(9) Mute the analog output externally if the click noise (7) influences system application.  
(10) There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable ADC power-down.  
There is a delay, 4~5/fs from PMDAC bit becomes “0” to the applicable DAC power-down.  
(11) There is a delay, 3~4/fs from PMADC and PMDAC bits become “1” to the start of initial cycle.  
(12) DZF pin= “L” for 89/fs after PMDAC bit becomes “1”.  
Figure 45. Bit power-down/Bit power-up sequence example  
MS1050-E-02  
2010/06  
- 46 -  
 
[AK4611]  
Reset Function  
When RSTN bit= “0”, the analog and digital part of ADC and the digital part of DACs are powered-down, but the internal  
register are not initialized. The analog outputs go to VCOM voltage regardless of the DVMPD pin setting, then DZF1-2  
pins go to “H” and SDTO1-2 pins go to “L”. As some click noise occurs, the analog output should be muted externally if  
the click noise influences system application. Figure 46 shows the power-up sequence.  
RSTN bit  
4~5/fs (8)  
3~4/fs (9)  
Internal  
RSTN bit  
(1)  
518/fs  
ADC Internal  
State  
Power-down  
Normal Operation  
Normal Operation  
Init Cycle  
DAC Internal  
State  
Digital Block Power-down  
Normal Operation  
GD  
Normal Operation  
(2)  
GD  
ADC In  
(Analog)  
(3)  
ADC Out  
(Digital)  
(4)  
“0”data  
DAC In  
(Digital)  
“0”data  
(2)  
GD  
GD  
(6)  
(5)  
(6)  
DAC Out  
(Analog)  
Clock In  
MCLK,LRCK,SCLK  
Don’t care  
89/fs (7)  
DZF1/DZF2  
Notes:  
(1) The analog section of the ADC is initialized after exiting reset state.  
(2) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group  
delay (GD).  
(3) ADC output is “0” data at power-down state.  
(4) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise  
influences system application.  
(5) The analog outputs go to VCOM voltage regardless of the DVMPD pin setting when RSTN bit becomes “0”.  
(6) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 34/fs after RSTN bit becomes “1”.  
(7) DZF pins go to “H” when the RSTN bit becomes “0”, and go to “L” at 8~9/fs after RSTN bit becomes “1”.  
(8) There is a delay, 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”.  
(9) There is a delay, 3~4/fs from RSTN bit “1” to the start of initial cycle.  
Figure 46. Reset sequence example  
MS1050-E-02  
2010/06  
- 47 -  
 
[AK4611]  
ADC partial Power-Down Function  
All of the ADCs can be powered-down individually by PMAD2-1 bits. The analog section and the digital section of the  
ADC are in power-down mode when the PMAD2-1 bits = “0”. The analog section of ADCs are initialized after exiting the  
power-down state. Digital output corresponding to analog input have group delay (GD). ADC output is “0” data at the  
power-down state. Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the  
click noise influences system applications. Figure 47 shows the power-down and power-up sequences by PMAD2-1 bits.  
PMAD2-1 bit  
4~5/fs (1)  
2~3/fs (2)  
2~3/fs (2)  
4~5/fs (1)  
Power Down Channel  
ADCDigital  
Internal State  
Normal Operation  
Power-down  
Power-down  
Power-down  
Normal Operation  
Normal Operation  
518/fs (3)  
Init Cycle  
518/fs (3)  
Init Cycle  
ADC Analog  
Internal State  
Normal Operation  
GD  
Normal Operation Power-down  
Normal Operation  
(4)  
GD  
(4)  
ADCIn  
(Analog)  
(5)  
“0”data  
ADCOut  
(Digital)  
(6)  
(6)  
Normal Operation Channel  
(4)  
(4)  
GD  
GD  
ADC In  
(Analog)  
(5)  
“0”data  
ADC Out  
(Digital)  
Clock In  
MCLK,LRCK,SCLK  
Notes.  
(1) There is a delay, 4~5/fs from PMAD2-1 bits become “0” to the applicable ADC power-down.  
(2) There is a delay, 2~3/fs from PMAD2-1 bits “1” to the start of initial cycle.  
(3) The analog section of the ADC is initialized after exiting reset state.  
(4) Analog output corresponding to the digital inputs have group delay (GD).  
(5) ADC output is “0” data at power-down state.  
(6) Click noise occurs when the internal RSTN bit becomes “1”. Mute the digital output externally if the click noise  
influences system application.  
Figure 47. ADC partial power-down example  
MS1050-E-02  
2010/06  
- 48 -  
 
[AK4611]  
DAC partial Power-Down Function  
All of the DACs can be powered-down individually by PMDA4-1 bits. The analog section and the digital section of the  
DAC are placed in power-down mode when the PMDA4-1 bits = “0”. The analog output of the powered-down channels,  
which is by PMDA4-1 bits, go to the voltage of VCOM when the DVMPD pin is “L”, and go to Hi-Z when the DVMPD  
pin “H”. Although DZF detection is in operation, the AK4611 stops reflecting the result of DZF detection to DZF1-2 pins.  
Some click noise occurs in both set-up and release of power-down. Mute the analog output externally or set PMDA4-1  
bits when PMDAC bit = “0” or RSTN bit = “0”, if click noise aversely affects system performance. Figure 48 shows the  
sequence of the power-down and the power-up by PMDA4-1 bits.  
PMDA4-1 bit  
4~5/fs (4)  
2~3/fs (5)  
2~3/fs (5)  
4~5/fs (4)  
Power Down Channel  
DAC Digital  
Internal State  
Normal Operation  
Power-down  
Power-down  
Power-down  
Normal Operation  
Normal Operation  
516/fs (6)  
Init Cycle  
516/fs (6)  
Init Cycle  
DAC Analog  
Internal State  
Normal Operation  
Normal Operation Power-down  
Normal Operation  
DAC In  
(Digital)  
“0”data  
(1)  
GD  
GD  
(3)  
(2)  
(3)  
(3)  
(3)  
(2)  
DAC Out  
(Analog)  
8192/fs  
DZF Detect  
Internal State  
(7)  
(7)  
Normal Operation Channel  
DAC In  
(Digital)  
0data  
GD  
GD  
DAC Out  
(Analog)  
8192/fs  
DZF Detect  
Internal State  
Clock In  
MCLK,LRCK,SCLK  
(8)  
(9)  
DZF1/DZF2  
Notes:  
(1) Digital output corresponding to the analog inputs, and analog outputs corresponding to the digital inputs have group  
delay (GD).  
(2) Analog output of the DAC powered down by PMDA4-1 = “0” and goes to VCOM voltage when the DVMPD pin  
=“L”, and the analog outputs go to Hi-Z when the DVMPD pin =“H”.  
(3) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 34/fs after RSTN bit becomes “1”. after  
PMDA4-1 bits are changed, some click noise occurs immediately at output of the channel changed by the own PD  
bits.  
(4) The DACs will be powered-down 4~5fs after PMDA4-1 bits = “0”  
(5) The initiation stars 2~3fs after PMDA4-1 bits are set to “1”.  
(6) The analog parts of DACs are initilised after exiting power down mode.  
(7) Although DZF detection is active at a certain channel set up though PMDA4-1 = “0”, the AK4611 stops reflecting  
the result of DZF detection to DZF1-2 pins.  
(8) DZF detection of the DAC which is set up by the power-down setting is ignored, and DZF1-2 pins go to “H”.  
(9) When signal is input to a DAC, even if the partical power down is applied, DZF1-2 pins will not become “H”.  
Figure 48. DAC partial power-down example  
MS1050-E-02  
2010/06  
- 49 -  
 
[AK4611]  
Serial Control Interface  
The AK4611’s functions are controlled through registers. The registers may be written by two types of control modes.  
The chip address is determined by the state of the CAD0 and CAD1 inputs. The PDN pin = “L” initializes the registers to  
their default values. Writing “0” to the RSTN bit can initialize the internal timing circuit, but the register data will not be  
initialized.  
(1) 4-wire Serial Control Mode (I2C pin = “L”)  
The internal registers may be written through the 4-wire µP interface pins (CSN, CCLK, CDTI and CDTO). The data on  
this interface consists of a 2-bit Chip address, Read/Write, Register address (MSB first, 5bits) and Control data (MSB  
first, 8bits). The chip address high bit is fixed to “1” and the lower bit is set by the CAD0 pin. Address and data are  
clocked in on the rising edge of CCLK and data is clocked out on the falling edge. After a low-to-high transition of CSN,  
data is latched for write operations and CDTO bit outputs Hi-Z. The clock speed of CCLK is 5MHz (max). The value of  
internal registers is initialized when the PDN pin = “L”.  
CSN  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
“H” or “L”  
“H” or “L”  
“H” or “L”  
“H” or “L”  
CDTI  
CDTO  
CDTI  
C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Hi-Z  
WRITE  
READ  
“H” or “L”  
“H” or “L”  
C1 C0 R/W A4 A3 A2 A1 A0  
Hi-Z  
Hi-Z  
CDTO  
D7 D6 D5 D4 D3 D2 D1 D0  
C1 – C0: Chip Address (C1=CAD1, C0=CA0)  
R/W: READ / WRITE (“1”: WRITE, “0”: READ)  
A4 - A0: Register Address  
D7 – D0: Control Data  
Figure 49. Serial Control I/F Timing  
MS1050-E-02  
2010/06  
- 50 -  
[AK4611]  
(2) I2C-bus Control Mode (I2C pin = “H”)  
The AK4611 supports the fast-mode I2C-bus (max: 400kHz).  
(2)-1. WRITE Operations  
Figure 50 shows the data transfer sequence of the I2C-bus mode. All commands are preceded by START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates START condition (Figure 56). After the START  
condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit (R/W).  
The most significant five bits of the slave address are fixed as “00100”. The next bits are CAD1 and CAD0 (device  
address bit). This bit identifies the specific device on the bus. The hard-wired input pins (CAD1/0 pins) set these device  
address bits (Figure 51). If the slave address matches that of the AK4611, the AK4611 generates an acknowledge and the  
operation is executed. The master must generate the acknowledge-related clock pulse and release the SDA line (HIGH)  
during the acknowledge clock pulse (Figure 57). R/W bit = “1” indicates that the read operation is to be executed. “0”  
indicates that the write operation is to be executed.  
The second byte consists of the control register address of the AK4611. The format is MSB first, and those most  
significant 3-bits are fixed to zeros (Figure 52). The data after the second byte contains control data. The format is MSB  
first, 8bits (Figure 53). The AK4611 generates an acknowledge after each byte is received. Data transfer is always  
terminated by STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH  
defines STOP condition (Figure 56).  
The AK4611 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4611  
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the  
write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is  
incremented by one, and the next data is automatically taken into the next address.  
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 58) except for the START and STOP  
conditions.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 50. Data Transfer Sequence at the I2C-Bus Mode  
0
0
1
0
0
CAD1 CAD0  
R/W  
(Those CAD1/0 should match with CAD1/0 pins)  
Figure 51. The First Byte  
0
0
0
A4  
A3  
A2  
A1  
D1  
A0  
D0  
Figure 52. The Second Byte  
D7  
D6  
D5  
D4  
D3  
D2  
Figure 53. Byte Structure after the second byte  
MS1050-E-02  
2010/06  
- 51 -  
 
[AK4611]  
(2)-2. READ Operations  
Set the R/W bit = “1” for the READ operation of the AK4611. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.  
After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is  
automatically taken into the next address.  
The AK4611 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
(2)-2-1. CURRENT ADDRESS READ  
The AK4611 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation would  
access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4611 generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the AK4611  
ceases transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 54. CURRENT ADDRESS READ  
(2)-2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing a slave address  
with the R/W bit =“1”, the master must execute a “dummy” write operation first. The master issues a start request, a slave  
address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit =“1”. The AK4611 then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge but generates a stop condition instead, the AK4611 ceases transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 55. RANDOM ADDRESS READ  
MS1050-E-02  
2010/06  
- 52 -  
[AK4611]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 56. START and STOP Conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 57. Acknowledge on the I2C-Bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 58. Bit Transfer on the I2C-Bus  
MS1050-E-02  
2010/06  
- 53 -  
 
[AK4611]  
Register Map  
Addr Register Name  
00H Power Management 1  
01H Power Management 2  
02H Power Management 3  
03H Control 1  
04H Control 2  
05H De-emphasis1  
06H Reserved  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
0
0
D3  
PMVR  
0
PMDA4  
DIF0  
DFS1  
DEM21  
0
D2  
PMADC  
1
PMDA3  
ATS1  
DFS0  
DEM20  
1
D1  
D0  
PMDAC  
PMAD2  
PMDA2  
ATS0  
ACKS  
DEM11  
0
RSTN  
PMAD1  
PMDA1  
SMUTE  
DIV  
0
0
1
1
TDM1  
0
DEM41  
0
TDM0  
MCKO  
DEM40  
0
DIF2  
CKS1  
DEM31  
0
DIF1  
CKS0  
DEM30  
0
DEM10  
1
07H Overflow Detect  
08H Zero Detect  
09H Input Control  
0
0
0
0
0
0
0
0
OVFE  
DZFM3  
0
OVFM2  
DZFM2  
1
OVFM1  
DZFM1  
DIE2  
OVFM0  
DZFM0  
DIE1  
LOOP1  
0
LOOP0  
0
0AH Output Control  
0
0
1
1
DOE4  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
DOE3  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
DOE2  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
DOE1  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
0BH LOUT1 Volume Control  
0CH ROUT1 Volume Control  
0DH LOUT2 Volume Control  
0EH ROUT2 Volume Control  
0FH LOUT3 Volume Control  
10H ROUT3 Volume Control  
11H LOUT4 Volume Control  
12H ROUT4 Volume Control  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT7  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT6  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
Note: For addresses from 13H to 1FH, data is not written.  
When the PDN pin goes to “L”, the registers are initialized to their default values.  
When RSTN bit goes to “0”, the internal timing is reset and the DZF1-2 pins go to “H”, but registers are not  
initialized to their default values.  
MS1050-E-02  
2010/06  
- 54 -  
[AK4611]  
Register Definitions  
Addr Register Name  
00H Power Management 1  
R/W  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
PMVR  
D2  
D1  
D0  
RSTN  
PMADC PMDAC  
RD  
0
RD  
0
RD  
0
RD  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Default  
RSTN: Internal timing reset  
0: Reset. DZF1-2 pins go to “H”, but registers are not initialized.  
1: Normal operation  
PMDAC: Power management of DAC1-4  
0: Power-down  
1: Normal operation  
PMADC: Power management of ADC1-2  
0: Power-down  
1: Normal operation  
PWVR: Power management of reference voltage  
0: Power-down  
1: Normal operation  
When any blocks are powered-up, the PMVR bit must be set to “1”. PMVR bit can be set to “0” only when  
PMADAL=PMADAR= bits = “0”.  
Addr Register Name  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
1
D1  
D0  
01H  
Power Management 2  
PMAD2 PMAD1  
RD  
0
RD  
0
RD  
0
RD  
0
RD  
0
R/W  
Default  
RD  
1
R/W  
1
R/W  
1
PMAD2-1: Power management of ADC1-2 (0: Power-down, 1: Normal operation)  
PMAD1: Power management control of ADC1  
PMAD2: Power management control of ADC2  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr Register Name  
02H Power Management 3  
R/W  
0
RD  
0
0
RD  
0
1
RD  
1
1
RD  
1
PMDA4 PMDA3 PMDA2 PMDA1  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Default  
PMDA4-1: Power management of DAC1-4 (0: Power-down, 1: Normal operation)  
PMDA1: Power management control of DAC1  
PMDA2: Power management control of DAC2  
PMDA3: Power management control of DAC3  
PMDA4: Power management control of DAC4  
MS1050-E-02  
2010/06  
- 55 -  
[AK4611]  
Addr Register Name  
03H Control 1  
R/W  
D7  
D6  
D5  
DIF2  
R/W  
1
D4  
DIF1  
R/W  
0
D3  
DIF0  
R/W  
0
D2  
ATS1  
R/W  
0
D1  
ATS0  
R/W  
0
D0  
SMUTE  
R/W  
0
TDM1 TDM0  
R/W  
0
R/W  
0
Default  
SMUTE: Soft Mute Enable  
0: Normal operation  
1: All DAC outputs soft-muted  
ATS1-0: Digital attenuator transition time setting (Table 18)  
Initial: “00”, mode 0  
DIF2-0: Audio Data Interface Modes (Table 11, Table 12, Table 13, Table 14)  
Initial: “100”, mode 4  
TDM1-0: TDM Format Select (Table 11, Table 12, Table 13, Table 14)  
Mode TDM1 TDM0  
SDTI  
1-6  
1
1-2  
1-3  
Sampling Speed  
0
1
2
3
0
0
1
0
0
1
1
1
Stereo mode (Normal, Double, Quad Speed Mode)  
TDM512 mode (Normal Speed Mode)  
TDM256 mode (Double Speed Mode)  
TDM128 mode (Quad Speed Mode)  
Addr Register Name  
04H Control 2  
D7  
0
D6  
MCKO  
D5  
CKS1  
D4  
CKS0  
D3  
DFS1  
D2  
DFS0  
D1  
ACKS  
D0  
DIV  
R/W  
Default  
RD  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
DIV: Output of Master clock frequency  
0: x 1  
1: x 1/2  
ACKS: Master Clock Frequency Auto Setting Mode Enable  
0: Disable, Manual Setting Mode  
1: Enable, Auto Setting Mode  
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the setting of DFS are  
ignored. When this bit is “0”, DFS0, 1 set the sampling speed mode.  
DFS1-0: Sampling speed mode (Table 1)  
The setting of DFS is ignored at ACKS bit =“1”.  
CKS1-0: Master Clock Input Frequency Select (Table 2)  
MCKO: Master clock output enable  
0: Output “L”  
1: Output “MCKO”  
MS1050-E-02  
2010/06  
- 56 -  
[AK4611]  
Addr Register Name  
05H De-emphasis1  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEM10  
R/W  
1
DEM41 DEM40 DEM31 DEM30 DEM21 DEM20 DEM11  
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
0
Default  
DEMA11-10: De-emphasis response control for DAC1 data on SDTI1 (Table 8)  
Initial: “01”, OFF  
DEMA21-20: De-emphasis response control for DAC2 data on SDTI1 (Table 8)  
Initial: “01”, OFF  
DEMA31-30: De-emphasis response control for DAC3 data on SDTI1 (Table 8)  
Initial: “01”, OFF  
DEMA41-40: De-emphasis response control for DAC4 data on SDTI1 (Table 8)  
Initial: “01”, OFF  
Addr Register Name  
07H Overflow Detect  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
OVFE  
R/W  
0
D2  
D1  
D0  
OVFM2 OVFM1 OVFM0  
R/W  
1
R/W  
1
R/W  
1
Default  
OVFM2-0: Overflow detect mode select (Table 15)  
Initial: “111”, disable  
OVFE: Overflow detection enable (Table 15)  
0: Disable, pin#33 becomes DZF2 pin.  
1: Enable, pin#33 becomes OVF pin.  
MS1050-E-02  
2010/06  
- 57 -  
[AK4611]  
Addr Register Name  
08H Zero Detect  
D7  
LOOP1  
R/W  
0
D6  
LOOP0  
R/W  
0
D5  
0
D4  
0
D3  
DZFM3  
R/W  
1
D2  
DZFM2  
R/W  
1
D1  
DZFM1  
R/W  
1
D0  
DZFM0  
R/W  
1
RD  
0
RD  
0
R/W  
Default  
DZFM3-0: Zero detect mode select (Table 16)  
Initial: “1111”, disable  
LOOP1-0: Loopback mode enable  
00: Normal (No loop back)  
01: LIN1 LOUT1, LOUT2  
RIN1 ROUT1, ROUT2  
LIN2 LOUT3, LOUT4  
RIN2 ROUT3, ROUT4  
The digital ADC output is connected to the digital DAC input. In this mode, the input DAC data to  
SDTI1-4 are ignored. The audio format of SDTO at loopback mode becomes mode 3 at mode 0 or 1,  
and mode 5 at mode 2, respectively.  
10: SDTI1(L) SDTI2(L), SDTI3(L), SDTI4(L)  
SDTI1(R) SDTI2(R), SDTI3(R), SDTI4(R)  
In this mode, the input DAC data to SDTI2-4 are ignored.  
11: Not Available  
LOOP1-0 should be set to “00” at TDM mode.  
Addr Register Name  
09H Output Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
0
RD  
0
D4  
0
RD  
0
D3  
0
RD  
0
D2  
1
RD  
1
D1  
DIE2  
R/W  
1
D0  
DIE1  
R/W  
1
Default  
DIE2-1: ADC1-2 Differential Input Enable (0: Single-End Input, 1: Differential Input)  
DIE1: ADC1 Differential Input Enable  
DIE2: ADC2 Differential Input Enable  
Addr Register Name  
0AH Output Control  
R/W  
D7  
0
RD  
0
D6  
0
RD  
0
D5  
1
RD  
1
D4  
1
RD  
1
D3  
DOE4  
R/W  
1
D2  
DOE3  
R/W  
1
D1  
DOE2  
R/W  
1
D0  
DOE1  
R/W  
1
Default  
DOE4-1: DAC1-4 Differential Output Enable (0: Single-End Input, 1: Differential Input)  
DOE1: DAC1 Differential Output Enable  
DOE2: DAC2 Differential Output Enable  
DOE3: DAC3 Differential Output Enable  
DOE4: DAC4 Differential Output Enable  
MS1050-E-02  
2010/06  
- 58 -  
[AK4611]  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0BH LOUT1 Volume Control  
0CH ROUT1 Volume Control  
0DH LOUT2 Volume Control  
0EH ROUT2 Volume Control  
0FH LOUT3 Volume Control  
10H ROUT3 Volume Control  
11H LOUT4 Volume Control  
12H ROUT4 Volume Control  
R/W  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT7 ATT6  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
ATT5  
R/W  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
ATT4  
R/W  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
ATT3  
R/W  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
ATT2  
R/W  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
ATT1  
R/W  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
ATT0  
R/W  
R/W  
0
R/W  
0
Default  
0
0
0
0
0
0
ATT7-0: Attenuation Level (Table 17)  
MS1050-E-02  
2010/06  
- 59 -  
[AK4611]  
SYSTEM DESIGN  
Condition: Differential Input (DIE2-1 bit = “11”), Differential Output (DOE4-1 bit = “1111”)  
4-wire Serial Control Interface (I2C pin = “L”)  
Master mode (M/S pin = “H”)  
The AK4611 has the analog Anti-Alias Filter for Differential Input.  
The AK4611 does not have the analog Smoothing Filter for Differential Output.  
+
LPF  
LPF LPF  
LPF  
LPF  
LPF  
MUTE  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
LOUT2+ 40  
ROUT1- 39  
ROUT1+- 38  
LOUT1- 37  
LOUT1+ 36  
DVMPD 35  
TST8 34  
TST15  
TST16  
OVF1 / DZF1  
OVF2 / DZF2  
LIN1+  
LPF  
LPF  
MUTE  
MUTE  
LIN1-  
RIN1+  
RIN1-  
TST7 33  
SDTI4  
SDTI3 31  
SDTI2  
LIN2+  
32  
LIN2-  
AK4611  
RIN2+  
30  
SDTI1 29  
BICK 28  
RIN2-  
DSP  
TST17  
TST18  
VSS1  
LRCK  
TST6 26  
27  
10u 0.1u  
+
Analog 3.3V  
SDTO2  
SDTO1  
AVDD1  
VREFH1  
VCOM  
TST19  
TST20  
25  
24  
0.1u  
2.2u  
+
0.1u 10u  
+
VSS4 23  
TVDD1  
XTI / MCLK 21  
22  
1.6V to 3.6V  
Digital  
+
+
C1  
C1  
Analog Ground  
Digital Ground  
µP  
Figure 59. Typical Connection Diagram1  
MS1050-E-02  
2010/06  
- 60 -  
[AK4611]  
Condition: Single-end Input (DIE2-1 bit = “00”), Single-end Output (DOE4-1 bit = “0000”)  
I2C Bus Control Interface (I2C pin = “H”)  
Slave mode (M/S pin = “L”)  
The AK4611 has the analog Anti-Alias Filter for Single-Ended Input.  
The AK4611 has the analog Smoothing Filter for Single-Ended Output.  
+
61  
LOUT2 40  
ROUT1- 39  
ROUT1 38  
LOUT1- 37  
LOUT1 36  
DVMPD 35  
TST8 34  
TST15  
62 TST16  
OVF1 / DZF1  
MUTE  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
MUTE  
MUTE  
OVF2 / DZF2  
LIN1  
LIN1-  
RIN1  
TST7 33  
RIN1-  
SDTI4 32  
SDTI3 31  
SDTI2 30  
SDTI1 29  
BICK 28  
LIN2  
LIN2-  
AK4611  
RIN2  
RIN2-  
DSP  
TST17  
TST18  
VSS1  
LRCK 27  
TST6 26  
10u 0.1u  
+
Analog 3.3V  
SDTO2 25  
AVDD1  
VREFH1  
VCOM  
TST19  
TST20  
SDTO1  
24  
0.1u  
2.2u  
+
0.1u 10u  
+
VSS4 23  
TVDD1 22  
1.6V to 3.6V  
Digital  
XTI / MCLK 21  
+
+
Analog Ground  
Digital Ground  
µP  
Figure 60. Typical Connection Diagram2  
MS1050-E-02  
2010/06  
- 61 -  
[AK4611]  
1. Grounding and Power Supply Decoupling  
The AK4611 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2, TVDD1 and  
TVDD2 are usually supplied from analog supply in system. Alternatively if AVDD1, AVDD2, TVDD1 and TVDD2 are  
supplied separately, the power up sequence is not critical. VSS1, VSS2, VSS3 and VSS4 of the AK4611 must be  
connected to analog ground plane. System analog ground and digital ground should be connected together near to  
where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4611 as  
possible, with the small value ceramic capacitor being the nearest.  
2. Voltage Reference Inputs  
The voltage of VREFH1, VREFH2 set the analog input/output range. The VREFH1 pin is normally connected to AVDD1  
with a 0.1µF ceramic capacitor. The VREFH2 pin is normally connected to AVDD2 with a 0.1µF ceramic capacitor.  
VCOM is a signal ground of this chip and output the voltage AVDD1x1/2. An electrolytic capacitor 2.2µF parallel with a  
0.1µF ceramic capacitor attached to the VCOM pin eliminates the effects of high frequency noise. Ceramic capacitors  
should be as near to the pin as possible. No load current may be drawn from the VCOM pin. All signals, especially clocks,  
should be kept away from the VREFH1, VREFH2 and VCOM pins in order to avoid unwanted coupling into the AK4611.  
3. Analog Inputs  
The ADC inputs correspond to single-ended and differential are able to select by DIE2-1 bits. When the inputs are  
single-ended, internally biased to the common voltage (AVDD1x1/2) with 9kΩ(typ) resistance. The input signal range  
scales with the supply voltage and nominally 0.65xVREFH1 Vpp (typ) @fs=48kHz. When the inputs are differential,  
internally biased to the common voltage (AVDD2x1/2) with 13kΩ(typ) resistance. The input signal range between  
LIN(RIN)+ and LIN(RIN)scales with the supply voltage and nominally ±0.65xVREFH1 Vpp (typ) @fs=48kHz The  
ADC output data format is 2’s complement. The internal HPF removes the DC offset.  
The AK4611 samples the analog inputs at 128fs (@ fs=48kHz). The digital filter rejects noise above the stop band except  
for multiples of the sampling frequency of analog inputs. The AK4611 includes an anti-aliasing filter (RC filter) to  
attenuate a noise around the sampling frequency of analog inputs.  
4. Analog Outputs  
The DAC outputs correspond to single-ended and differential are able to select by DOE4-1 bits. When the outputs are  
single-ended, the output signal range is centered around the VCOM voltage and nominally 0.63 x VREFH2 Vpp. When  
the outputs are differential, the output signal ranges are ±0.63 x VREFH2 Vpp (typ) centered around the VCOM voltage.  
The differential outputs are summed externally, VAOUT = [L(R)OUT+]-[L(R)OUT-] between L(R)OUT+ and L(R)OUT-.  
If the summing gain is 1, the output range is 4.16Vpp (typ@AVDD2=3.3V). The bias voltage of the external summing  
circuit is supplied externally. The DAC input data format is 2’s complement. The output voltage is a positive full scale for  
7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for  
000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC  
beyond the audio passband, when the single-end input mode. The differential output mode does not have the internal  
analog filters, therefore this noise should be remove by the external analog filters.  
DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV.  
MS1050-E-02  
2010/06  
- 62 -  
[AK4611]  
5. External Analog Inputs Circuit  
Figure 61 shows the input buffer circuit example 1. The input level of this circuit is 4.3Vpp (AK4611: typ. ±2.15Vpp).  
5.1kΩ  
4.7kΩ  
Analog In  
VP+  
4.3Vpp  
4.7kΩ  
10kΩ  
2.15Vpp  
22μ  
AIN+  
VP-  
VA  
NJM5532  
AK4611  
Bias NJM5532  
Bias  
10k  
10k  
0.1μ 10μ  
AIN-  
VA = +3.3V  
VP+ = +12V  
VP- = -12V  
Bias  
Figure 61. Input buffer circuit example 1 (DC coupled single-end input)  
Figure 62 shows the input buffer circuit example 2. The input level of this circuit is 4.3Vpp (AK4611: typ. ±2.15Vpp).  
5.1kΩ  
4.7kΩ  
Analog In  
VP+  
4.3Vpp  
4.7kΩ  
10kΩ  
2.15Vpp  
2.15Vpp  
22μ  
AIN+  
VP-  
NJM5532  
10μ  
10μ  
VP+ = +12V  
VP- = -12V  
NJM5532  
AK4611  
AIN-  
Figure 62. Input buffer circuit example 2 (AC coupled single-end input)  
Figure 63 shows the input buffer circuit example 3. The input level of this circuit is ±2.15Vpp (AK4611: typ. ±2.15Vpp).  
Analog In  
2.15Vpp  
AIN+  
10μ  
10μ  
AK4611  
Analog In  
2.15Vpp  
AIN-  
Figure 63. Input buffer circuit example 3 (AC coupled differential input)  
MS1050-E-02  
2010/06  
- 63 -  
 
[AK4611]  
Figure 64 shows the input buffer circuit example 4. The input level of this circuit is ±2.15Vpp (AK4611: typ. ±2.15Vpp).  
Analog In  
2.15Vpp  
AIN+  
10μ  
AK4611  
AIN-  
Open  
Figure 64. Input buffer circuit example 4 (AC coupled single-end input)  
6. External Analog Outputs Circuit  
Figure 65 shows the output buffer circuit example 1. The output level of this circuit is 4.16Vpp (AK4611: typ. ±2.08Vpp).  
2.08Vpp  
20Ω  
A
4.7kΩ  
4.7kΩ  
AOUT-  
470p  
R1  
R1  
2200p  
VP+  
VP-  
AK4611  
3900p  
4.7kΩ  
20Ω  
Analog Out  
4.16Vpp  
AOUT+  
B
VP+ = +12V  
VP- = -12V  
470p  
2.08Vpp  
4.7kΩ  
NJM5532  
WhenR1=200Ω  
fc=93.2kHz, Q=0.712, g=-0.1B at40kHz  
WhenR1=180Ω  
fc=98.2kHz, Q=0.681, g=-0.2dBat40kHz  
Figure 65. Output buffer circuit example 1 (DC coupled differential output)  
Figure 66 shows the output buffer circuit example 2. The output level of this circuit is 4.16Vpp (AK4611: typ. ±2.08Vpp).  
2.08Vpp  
4.7kΩ  
4.7kΩ  
20Ω  
A
AOUT-  
22μ  
22μ  
470p  
R1  
R1  
2200p  
3900p  
4.7kΩ  
AK4611  
VP+  
20Ω  
Analog Out  
4.16Vpp  
AOUT+  
VP-  
B
VP+ = +12V  
VP- = -12V  
2.08Vpp  
4.7kΩ  
470p  
NJM5532  
WhenR1=180Ω  
fc=90.1kHz, Q=0.735, g=-0.04Bat40kHz  
WhenR1=150Ω  
fc=99.0kHz, Q=0.680, g=-0.23dBat40kHz  
Figure 66. Output buffer circuit example 2 (AC coupled differential output)  
MS1050-E-02  
2010/06  
- 64 -  
 
[AK4611]  
Figure 67 shows the output buffer circuit example 3. The output level of this circuit is 4.16Vpp (AK4611: typ. 2.08Vpp).  
470p  
AOUT-  
OPEN  
4.7kΩ  
4.7kΩ  
VP+  
AK4611  
2.08Vpp  
4.7kΩ  
10kΩ  
4.7kΩ  
470p  
Analog Out  
4.16Vpp  
AOUT+  
22μ  
VP-  
NJM5532  
VP+ = +12V  
VP- = -12V  
Figure 67. Output buffer circuit example 3 (AC coupled single-end output)  
Figure 68 shows the output buffer circuit example 4. The output level of this circuit is 2.08Vpp (AK4611: typ. 2.08Vpp).  
AOUT-  
OPEN  
AK4611  
2.08Vpp  
AOUT+  
Analog Out  
2.08Vpp  
22μ  
10kΩ  
Figure 68. Output buffer circuit example 4 (AC coupled single-end output)  
MS1050-E-02  
2010/06  
- 65 -  
 
[AK4611]  
PACKAGE  
z
80-pin LQFP  
( Unit: mm )  
14.0±0.2  
12.0±0.2  
60  
41  
61  
40  
80  
21  
1
20  
0° ~ 10°  
0.20±0.1  
M
0.50  
0.08  
1.25TYP  
0.50±0.2  
0.10  
Package & Lead frame material  
Package molding compound:  
Lead frame material:  
Epoxy resin, Halogen (bromine and chlorine) free  
Cu  
Lead frame surface treatment:  
Solder (Pb free) plate  
MS1050-E-02  
2010/06  
- 66 -  
[AK4611]  
MARKING (AK4611EQ)  
AK4611EQ  
XXXXXXX  
1) Pin #1 indication  
2) Date Code: XXXXXXX(7 digits)  
3) Marking Code: AK4611EQ  
4) Asahi Kasei Logo  
MARKING (AK4611VQ)  
AK4611VQ  
XXXXXXX  
1) Pin #1 indication  
2) Date Code: XXXXXXX(7 digits)  
3) Marking Code: AK4611VQ  
4) Asahi Kasei Logo  
MS1050-E-02  
2010/06  
- 67 -  
[AK4611]  
REVISION HISTORY  
Date (YY/MM/DD) Revision Reason  
Page  
10  
Contents  
09/02/06  
09/06/05  
00  
01  
First Edition  
Specification  
Change  
ANALOG CHARACTERISTICS  
ADC Analog Input Characteristics (differential)  
S/(N+D) fs=48kHz, -1dBFS: 89 88 (min)  
AK4611EQ was added.  
10/06/14  
02  
Description  
Addition  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
Microdevices Corporation (AKM) or authorized distributors as to current status of the products.  
z Descriptions of external circuits, application circuits, software and other related information contained in this  
document are provided only to illustrate the operation and application examples of the semiconductor products. You  
are fully responsible for the incorporation of these external circuits, application circuits, software and other related  
information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third  
parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent,  
intellectual property, or other rights in the application or use of such information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,  
or strategic materials.  
z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or  
other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use  
approved with the express written consent by Representative Director of AKM. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety  
or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or  
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or  
property.  
z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places  
the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer  
or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all  
claims arising from the use of said product in the absence of such notification.  
MS1050-E-02  
2010/06  
- 68 -  

相关型号:

AK4611EQ

4/8-Channel Audio CODEC
AKM

AK4611VQ

4/8-Channel Audio CODEC
AKM

AK4612

6/8-Channel Audio CODEC
AKM

AK4612EQ

6/8-Channel Audio CODEC
AKM

AK4612VQ

6/8-Channel Audio CODEC
AKM

AK4613

4/12-Channel Audio CODEC
AKM

AK4613EQ

4/12-Channel Audio CODEC
AKM

AK4613VQ

4/12-Channel Audio CODEC
AKM

AK4614

6/12-Channel Audio CODEC
AKM

AK4614VQ

6/12-Channel Audio CODEC
AKM

AK4616

24bit 3ch/5ch Audio CODEC with Mic Amplifier
AKM

AK4616VQ

24bit 3ch/5ch Audio CODEC with Mic Amplifier
AKM