AKD4120 [AKM]

Sample Rate Converter with Mixer and Volume; 采样率转换器与混频器和卷
AKD4120
型号: AKD4120
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Sample Rate Converter with Mixer and Volume
采样率转换器与混频器和卷

转换器
文件: 总30页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASAHI KASEI  
[AK4120]  
AK4120  
Sample Rate Converter with Mixer and Volume  
GENERAL DESCRIPTION  
The AK4120 is a stereo asynchronous sample rate converter. The input sample rate range is from 8kHz  
to 48kHz. The output sample rate is fixed at 32kHz, 44.1kHz, 48kHz or 96kHz. AK4120 includes a  
digital mixer and digital volume control. Applications for this device include pro audio mastering,  
consumer format conversion and desktop audio production and playback.  
FEATURES  
o Stereo Asynchronous Sample Rate Converter  
o Digital Mixer  
o Digital Volume  
o Input Sample Rate Range (FSI): 8kHz to 48kHz  
o Output Sample Rate (FSO): 32kHz, 44.1kHz, 48kHz and 96kHz  
o Input to Output Sample Rate Ratio: FSO/FSI = 0.667 to 6  
o THD+N: –113dB at 1kHz input  
o I/F format: MSB justified (20bit), LSB justified (16bit/20bit), I2S  
o Master clock: 256/512fs  
o 3-wire Serial or I2C Bus µP I/F for mode setting  
o Power Supply: 2.7 to 3.6V  
I2S  
I2C  
PDN  
VDD  
VSS  
SDTI1  
ILRCK1  
IBICK1  
Input#1  
Audio  
I/F  
Sample  
Rate  
Converter  
Volume#1  
TEST  
IMCLK1  
IMCLK2  
OMCLK  
SDTI2  
ILRCK2  
IBICK2  
SDTO  
Input#2  
Audio  
I/F  
Output  
Audio  
I/F  
Volume#2  
OLRCK  
OBICK  
m P I/F  
I2MODE  
CAD0  
CSN/CAD1  
CDTI/SDA  
OMODE  
CCLK/SDL  
MS0134-E-00  
2002/1  
- 1 -  
ASAHI KASEI  
[AK4120]  
n Ordering Guide  
AK4120VF  
AKD4120  
-40 ~ +85°C  
24pin VSOP (0.65mm pitch)  
Evaluation Board for AK4120  
n Pin Layout  
IMCLK1  
SDTI1  
IBICK1  
ILRCK1  
TEST  
I2S  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
IMCLK2  
SDTI2  
3
IBICK2  
ILRCK2  
I2MODE  
VDD  
4
5
6
Top  
View  
I2C  
7
VSS  
CAD0  
8
OMODE  
OMCLK  
SDTO  
CSN/CAD1  
9
CCLK/SCL  
CDTI/SDA  
PDN  
10  
11  
12  
OBICK  
OLRCK  
MS0134-E-00  
2002/1  
- 2 -  
ASAHI KASEI  
[AK4120]  
PIN/FUNCTION  
No.  
1
2
Pin Name  
I/O  
Function  
IMCLK1  
SDTI1  
I
I
I
Master Clock Input Pin for Input#1  
Audio Serial Data Input Pin for Input#1  
Audio Serial Data Clock Pin for Input#1  
3
IBICK1  
4
5
ILRCK1  
TEST  
I
I
L/R Clock Pin for Input#1  
Test Pin. Connect to VSS.  
Audio I/F Select Pin  
6
I
I2S  
“L”: Set by Register, “H”: I2S  
I2C Select Pin. “L”: 3-wire, “H”: I2C  
7
8
I2C  
I
I
I
I
CAD0  
CSN  
Chip Address 0 Pin  
Chip Select Pin in 3wire serial control mode in 3-wire Serial Control Mode.  
Chip Address 1 Pin in I2C control mode.  
Control Data Clock Pin in 3wire serial control mode in 3-wire Serial Control  
Mode.  
Control Data Clock Pin in I2C control mode.  
Control Data Input Pin in 3wire serial control mode in 3-wire Serial Control  
Mode.  
Control Data Pin in I2C serial control mode in I2C control mode.  
Power-Down pin  
When “L”, the AK4120 is powered-down and reset.  
L/R Clock Pin for Output  
Audio Serial Data Clock Pin for Output  
Audio Serial Data Pin for Output  
9
CAD1  
CCLK  
SCL  
I
I
10  
CDTI  
SDA  
PDN  
I
11  
12  
I/O  
I
13  
14  
15  
16  
OLRCK  
OBICK  
SDTO  
I/O  
I/O  
O
OMCLK  
I
Master Clock Pin for Output  
Master/Slave select pin for Output Audio Data  
17  
OMODE  
I
“L”: Slave,  
“H”: Master  
18  
19  
VSS  
I
I
Digital Ground Pin  
VDD  
Digital Power Supply Pin, 3.3V  
Master/Slave select pin for Input Audio Data #2  
20  
I2MODE  
I
“L”: Slave,  
“H”: Master  
21  
22  
23  
24  
ILRCK2  
IBICK2  
SDTI2  
I/O  
I/O  
I
L/R Clock Pin for Input#2  
Audio Serial Data Clock Pin for Input#2  
Audio Serial Data Input Pin for Input#2  
Master Clock Input Pin for Input#2  
IMCLK2  
I
MS0134-E-00  
2002/1  
- 3 -  
ASAHI KASEI  
[AK4120]  
ABSOLUTE MAXIMUM RATINGS  
(VSS=0V; Note 1)  
Power Supplies  
Parameter  
Symbol  
VDD  
IIN  
min  
-0.3  
-
max  
Units  
V
4.6  
Input Current, Any Pin Except Supplies  
Input Voltage  
mA  
V
±10  
VDD+0.3  
85  
VIN  
Ta  
-0.3  
-40  
-65  
Ambient Temperature (Power applied)  
Storage Temperature  
°C  
°C  
Tstg  
150  
Note 1: All voltages with respect to ground.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(VSS=0V; Note 2)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Power Supplies  
Note 2: All voltages with respect to ground.  
VDD  
2.7  
3.3  
3.6  
V
SRC PERFORMANCE  
(Ta=-40~ 85°C; VDD = 2.7~3.6V; data = 20bit; measurement bandwidth = 20Hz~ FSO/2; unless otherwise specified.)  
Parameter  
Symbol  
min  
typ  
max  
20  
Units  
Bits  
Resolution  
Input Sample Rate (Note 3)  
Output Sample Rate (Note 4)  
FSI  
FSO  
8
32  
48  
96  
kHz  
kHz  
Dynamic Range (Input= 1kHz, -60dBFS, Note 5)  
FSO/FSI=44.1kHz/48kHz  
-
-
-
115  
116  
114  
119  
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
FSO/FSI=48kHz/44.1kHz  
FSO/FSI=32kHz/48kHz  
FSO/FSI=96kHz/32kHz  
-
Worst Case (FSO/FSI=32kHz/48kHz)  
Dynamic Range (Input= 1kHz, -60dBFS, A-weighted, Note 5)  
FSO/FSI=44.1kHz/48kHz  
112  
-
117  
-
dB  
THD+N  
(Input= 1kHz, 0dBFS, Note 5)  
FSO/FSI=44.1kHz/48kHz  
FSO/FSI=48kHz/44.1kHz  
FSO/FSI=32kHz/48kHz  
-
-
-
-
-
-112  
-113  
-111  
-111  
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
FSO/FSI=96kHz/32kHz  
Worst Case (FSO/FSI=48kHz/8kHz)  
-103  
Ratio between Input and Output Sample Rate  
(FSO/FSI, Note 6, Note 7)  
FSO/FSI  
0.667  
6
-
Note 3. 32kHz~96kHz for INPUT#2 at Path Mode 0. 8kHz~96kHz at Path Mode 2 and 3.  
Note 4. Min = 8kHz at Path Mode 2 and 3.  
Note 5. Measured by Rohde & Schwarz UPD04, Rejection Filter= wide, 8192point FFT. Refer Figure 1 and Figure 2.  
Note 6. The “0.667” is the ratio of FSO/FSI when FSI is 48kHz and FSO is 32kHz  
Note 7. The “6” is the ratio when FSI is 8kHz and FSO is 48kHz.  
MS0134-E-00  
2002/1  
- 4 -  
ASAHI KASEI  
[AK4120]  
-101  
-103  
-105  
-107  
-109  
-111  
-113  
-115  
32  
37  
42  
47  
FSI [kHz]  
Figure 1: Input Sample Rate (FSI) vs. THD+N (FSO=48kHz)  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
10  
100  
1000  
10000  
100000  
Input Frequency [Hz]  
Figure 2: Input Frequency vs. THD+N (FSI=44.1kHz, FSO=48kHz)  
MS0134-E-00  
2002/1  
- 5 -  
ASAHI KASEI  
[AK4120]  
DIGITAL FILTER  
(Ta=-40 85 C; VDD=2.7 3.6V; FSO=FSI=fs)  
~
°
~
Parameter  
Symbol  
min  
typ  
max  
Units  
Digital Filter  
Passband  
Stopband  
Passband Ripple  
Stopband Attenuation  
Group Delay  
(Note 8)  
-0.001dB  
(Note 8)  
PB  
SB  
PR  
SA  
GD  
0
0.4583fs  
± 0.01  
-
kHz  
kHz  
dB  
dB  
1/fs  
0.5417fs  
97  
-
(Note 9)  
56.5  
Note 8. The passband and stopband frequencies scale with fs (system sampling rate).  
Note 9. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is  
output, when LRCK for Output data corresponds with LRCK for Input.(at 20bit MSB justified, 16bit and 20bit  
LSB justified)  
DC CHARACTERISTICS  
(Ta=-40~85°C; VDD=2.7~3.6V)  
Parameter  
Power Supply Current  
Symbol  
min  
typ  
Max  
Units  
Normal operation: (PDN = “H”, Path Mode 0)  
FSI=FSO=48kHz at Slave Mode  
(I2MODE= OMODE = “L”): VDD=3.3V  
FSI=48kHz,FSO=96kHz at Master Mode  
(I2MODE=OMODE= “H”) : VDD=3.3V  
: VDD=3.6V  
8.5  
-
mA  
10.2  
11.5  
10  
-
-
mA  
mA  
mA  
V
20  
100  
-
Power down: PDN = “L”  
High-Level Input Voltage  
Low-Level Input Voltage  
(Note 10)  
VIH  
VIL  
0.7xVDD  
-
-
0.3xVDD  
V
VOH  
VDD-0.4  
-
-
V
High-Level Output Voltage  
Low-Level Output Voltage  
(Iout=-400mA)  
VOL  
VOL  
Iin  
-
-
-
-
-
-
0.4  
0.4  
V
V
(Except SDA pin: Iout=400mA);  
SDA pin: Iout= 3mA)  
Input Leakage Current  
(
± 10  
mA  
Note 10. All digital inputs including clock pins are held VSS.  
MS0134-E-00  
2002/1  
- 6 -  
ASAHI KASEI  
[AK4120]  
SWITCHING CHARACTERISTICS  
(Ta=-40~ 85°C; VDD=2.7~3.6V; CL=20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
Master Clock Input (IMCLK1)  
Frequency  
Duty Cycle (at FSI > 33kHz)  
Duty Cycle (at FSI £ 33kHz)  
Master Clock Input (IMCLK2)  
Frequency  
Duty Cycle (at FSI > 33kHz)  
Duty Cycle (at FSI £ 33kHz)  
Master Clock Input (OMCLK)  
Frequency (Note 11)  
Duty Cycle (at FSI > 33kHz)  
Duty Cycle (at FSI £ 33kHz)  
L/R clock for Input data #1 (ILRCK1)  
Frequency  
fCLK  
dCLK  
dCLK  
2.048  
40  
28  
24.576  
60  
72  
MHz  
%
%
fCLK  
dCLK  
dCLK  
2.048  
40  
28  
24.576  
60  
72  
MHz  
%
%
fCLK  
dCLK  
dCLK  
8.192  
40  
28  
24.576  
60  
72  
MHz  
%
%
fs  
Duty  
8
48  
48  
52  
kHz  
%
Duty Cycle  
50  
L/R clock for Input data #2 (ILRCK2)  
Frequency  
Duty Cycle  
(Note 12)  
Slave Mode  
Master Mode  
fs  
Duty  
Duty  
8
48  
96  
52  
kHz  
%
%
50  
50  
L/R clock for Output data (OLRCK)  
Frequency  
Duty Cycle  
(Note 13)  
Slave Mode  
Master Mode  
fs  
Duty  
Duty  
32  
48  
96  
52  
kHz  
%
%
50  
50  
Audio Interface Timing  
(Note 14)  
Input#1 at Path Mode 0 and 2  
Input#2 (Slave Mode) at Path Mode 1  
BICK Period  
BICK Pulse Width Low  
BICK Pulse Width High  
tBCK  
tBCKL  
tBCKH  
tBLR  
tLRB  
tSDH  
tSDS  
325  
130  
130  
45  
45  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
(Note 15)  
(Note 15)  
SDTI1-2, Hold Time from BICK “”  
SDTI1-2, Setup Time to BICK “”  
Input#2 (Slave Mode) at Path Mode 0 and 3  
BICK Period  
BICK Pulse Width Low  
BICK Pulse Width High  
25  
tBCK  
tBCKL  
tBCKH  
tBLR  
tLRB  
tSDH  
tSDS  
162  
65  
65  
45  
45  
40  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LRCK Edge to BICK “”  
BICK “” to LRCK Edge  
(Note 15)  
(Note 15)  
SDTI2, Hold Time from BICK “”  
SDTI2, Setup Time to BICK “”  
Output (Slave Mode)  
OBICK Period  
OBICK Pulse Width Low  
OBICK Pulse Width High  
OLRCK Edge to OBICK “”  
OBICK “” to OLRCK Edge  
OLRCK to SDTO (MSB)  
OBICK “¯” to SDTO  
tBCK  
tBCKL  
tBCKH  
tBLR  
tLRB  
tLRS  
162  
65  
65  
45  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 15)  
(Note 15)  
40  
40  
tBSD  
MS0134-E-00  
2002/1  
- 7 -  
ASAHI KASEI  
[AK4120]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Audio Interface Timing  
Input#2(Master Mode) at Path Mode 1  
BICK Frequency  
BICK Duty  
BICK “¯” to LRCK  
BICK “¯” to SDTO  
SDTI2 Hold Time from BICK “”  
SDTI2 Setup Time to BICK “”  
Input#2 (Master Mode) at Path Mode0 and 3  
Output (Master Mode)  
BICK Frequency  
BICK Duty  
fBCK  
dBCK  
tMBLR  
tBSD  
tSDH  
tSDS  
64fs  
50  
Hz  
%
ns  
ns  
ns  
ns  
- 25  
- 25  
50  
25  
40  
50  
fBCK  
dBCK  
tMBLR  
tBSD  
tSDH  
tSDS  
64fs  
50  
Hz  
%
ns  
ns  
ns  
ns  
- 20  
- 20  
40  
20  
30  
BICK “¯” to LRCK  
BICK “¯” to SDTO  
SDTI2 Hold Time from BICK “”  
SDTI2 Setup Time to BICK “”  
Note 11. Min is 2.048MHz at Path Mode 2 and 3.  
Note 12. Max is 48kHz at Path Mode 1  
Note 13. Min is 8kHz at Path Mode 2 and 3.  
25  
Note 14. BICK means all audio serial data clocks (IBICK1, IBICK2 and OBICK).  
LRCK means all L/R clocks (ILRCK1, ILRCK2 and OLRCK).  
Note 15. BICK rising edge must not occur at the same time as LRCK edge.  
MS0134-E-00  
2002/1  
- 8 -  
ASAHI KASEI  
[AK4120]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (3-wire Serial mode):  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
200  
80  
80  
40  
40  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN “¯” to CCLK “”  
tCSH  
CCLK “” to CSN “”  
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
4.7  
4.0  
4.7  
4.0  
4.7  
0
0.25  
-
-
100  
-
-
-
-
-
-
-
kHz  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
Clock High Time  
Setup Time for Repeated Start Condition  
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
SDA Hold Time from SCL Falling  
SDA Setup Time to SCL Rising  
(Note 10)  
1.0  
0.3  
-
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
Maximum Pulse Width of Spike Noise Suppressed by  
Input Filter  
tF  
tSU:STO  
tSP  
4.0  
30  
Power-down & Reset Timing  
PDN Pulse Width  
(Note 11)  
tPD  
150  
ns  
Note 10. Data must be held long enough to bridge the 300 ns transition time of SCL.  
Note 11. The AK4120 can be reset by bringing PDN “L” to “H” upon power-up.  
Note 12. I2C is a registered trademark of Philips Semiconductors.  
Purchase of Asahi Kasei Microsystems Co., Ltd I2C components conveys a license under the Philips  
I2C patent to use the components in the I2C system, provided the system conform to the I2C  
specifications defined by Philips.  
MS0134-E-00  
2002/1  
- 9 -  
ASAHI KASEI  
[AK4120]  
n Timing Diagram  
1/fCLK  
VIH  
VIL  
MCLK  
tCLKH  
tCLKL  
dCLK=tCLKH x fCLK, tCLKL x fCLK  
1/fs  
VIH  
VIL  
LRCK  
tBCK  
VIH  
VIL  
BICK  
tBCKH  
tBCKL  
Clock Timing  
VIH  
VIL  
LRCK  
BICK  
SDTO  
tBLR  
tLRS  
tLRB  
VIH  
VIL  
tBSD  
70%VDD  
30%VDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing at Slave Mode  
Note: MCLK means IMCLK1, IMCLK2 and OCLK.  
BICK means IBICK1,IBICK2 and OBICK.  
LRCK means ILRCK1,ILRCK2 and OLRCK.  
SDTI means SDTI1 and SDTI2.  
MS0134-E-00  
2002/1  
- 10 -  
ASAHI KASEI  
[AK4120]  
LRCK  
BICK  
SDTO  
SDTI  
50%VDD  
50%VDD  
tMBLR  
dBCK  
tBSD  
50%VDD  
tSDS  
tSDH  
VIH  
VIL  
Audio Interface Timing at Master Mode  
VIH  
VIL  
CSN  
tCSS  
tCCKL tCCKH  
tCDS tCDH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
C1  
C0  
R/W  
A4  
WRITE Command Input Timing (3-wire Serial mode)  
tCSW  
VIH  
VIL  
CSN  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
D3  
D2  
D1  
D0  
WRITE Data Input Timing (3-wire Serial mode)  
MS0134-E-00  
2002/1  
- 11 -  
ASAHI KASEI  
[AK4120]  
VIH  
VIL  
SDA  
SCL  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
tHD:STA  
tHD:DAT  
tSU:DAT tSU:STA  
Start  
tSU:STO  
Stop  
Stop Start  
I2C Bus mode Timing  
tPD  
VIH  
PDN  
VIL  
tPDV  
70%VDD  
30%VDD  
SDTO  
Power-down & Reset Timing  
MS0134-E-00  
2002/1  
- 12 -  
ASAHI KASEI  
[AK4120]  
OPERATION OVERVIEW  
n I/O Data flow  
The AK4120 has two input audio data interfaces (Input#1 and Input#2). The AK4120 has four modes of operation, each  
corresponding to a different internal audio path as shown in Table 1. These path modes are selected by the PATH1-0  
bits.  
Path Mode  
0
(see Figure 3)  
PATH1-0 bits  
“00”  
Output Data  
The sample rate of Input#1 data is converted by SRC block. This converted  
data paths through Volume#1 and Input#2 data is paths through Volume#2.  
These data are mixed and this mixed data is output. The sample rata of  
Input#1 is defined by IMCLK1 and the sample rate of Output data is  
defined by OMCLK. The sample rate of Input#2 should be same as Output  
data.  
1
“01”  
The sample rate of Input#2 data is converted by SRC block. This converted  
data volume is controlled by Volume#1 and this data is output. The sample  
rata of Input#2 is defined by IMCLK2 and the sample rate of Output data is  
defined by OMCLK.  
(see Figure 4)  
2
“10”  
“11”  
Input#1 data paths through Volume#2 and is output. Output data should  
synchronous with IMCLK.  
Input#2 data paths through Volume#2 and is output. Input#2 should  
synchronous with OMCLK.  
(see Figure 5)  
3
(see Figure 6)  
Table 1. Path Mode  
Note: When Path Mode is changed, the AK4120 should be powered down using the “PW” bit  
MS0134-E-00  
2002/1  
- 13 -  
ASAHI KASEI  
[AK4120]  
I2S  
I2C  
PDN  
VDD  
VSS  
SDTI1  
ILRCK1  
IBICK1  
Input#1  
Audio  
I/F  
Sample  
Rate  
Converter  
Volume#1  
TEST  
IMCLK1  
IMCLK2  
OMCLK  
SDTI2  
ILRCK2  
IBICK2  
SDTO  
Input#2  
Audio  
I/F  
Output  
Audio  
I/F  
Volume#2  
OLRCK  
OBICK  
m P I/F  
I2MODE  
CAD0  
CSN/CAD1 CCLK/SDL CDTI/SDA  
OMODE  
Figure 3. Path Mode 0 (Input#1 SRC + Mixer)  
I2S  
I2C  
PDN  
VDD  
VSS  
SDTI1  
ILRCK1  
IBICK1  
Sample  
Rate  
Converter  
Volume#1  
TEST  
IMCLK1  
IMCLK2  
OMCLK  
SDTI2  
ILRCK2  
IBICK2  
SDTO  
Input#2  
Audio  
I/F  
Output  
Audio  
I/F  
OLRCK  
OBICK  
m P I/F  
I2MODE  
CAD0  
CSN/CAD1  
CDTI/SDA  
OMODE  
CCLK/SDL  
Figure 4. Path Mode 1 (Input#2 SRC)  
MS0134-E-00  
2002/1  
- 14 -  
ASAHI KASEI  
[AK4120]  
I2S  
I2C  
PDN  
VDD  
VSS  
SDTI1  
ILRCK1  
IBICK1  
Input#1  
Audio  
I/F  
TEST  
IMCLK1  
IMCLK2  
OMCLK  
SDTI2  
ILRCK2  
IBICK2  
SDTO  
Input#2  
Audio  
I/F  
Output  
Audio  
I/F  
Volume#2  
OLRCK  
OBICK  
m P I/F  
I2MODE  
CAD0  
CSN/CAD1  
CDTI/SDA  
OMODE  
CCLK/SDL  
Figure 5. Path Mode 2 (Input#1 through output)  
I2S  
I2C  
PDN  
VDD  
VSS  
SDTI1  
ILRCK1  
IBICK1  
TEST  
IMCLK1  
IMCLK2  
OMCLK  
SDTI2  
ILRCK2  
IBICK2  
SDTO  
Input#2  
Audio  
I/F  
Output  
Audio  
I/F  
Volume#2  
OLRCK  
OBICK  
m P I/F  
I2MODE  
CAD0  
CSN/CAD1  
CDTI/SDA  
OMODE  
CCLK/SDL  
Figure 6. Path Mode 3 (Input#2 through output)  
MS0134-E-00  
2002/1  
- 15 -  
ASAHI KASEI  
[AK4120]  
n System Clock  
The external clocks required to operate the AK4120 in each mode are shown in Table 3 and Table 4. The Input#1 port  
works in slave mode only. The Input#2 and Output ports have both slave and master modes that are selected by the  
IMODE2 and OMODE pins. The required external clock shown in Table 2 should be always present whenever the  
AK4120 is in a normal operating mode (PDN=”H”).  
Path Mode  
Synchronizing  
Group A  
SRC  
Synchronizing  
Group B  
(Not used)  
0
1
2
3
SDTI1  
SDTI2  
SDTI1, SDTO  
SDTI2, SDTO  
Active  
Active  
(Not used)  
(Not used)  
SDTI2, SDTO  
-
SDTO  
SDTI1  
SDTI2  
SDTI1  
-
-
Table 2. Clock Synchronization  
Path Mode  
IMCLK1  
Input  
(Not used)  
Input  
IMCLK2  
(Not used)  
Input  
(Not used)  
(Not used)  
OMCLK  
Input  
Input  
(Not used)  
Input  
0
1
2
3
(Not used)  
Table 3. Master Clock  
Path Mode  
ILRCK1,  
ILRCK2, IBICK2  
OLRC, OBICK  
IBICK1  
I2MODE = “L” I2MODE = “H”  
OMODE= “L”  
OMODE= “H”  
0
1
2
3
Input  
(Not used)  
Input  
(Not used)  
Input  
(Not used)  
(Not used)  
Output  
Output  
(Not used)  
Output  
Input  
Input  
(Not used)  
Input  
Output  
Output  
Output  
Output  
(Not used)  
Table 4. LRCK/BICK  
(1) Path Mode 0  
IMCLK1 does not need to be synchronized with OMCLK when using Path Mode 1. IMCLK1 should be synchronized  
with ILRCK1 (clock phase is not important). STDI2 should be synchronized with OLRCK and OBICK. When the  
output is slaved, OMCLK should be synchronized with OLRCK (clock phase is not important). When input#2 is in  
slave mode, OLRCK and OBICK are used while ILRCK2 and IBICK2 are not.  
(2) Path Mode 1  
IMCKL2 does not need to be synchronized with OMCLK. When Input#2 port is in slave mode, IMCLK2 should be  
synchronized with ILRCK2 (clock phase is not important). When Output#2 port is in slave mode, OMCLK should be  
synchronized with OLRCK (clock phase is not important).  
(3) Path Mode 2  
IMCLK1 should be synchronized with ILRCK1 (clock phase is not important). SDTO should be synchronized with  
ILRCK1 and IBICK1. When the Output is in slave mode, the OLRCK and OBICK pins are not used. In master mode,  
ILRCK1 is output through OLRCK and IBICK1 is output through OBICK.  
(4) Path Mode 3  
OMCLK should be synchronized with OLRCK (clock phase is not important). SDTI2 should be synchronized with  
OLRCK and OBICK. When Input#2 is in slave mode, ILRCK2 and IBICK2 pins are not used. In master mode, OLRCK  
is output through ILRCK2 and OBICK is output through IBICK2.  
MS0134-E-00  
2002/1  
- 16 -  
ASAHI KASEI  
[AK4120]  
The frequency of IMCLK1, IMCLK2, and OMCLK are fixed based on the sampling rate and clock speed (256fs/512fs).  
IMCKS1, IMCKS2 and OMCKS bits in register 01H select clock speed.  
LRCK  
fs  
32.0kHz  
44.1kHz  
48.0kHz  
88.2kHz  
96kHz  
MCLK (MHz)  
BICK (MHz)  
64fs  
256fs  
512fs  
16.384  
22.5792  
24.576  
N/A  
8.1920  
11.2896  
12.2880  
22.5792  
24.5760  
2.0480  
2.8224  
3.0720  
5.6448  
6.1440  
N/A  
Table 5. System Clock Example  
n Volume  
AK4120 has two digital volumes (Volume#1 and Volume#2). Volume#1 can control the volume level of data from  
Input#1 while in Path Mode 0 or from Input#2 while in Path Mode 1. It then passes this data through SRC block.  
Volume#2 can control the volume level of data from Input#2 while in Path Mode 0 and Path Mode 3, or from Input#1  
in Path Mode 2. These volume ranges are from –83.25dB to 12dB in 0.75dB steps. The volume level and mute of each  
channel can be controlled by register 3-6H.  
MS0134-E-00  
2002/1  
- 17 -  
ASAHI KASEI  
[AK4120]  
n Audio Serial Interface Format  
Four serial data modes can be selected by the I2S pin and D5-D0 bits in register 00H as shown in Table 6~8. In all  
modes the serial audio data is MSB-first, 2’s compliment format. The SDTO is clocked out on the falling edge of  
BICKO and the SDTI1 and SDTI2 are latched on the rising edge of BICKI1 and BICKI2.  
I2S pin  
DIFI11  
DIFI10  
SDTI1  
20bit, MSB justified  
20bit, I2S  
20bit, LSB justified  
16bit, LSB justified  
20bit, I2S  
LRCK  
H/L  
L/H  
H/L  
H/L  
L
L
L
L
H
0
0
1
1
X
0
1
0
1
X
Default  
Default  
Default  
L/H  
Table 6. Audio data formats for Input#1 port  
I2S pin  
DIFI21  
DIFI20  
SDTI2  
20bit, MSB justified  
20bit, I2S  
LRCK  
H/L  
L/H  
H/L  
H/L  
L
L
L
L
H
0
0
1
1
X
0
1
0
1
X
20bit, LSB justified  
16bit, LSB justified  
20bit, I2S  
L/H  
Table 7. Audio data formats for Input#2 port  
I2S pin  
DIFO1  
DIFO0  
SDTO  
20bit, MSB justified  
20bit, I2S  
LRCK  
H/L  
L/H  
H/L  
H/L  
L
L
L
L
H
0
0
1
1
X
0
1
0
1
X
20bit, LSB justified  
16bit, LSB justified  
20bit, I2S  
L/H  
Table 8. Audio data formats for Output port  
Note: When the Audio Serial Interface Mode is changed, the AK4120 should be powered down using the PW bit.  
(“PW”=0)  
MS0134-E-00  
2002/1  
- 18 -  
ASAHI KASEI  
[AK4120]  
LRCK  
0
1
12  
13  
14  
15  
16  
31  
0
1
12  
13  
14  
15  
16  
31  
0
1
BICK  
(64fs)  
SDTI  
16bit  
Don’t care  
15:MSB, 0:LSB  
19 18  
19:MSB, 0:LSB  
15  
0
0
Don’t care  
Don’t care  
15  
0
0
SDTI  
20bit  
19 18  
Don’t care  
17 16 15  
17 16 15  
Lch Data  
Rch Data  
Figure 7. LSB justified Timing  
LRCK  
0
1
2
18  
19  
20  
30  
31  
0
1
2
18  
19  
20  
30  
31  
0
1
BICK  
(64fs)  
SDTI  
19 18  
1
0
Dont care  
19 18  
1
0
Dont care  
19 18  
20:MSB, 0:LSB  
Lch Data  
Figure 8. MSB justified Timing  
Rch Data  
LRCK  
0
1
2
3
19  
20  
21  
31  
0
1
2
3
19  
20  
21  
31  
0
1
BICK  
(64fs)  
SDTI  
0
1
19 18  
19:MSB, 0:LSB  
Don’t care  
19 18  
1
0
Dont care  
19  
Lch Data  
Rch Data  
Figure 9. I2S Timing  
MS0134-E-00  
2002/1  
- 19 -  
ASAHI KASEI  
[AK4120]  
n Serial Control Interface  
The AK4120 is controlled via registers. Internal registers can be written using one of two control modes, I2C or 3-wire,  
that are selected via I2C pin. PDN = “L” initializes the registers to their default values. When the I2C pin is changed,  
the AK4120 should be reset using the PDN pin.  
* When PDN= “L”, internal registers cannot be written.  
* The AK4120 does not support the read command while using the 3-wire Serial Control Mode.  
(1) 3-wire Serial Control Mode (I2C = “L”)  
Internal registers may be written to using the 3 wire µP interface pins (CSN, CCLK and CDTI). The data on this  
interface consists of a Chip address that is fixed to “10” and a Read/Write status (1bit, Fixed to “1”; Write only).  
Also a Register address (MSB first, 5bits) and Control data (MSB first, 8bits) are used. Address and data is  
clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is  
latched after a low-to-high transition of CSN. The clock speed of CCLK is 5MHz(max)  
CSN  
0
1
2
1
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
CDTI  
C1 C0  
A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
C1-C0:  
R/W:  
A4-A0:  
D7-D0:  
Chip Address (C1:1,C0:CAD0)  
Read/Write (Fixed to “1” : Write only)  
Register Address  
Control Data  
Figure 10. 3-wire Serial Control I/F Timing  
Note: Do not write to the address except 00H through 06H.  
MS0134-E-00  
2002/1  
- 20 -  
ASAHI KASEI  
[AK4120]  
2) I2C-bus Control Mode (I2C= “H”)  
The AK4120 supports the standard I2C-bus interface (max:100kHz). Then AK4120 cannot support fast-mode I2C (max:  
400kHz).  
(2)-1. WRITE Operations  
Figure 11 shows the data transfer sequence in I2C-bus mode. All commands are preceded by a START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 17). After the  
START condition, a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction  
bit (R/WN). The most significant five bits of the slave address are fixed as “00100”. The next two bits are CAD1 and  
CAD0 (device address bits). These two bits identify the specific device on the bus. The hard-wired input pins (CAD1  
pin and CAD0 pin) set them (Figure 12). If the slave address matches that of the AK4120, the AK4120 generates the  
acknowledge and the operation is executed. The master must generate an acknowledge-related clock pulse and release  
the SDA line (HIGH) during the acknowledge clock pulse (Figure 18). A “1” for R/WN bit indicates that the read  
operation is to be executed. A “0” indicates that the write operation is to be executed.  
The second byte is the control register address of the AK4120. The format is MSB first, and three most significant bits  
are fixed to zero (Figure 13). Subsequent bytes contain control data. The format is MSB first, 8-bits (Figure 14). The  
AK4120 generates an acknowledge after each byte has been received. A data transfer is always terminated by a STOP  
condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP  
condition (Figure 17).  
The AK4120 is capable of more than one byte write operation per sequence. After receipt of the third byte, the AK4120  
generates an acknowledge, and awaits the next data. The master can transmit multiple bytes rather than terminating the  
write cycle after the first data byte is transferred. After the receipt of each data, the internal 5-bit address counter is  
incremented by one, and the next data is taken into next address automatically. If the address exceeds 06H prior to  
generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. (If an  
address greater than 07H is set, this function will not work properly.)  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line  
can only change when the clock signal on the SCL line is LOW (Figure 19) except for START and STOP conditions.  
S
S
T
T
A
R
T
R/WN= “0”  
Sub  
O
P
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
Address(n)  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 11. Data transfer sequence at the I2C-bus mode  
0
0
0
1
0
0
CAD1 CAD0 R/WN  
(Those CAD1/0 should match with CAD1/0 pins)  
Figure 12. The first byte  
0
0
A4  
A3  
A2  
A1  
D1  
A0  
D0  
Figure 13. The second byte  
D7  
D6  
D5  
D4  
D3  
D2  
Figure 14. Byte structure after the second byte  
MS0134-E-00  
2002/1  
- 21 -  
ASAHI KASEI  
[AK4120]  
(2)-2. READ Operations  
To enable a READ operation in the AK4120, set R/WN bit = “1”. After transmission of data, the master can read the  
next data address by generating an acknowledge instead of terminating the write cycle after the receipt the first data  
word. After the receipt of each data, the internal 5-bit address counter is incremented by one, and the next data is taken  
into next address automatically. If the address exceeds 06H prior to generating the stop condition, the address counter  
will “roll over” to 00H and the previous data will be overwritten. If an address greater than 07H is set, this function will  
not work properly.)  
The AK4120 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ.  
(2)-2-1. CURRENT ADDRESS READ  
The AK4120 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) were to address n, the next CURRENT READ operation would  
access data from the address n+1. After receipt of the slave address with R/WN bit set to “1”, the AK4120 generates an  
acknowledge, transmits 1data byte whose address is set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge to the data but instead generates a the stop  
condition, the AK4120 ceases transmission  
S
S
T
O
P
T
A
R
T
R/WN= “1”  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 15. CURRENT ADDRESS READ  
(2)-3-2. RANDOM READ  
Random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/WN bit set to “1”, the master must first perform a “dummy” write operation. The master issues a start  
request, slave address(R/WN=“0”) and the register address to read. After the register address’s acknowledged, the  
master immediately reissues the start request and the slave address with the R/WN bit set to “1”. The AK4120 generates  
a stop condition instead of an acknowledge, an acknowledge, 1byte data and increments the internal address counter by  
1. If the master generates a stop condition instead of an acknowledge, the AK4120 stops transmitting.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/WN= “0”  
R/WN= “1”  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 16. RANDOM ADDRESS READ  
MS0134-E-00  
2002/1  
- 22 -  
ASAHI KASEI  
[AK4120]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 17. START and STOP conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 18. Acknowledge on the I2C-bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 19. Bit transfer on the I2C-bus  
Note: Only addresses 00H through 06H are valid write addresses. All others should not be read from or written to.  
MS0134-E-00  
2002/1  
- 23 -  
ASAHI KASEI  
[AK4120]  
n System Reset  
The AK4120 is reset by bringing the power down pin “PDN” =“L”. The digital filters are also reset when this occurs.  
The AK4120 should be reset once by bringing PDN =“L” upon power-up. After a reset, the required clocks shown in  
Table 2 must be input.  
The SRC block starts 2*LRCK1 or 2*LRCK2 after a reset. The SRC block starts outputting data 2053*ORCK after a  
reset occurs. Before 2053*ORCK, the SRC block outputs “L”.  
n Zero cross detection function of Volume  
When ZELM=“0”, the Zero Cross detection function is enabled. Then, if a Volume value is written to the register, the  
volume will not change until a Zero crossing is detected or this process times out. The ZTM1-0 bits in 01H set this  
timeout. When ZELM=“1”, Volume changes soon after volume value is written.  
(3) Zero crossing timeout(ZTM1-0)  
(1)  
(2)  
Figure 20. Zero crossing process  
(1) At this point, volume value is written in register.  
(2) This is a zero crossing point. At this point, volume is changed.  
(3) This is time of Zero crossing timeout that is set by ZTM1-0.  
MS0134-E-00  
2002/1  
- 24 -  
ASAHI KASEI  
[AK4120]  
n Mapping of Program Registers  
Default  
Addr Register Name  
00H Control 1  
01H Control 2  
02H Control 3  
D7  
PW  
D6  
0
D5  
DIFO1  
D4  
DIFO0  
D3  
DIFI21  
0
D2  
DIFI20  
OMCKS  
D1  
DIFI11  
D0  
DIFI10  
IMCKS1  
80H  
20H  
00H  
10H  
10H  
10H  
10H  
IMCKS2  
0
ZELM ZTM1 ZTM0  
MUTE2R  
MUTE2L  
GAIN6  
GAIN6  
GAIN6  
GAIN6  
MUTE1R  
GAIN5  
GAIN5  
GAIN5  
GAIN5  
MUTE1L  
GAIN4  
GAIN4  
GAIN4  
GAIN4  
0
0
PATH1  
GAIN1  
GAIN1  
GAIN1  
GAIN1  
PATH0  
GAIN0  
GAIN0  
GAIN0  
GAIN0  
Lch Volume#1 Control  
0
0
0
0
GAIN3  
GAIN3  
GAIN3  
GAIN3  
GAIN2  
GAIN2  
GAIN2  
GAIN2  
03H  
04H  
05H  
06H  
Rch Volume#1 Control  
Lch Volume#2 Control  
Lch Volume#2 Control  
Note: When the PDN goes to “L”, the registers are initialized to their default values.  
Data must not be written to the address except 00H through 06H.  
n
Register Definitions  
Addr Register Name  
00H Control 1  
Default  
D7  
PW  
1
D6  
0
D5  
DIFO1  
0
D4  
DIFO0  
0
D3  
DIFI21  
0
D2  
DIFI20  
0
D1  
DIFI11  
0
D0  
DIFI10  
0
0
DIFI11-0: Audio Data Formats for Input#1 port (See Table 6).  
DIFI21-0: Audio Data Formats for Input#2 port (See Table 7).  
DIFO1-0: Audio Data Formats for Output port (See Table 8).  
PW: Power down control  
0: Power Down  
At PW=”0”, internal registers can be written.  
1: Normal Operation (Default)  
Addr Register Name  
01H Control 2  
Default  
D7  
0
D6  
D5  
D4  
D3  
0
D2  
OMCKS  
D1  
IMCKS2  
D0  
IMCKS1  
ZELM ZTM1 ZTM0  
0
0
1
0
0
0
0
0
IMCKS1: Master Clock Speed of the Master Clock for Input#1 (IMCLK1)  
0: 256fs(default)  
1: 512fs  
IMCKS2: Master Clock Speed of the Master Clock for Input#2 (IMCLK2)  
0: 256fs(default)  
1: 512fs  
OMCKS: Master Clock Speed of the Master Clock for Output (OMCLK)  
0: 256fs(default)  
1: 512fs  
Note: Set the PW= “0” when those master clocks are changed.  
MS0134-E-00  
2002/1  
- 25 -  
ASAHI KASEI  
[AK4120]  
ZTM1•0:Duration of zero-crossing timeout when ZELM= “0”  
Time of Timeout  
ZTM1  
ZTM0  
48kHz  
10.7ms  
44.1kHz  
11.6ms  
23.2ms  
46.5ms  
92.9ms  
32kHz  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
513/fs  
1025/fs 21.4ms  
2049/fs 42.7ms  
4097/fs 85.4ms  
Default  
Note: Fs is the output sample rate  
Table 9. Time of Timeout  
ZELM: Select Zero Crossing Enable  
0: Enable (Default)  
1: Disable  
Addr Register Name  
02H Control 3  
Default  
D7  
D6  
D5  
D4  
D3  
0
D2  
0
D1  
PATH1  
D0  
PATH0  
MUTE2R  
MUTE2L  
MUTE1R  
MUTE1L  
0
0
0
0
0
0
0
0
PATH1-0: Path Mode Select (See Table 1 and Figure 3-4)  
MUTE1L: Mute control for Lch of Volume#1  
0: Mute off (Default)  
1: Mute On  
MUTE1R: Mute control for Rch of Volume#1  
0: Mute off (Default)  
1: Mute On  
MUTE2L: Mute control for Lch of Volume#2  
0: Mute off (Default)  
1: Mute On  
MUTE2R: Mute control for Rch of Volume#2  
0: Mute off (Default)  
1: Mute On  
MS0134-E-00  
2002/1  
- 26 -  
ASAHI KASEI  
[AK4120]  
Addr Register Name  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Lch Volume#1 Control  
GAIN6  
GAIN6  
GAIN6  
GAIN6  
GAIN5  
GAIN5  
GAIN5  
GAIN5  
GAIN4  
GAIN4  
GAIN4  
GAIN4  
GAIN3  
GAIN3  
GAIN3  
GAIN3  
GAIN2  
GAIN2  
GAIN2  
GAIN2  
GAIN1  
GAIN1  
GAIN1  
GAIN1  
GAIN0  
GAIN0  
GAIN0  
GAIN0  
03H  
04H  
05H  
06H  
Rch Volume#1 Control  
Lch Volume#2 Control  
Rch Volume#2 Control  
0
0
0
Default  
0
0
0
1
0
0
0
0
GAIN6-0: Volume control shown in Table 10 .  
Volume Range: -83.25dB ~12dB(Step 0.75dB)  
GAIN6-0  
00H  
01H  
02H  
:
Volume Level  
12dB  
11.25dB  
10.5dB  
:
9H  
0.75dB  
0dB  
-0.75dB  
:
10H  
11H  
:
Default  
7DH  
7EH  
7FH  
-81.75  
-82.50  
-83.25  
Table 10. Output Volume level  
Note: |Gain error| < 0.3dB, |Step error| < 0.1dB.  
MS0134-E-00  
2002/1  
- 27 -  
ASAHI KASEI  
[AK4120]  
SYSTEM DESIGN  
Figure 21 illustrates a typical system connection diagram. An evaluation board is available which demonstrates this  
application circuit, the optimum layout, power supply arrangement and performance measurement results.  
Condition: VDD=3.3V, 3-wire serial control mode, Chip Address = “10”  
Path Mode 0, Input#2 and Output are slave mode  
IMCLK1  
SDTI1  
IBICK1  
ILRCK1  
TEST  
I2S  
IMCLK2  
SDTI2  
IBICK2  
ILRCK2  
I2MODE  
VDD  
1
2
24  
23  
22  
21  
20  
19  
18  
Digital  
Audio  
Source  
Analog  
Input  
ADC  
3
(DIR)  
4
5
AK4120  
0.1u  
3.3V Supply  
6
I2C  
7
VSS  
CAD0  
8
Top View OMODE  
17  
16  
OMCLK  
9
CSN/CAD1  
CCLK/SCL  
CDTI/SDA  
PDN  
SDTO  
10  
11  
12  
15  
14  
13  
Audio  
DSP  
uP  
OBICK  
OLRCK  
Figure 21. Example of a typical design  
MS0134-E-00  
2002/1  
- 28 -  
ASAHI KASEI  
[AK4120]  
PACKAGE  
24pin VSOP (Unit: mm)  
±
1.25 0.2  
±
*7.8 0.15  
24  
13  
A
12  
1
±
0.22 0.1  
0.65  
±
0.15 0.05  
±
0.1 0.1  
Detail A  
Seating Plane  
0.10  
°
0-10  
NOTE: Dimension "*" does not include mold flash.  
n
Package & Lead frame material  
Package molding compound:  
Lead frame material:  
Epoxy  
Cu  
Lead frame surface treatment:  
Solder plate (Pb free)  
MS0134-E-00  
2002/1  
- 29 -  
ASAHI KASEI  
[AK4120]  
MARKING  
AKM  
AK4120VF  
AAXXXX  
Contents of AAXXXX  
AA:  
Lot#  
XXXX:  
Date Code  
IMPORTANT NOTICE  
· These products and their specifications are subject to change without notice. Before considering  
any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or  
authorized distributor concerning their current status.  
· AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
· Any export of these products, or devices or systems containing them, may require an export  
license or other official approval under the law and regulations of the country of export pertaining  
to customs and tariffs, currency exchange, or strategic materials.  
· AKM products are neither intended nor authorized for use as critical components in any safety, life  
support, or other hazard related device or system, and AKM assumes no responsibility relating to  
any such use, except with the express written consent of the Representative Director of AKM. As  
used here:  
(a) A hazard related device or system is one designed or intended for life support or maintenance  
of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which  
its failure to function or perform may reasonably be expected to result in loss of life or in  
significant injury or damage to person or property.  
(b) A critical component is one whose failure to function or perform may reasonably be expected  
to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device  
or system containing it, and which must therefore meet very high standards of performance  
and reliability.  
· It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or  
otherwise places the product with a third party to notify that party in advance of the above content  
and conditions, and the buyer or distributor agrees to assume any and all responsibility and  
liability for and hold AKM harmless from any and all claims arising from the use of said product in  
the absence of such notification.  
MS0134-E-00  
2002/1  
- 30 -  

相关型号:

AKD4120_06

Sample Rate Converter with Mixer and Volume
AKM

AKD4121

AK4121 Evalation Board Rev.B
AKM

AKD4121A

Asynchronous Sample Rate Converter
AKM

AKD4121A_07

Asynchronous Sample Rate Converter
AKM

AKD4122

24-Bit 96kHz SRC with DIR
AKM

AKD4122A

24-Bit 96kHz SRC with DIR
AKM

AKD4122A-A

Evaluation board Rev.0 for AK4122A
AKM

AKD4124

192KHZ/ 24BIT HIGH PERFORMANCE ASYNCHRONOUS SRC
AKM

AKD4125

192kHz / 24Bit High Performance Asynchronous SRC
AKM

AKD4125-A

digital sample rate converter.
AKM

AKD4126

6ch 192kHz / 24-Bit Asynchronous SRC
AKM

AKD4126-A

digital sample rate converter.
AKM