AKD4561 [AKM]

16bit CODEC with built-in ALC and MIC/HP-Amp; 16位编解码器内置ALC和MIC / HP放大器
AKD4561
型号: AKD4561
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

16bit CODEC with built-in ALC and MIC/HP-Amp
16位编解码器内置ALC和MIC / HP放大器

解码器 编解码器 放大器
文件: 总48页 (文件大小:313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
- Preliminary -  
16bit CODEC with built-in ALC and MIC/HP-Amp  
AK4561  
GENERAL DESCRIPTION  
AK4561 is a 16bit stereo CODEC with a built-in Microphone-Amp, Headphone-Amp. Input circuits include  
Microphone/LINE inputs selector, power supply for microphone, Pre-Amp, HPF-Amp, EQ-Amp and ALC  
(Automatic Level Control) circuit, and output circuits include LINEOUT buffer, Analog Volume and  
Headphone-Amp. As Multi-Power-Supply-System can be set a suitable power supply voltage in each block,  
the AK4561 is compatible with high performance and low power dissipation. The package is a 64pin TQFP,  
therefore, a new system can be a smaller board area than a current system is composed of 2 or 3 chips.  
FEATURE  
1. Resolution: 16bits  
2. Recording Function  
·
·
3-Input Selector (Internal MIC, External MIC and LINE)  
MIC-Amp  
- Pre-Amp, EQ-Amp, HPF-Amp for wind-noise  
Digital ALC (Automatic Level Control) circuit  
FADEIN/FADEOUT  
·
·
·
·
Digital Delay circuit  
Digital HPF for offset cancellation (fc=3.7Hz@fs=48kHz)  
3. Playback Function  
·
·
·
Digital De-emphasis Filter (tc=50/15ms, fs = 32kHz, 44.1kHz and 48kHz)  
LINEOUT Buffer: +2dBV  
Analog Volume  
- 0dB  
~ -50dB, Mute  
·
Headphone-Amp  
- Output Level: -5.5dBV@VA=2.8V, RL=55  
W
·
·
Monaural Output Buffer  
BEEP Signal Input  
4. Analog Through Mode  
5. Power Management  
6. ADC Characteristics (LINEIN  
®
ALC  
®
ADC)  
·
S/(N+D): 78dB, DR=S/N: 86dB  
7. DAC Characteristics (DAC  
® LINEOUT)  
·
S/(N+D): 76dB, DR=S/N: 88dB  
8. Master Clock: 256fs/384fs  
9. Sampling Rate: 8kHz 50kHz  
10. Audio Data Interface Format: MSB-First, 2’s compliment (AK4550 Compatible)  
ADC: 16bit MSB justified, DAC: 16bit LSB justified  
11. Ta = -20 85  
12. Power Supply  
~
·
~
°C  
·
·
·
·
CODEC, Analog Volume, Headphone-Amp: 2.6 ~ 3.3V (typ. 2.8V)  
LINEOUT: 3.8  
MIC-Amp: 2.6  
Digital I/F: 1.8  
~
~
~
5.5V (typ. 4.5V)  
5.0V (typ. 2.8V)  
3.3V (typ. 2.8V)  
13. Power Supply Current  
·
All Circuit Power On: 37mA  
14. Package: 64pin TQFP, 0.4mm Pitch  
Rev. 0.9  
2000/09  
- 1 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
INT_MIC_R  
EXT_MIC_R  
EXT_MIC_L INT_MIC_L  
VTH  
MVSS  
MVDD  
MVCM  
56  
+
+
MPWR  
52  
MRF  
64  
63  
62  
61  
60  
59  
58  
57  
55  
54  
53  
51  
50  
49  
S5-6  
S5-6  
S0  
S0  
S0  
S0  
1
48  
47  
MIC Block  
Pre Amp  
Pre Amp  
EQ Amp  
EQ  
EQ  
2
PM0  
EXT  
S0  
Inv Amp  
EQ Amp  
S1  
46  
Comparator  
Inv Amp  
3
EXT  
S0  
PM1  
PM2  
S1  
S1  
S2  
4
45  
Delay  
Delay  
ATT  
ATT  
ADC  
HPF  
S1  
S2  
S2  
HPF  
5
44  
43  
HPF  
Digital ALC  
6
HVDD  
LOUT1  
LIN  
7
42  
+
S10  
S4  
S10  
PM5  
S10  
PM7  
41  
S10  
HVCM  
8
S3  
PM5  
S8  
9
40  
S10  
HPL  
S4  
S3  
S10  
S10  
PM7  
39  
S8  
10  
S10  
ROUT1  
RIN  
HPR  
Headphone-Amp  
11  
38  
S9  
S12  
PM3  
S7  
12  
13  
14  
15  
16  
37  
36  
35  
34  
33  
VCOM_H  
+
DAC  
S11  
Analog Volume  
MUTE  
CDTI  
S7  
PM6  
PM5 or PM6  
Control  
Register  
BEEP  
CS  
Audio I/F  
Controller  
I/F  
Clock  
Divider  
CCLK  
To SPK-Amp  
17  
18  
VCOM  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VREF  
+
+
REC_MUTE  
BCLK  
MCLK  
SDTI  
SDTO  
PD  
TEST  
LRCK  
COMP  
AGND  
VT  
VD  
VA  
DGND  
Signal Select  
Power Management  
Power Save  
Figure 1. AK4561 Block Diagram  
Rev. 0.9  
2000/09  
- 2 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n Ordering Guide  
AK4561VQ  
AKD4561  
-20 ~ +85 °C  
Evaluation Board  
64pin TQFP (0.4mm pitch)  
n Pin layout  
INV_O_R  
EQ_N_L  
EQ_O_L  
HPF_P1_L  
HPF_P2_L  
HPF_O_L  
MIC_IN_L  
HVCM  
1
EQ_N_R  
EQ_O_R  
HPF_P1_R  
HPF_P2_R  
HPF_O_R  
MIC_IN_R  
HVDD  
48  
47  
46  
45  
44  
43  
42  
2
3
4
5
6
7
Top View  
LOUT1  
LIN  
8
41  
40  
39  
38  
37  
36  
35  
34  
33  
HPL  
9
ROUT1  
RIN  
10  
11  
12  
13  
14  
15  
16  
HPR  
ROUT2  
OPGR  
VCOM_H  
MUTE  
LOUT2  
OPGL  
CDTI  
BEEP  
CS  
MOUT  
CCLK  
Rev. 0.9  
2000/09  
- 3 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
PIN/FUNCTION  
No. Pin Name  
Power Supply  
17 VREF  
18 VCOM  
19 AGND  
20 VA  
28 VD  
29 DGND  
30 VT  
37 VCOM_H  
42 HVDD  
52 MPWR  
55 MRF  
56 MVCM  
57 MVSS  
58 MVDD  
Operation Clock  
22 BCLK  
23 LRCK  
24 MCLK  
25 SDTI  
I/O  
Function  
O
O
ADC, DAC Reference Level, 0.5 x VA  
Common Voltage Output Pin, 0.5 x VA  
Analog Ground Pin  
Analog Power Supply Pin, +2.8V  
Digital Power Supply Pin, +2.8V  
Digital Ground Pin  
Digital I/F Power Supply Pin, +2.8V  
LINEOUT Common Voltage Output Pin, 0.5 x HVDD  
LINEOUT Power Supply Pin, +4.5V  
MIC Power Supply Pin, +2.0V, Idd=3mA(max)  
MIC Power Supply Ripple Filter Pin  
MIC Block Common Voltage Output Pin, 0.5 X MVDD  
MIC Block Ground Pin  
O
O
O
O
MIC Block Power Supply Pin  
I
I
I
I
O
Audio Serial Data Clock Pin  
Input/Output Channel Clock Pin  
Master Clock Input Pin  
Audio Serial Data Input Pin  
Audio Serial Data Output Pin  
26 SDTO  
MIC Block  
1
2
3
4
5
6
INV_O_R  
EQ_N_L  
EQ_O_L  
HPF_P1_L  
HPF_P2_L  
HPF_O_L  
O
I
O
I
Rch Inverter-Amp Output Pin  
Lch EQ•Amp Negative Input Pin  
Lch EQ•Amp Output Pin  
Lch HPF-Amp Positive #1 Input Pin  
Lch HPF-Amp Positive #2 Input Pin  
Lch HPF Output Pin  
I
O
O
I
I
O
I
O
O
I
44 HPF_O_R  
45 HPF_P2_L  
46 HPF_P1_L  
47 EQ_O_R  
Rch HPF Output Pin  
Lch HPF-Amp Positive #2 Input Pin  
Lch HPF-Amp Positive #1 Input Pin  
Rch EQ•Amp Output Pin  
Rch EQ•Amp Negative Input Pin  
Lch Inverter-Amp Output Pin  
Rch Pre•Amp Output Pin  
48 EQ_N_R  
49 INV_O_L  
50 PRE_O_R  
51 PRE_N_R  
53 EXT_MIC_R  
Rch Pre•Amp Negative Input Pin  
Exteranl MIC Rch Input Pin  
I
54 INT_MIC_R  
60 INT_MIC_L  
61 EXT_MIC_L  
62 MIC_B  
I
I
I
Internal MIC Rch Input Pin  
Internal MIC Lch Input Pin  
External MIC Lch Input Pin  
MIC•Amp Bias Pin  
I
63 PRE_N_L  
64 PRE_O_L  
I
O
Lch Pre•Amp Negative Input Pin  
Lch Pre•Amp Output Pin  
Note: All input pins should not be left floating.  
Rev. 0.9  
2000/09  
- 4 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Control Data Interface  
33 CCLK  
I
I
I
Control Clock Input Pin  
34  
Chip Select Pin  
CS  
35 CDTI  
Control Data Input Pin  
ALC Block  
7
MIC_IN_L  
I
I
I
I
Lch MIC Input Pin  
Rch Line Input Pin  
Lch Line Input Pin  
Rch MIC Input Pin  
38 RIN  
40 LIN  
43 MIC_IN_R  
DAC  
11 ROUT2  
13 LOUT2  
39 ROUT1  
41 LOUT1  
Analog Volume  
12 OPGR  
14 OPGL  
Headphone Amp  
O
O
O
O
Rch #2 Line Output Pin, •5.5dBV@VA=2.8V  
Lch #2 Line Output Pin, •5.5dBV@VA=2.8V  
Rch #1 Line Output Pin, +2dBV@VA=2.8V, VOL=+7.5dB  
Lch #1 Line Output Pin, +2dBV@VA=2.8V, VOL=+7.5dB  
I
I
Rch Analog Volume Input Pin  
Lch Analog Volume Input Pin  
8
9
HVCM  
HPL  
O
O
O
Headphone-Amp Common Voltage Output Pin  
Lch Headphone•Amp Output Pin  
Rch Headphone•Amp Output Pin  
10 HPR  
Mixer Amp  
16 MOUT  
Other Functions  
15 BEEP  
21 TEST  
27 COMP  
O
Mixing Analog Output Pin  
I
O
O
Beep Signal Input Pin  
Test pin  
Comparator Output Pin  
31 PD  
I
Power Down & Reset Pin, “L”: Power•down & Reset, “H”: Normal operation  
32 REC_MUTE  
36 MUTE  
59 VTH  
I
I
I
Rec Mute Pin, “L”: Normal Operation, “H”: ADC Output Data Mute  
Mute Pin, “L”: Normal Operation, “H”: Mute  
Comparator Threshold Voltage Input Pin  
Note: All input pins should not be left floating.  
Rev. 0.9  
2000/09  
- 5 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
ABSOLUTE MAXIMUM RATING  
(AGND, DGND, MVSS=0V;Note 1)  
Parameter  
Symbol  
min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
max  
6.0  
6.0  
6.0  
6.0  
6.0  
0.3  
0.3  
±10  
Units  
V
V
V
V
V
V
V
mA  
V
Power Supplies  
Analog 1 (VA pin)  
Analog 2 (HVDD pin)  
MIC (MVDD pin)  
Digital 1 (VD pin)  
Digital 2 (VT pin)  
VA  
HVDD  
MIC  
VD  
VT  
DGND1  
DGND2  
IIN  
| DGND – AGND | (Note 2)  
| MVDD – AGND | (Note 2)  
-
-
Input Current (Any pines except supplies)  
Analog Input Voltage (Note 3)  
(Note 4)  
Digital Input Voltage (Note 5)  
(Note 6)  
VINA1  
VINA2  
VIND1  
VIND2  
Ta  
-0.3  
-0.3  
-0.3  
-0.3  
-20  
-65  
VA+0.3  
MIC+0.3  
VD+0.3  
VT+0.3  
85  
V
V
V
Ambient Temperature  
°C  
°C  
Storage Temperature  
Tstg  
150  
Note 1. All voltages with respect to ground.  
Note 2. “DGND and AGND” and “MVSS and AGND” are the same voltage.  
Note 3. Analog input pins except EXT_MIC_L, EXT_MIC_R, INT_MIC_L, INT_MIC_R, EQ_N1_L, EQ_N1_R,  
EQ_N2_L, EQ_N2_R, HPF_P_L, HPF_P_R and MIC_B.  
Note 4. EXT_MIC_L, EXT_MIC_R, INT_MIC_L, INT_MIC_R, EQ_N1_L, EQ_N1_R, EQ_N2_L, EQ_N2_R,  
HPF_P_L, HPF_P_R and MIC_B pins  
Note 5. MCLK, LRCK, BCLK and SDTI pins  
Note 6. CS , CCLK, CDTI, PD , REC_MUTE and MUTE pins  
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not  
guaranteed at these extremes.  
RECOMMEND OPERATING CONDITIONS  
(AGND, DGND, MVSS=0V; Note 1)  
Parameter  
Power  
Supplies  
Symbol  
VA  
HVDD  
MIC  
VD  
min  
2.6  
3.8  
2.6  
2.6  
1.8  
typ  
2.8  
4.5  
2.8  
2.8  
2.8  
max  
3.3  
5.5  
5.0  
3.3  
3.3  
Units  
V
V
V
V
Analog 1 (VA pin)  
Analog 2 (HVDD pin)  
MIC (MIC pin)  
Digital 1 (VD pin)  
Digital 2 (VT pin)  
VT  
V
Note 1. All voltages with respect to ground.  
* AKM assumes no responsibility for the usage beyond the conditions in this datasheet.  
Rev. 0.9  
2000/09  
- 6 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
ANALOG CHARACTERISTICS  
(Ta=25°C; VA=VD=MVDD=VT=2.8V, HVDD=4.5V; AGND=DGND=MVSS=0V; fs=48kHz;  
Input Frequency =1kHz; Measurement width=20Hz ~ 20kHz; unless otherwise specified)  
Parameter  
min  
typ  
max  
•3.2  
20  
Units  
Pre•Amp Characteristics:  
Input Resistance: Positive Input Pin (Note 7)  
Negative Input Pin (Note 8)  
100  
1.5  
kW  
kW  
dBV  
dBV  
dB  
Maximum Output Voltage (Note 9)  
Output Voltage (Input Voltage = -26dBV, Gain = +16dB) (Note 10)  
Step (+12, +16, +20, +24dB)  
-10  
+4  
Load Resistance  
2
3
3
3
kW  
pF  
Load Capacitance (Note 11)  
Inverter•Amp Characteristics: (Gain:0dB)  
Maximum Output Voltage (Note 9)  
Load Resistance  
-3.2  
20  
dBV  
kW  
pF  
Load Capacitance (Note 11)  
EQ•Amp Characteristics: (Gain:0dB)  
Maximum Output Voltage (Note 9)  
Load Resistance  
-3.2  
20  
dBV  
kW  
pF  
Load Capacitance (Note 11)  
HPF•Amp Characteristics: (Gain: 0dB)  
Maximum Output Voltage (Note 9)  
Load Resistance  
-3.2  
20  
dBV  
kW  
pF  
Load Capacitance (Note 11)  
MIC Block Characteristics: Measured via HPF_O_L/HPF_O_R (Note 10)  
S/(N+D) (-10dBV Output) (Note 12)  
60  
60  
dB  
dB  
(Note 10)  
Output Noise Voltage (No signal input, Rg = 1kW) (Note 12)  
(Note 10)  
-94  
•99  
0.5  
0.5  
70  
dBV  
dBV  
dB  
Interchannel Gain Mismatch (Note 12)  
(Note 10)  
dB  
Interchannel Isolation (Note 12)  
(Note 10)  
dB  
dB  
70  
MIC Power Supply Characteristics:  
Output Voltage (5kW Load)  
2.0  
V
Output Current  
3
mA  
Note 7. INT_MIC_L, INT_MIC_R, EXT_MIC_L and EXT_MIC_R pins  
Note 8. Gain of Pre-Amp is +16dB. Input resistance of Pre-Amp is changed by gain.  
Gain=12dB: 2.4k ± 30%W, Gain=20dB: 950 ± 30%W, Gain=24dB: 600 ± 30%W  
Note 9. Maximum output voltage is typically (MVDD x 0.7) V.  
Note 10. Pre•Amp(Gain:+16dB) ® HPF•Amp (Gain:0dB, HPF OFF)  
Note 11. When output pin drives some capacitive load, some resistor should be added in series between output pin and  
capacitive load.  
Note 12. Pre-Amp (Gain: +16dB) ® Inverter-Amp (Gain: +0dB) ® EQ-Amp (Input/Feedback resistance: 5kW) ®  
HPF-Amp (Gain: 0dB, HPF OFF)  
Rev. 0.9  
2000/09  
- 7 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Parameter  
min  
typ  
max  
Units  
ALC Characteristics (IPGA):  
Maximum Input Voltage (Note 13)  
Input Resistance:  
•0.5  
dBV  
MIC(MIC_IN_L,MIC_IN_R pins) (Note 14)  
LINE(LIN, RIN pins) (Note 15)  
5.6  
9
13  
kW  
kW  
117  
184  
260  
Step Size  
MIC  
LINE  
0.1  
0.1  
0.1  
-
0.5  
1
2
2
4
dB  
dB  
dB  
dB  
dB  
+26dB ~ •10dB  
•10dB ~ •18dB  
•18dB ~ •30dB  
•30dB ~ •42dB  
•42dB ~ •54dB  
+0dB ~ •36dB  
•36dB ~ •44dB  
•44dB ~ •56dB  
•56dB ~ •68dB  
•68dB ~ •80dB  
-
-
ADC Analog Input Characteristics: Input from LIN/RIN, ALC = OFF, IPGA = 0dB  
Resolution  
16  
Bits  
dBV  
dB  
Input Voltage (Note 16)  
•5.5  
S/(N+D)(•0.5dBFS Output)  
DR (•60dBFS Output, A•Weighted)  
S/N (A•Weighted)  
78  
86  
86  
80  
0.5  
dB  
dB  
Interchannel Isolation  
dB  
Interchannel Gain Mismatch  
DAC Analog Characteristics: Measured via LOUT1/ROUT1, VOL=+7.5dB  
Resolution  
dB  
16  
Bits  
dB  
S/(N+D) (0dBFS Input)  
76  
88  
88  
+2  
80  
0.5  
DR (•60dBFS Input, A•Weighted)  
S/N (A•Weighted)  
dB  
dB  
Output Voltage (Note 16)  
Interchannel Isolation  
dBV  
dB  
Interchannel Gain Mismatch  
dB  
Load Resistance  
10  
kW  
pF  
Load Capacitance (Note 17)  
20  
Analog Volume Characteristics (OPGA):  
Input Resistance (OPGL,OPGR pins) (Note 18)  
Step Size: +0dB ~ •16dB  
44  
0.1  
0.1  
-
110  
1
2
205  
kW  
dB  
dB  
dB  
•16dB ~ •38dB  
•38dB ~ •50dB  
4
-
BEEP Input: (BEEP pin)  
Maximum Input Voltage (Note 16)  
Input Resistance  
•5.5  
dBV  
50  
kW  
Note 13. When the ALC operation is enabled, maximum input voltage becomes typically (VA – 0.1V) Vpp.  
2.7Vpp = -0.5dBV @VA=2.8V  
Note 14. Input resistance of MIC changes from 8kW to 10kW by setting GAIN value, typically.  
Note 15. Input resistance of LINE changes from 168kW to 200kW by setting GAIN value, typically.  
Note 16. Input/Output voltage is proportional to VA voltage. 0.54 x VA.  
Note 17. When output pin drives some capacitive load, some resistor should be added in series between output pin and  
capacitive load.  
Note 18. Input resistance of OPGA changes from 63kW to 158kW by setting GAIN value, typically.  
Rev. 0.9  
2000/09  
- 8 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Parameter  
min  
typ  
max  
Units  
Headphone•Amp Characteristics: RL= 47 + 8W (Note 19)  
Output Voltage (-5.5dBV Input) (Note 16)  
S/(N+D) (•5.5dBV Output)  
•5.5  
40  
dBV  
dB  
Output Noise Voltage (OPGA=MUTE, A•Weighted)  
Interchannel Isolation  
•86  
40  
dBV  
dB  
Interchannel Gain Mismatch  
0.5  
dB  
Load Resistance  
55  
W
Load Capacitance (Note 17)  
20  
20  
pF  
Monaural Output: (MOUT pin) (Note 20)  
Output Voltage (-5.5dBV Input) (Note 21)  
S/(N+D) (-5.5dBV Output)  
-11.5  
80  
dBV  
dB  
S/N (A-weighted)  
90  
dB  
Load Resistance  
5
kW  
pF  
Load Capacitance (Note 17)  
Power Supply Current  
Power Up ( PD = “H”)  
All Circuit Power-Up: (PM7-0 bit all “1”)  
VA: Headphone-Amp No input (S8 = “1”)  
VD+VT: (DLYE bit = “1”)  
MVDD: (Note 22)  
21  
5
mA  
mA  
mA  
mA  
9
HVDD: (S10 = “1”) (Note 23)  
ALC + ADC: (PM4=PM2=PM1= “1”) (Note 23)  
VA:  
3
9
4
mA  
mA  
mA  
VD+VT: (DLYE bit = “1”)  
HVDD  
-
0.5  
-
-
DAC + OPGA + MOUT + LINEOUT: (PM7=PM6=PM4=PM3= “1”) (Note 23)  
VA:  
10  
2
mA  
mA  
mA  
mA  
VD+VT:  
HVDD: LINEOUT Normal Operation (S10 = “1”)  
2
0.2  
LINEOUT Power-Save-Mode (S10 = “0”)  
-
DAC + OPGA+ MOUT + LINEOUT + HP-Amp: (PM7=PM6=PM5=PM4=PM3= “1”) (Note 23)  
VA: Headphone-Amp Normal Operation (S8 = “1”),  
No Input  
14  
11  
2
mA  
mA  
mA  
mA  
Headphone-Amp Power-Save-Mode (S8 = “0”)  
-
-
-
-
VD+VT:  
HVDD: (S10 = “1”)  
2
Power Down ( PD = “L”)  
VA+VD+HVDD+MVDD (Note 24)  
200  
mA  
Note 19. Input from OPGL and OPGR pins. Analog Volume (OPGA=0dB) ® Headphone Amplifier  
Note 20. Input from OPGL and OPGR pins. Analog Volume (OPGA=0dB) ® Monaural Amplifier  
Note 21. Lch = -5.5dBV, Rch = no input or Rch = -5.5dBV, Lch = no input  
Note 22. MPWR pin supplies 0mA.  
Note 23. Then power supply current of MVDD is 0.2mA (typ.).  
Note 24. In case of power-down, digital input pins of MCLK, BCLK, LRCK and SDTI are held “VD” or “DGND”.  
Digital input pins of CCLK, REC_MUTE, CCLK, CS , CDTI and MUTE are held “VT” or “DGND”. PD pin  
is held “DGND”.  
Rev. 0.9  
2000/09  
- 9 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
FILTER CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 ~ 3.3V; fs=48kHz; De-emphasis = OFF)  
Parameter  
ADC Digital Filter (LPF):  
Passband (Note 25)  
Symbol  
min  
typ  
max  
Units  
±0.1dB  
-1.0dB  
-3.0dB  
PB  
0
-
-
18.9  
-
-
kHz  
kHz  
kHz  
kHz  
dB  
21.8  
23.0  
Stopband (Note 25)  
Passband Ripple  
SB  
PR  
29.4  
±0.1  
Stopband Attenuation  
Group Delay (Note 26)  
Group Delay Distortion  
SA  
GD  
DGD  
65  
-
dB  
1/fs  
us  
17.0  
0
-
ADC Digital Filter (HPF):  
Frequency Response (Note 25) -3.0dB  
FR  
-
-
-
3.7  
10  
20  
-
-
-
Hz  
Hz  
Hz  
-0.56dB  
-0.15dB  
DAC Digital Filter:  
Passband (Note 25)  
±0.1dB  
-6.0dB  
PB  
0
-
26.2  
21.7  
-
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
24.0  
Stopband (Note 25)  
Passband Ripple  
Stopband Attenuation  
Group Delay (Note 26)  
SB  
PR  
SA  
GD  
±0.06  
43  
-
14.8  
-
DAC Digital Filter + Analog Filter:  
Frequency Response 0 ~ 20.0kHz  
FR  
dB  
±0.5  
Note 25. The passband and stopband frequencies scale with fs (system sampling rate).  
For example, ADC is PB=0.454*fs (@•1.0dB), DAC is PB=0.454*fs (@•0.1dB).  
Note 26. The calculating delay time which occured by digital filtering, This time is from the input of analog signal to  
setting the 16 bit data of both channels on input register to the output register of ADC. And this time include  
group delay of HPF. For DAC, this time is from setting the 16 bit data of both channels on input register to the  
output of analog signal.  
Rev. 0.9  
2000/09  
- 10 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
DC CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 ~ 3.3V; VT=1.8 ~ 3.3V)  
Parameter  
Symbol  
VIH  
VIL  
min  
typ  
max  
Units  
V
V
High-Level Input Voltage (Note 27)  
Low-Level Input Voltage (Note 27)  
High-Level Output Voltage (Note 28) Iout=-200mA  
Low-Level Output Voltage (Note 28) Iout=200mA  
High-Level Output Voltage (Note 29)  
Low-Level Output Voltage (Note 29)  
1.5  
-
-
-
-
-
-
-
-
-
0.6  
-
0.2  
-
VOH1  
VOL1  
VOH2  
VOL2  
Iin  
VD-0.2  
V
V
V
V
-
75%VT  
-
-
25%VT  
±10  
Input Leakage Current  
mA  
Note 27. MCLK, BCLK, LRCK and SDTI pins  
Note 28. SDTO and COMP pins  
Note 29. CS , CCLK, CDTI, PD , REC_MUTE and MUTE pins  
Rev. 0.9  
2000/09  
- 11 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
SWITCHING CHARACTERISTICS  
(Ta=25°C; VA=VD=2.6 ~ 3.3V; VT=1.8 ~ 3.3V; CL=20pF)  
Parameter Symbol  
Control Clock Frequency  
min  
typ  
max  
Units  
Master Clock(MCLK) 256fs: Frequency  
Pulse Width Low  
fCLK  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fs  
2.048  
28  
28  
3.072  
23  
23  
12.288  
12.8  
MHz  
ns  
ns  
MHz  
ns  
ns  
Pulse Width High  
384fs: Frequency  
Pulse Width Low  
Pulse Width High  
18.432  
19.2  
Channel Select Clock (LRCK): Frequency  
Duty  
8
45  
48  
50  
50  
55  
kHz  
%
Duty  
Audio Interface Timing  
BCLK Period  
tBLK  
tBLKL  
tBLKH  
tLRB  
tBLR  
tLRM  
tBSD  
312.5  
130  
130  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCLK Pulse Width Low  
Pulse Width High  
LRCK Edge to BCLK “” (Note 30)  
BCLK “” to LRCK Edge (Note 30)  
LRCK to SDTO(MSB) Delay Time  
BCLK “¯” to SDTO Delay Time  
SDTI Latch Hold Time  
SDTI Latch Set up Time  
Control Interface Timing  
CCLK Period  
50  
80  
80  
tSDH  
tSDS  
50  
50  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
200  
80  
80  
50  
50  
150  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Latch Set Up Time  
CDTI Latch Hold Time  
CS “H” Time  
CS ”¯” to CCLK “”  
CCLK “” to CS “”  
Reset Timing  
tCSH  
PD Pulse Width  
PD “” to SDTO Delay Time (Note 31)  
tPDW  
tPDV  
150  
ns  
1/fs  
8224  
Note 30. BCLK rising edge must not occur at the same time as LRCK edge.  
Note 31. These cycles are the numbers of LRCK rising from PDN pin rising.  
Rev. 0.9  
2000/09  
- 12 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Timing Diagram  
1/fCLK  
1.5V  
0.6V  
MCLK  
tCLKH  
tCLKL  
1/fs  
1.5V  
0.6V  
LRCK  
BCLK  
tBLK  
1.5V  
0.6V  
tBLKH  
tBLKL  
Figure 2. Clock Timing  
1.5V  
0.6V  
LRCK  
t
t
LRB  
BLR  
1.5V  
0.6V  
BCLK  
tLRM  
tBSD  
D14  
D15(MSB)  
SDH  
50%VD  
SDTO  
SDTI  
t
tSDS  
1.5V  
0.6V  
Figure 3. Audio Data Input/Output Timing  
VIH2  
VIL2  
CS  
tCSS  
tCCKH  
tCDH  
tCCKL  
tCDS  
VIH2  
VIL2  
CCLK  
CDTI  
VIH2  
VIL2  
op0  
op1  
op2  
A0  
Figure 4. WRITE Command Input Timing 1  
Rev. 0.9  
2000/09  
- 13 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
tCSW  
tCSH  
VIH2  
VIL2  
CS  
VIH2  
VIL2  
CCLK  
CDTI  
VIH2  
VIL2  
D4  
D5  
D6  
D7  
Figure 5. WRITE Data Input Timing 2  
t
t
PDV  
PDW  
PD  
VIL2  
50%VD  
SDTO  
Figure 6. Reset Timing  
Rev. 0.9  
2000/09  
- 14 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
OPERATION OVERVIEW  
n
System Clock  
The clock which are required to operate are MCLK (256fs/384fs), LRCK (fs), BCLK (32fs~). The master clock (MCLK)  
should be synchronized with LRCK but the phase is free of care.  
The MCLK can be input 256fs or 384fs. When 384fs is input, the internal master clock is divided into 2/3 automatically.  
* fs is sampling frequency.  
When the synchronization is out of phase by changing the clock frequencies during normal operation, the AK4561 may  
occur click noise. In case of DAC, click noise is avoided by setting the inputs to “0”.  
All external clocks (MCLK, BCLK and LRCK) should always be present. If these clocks are not provided, the AK4561  
may draw excess current and it is not possible to operate properly because utilizes dynamic refreshed logic internally. If  
the external clocks are not present, the AK4561 should be in the power-down mode. (Refer to the “Power Management  
Mode”.)  
n System Reset  
AK4561 should be reset once by bringing PD pin “L” upon power-up. After the system reset operation, the all internal  
AK4561 registers become initial value.  
Initializing cycle is 8224/fs=171.3ms@fs=48kHz. During initializing cycle, the ADC digital data outputs of both  
channels are forced to a 2's compliment, “0”. Output data of ADC settles data equivalent for analog input signal after  
initializing cycle. This cycle is not for DAC.  
As a normal initializing cycle may not be executed, nothing writes at address 02H during initializing cycle.  
n Digital High Pass Filter  
The ADC has HPF for the DC offset cancel. The cut-off frequency of HPF is 3.7Hz (@fs=48kHz) and it is •0.15dB at  
22Hz. It also scales with the sampling frequency (fs).  
Rev. 0.9  
2000/09  
- 15 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Audio Interface Format  
Data is shifted in/out the SDTI/SDTO pins using BCLK and LRCK inputs. The serial data is MSB-first, 2's compliment  
format, ADC is MSB justified and DAC is LSB justified.  
LRCK  
0
1
2
9
10 11  
12  
13 14  
15  
0
1
2
9
10 11  
12  
13 14  
15  
0
1
3
3
BCLK(I:32fs)  
SDTO(o)  
SDTI(i)  
15 14  
7
2
6
1
5
4
3
2
1
0
15 14  
1
7
2
6
1
5
4
3
2
1
0
15  
15  
13  
13  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
BCLK(I:64fs)  
SDTO(o)  
15 14 13 1
0
15 14 13  
0
Don’t Care  
15 14  
1
0
Don’t Care  
Rch Data  
15 14  
1
0
SDTI(i)  
15:MSB, 0:LSB  
Lch Data  
Figure 7. Audio Data Timing  
n
Control Register Timing  
The data on the 3-wire serial interface consists of op-code (3bit), address (LSB-first, 5bit) and control data (LSB-first,  
8bit). The Transmitting data is output to each bit by “¯” of CCLK, the receiving data is latched by “” of CCLK. Writing  
data becomes effective by “” of CS . CS should be held to “H” at no access.  
CCLK always need 16 edges of “” during CS = “L” Address except 00H~0BH are inhibited.  
Writing of the control registers are invalid when op2-0 bits are except “111”.  
CS  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CCLK  
CDTI  
op0 op1op2 A0 A1 A2 A3 A4 D0 D1 D2 D3 D4 D5 D6 D7  
"1" "1"  
"1"  
op0-op2: Op-code (Fixed to "111:WRITE")  
A0-A4: Address  
D0-D7: Control Data  
Figure 8. Control Data Timing  
Rev. 0.9  
2000/09  
- 16 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Register Map  
The following registers are reset at PD pin = “L”, then inhibits writing.  
Addr  
Register Name  
D7  
EQ  
0
PM7  
FS  
D6  
S6  
0
PM6  
VOL2  
D5  
S5  
S12  
PM5  
VOL1  
D4  
S4  
S11  
PM4  
D3  
S3  
S10  
PM3  
D2  
S2  
S9  
D1  
S1  
S8  
D0  
S0  
S7  
00H Signal Select 1  
01H Signal Select 2  
02H  
03H Mode Control  
04H Timer Select  
05H ALC Mode Control 1  
06H ALC Mode Control 2  
07H Operation Mode  
08H Input PGA Control  
09H Output PGA Control  
0AH Digital Delay 1  
0BH Digital Delay 2  
Power Management Control  
PM2  
PM1  
PM0  
VOL0 MONO1 MONO0 DEM1  
ZTM0 WTM1 WTM0 LTM1  
ZELM LMAT1 LMAT0 FDATT RATT  
DEM0  
LTM0  
LMTH  
REF0  
ALC  
IPGA0  
FDTM1 FDTM0 ZTM1  
0
0
0
0
0
REF6  
0
REF5  
FR  
REF4  
COMP  
REF3  
0
REF2  
FDIN FDOUT  
REF1  
IPGA6 IPGA5  
IPGA4 IPGA3 IPGA2 IPGA1  
OPGA4 OPGA3 OPGA2 OPGA1 OPGA0  
DLY4  
0
0
DLYE  
0
0
DLY6  
0
0
DLY5  
0
DLY3  
COE3  
DLY2  
COE2  
DLY1  
COE1  
DLY0  
COE0  
Table 1. AK4561 Register Map  
Signal Select 1  
Addr  
Register Name  
D7  
EQ  
1
D6  
S6  
0
D5  
S5  
1
D4  
S4  
0
D3  
S3  
1
D2  
S2  
0
D1  
S1  
0
D0  
S0  
0
00H Signal Select 1  
RESET  
S0: Select Internal / External MIC (Refer to Figure 11 and Figure 12)  
0: Internal MIC (RESET)  
1: External MIC  
S1: Select HPF-Amp  
0: Disable (RESET)  
1: Enable  
When S1 bit is “0”, HPF-Amp becomes a unity gain buffer.  
When External MIC (S0 bit = “1”) is selected, S1 bit is ignored.  
S2: Select input signal of ALC and change gain table of IPGA.  
0: MIC (RESET)  
1: LINE  
S4-3: Select input signal of LINEOUT or Analog Volume (OPGA)  
ON/OFF of DAC is selected by S3 bit, and ON/OFF of Analog Through Mode is selected by S4  
bit.  
00: All input signals are OFF. Then output voltage becomes common voltage.  
01:DAC (RESET)  
10: Analog Through Mode (Output signal of ALC)  
11: Output signal of DAC and Analog Through are mixed.  
S6-5: Select gain of Pre-Amp; +12dB ~ +24dB; 4dB step  
S6 S5  
Gain  
0
0
+12dB  
+16dB  
+20dB  
+24dB  
0
1
1
1
0
1
RESET  
Table 2. Pre-Amp Gain Table  
EQ: Power management of EQ-Amp and Inverter-Amp  
0: OFF. EQ-Amp and Inverter-Amp are always powered-down, then EQ bit is not relative.  
1: ON. EQ-Amp and Inverter-Amp are powered-up/down by PM0 bit. (RESET)  
Note: Pop noise may occur when EQ or S6-0 bits are changed.  
Rev. 0.9  
2000/09  
- 17 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Signal Select 2  
Addr  
Register Name  
D7  
0
0
D6  
0
0
D5  
S12  
0
D4  
S11  
1
D3  
S10  
0
D2  
S9  
1
D1  
S8  
0
D0  
S7  
0
01H Signal Select 2  
RESET  
S7: Select input signal of analog volume (OPGA)  
0: OFF. OPGA output voltage becomes VCOM voltage (RESET)  
1: ON. OPGA is provided to the signal selected by S4-3 bits (DAC or Analog Through Mode).  
S8: Select output signal of Headphone-Amp  
0: OFF. Power-Save-Mode. HPL/HPR pins become Hi-z and HVCM pin is provided to VCOM  
voltage. (RESET)  
1: ON  
S9: Select input signal of BEEP  
0: OFF  
1: ON (RESET)  
S10: Select LINEOUT  
0: OFF (RESET)  
Power-Save-Mode. LINEOUT is provided to VCOM_H voltage.  
1: ON  
S11: Select monaural output (Mixing = (L+R)/2)  
0: OFF (RESET)  
Power-Save-Mode, monaural output is provided to VCOM voltage.  
1: ON  
S12: Select monaural input  
0: OFF (RESET)  
1: ON. Output signal of analog volume is provided to monaural amplifier.  
Note:  
S7: When S7 bit changes from “1” to “0”, the pop noise can not occur. When S7 bit changes from “0” to “1”  
and S12-8 bits are changed, the pop noise occurs.  
Rev. 0.9  
2000/09  
- 18 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Power Management Control  
Addr  
02H  
Register Name  
Power Management Control  
D7  
PM7  
1
D6  
PM6  
1
D5  
PM5  
1
D4  
PM4  
1
D3  
PM3  
1
D2  
PM2  
1
D1  
PM1  
1
D0  
PM0  
1
RESET  
PM0: MIC Block (Pre•Amp, EQ•Amp, HPF•Amp and MPWR) Power Control.  
0: OFF. Output pins are Hi-z.  
1: ON. In case of EQ bit = “0”, EQ-Amp is powered-down. (RESET)  
PM1: IPGA (ALC) Power Control  
0: OFF  
1: ON (RESET)  
PM2: ADC Power Control  
0: OFF. SDTO pin becomes “L”.  
1: ON (RESET)  
When ADC bit changes from “0” to “1”, initializing cycle (8224/fs=171.3ms@fs=48kHz) starts.  
Digital data of ADC is generated after initializing cycle.  
PM3: DAC Power Control  
0: OFF  
1: ON (RESET)  
PM4: Common Voltage (VCOM, VCOM_H and MVCM) Power Control  
0: OFF  
1: ON (RESET)  
PM5: Headphone Amplifier Power Control  
0: OFF. HPL/HPR pins become Hi-z and HVCM pin becomes “L” (AGND).  
1: ON (RESET)  
PM6: MOUT Power Control  
0: OFF. MOUT pin becomes Hi-z.  
1: ON (RESET)  
PM7: LINEOUT Power Control  
0: OFF. Output pins become Hi-z.  
1: ON (RESET)  
Analog volume (OPGA) are enabled when PM6 bit = “1” or PM5 bit = “1”.  
These bits can be partially powered-down by ON/OFF (“1” / “0”). When PD pin goes  
“L”, all the circuit in AK4561 can be powered-down regardless of these bits in the address.  
When bit in this address goes all “0”, all the circuits in AK4561 can be also powered-  
down. But contents of registers are kept.  
When each block is operated, PM4 bit must go “1”. PM4 bit can write “0” when all bits in  
this address can be “0”.  
Except the case of PM6=PM5=PM3=PM2=PM1= “0” or PD pin = “L”, MCLK, BCLK  
and LRCK should not be stopped.  
Rev. 0.9  
2000/09  
- 19 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
MIC  
ADC  
DAC  
ALC  
MPWR  
D0:PM0  
D1:PM1  
D2:PM2  
D3:PM3  
LINE  
OUT  
VCOM  
D4:PM4  
HP  
OPGA  
(*1)  
D5:PM5  
D7:PM7  
MOUT  
BEEP  
(*1: OPGA is enabled by controlling  
PM6 or PM5 bit.)  
D6:PM6  
Figure 9. Power Management Control  
MIC  
ADC  
VA  
ALC  
VA  
DAC  
VA  
MPWR  
MIC: MVDD  
MPWR: HVDD  
LINE  
OUT  
VCOM  
VA  
HP  
VA  
OPGA  
VA  
HVDD  
MOUT  
BEEP  
VA  
Figure 10. Analog Power Supply Source of Each Block  
- 20 -  
Rev. 0.9  
2000/09  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Mode Control  
Addr  
Register Name  
D7  
FS  
1
D6  
VOL2  
0
D5  
VOL1  
1
D4  
D3  
D2  
D1  
D0  
DEM0  
1
03H Mode Control  
RESET  
VOL0 MONO1 MONO0 DEM1  
0
0
0
0
DEM1•0: Select De-emphasis Frequency  
The AK4561 includes the digital de-emphasis filter (tc = 50/15ms) by IIR filter. The filter  
corresponds to three sampling frequencies (32kHz, 44.1kHz and 48kHz). The de-emphasis filter  
selected DEM0 and DEM1 registers are enabled for input audio data.  
DEM1  
DEM0  
Mode  
44.1kHz  
OFF  
0
0
1
1
0
1
0
1
RESET  
48kHz  
32kHz  
Table 3. De-emphasis Frequencies  
MONO1•0: Select digital data of DAC  
MONO1  
MONO0  
LOUT  
Lch  
ROUT  
Rch  
RESET  
0
0
1
1
0
1
0
1
Lch  
Lch  
Rch  
Rch  
Rch  
Lch  
Table 4. Select digital data of DAC  
VOL2•0: LINEOUT Gain Setting  
As signal level of LINEOUT is different by VA power supply voltage, a gain of LINEOUT is set  
by VOL2-0 bits.  
VOL2  
VOL1  
VOL0  
Gain  
VA Voltage  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+8.1dB  
+7.8dB  
+7.5dB  
+7.2dB  
+6.9dB  
+6.6dB  
+6.3dB  
+6.0dB  
2.60 ~ 2.65V  
2.65 ~ 2.75V  
2.75 ~ 2.85V RESET  
2.85 ~ 2.95V  
2.95 ~ 3.05V  
3.05 ~ 3.15V  
3.15 ~ 3.25V  
3.25 ~ 3.30V  
Table 5. LINEOUT volume setting  
FS: Select Sampling Frequency  
0:fs=32kHz  
1:fs=48kHz (RESET)  
Recovery period (WTM1-0 bit), zero crossing timeout (ZTM1-0 bit) and FADEIN/FADEOUT period  
(FDTM1-0 bit), which can set the same period at fs=32kHz and 48kHz.  
Rev. 0.9  
2000/09  
- 21 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
Timer Select  
Addr  
04H Timer Select  
RESET  
Register Name  
D7  
D6  
D5  
D4  
ZTM0  
0
D3  
D2  
D1  
D0  
LTM0  
0
FDTM1 FDTM0 ZTM1  
WTM1 WTM0 LTM1  
1
0
1
1
0
0
LTM1•0: ALC limiter operation period at zero crossing disable (ZELM = “0”)  
The IPGA value is changed immediately. When the IPGA value is changed continuously, the  
change is done by the period specified by LTM1-0 bits.  
ALC Limiter Operation Period  
LTM1  
LTM0  
48kz  
21ms  
42ms  
83ms  
167ms  
44.1kHz  
23ms  
45ms  
91ms  
181ms  
32kHz  
31ms  
63ms  
125ms  
250ms  
RESET  
0
0
1
1
0
1
0
1
1/fs  
2/fs  
4/fs  
8/fs  
Table 6. ALC Limiter Operation Period at zero crossing disable (ZELM = “0”)  
WTM1•0: ALC Recovery Waiting Period  
A period of recovery operation when any limiter operation does not occur during ALC operation.  
Recovery operation is done at period set by WTM1-0 bits.  
When the input signal level exceeds auto recovery waiting counter reset level set by LMTH bit,  
the auto recovery waiting counter is reset.  
The waiting timer starts when the input signal level becomes below the auto recovery waiting  
counter reset level.  
These periods are value at fs=32kHz (FS bit = “0”) or fs=48kHz (FS bit = “1”).  
WTM1  
WTM0  
Period  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
RESET  
Table 7. ALC Recovery Operation Waiting Period  
ZTM1•0: Zero crossing timeout at writing operation by mP and ALC recovery operation and the zero crossing enable  
(ZELM= “1”) of the ALC operation  
When IPGA of each L/R channels do zero crossing or timeout independently, the IPGA value is  
changed by mP WRITE operation or ALC recovery operation or ALC limiter operation (ZELM =  
“1”).  
These periods are value at fs=32kHz (FS bit = “0”) or fs=48kHz (FS bit = “1”).  
ZTM1  
ZTM0  
Period  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
RESET  
Table 8. Zero Crossing Timeout  
FDTM1•0: FADEIN/OUT Cycle Setting  
The FADEIN/OUT operation is done by a period set by FDTM1-0 bits when FDIN or FDOUT  
bits are set to “1”. When IPGA of each L/R channel do zero crossing or timeout independently,  
the IPGA value is changed.  
These periods are value at fs=32kHz (FS bit = “0”) or fs=48kHz (FS bit = “1”).  
FDTM1  
FDTM0  
Period  
16.0ms  
32.0ms  
64.0ms  
128.0ms  
0
0
1
1
0
1
0
1
RESET  
Table 9. FADEIN/OUT Period  
Rev. 0.9  
2000/09  
- 22 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
ALC Mode Control 1  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
05H ALC Mode Control 1  
RESET  
0
0
0
0
ZELM LMAT1 LMAT0 FDATT RATT  
LMTH  
0
0
0
0
0
0
LMTH: ALC Limiter Detection Level / Recovery Waiting Counter Reset Level  
LMTH  
ALC Limiter Detection Level  
ADC Input ³ •5.0dB  
ALC Recovery Waiting Counter Reset Level  
•5.0dB > ADC Input ³ •7.0dB  
RESET  
0
1
ADC Input ³ •3.0dB  
•3.0dB > ADC Input ³ •5.0dB  
Table 10. ALC Limiter Detection Level / Recovery Waiting Counter Reset Level  
RATT: ALC Recovery GAIN Step  
During the ALC Recovery operation, the number of steps changed from current IPGA value is  
set. For example, when the current IPGA value is 30H, RATT = “1” is set, IPGA changes to 32H  
by the ALC recovery operation, the input signal level is gained by 1dB (=0.5dB x 2).  
When the IPGA value exceeds the reference level (REF6-0), the IPGA value does not increase.  
RATT  
GAIN STEP  
RESET  
0
1
1
2
Table 11. ALC Recovery GAIN Step Setting  
FDATT: FADEIN/OUT ATT Step  
During the FADEIN/OUT operation, the number of steps changed from current IPGA value is  
set. For example, when the current IPGA value is 30H, FDATT = “1” is set, IPGA changes to  
32H(at FADEIN operation) or 2EH (at FADEOUT operation) by the FADEIN/OUT operation,  
the input signal level is changed by 1dB (=0.5dB x 2).  
When the IPGA value exceeds the reference level (REF6-0), the IPGA value does not increase.  
FDATT  
ATT STEP  
RESET  
0
1
1
2
Table 12. FADEIN/OUT ATT Step Setting  
LMAT1•0: ALC Limiter ATT Step  
During the ALC limiter operation, when either Lch or Rch exceeds the ALC limiter detection  
level set by LMTH, the number of steps attenuated from current IPGA value is set. For example,  
when the current IPGA value is 68H in the state of LMAT1-0 bit = “11”, it becomes IPGA = 64H  
by the ALC limiter operation, the input signal level is attenuated by 2dB (=0.5dB x 4).  
When the attenuation value exceeds IPGA = “00” (MUTE), it clips to “00”.  
LMAT1  
LMAT0  
ATT STEP  
RESET  
0
0
1
1
0
1
0
1
1
2
3
4
Table 13. ALC Limiter ATT Step Setting  
ZELM: Enable zero crossing detection at ALC Limiter operation  
0: Disable (RESET)  
1: Enable  
In case of ZELM = “1”, IPGA of each L/R channel do zero crossing or timeout independently, the  
IPGA value is changed by ALC operation. Zero crossing timeout is the same as ALC recovery  
operation. In case of ZELM = “0”, the IPGA value is changed immediately.  
Rev. 0.9  
2000/09  
- 23 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
ALC Mode Control 2  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
06H ALC Mode Control 2  
RESET  
0
0
REF6  
1
REF5  
1
REF4  
0
REF3  
0
REF2  
0
REF1  
0
REF0  
0
REF6•0: Set the Reference value at ALC Recovery Operation  
During the ALC recovery operation, if the IPGA value exceeds the setting reference value by  
Gain operation, IPGA does not become the larger than the reference value.  
For example, when REF=30H, RATT=2, IPGA=2FH and IPGA will become 2FH + 2step = 31H  
by the ALC recovery operation, but the IPGA value becomes 30H as REF value is 30H.  
GAIN(dB)  
DATA  
STEP  
LEVEL  
MIC  
+26.0  
+25.5  
+25.0  
·
LINE  
+0.0  
•0.5  
RESET  
60H  
5FH  
5EH  
·
•1.0  
·
2CH  
2BH  
·
+0.0  
•0.5  
•26.0  
•26.5  
·
0.5dB  
73  
·
19H  
18H  
17H  
16H  
·
•9.5  
•35.5  
•36.0  
•37.0  
•38.0  
·
•10.0  
•11.0  
•12.0  
·
1dB  
8
11H  
10H  
0FH  
0EH  
·
•17.0  
•18.0  
•20.0  
•22.0  
·
•43.0  
•44.0  
•46.0  
•48.0  
·
2dB  
4dB  
12  
05H  
04H  
03H  
02H  
01H  
00H  
•40.0  
•42.0  
•46.0  
•50.0  
•54.0  
MUTE  
•66.0  
•68.0  
•72.0  
•76.0  
•80.0  
MUTE  
3
1
Table 14. Setting Reference Value at ALC Recovery Operation  
Rev. 0.9  
2000/09  
- 24 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
Operation Mode  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
07H Operation Mode  
RESET  
0
0
0
0
FR  
0
COMP  
0
0
0
FDIN  
0
ALC  
0
FDOUT  
0
ALC: ALC Enable Flag  
0: Disable (RESET)  
1: Enable  
FDOUT: FADEOUT Enable Flag  
0: Disable (RESET)  
1: Enable  
FDIN: FADEIN Enable Flag  
0: Disable (RESET)  
1: Enable  
* When FADEIN or FADEOUT operation is done, ALC bit should always be “1”.  
COMP: Comparator Output Data  
0: OFF. COMP pin goes “L”. (RESET)  
1: ON. COMP pin generates the analog signal compared from HPF-Amp.  
FR: Select ALC operation Mode  
0: The ALC operation corresponds to impulse noise. (RESET)  
1: The ALC operation is the same as AK4516A.  
Rev. 0.9  
2000/09  
- 25 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
Input PGA Control  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
08H Input PGA Control  
RESET  
0
0
IPGA6 IPGA5  
IPGA4 IPGA3 IPGA2 IPGA1  
IPGA0  
0
0
1
0
1
1
0
IPGA6•0: Input Analog PGA; 97Levels  
GAIN(dB)  
DATA  
STEP  
LEVEL  
MIC  
+26.0  
+25.5  
+25.0  
·
LINE  
+0.0  
•0.5  
60H  
5FH  
5EH  
·
•1.0  
·
RESET  
2CH  
2BH  
·
+0.0  
•0.5  
•26.0  
•26.5  
·
0.5dB  
73  
·
19H  
18H  
17H  
16H  
·
•9.5  
•35.5  
•36.0  
•37.0  
•38.0  
·
•10.0  
•11.0  
•12.0  
·
1dB  
8
11H  
10H  
0FH  
0EH  
·
•17.0  
•18.0  
•20.0  
•22.0  
·
•43.0  
•44.0  
•46.0  
•48.0  
·
2dB  
4dB  
12  
05H  
04H  
03H  
02H  
01H  
00H  
•40.0  
•42.0  
•46.0  
•50.0  
•54.0  
MUTE  
•66.0  
•68.0  
•72.0  
•76.0  
•80.0  
MUTE  
3
1
Table 15. Input Gain Setting  
Rev. 0.9  
2000/09  
- 26 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
Output PGA Control  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
09H Output PGA Control  
RESET  
0
0
0
0
0
0
OPGA4 OPGA3 OPGA2 OPGA1 OPGA0  
1
1
1
1
1
OPGA4•0: Output analog PGA; 32 Level; 0dB ~ •50dB, Mute.  
These bits can change volume of Headphone-Amp and Monaural-Amp.  
This volume includes zero crossing detection, and it does L/R channels independently. Zero  
crossing timeout is 32ms.  
These periods are value at fs=32kHz (FS bit = “0”) or fs=48kHz (FS bit = “1”).  
DATA  
1FH  
1EH  
1DH  
·
GAIN(dB)  
+0  
STEP  
1dB  
LEVEL  
17  
RESET  
•1  
•2  
·
10H  
0FH  
0EH  
0DH  
·
•15  
•16  
•18  
•20  
·
2dB  
4dB  
11  
05H  
04H  
03H  
02H  
01H  
00H  
•36  
•38  
•42  
•46  
•50  
Mute  
3
1
Table 16. ATT value of Analog Volume  
Rev. 0.9  
2000/09  
- 27 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
Digital Delay 1  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0AH Digital Delay 1  
RESET  
DLYE  
0
DLY6  
0
DLY5  
0
DLY4  
0
DLY3  
0
DLY2  
0
DLY1  
0
DLY0  
0
DLY6-0: Setting a delay quantity of Digital Delay Circuit  
The ADC’s data can be delayed to maximum 90tap by a resolution of 1/64fs  
(=0.3ms@fs=48kHz).  
DATA  
59H  
58H  
57H  
56H  
55H  
·
Tap  
90  
89  
88  
87  
86  
·
GAIN(dB)  
90/64fs  
89/64fs  
88/64fs  
87/64fs  
86/64fs  
·
04H  
03H  
02H  
01H  
00H  
5
5/64fs  
4/64fs  
3/64fs  
2/64fs  
1/64fs  
4
3
2
RESET  
1
Table 17. ATT value of Analog Volume  
DLYE: Digital Delay Circuit Enable Flag  
0: Disable. Digital delay circuit is disabled. Then its circuit is powered-down. (RESET)  
1: Enable. Digital delay circuit is operated by a value set by DLY6-0 and COE3-0 bits.  
Rev. 0.9  
2000/09  
- 28 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
D0  
Digital Delay 2  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0BH Digital Delay 2  
RESET  
0
0
0
0
0
0
0
0
COE3  
0
COE2  
0
COE1  
0
COE0  
0
COE3-0: Setting of coefficient of digital delay circuit  
After output data of ADC is delayed, the coefficient value subtracted from the opposite channel is  
set by COE3-0 bits.  
COE3  
COE2  
COE1  
COE0  
coefficient  
0.9375  
0.875  
0.8125  
0.75  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.6875  
0.625  
0.5625  
0.5  
0.4375  
0.375  
0.3125  
0.25  
0.1875  
0.125  
0.0625  
0
RESET  
Table 18. Setting of coefficient of Digital Delay Circuit  
Rev. 0.9  
2000/09  
- 29 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
FUNCTION DETAIL  
n
MIC BLOCK  
MIC block includes 2-inputs selectors, Internal MIC or External MIC Mode can be selected by S0 bit. (Refer to Figure 11  
and Figure 12)  
When Internal MIC is selected, the phase of HPF-Amp is inverted.  
S1  
-
S0  
S0  
S1  
-
+
To ALC  
+
EQ  
+
-
HPF  
INT_MIC_L  
EXT_MIC_L  
EXT  
EQ Amp  
S0  
From Rch  
To Rch  
Pre Amp  
-
+
Inv Amp  
Figure 11. Internal path at selecting Internal MIC Mode (HPF OFF)  
S1  
-
S0  
S0  
S1  
-
+
To ALC  
+
EQ  
+
-
HPF  
INT_MIC_L  
EXT_MIC_L  
EXT  
EQ Amp  
S0  
From Rch  
To Rch  
Pre Amp  
-
+
Inv Amp  
Figure 12. Internal path at selecting External MIC Mode (HPF OFF)  
Rev. 0.9  
2000/09  
- 30 -  
ASAHI KASEI  
1. Pre•Amp  
AKM CONFIDENTIAL  
[AK4561]  
Pre-Amp is non-inverting amplifier and internally biased to MVCM voltage with 100kW (typ.). Gain value of Pre-Amp is  
adjusted by S6-5 bits. Their value is +12dB~+24dB and 4dB step.  
Input impedance is changed by the set of gain. Input impedance value is precision in typ±30%.  
S6  
0
0
1
1
S5  
0
1
0
1
Gain  
Ri (typ)  
2.4kW  
1.5kW  
950W  
600W  
+12dB  
+16dB  
+20dB  
+24dB  
RESET  
An external capacitor needs to cancel DC gain. Cut-off frequency is decided by internal input resistor (Ri) and an external  
capacitor (C).  
Ci  
Ri  
-
+
INT_MIC  
EXT_MIC  
Pre Amp  
Figure 13. Pre•Amp Block  
2. EQ•Amp  
EQ-Amp is block to emphasize a stereo feeling at using Internal MIC Mode. EQ-Amp can be emphasized by adding the  
output signal from pre-amplifier and the opposite channel differentially.  
When External MIC Mode is selected, EQ-Amp does not connect.  
Power ON/OFF of EQ-Amp and Inverter-Amp is enabled by EQ bit. When EQ bit is “1”, they can be ON/OFF by PM0  
bit. When EQ bit is “0”, these amplifiers are OFF then PM0 bit is not relative.  
3. HPF•Amp  
To cancel wind-noise, AK4561 has the HPF-Amp which is non-inverting amplifier, 2nd order high pass filter and gain of  
0dB. The HPF-Amp can be ON/OFF by controlling the internal registers. In case of OFF, HPF-Amp becomes a unity gain  
buffer. This HPF-Amp can use when Internal MIC Mode is selected. In case of External MIC Mode, the control of  
HPF-Amp is invalid and becomes a unity gain buffer.  
4. Power Supply for MIC  
Power Supply for microphone is supplied from MPWR pin. Output voltage is typically 2.0V and MPWR pin can supply  
the current until 3mA.  
When PM0 bit is “0”, the power supply current can be stopped.  
Rev. 0.9  
2000/09  
- 31 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
BEEP Input  
When S9 bit is “1”, input signal from BEEP pin can be output from MOUT pin. Normally, BEEP pin is connected with  
AC coupling.  
Input impedance of BEEP pin is typically 50kW and centered around VCOM voltage. Maximum input voltage to BEEP  
pin is –5.5dBV.  
n
Analog Volume (OPGA)  
The AK4561 includes the 0dB ~ -50dB & MUTE analog volume with zero crossing detection for headphone and speaker.  
Zero crossing is detected on L/R channels independently. Zero crossing timeout (To) is 16ms.  
These periods are value at fs=32kHz (FS bit = “0”) or fs=48kHz (FS bit = “1”).  
OPGA is not written during counting zero crossing timers. In case of writing control register continually, the change of  
OPGA should be written after zero crossing timeout and over. If OPGA is changed by writing to control register before  
zero crossing detection, OPGA value of L/R channels may not give a difference level.  
In case of writing to the control register continually, the control register should be written by an interval more than zero  
crossing timeout. If an appointed interval is written, there is possible to the different value the IPGA value of L/R  
channels.  
Usually, to remove the offset of DAC, it needs a capacitor (Ca) between LOUT2/ROUT2 and OPGL/OPGR. The cut-off  
frequency is decided by capacity of Ca and input impedance (typ. 110kW) of OPGL/OPGR.  
Power supply for analog volume enables when PM6 or PM5 bits is “1”.  
The initial value is 0dB at exiting power-down.  
LOUT2/ROUT2  
Ca  
typ.110k  
W
OPGA  
OPGL/OPGR  
Figure 14. Connect LOUT2/ROUT2 with OPGL/OPGR  
n
LINE input  
In case of LINE input, input impedance of LIN/RIN is 184kW (typ.) and centered around the VCOM voltage. When input  
voltage is +2dBV, LIN/RIN pins should be input to –5.5dBV@VA=2.8V and less after dividing resistors externally.  
When S2 bit is “1”, LINE input is selected. Then IPGA table of ALC is changed to LINE side.  
ALC  
LIN/RIN  
27kW  
Line Input  
W
typ.184k  
W
22k  
Figure 15. Example of LINEIN at VA=2.8V  
Rev. 0.9  
2000/09  
- 32 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Monaural Output  
MOUT pin is provided to the output signal mixed by (L+R)/2 from analog volume (OPGA) by (L+R)/2 or the input signal  
from BEEP pin. Then the mixed signal and the input signal from BEEP pin are added by 1:1.  
Maximum output signal is –5.5dBV and load impedance is minimum 5kW. The input signal from signal is inverted.  
These signals can be stopped when S11 bit is “0”. Then MOUT pin goes VCOM voltage and MOUT buffer becomes  
Power-Save-Mode. (Refer to Figure 17)  
When PD pin changes from “L” to “H” after power-up, MOUT pin is powered-up in normal operation. (Refer to Figure  
16)  
In the Power-Down-Mode ( PD pin = “L” or PM6 bit =0”), output voltage of MOUT pin gradually change from AGND  
to VCOM voltage by the time constants of an internal resistor (R1; typ.200kW) and an external capacitor (C1). (Refer to  
Figure 18)  
S11  
S11  
S11  
C1  
S11  
-
+
MOUT  
R2  
R1  
PM6  
Figure 16. Normal Operation  
S11  
S11  
S11  
C1  
S11  
-
+
MOUT  
R2  
R1  
PM6  
Figure 17. Power-Save-Mode  
S11  
S11  
S11  
C1  
S11  
-
+
MOUT  
R2  
R1  
PM6  
Figure 18. Power-Down-Mode  
Rev. 0.9  
2000/09  
- 33 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
MUTE pin Function  
When MUTE pin is “H”, output signals of LINEOUT and Headphone amplifiers are muted by force, and these signals are  
output to common voltage.  
Monaural output is muted to the input signal of analog volume (OPGA), but is not muted to the input signal of BEEP pin.  
When MUTE pin is “L”, the AK4561 is normal operation.  
When MUTE pin changes from “L” to “H”, pop noise does not occur from output signals of headphone and monaural  
amplifiers, but the pop noise occurs from LINEOUT.  
When MUTE pin changes from “H” to “L”, pop noise occurs from output signals of headphone, monaural and LINEOUT  
amplifiers.  
n
REC_MUTE Function  
When REC_MUTE pin is “H”, output data of ADC become “L” by force after data of Lch or Rch is provided to all 16bit.  
When REC_MUTE pin is “L”, the AK4561 becomes normal operation.  
n
Analog Through Mode  
This mode can be input to playback circuits after adding ALC output signal and shutter signal. This mode can be  
controlled by PM4-3 bits.  
Rev. 0.9  
2000/09  
- 34 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
LINEOUT  
The signals of DAC or Analog Through Mode are gained to +7.5dB (@VA= 2.8V, Vol2•0 bit = “010”) internally, and its  
signal is output from LINEOUT. This gain can be changed by VOL2-0 bits.  
Output level of LINEOUT is +2dBV and centered HVCM voltage. Load resistance is min. 10kW. (Refer to Figure 19)  
Power supply voltage for LINEOUT is supplied from HVDD voltage. The supplied HVDD voltage does not change  
output level of LINEOUT. But if HVDD voltage is low, a distortion characteristic of LINEOUT is bad.  
LOUT1 and ROUT1 outputs are muted by S10 bit. Then LOUT1 and ROUT1 pins is output to HVCM voltage and enter  
Power-Save-Mode. (Refer to Figure 20). When PM7 bit is “0”, LOUT1 and ROUT1 pins become Power-Down-Mode  
and output signal is Hi-z. (Refer to Figure 21)  
When PD pin changes from “L” to “H” after power-up, LOUT1 and ROUT1 pins become Power-Save-Mode. In  
Power-Save-Mode, LOUT1 and ROUT1 pins gradually become HVCM voltage via an internal resistor (R1: typ.200kW)  
from Hi-z to decrease a pop noise. And when Power OFF, the pop noise can be decreased by controlling via Power-  
Save-Mode.  
LOUT  
LOUT1/ROUT1  
LOUT  
LOUT  
C1  
LOUTP  
LOUT  
-
+
R2  
R1  
Figure 19. LINEOUT Normal Operation  
LOUT  
LOUT1/ROUT1  
LOUT  
LOUT  
C1  
LOUTP  
LOUT  
-
+
R2  
R1  
Figure 20. LINEOUT Power-Save-Mode  
LOUT  
LOUT1/ROUT1  
C1  
LOUT  
LOUT  
LOUTP  
LOUT  
R1  
-
+
R2  
Figure 21. LINEOUT Power-Down-Mode  
Rev. 0.9  
2000/09  
- 35 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Headphone Amplifiers  
The output circuit of headphone amplifier does not need a capacitor to cancel DC because the headphone amplifier  
includes center amplifier (HVCM). Load impedance of headphone amplifier is minimum 55W.  
The output signals are muted when S8 bit is “0”, the headphone amplifiers become Power-Save-Mode. Then HPL/HPR  
pin go Hi-z and HVCM pin is output to VCOM voltage. (Refer to Figure 23)  
When PM5 bit is “0”, the headphone amplifiers can be powered-up completely. Then HPL/HPR pins become Hi-z and  
HVCM pin becomes “L” (AGND). (Refer to Figure 24)  
When PD pin changes from “L” to “H” after power-up, the output signals from headphone amplifier is muted, the  
headphone amplifiers are powered-up by Power-Save-Mode. After that, S8 bit should be changed into “0” before  
headphone amplifier is done by the normal operation.  
S8  
HPL/HPR  
-
+
-
+
HVCM  
PM5  
Figure 22. Headphone-Amps Normal Operation  
S8  
HPL/HPR  
-
+
-
+
HVCM  
PM5  
Figure 23. Headphone-Amps Power-Save-Mode  
S8  
HPL/HPR  
-
+
-
+
HVCM  
PM5  
Figure 24. Headphone-Amps Power-Down-Mode  
Rev. 0.9  
2000/09  
- 36 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
Digital Delay Circuit  
When DLYE bit is “1”, digital data (L1 and R1) of ADC can be delayed to a maximum 90tap (DLY6-0 bits) by a  
resolution of 1/64fs (=3ms@fs=48kHz). The coefficient value subtracted from the opposite channel is set by COE3-0 bit.  
When DLYE bit is “0”, the digital delay circuit is powered-down.  
L2 = L1 – (ATT x (Delay x R1))  
R2 = R1 – (ATT x (Delay x L1))  
COE3-0 bit  
L1  
L2  
Delay  
Delay  
ATT  
ATT  
DLY6-0bit  
R2  
R1  
Figure 25. Digital Delay Circuit  
DLYE, DLY6-0 and COE3-0 bits should be changed after ADC is powered-down. During the ADC is normal operation,  
pop noise may occur by changing these bits. The following sentences are an example of changing these bits.  
1. Powered-down ADC (PM2 bit = “0”)  
2. Change DLYE, DLY6-0, COE3-0 bit  
3. The power-down of ADC is released (PM2 bit = “1”)  
Then ADC starts initialization cycle.  
n
Comparator Output  
The input DC voltage form VTH pin is compared with analog output from HPF-Amp. COMP pin goes “H” when either  
Lch or Rch of analog output exceeds threshold level, if it does not exceed the threshold level, COMP pin goes “L”.  
This threshold level can be set by the input DC voltage from VTH pin. VTH pin should be supplied to DC voltage  
(threshold of negative) divided by a resistor between MIC_B pin and MVSS pin. VTH pin can be supplied until minimum  
(MVCM – MVDD x 0.35). For example, the input voltage of VTH pin is 0.4V when MVDD is 2.8V. The threshold of  
positive side is converted by internal inverting amplifier.  
Rev. 0.9  
2000/09  
- 37 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
ALC Operation  
1. ALC Limiter Operation  
During the ALC limiter operation, when either Lch or Rch exceed ALC limiter detection level (LMTH), IPGA value is  
attenuated by ALC limiter ATT step (LMAT1-0) automatically. Then the IPGA value is changed commonly for L/R  
channels.  
In case of ZELM = “0”, timeout period is set by LTM1-0 bits. The operation for attenuation is done continuously until the  
input signal level becomes LMTH or less. After finishing the operation for attenuation, if ALC bit does not change into  
“0”, the operation of attenuation repeats when the input signal level exceed LMTH. (Refer to Figure 26)  
In case of ZELM = “1”, timeout period is set by ZTM1-0 bits. The IPGA value is attenuated by zero crossing detection  
automatically. (Refer to Figure 27)  
When FR bit is “0”, the ALC operation corresponds to the impulse noise in additional to the ALC operation of AK4516A.  
When the impulse noise is input, the ALC recovery operation becomes the faster period than a normal recovery operation.  
When FR bit is “1”, the ALC operation in AK4561 is the same as AK4516A’s.  
[Explanation for ALC operation]  
Limiter starts  
ATT level (LMAT1-0)  
ATT level (LMAT1-0)  
ATT level (LMAT1-0)  
Limiter detection level(LMTH)  
(1) 2dB  
Recovery waiting counter  
reset level (LMTH)  
Limiter finish  
Limiter update period (LTM1-0)  
Figure 26. Disable ALC zero crossing detection (ZELM = “0”)  
(1). When the signal is input between 2dB, the AK4561 does not operate the ALC limiter and recovery.  
Rev. 0.9  
2000/09  
- 38 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
(3) Zero crossing timeout (ZTM1-0)  
ATT level (LMAT1-0)  
(1)  
Limiter detection level (LMTH)  
(2)  
(2)  
Recovery waiting counter reset level (LMTH)  
Limiter detection level (LMTH)  
(1)  
ATT level (LMAT1-0)  
(3) Zero crossing timeout (ZTM1-0)  
Figure 27. In case of continuing the limiter operation (ZELM = “1”)  
(1) When the input level exceeds the ALC limiter detection level, the ALC limiter operation starts. Zero crossing counter  
starts at the same time.  
(2) Zero crossing detection. When the input signal is detected, the IPGA value is attenuated until the value set by  
LMAT1-0 and the ALC limiter operation is finished.  
(3) Zero crossing timeout is set by ZTM1-0 bits. But the first zero crossing timeout cycle after starting the limiter  
operation may be the short cycle by the state of the last zero crossing counter. (For example, in case of doing the  
limiter operation during the recovery operation)  
Rev. 0.9  
2000/09  
- 39 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
2. ALC Recovery Operation  
The ALC recovery operation waits until a time of setting WTM1-0 bits after completing the ALC limiter. If the input  
signal does not exceed “Recovery waiting counter reset level ”, the ALC recovery operation is done. The IPGA value  
increases automatically by this operation up to the set reference level (REF6-0 bits). Then the IPGA value is set for L/R  
commonly. The ALC recovery operation is done at a period set by WTM1-0 bits.  
When L/R channels are detected by zero crossing operation during WTM1-0, the ALC recovery operation waits until  
WTM1-0 period and the next recovery operation is done.  
During the ALC recovery operation, when either input signal level of Lch or Rch exceeds the ALC limiter detection level  
(LMTH), the ALC recovery operation changes into the ALC limiter operation immediately  
In case of “(Recovery waiting counter reset level) £ Input Signal < (Limiter detection level)” during the ALC recovery  
operation, the waiting timer of ALC recovery operation is reset. Therefore, in case of “(Recovery waiting counter reset  
level) > Input Signal”, the waiting timer of ALC recovery operation starts.  
Limiter detection level (LMTH)  
Recovery waiting counter  
reset level (LMTH)  
During recovery counter reset  
Zero crossing detect  
(1)  
WTM counter starts  
ZTM counter starts  
(2)  
(2)  
WTM counter starts  
WTM counter starts  
ZTM counter starts  
WTM counter starts  
(2)  
Figure 28. The transition from the limiter operation to the recovery operation  
(1). When the input signal is below the ALC recovery waiting counter reset level, the ALC recovery operation waits the  
time set by WTM1-0 bits. If the input signal does not exceed the ALC limiter detection level or the ALC recovery  
waiting counter reset level, the ALC recovery operation is done only once.  
(2). The IPGA value is changed by the zero crossing operation in ALC recovery operation, but the next counter of the  
ALC recovery waiting timer is also starting.  
Other:  
When a channel of one side enters the limiter operation during the waiting zero crossing, the present ALC recovery  
operation stops, according as the small value of IPGA (a channel of waiting zero crossing), the ALC limiter operation is  
done.  
When both channels are waiting for the next ALC recovery operation, the ALC limiter operation is done from the IPGA  
value of a point in time.  
During the ALC operation, the value of writing in IPGA6-0 bits is ignored.  
Rev. 0.9  
2000/09  
- 40 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
(1) Recovery waiting counter reset level (LMTH) or reference value of recovery operation (REF6-0)  
Zero crossing detect  
Gain Level (RATT)  
Limiter detection level (LMTH)  
(2) Zero crossing timeout (ZTM1-0) & Recovery waiting time (WTM1-0)  
Figure 29. The continuous ALC Recovery Operation  
(1). When the input signal exceeds the ALC recovery waiting counter reset level, the ALC recovery operation stops, the  
ALC recovery operation is repeated when input signal level is below “LMTH” again. When the IPGA value by  
repeating the ALC recovery operation reaches the reference level (REF6-0 bits), the ALC recovery operation stops.  
(2). ZTM bit sets zero crossing timeout and WTM bit sets the ALC recovery operation period. When the ALC recovery  
waiting time (WTM1-0 bits) is shorter than zero crossing timeout period of ZTM1-0 bit, the ALC recovery is operated  
by the zero crossing timeout period of ZTM1-0 bit. Therefore, in this case the auto recovery operation period is not  
constant.  
Rev. 0.9  
2000/09  
- 41 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
3. Attention of IPGA writing operation  
During the ALC operation, internal control register indicates the different value to the current IPGA value. And if the  
writing value before and after the ALC operation is same, the IPGA value is not updated.  
If the IPGA is the same value before and after the ALC operation, it needs to write the dummy command during the ALC  
operation.  
In Figure 30, the last IPGA value is reflected by doing the following sequence.  
WR(IPGA=60H) ® WR(ALC= “1”) ® WR(ALC= “0”) ® WR(IPGA=60H)  
Internal State  
ALC operation  
Manual Mode  
Manual Mode  
Control Register  
60H  
Internal IPGA Value  
60H--> 40H  
40H  
60H  
(3)  
(2)  
(1)  
Figure 30. IPGA value during ALC operation 1  
(1) WR(ALC = “1”): Enter ALC mode from Manual mode  
(2) WR(ALC = “0”): Finish ALC mode and enter Manual mode  
The IPGA becomes a value after finishing ALC operation. (In Figure 30, the IPGA value assumes  
40H.)  
(3) WR(IPGA=60H): If the written value to control register is the same as the current value, the written value is ignored,  
therefore the IPGA value keeps 40H (the value after finishing the ALC operation).  
Rev. 0.9  
2000/09  
- 42 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
In Figure 31, the last IPGA value is reflected by doing the following sequence.  
WR(IPGA=60H) ® WR(ALC = “1”) ® WR(IPGA=00H) ® WR(ALC = “0”) ® WR(IPGA=60H)  
Internal State  
ALC operation  
Manual Mode  
Manual Mode  
60H  
Control Register  
60H  
00H  
Internal IPGA Value  
60H--> 40H  
60H  
60H  
(4)  
(3)  
(2)  
(1)  
Figure 31. IPGA value during ALC operation 2  
(1) WR(ALC = “1”): Enter ALC mode from Manual mode  
(2) WR(IPGA=”00”): Write IPGA=00H to control register.  
The IPGA value of fact is not reflected during ALC operation.  
(3) WR(ALC = “0”): Finish ALC mode and enter Manual mode  
(4) WR(IPGA=60H): IPGA value is changed as between the last written value to control register (IPGA=00H) and the  
IPGA value at finishing ALC operation is different value.  
4. IPGA writing operation at ALC operation OFF (ALC bit = “0”)  
The zero crossing detection of IPGA is done to L/R channels independently. Zero crossing timeout can be set by ZTM1-0  
bits. When the control register is written from mP, the zero crossing counter for L/R channels commonly is reset and its  
counter starts. When the signal detects zero crossing or zero crossing timeout, the written value from mP becomes a valid  
for the first time.  
In case of writing to the control register continually, the control register should be written by an interval more than zero  
crossing timeout. If an appointed interval is written, there is possible to the different value the IPGA value of L/R  
channels. For example, when the present IPGA value is updated by zero crossing detection in a channel of one side and  
other channel is not updated, if the new data is written in IPGA, the updated channel is keeping the last IPGA value and  
other channel is updated to a new IPGA value by the last zero crossing counter. Therefore, zero crossing counter does not  
reset when the zero crossing detection is waiting.  
If the written value is the same as the current value, the writing value is ignored.  
Rev. 0.9  
2000/09  
- 43 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
During ALC operation, the following registers are inhibits.  
· LTM1-0, LMTH, LMAT1-0, WTM1-0, ZTM1-0, RATT, REF6-0, ZELM  
Manual-Mode  
WR (Power Management Control & Signal Select registers)  
WR (ZTM1-0, WTM1-0, LTM1-0)  
WR (LMAT1-0, RATT, LMTH)  
WR (REF6-0)  
* The value of IPGA should be the  
same or smaller than REF’s.  
WR (IPGA6-0)  
WR (ALC= “1”)  
ALC Operation  
No  
Finish ALC mode?  
Yes  
WR (ALC= “0”)  
RD (STAT)  
No  
STAT = “1”?  
Yes  
Finish ALC-Mode and become manual-Mode  
Figure 32. Registers set-up sequence at ALC operation  
- 44 -  
Rev. 0.9  
2000/09  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
FADEIN Mode  
In FADEIN Mode, the IPGA value is increased at the value set by FDATT when FDIN bit changes from “0” to “1”.  
The update period can be set by FDTM1-0 bits. The FADEIN Mode is always detected by the zero crossing operation.  
This operation is kept over the REF value or until the limiter operation at once. If the limiter operation is done during  
FADAIN cycle, the FADEIN operation becomes the ALC operation.  
NOTE: When FDIN and FDOUT bits are “1”, FDOUT operation is enabled.  
IPGA Ouput  
ALC bit  
FDIN bit  
(5)  
(1) (2)  
(3)  
(4)  
Figure 33. Example for controlling sequence in FADEIN operation  
(1) WR (ALC = FDIN = “0”): The ALC operation is disabled. To start the FADEIN operation, FDIN bit is written in “0”.  
(2) WR (IPGA = “MUTE”): The IPGA output is muted.  
(3) WR (ALC = FDIN = “1”): The FADEIN operation starts. The IPGA changes from the MUTE state to the FADEIN  
operation.  
(4) The FADEIN operation is done until the limiter detection level (LMTH) or the reference level (REF6-0). After  
completing the FADEIN operation, the AK4561 becomes the ALC operation.  
(5) FADEIN time can be set by FDTM1-0 and FDATT bits  
E.g. FDTM1-0 = 32ms, FDATT = 1step  
(96 x FDTM1-0) / FDATT = 96 x 32ms / 1 = 3.07s  
Rev. 0.9  
2000/09  
- 45 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
n
FADEOUT Mode  
In FADEOUT mode, the present IPGA value is decreased until the MUTE state when FDOUT bit changes from “0” to  
“1”. This operation is always detected by the zero crossing operation.  
If the large signal is input to the ALC circuit during the FADEOUT operation, the ALC limiter operation is done.  
However a total time of the FADEOUT operation is the same time, even if the limiter operation is done. The period of  
FADEOUT is set by FDTM1-0 bits, a number of step can be set by FDATT bit.  
When FDOUT bit changes into “0” during the FADEOUT operation, the ALC operation start from the preset IPGA value.  
When FDOUT and ALC bits change into “0” at the same time, the FDOUT operation stops and the IPGA becomes the  
value at that time.  
NOTE: When FDIN and FDOUT bits are “1”, FDOUT bit is enabled.  
IPGA Output  
ALC bit  
FDOUT bit  
(2)  
(1)  
(3)  
(4) (5) (6) (7) (8)  
Figure 34. Example for controlling sequence in FADEOUT operation  
(1) WR (FDOUT = “1”): The FADEOUT operation starts. Then ALC bit should be always “1”.  
(2) FADEOUT time can be set by FDTM1-0 and FDATT bits.  
During the FADEIN operation, the zero crossing timeout period is ignored and becomes the same as the FADEIN  
period.  
E.g. FDTM1-0 = 32ms, FDATT = 1step  
(96 x FDTM1-0) / FDATT = 96 x 32ms / 1 = 3.07s  
(3) The FADEOUT operation is completed. The IPGA value is the MUTE state. If FDOUT bit is keeping “1”, the IPGA  
value is keeping the MUTE state.  
(4) Analog and digital outputs mutes externally. Then the IPGA value is the MUTE state.  
(5) WR (ALC = FDOUT = “0”): Exit the ALC and FADEOUT operations  
(6) WR (IPGA): The IPGA value changes the initial value (exiting MUTE state).  
(7) WR (ALC = “1”, FDOUT = “0”): The ALC operation restarts. But the ALC bit should not write until completing zero  
crossing operation of IPGA.  
(8) Release a mute function of analog and digital outputs externally.  
Rev. 0.9  
2000/09  
- 46 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
PACKAGE  
9.0 ± 0.2  
7.0  
33  
48  
32  
49  
17  
64  
1
0.4  
16  
0.07  
M
0° ~ 10°  
0.18 ± 0.05  
0.5 ± 0.2  
0.10  
n
Package & Lead frame material  
Package molding compound: Epoxy  
Lead frame material: Cu  
Lead frame surface treatment: Solder plate  
Rev. 0.9  
2000/09  
- 47 -  
ASAHI KASEI  
AKM CONFIDENTIAL  
[AK4561]  
MARKING  
AK4561VQ  
XXXXXXX  
JAPAN  
1
- Asashi kasei Logo  
- Marketing Code: AK4561VQ  
- Date Code: XXXXXXX (7 digits)  
First 4 digits: weekly code, Remains 3 digits: code management in office  
- Country of Origin: JAPAN  
IMPORTANT NOTICE  
· These products and their specifications are subject to change without notice. Before considering any use or  
application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor  
concerning their current status.  
· AKM assumes no liability for infringement of any patent, intellectual property, or other right in the  
application or use of any information contained herein.  
· Any export of these products, or devices or systems containing them, may require an export license or other  
official approval under the law and regulations of the country of export pertaining to customs and tariffs,  
currency exchange, or strategic materials.  
· AKM products are neither intended nor authorized for use as critical components in any safety, life support,  
or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except  
with the express written consent of the Representative Director of AKM. As used here:  
a. A hazard related device or system is one designed or intended for life support or maintenance of safety or  
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or  
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or  
property.  
b. A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing  
it, and which must therefore meet very high standards of performance and reliability.  
· It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise  
places the product with a third party to notify that party in advance of the above content and conditions, and  
the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless  
from any and all claims arising from the use of said product in the absence of such notification.  
Rev. 0.9  
2000/09  
- 48 -  

相关型号:

AKD4562

EVALUATION BOARD REV.A FOR AK4562
AKM

AKD4562(AKD4562)

Evaluation board Rev.A for AK4562
AKM

AKD4562.(AKD4562)

Evaluation board Rev.A for AK4562
AKM

AKD4563A

Low Power 16bit 4ch ADC & 2ch DAC with ALC
AKM

AKD4563A_06

16bit 4ch A/D and 2ch D/A converter,
AKM

AKD4564

16BIT CODEC WITH BUILT-IN ALC AND MIC/HP/SPK-AMP
AKM

AKD4565

Evaluation board Rev.A for AK4565
AKM

AKD4566

20bit Stereo CODEC with built-in IPGA & HP-AMP
AKM

AKD4569

20-Bit Stereo CODEC with IPGA & HP-AMP
AKM

AKD4571

USB Interface Audio CODEC
AKM

AKD4584

24Bit 96kHz Audio CODEC with DIT/DIR
AKM

AKD4584_06

the 24bit 96kHz CODEC
AKM