AKD4682 [AKM]

Multi-channel CODEC with 2Vrms Stereo Selector; 多通道编解码器与立体声2Vrms的选择
AKD4682
型号: AKD4682
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Multi-channel CODEC with 2Vrms Stereo Selector
多通道编解码器与立体声2Vrms的选择

解码器 编解码器
文件: 总43页 (文件大小:673K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4682]  
AK4682  
Multi-channel CODEC with 2Vrms Stereo Selector  
GENERAL DESCRIPTION  
The AK4682 is a single chip CODEC that includes two channels of ADC and four channels of DAC. The ADC  
outputs 24bit data and the DAC accepts up to 24bit input data. The ADC has the Enhanced Dual Bit  
architecture with wide dynamic range. The DAC introduces the new developed Advanced Multi-Bit  
architecture, and achieves wider dynamic range and lower outband noise. The AK4682 integrates stereo  
selector supporting 2Vrms I/O. The AK4682 has a dynamic range of 96dB for ADC, 102dB for DAC and is well  
suited for digital TV and home theater system.  
FEATURES  
† ADC/DAC part  
† Asynchronous ADC/DAC Operation  
† 8:1 Stereo Selector for ADC Input  
† 8:3 Stereo Selector with 2Vrms Output Buffer  
† 2-channel 24bit ADC  
- 64x Oversampling  
- Sampling Rate up to 48kHz  
- Linear Phase Digital Anti-Alias Filter  
- Single-Ended Input  
- S/(N+D): 88dB  
- Dynamic Range, S/N: 96dB  
- Digital HPF for Offset Cancellation  
- Channel Independent Digital Volume (+24/-103dB, 0.5dB/step)  
- Soft Mute  
† 4-channel 24bit DAC  
- 128x Oversampling  
- Sampling Rate up to 192kHz  
- 24bit 8 times Digital Filter  
- S/(N+D): 86dB  
- Dynamic Range, S/N: 102dB  
- Channel Independent Digital Volume (+12/-115dB, 0.5dB/step)  
- Soft Mute  
- De-emphasis Filter  
- Output Mode: Stereo, Mono, Reverse, Mute  
† High Jitter Tolerance  
† TTL Level Digital I/F  
† External Master Clock Input:  
256fs, 384fs, 512fs 768fs (fs=32kHz 48kHz)  
128fs, 192fs, 256fs 384fs (fs=64kHz 96kHz)  
128fs, 192fs (fs=120kHz ~ 192kHz)  
† 2 Audio Serial I/F (PORTA, PORTB)  
- Master/Slave mode (for PORTB)  
- I/F format  
PORTA: Left(24 bit)/Right(20/24 bit) justified, I2S, TDM  
PORTB: Left justified, I2S  
† I2C Bus μP I/F for mode setting  
† Operating Voltage:  
- Digital I/O: 2.7V 5.25V,  
- Analog: 4.75V ~ 5.25V and 8.5V ~ 12.6V  
† Package: 48pin LQFP (0.5mm pitch)  
MS0610-E-01  
2007/07  
- 1 -  
[AK4682]  
2Vrms  
LIN1  
LIN2  
LIN3  
LIN4  
LIN5  
LIN6  
PORTB  
MCLKB  
2ch  
HPF, Serial  
BICKB  
LRCKB  
SDTOB  
ADC DVOL I/F  
RIN1  
RIN2  
RIN3  
RIN4  
RIN5  
RIN6  
MSB  
2Vrms  
LOUT1  
ROUT1  
LOUT2  
ROUT2  
PORTA  
MCLKA  
BICKA  
LRCKA  
SDTIA1  
SDTIA2  
L1  
2ch DVOL  
Serial  
Stereo  
Matrix  
R1  
DAC  
I/F  
L2  
2ch DVOL  
DAC  
Stereo  
Matrix  
R2  
SDA  
SCL  
Control  
I/F  
LOUT3  
ROUT3  
AK4682 Block Diagram  
MS0610-E-01  
2007/07  
- 2 -  
[AK4682]  
Ordering Guide  
AK4682EQ  
AKD4682  
-20 +85°C  
Evaluation Board  
48pin LQFP (0.5mm pitch)  
Pin Layout  
24  
23  
22  
21  
LIN3  
RIN3  
NC  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
LOUT3  
PVSS  
PVDD  
ROUT2  
LOUT2  
MSB  
LIN4  
RIN4  
NC  
AK4682EQ  
20  
19  
18  
17  
16  
15  
14  
13  
LIN5  
RIN5  
NC  
ROUT1  
LOUT1  
DVSS2  
DVDD2  
SCL  
Top View  
LIN6  
RIN6  
DVDD1  
SDA  
MS0610-E-01  
2007/07  
- 3 -  
[AK4682]  
PIN/FUNCTION  
No. Pin Name  
I/O  
Function  
1
2
3
4
5
6
DVSS1  
MCLKB  
TVDD  
LRCKB  
BICKB  
SDTOB  
-
I
-
ADC Digital Ground Pin, 0V  
ADC Master Clock Input Pin  
Output Buffer Power Supply Pin, 2.7V5.25V  
I/O Channel Clock B Pin  
I/O Audio Serial Data Clock B Pin  
O
Audio Serial Data Output B Pin  
Power-Down Mode & Reset Pin  
7
PDN  
I
When “L”, the AK4682 is powered-down, all registers are reset. And then all digital  
output pins go “L”. The AK4682 must be reset once upon power-up.  
Input Channel Clock A Pin  
Audio Serial Data Clock A Pin  
DAC Master Clock Input Pin  
8
9
LRCKA  
BICKA  
I
I
I
I
I
10 MCLKA  
11 SDTIA1  
12 SDTIA2  
13 SDA  
Audio Serial Data Input A1 Pin  
Audio Serial Data Input A2 Pin  
I/O Control Data Pin  
14 SCL  
I
-
-
O
O
Control Data Clock Pin  
DAC Digital Power Supply Pin, 4.75V5.25V  
DAC Digital Ground Pin, 0V  
Lch Analog Output Pin1  
Rch Analog Output Pin1  
15  
DVDD2  
16 DVSS2  
17 LOUT1  
18 ROUT1  
PORTB Master Mode Select Pin.  
“L”(connected to the ground): Master/Slave mode. ORed with MSB bit.  
“H”(connected to DVDD2) : Master mode.  
Lch Analog Output Pin2  
Rch Analog Output Pin2  
Output Buffer Power Supply Pin, 8.5V ~ 12.6V.  
Output Buffer Ground Pin, 0V.  
19 MSB  
I
20 LOUT2  
21 ROUT2  
22 PVDD  
23 PVSS  
O
O
-
-
24 LOUT3  
25 ROUT3  
26 AVDD2  
27 AVSS2  
O
O
-
Lch Analog Output Pin 3  
Rch Analog Output Pin 3  
DAC Analog Power Supply Pin, 4.75V5.25V  
DAC Analog Ground Pin, 0V  
-
Common Voltage Output Pin for Output Buffer. AVDD2 x 0.734(typ).  
10μF capacitor should be connected to AVSS2 externally.  
DAC/ADC Common Voltage Output Pin. AVDD2 x 0.6(typ).  
10μF capacitor should be connected to AVSS2 externally.  
ADC Analog Ground Pin, 0V  
28 VCOM36  
29 VCOM3  
-
-
30 AVSS1  
31 AVDD1  
32 LIN1  
-
-
I
I
ADC Analog Power Supply Pin, 4.75V5.25V  
Lch Input 1 Pin  
33 RIN1  
Rch Input 1 Pin  
No Connection.  
34 NC  
-
No internal bonding. This pin should be connected to the ground.  
35 LIN2  
36 RIN2  
37 LIN3  
38 RIN3  
I
I
I
I
Lch Input 2 Pin  
Rch Input 2 Pin  
Lch Input 3 Pin  
Rch Input 3 Pin  
No Connection.  
39 NC  
-
No internal bonding. This pin should be connected to the ground.  
40 LIN4  
41 RIN4  
I
I
Lch Input 4 Pin  
Rch Input 4 Pin  
No Connection.  
42 NC  
-
No internal bonding. This pin should be connected to the ground.  
MS0610-E-01  
2007/07  
- 4 -  
[AK4682]  
PIN/FUNCTION (continued)  
No. Pin Name  
43 LIN5  
44 RIN5  
I/O  
I
I
Function  
Lch Input 5 Pin  
Rch Input 5 Pin  
No Connection.  
45 NC  
-
No internal bonding. This pin should be connected to the ground.  
46 LIN6  
47 RIN6  
48 DVDD1  
I
I
-
Lch Input 6 Pin  
Rch Input 6 Pin  
ADC Digital Power Supply Pin, 4.75V5.25V  
Note: All digital input pins must not be left floating.  
Note: Analog input pins (LIN1, RIN1, LIN2, RIN2, LIN3, RIN3, LIN4, RIN4, LIN5, RIN5, LIN6, RIN6 pin) must use  
the AC-coupling capacitor for signal input.  
Note: Analog output pins (LOUT1, ROUT1, LOUT2, ROUT2, LOUT3, ROUT3 pins) must use the AC-coupling  
capacitor for signal output.  
Handling of Unused Pin  
The unused I/O pins should be processed appropriately as below.  
Classification Pin Name  
Setting  
Analog  
LOUT1-3, ROUT1-3, LIN1-6, RIN1-6  
SDTOB, LRCKB(Master), BICKB(Master)  
These pins should be open.  
These pins should be open.  
These pins should be connected to DVSS.  
MCLKA, LRCKA, BICKA, SDTIA1-2, MCLKB,  
LRCKB(Slave), BICKB(Slave), MSB  
Digital  
SDA, SCL  
These pins should be pulled-up to DVDD2.  
MS0610-E-01  
2007/07  
- 5 -  
[AK4682]  
ABSOLUTE MAXIMUM RATINGS  
(AVSS1, AVSS2, DVSS1, DVSS2, PVSS=0V; Note: 1)  
Parameter  
Power Supply  
Symbol  
TVDD  
DVDD1  
DVDD2  
AVDD1  
AVDD2  
PVDD  
IIN  
min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-
max  
6.0  
6.0  
6.0  
6.0  
6.0  
14.0  
±10  
Units  
V
V
V
V
V
V
mA  
Input Current (any pins except for supplies)  
Digital Input Voltage 1  
VIND1  
-0.3  
DVDD1+0.3  
V
(MCLKB pin)  
Digital Input Voltage 2  
VIND2  
-0.3  
DVDD2+0.3  
V
(PDN, LRCKA, BICKA, MCLKA,  
SDTIA1-2, SDA, SCL, MSB pins)  
Digital Input Voltage 3  
(LRCKB, BICKB pins)  
Analog Input Voltage 1  
(LIN1-6, RIN1-6 pins)  
VIND3  
VINA1  
-0.3  
-0.3  
TVDD+0.3  
PVDD+0.3  
V
V
Ambient Operating Temperature  
Storage Temperature  
Ta  
Tstg  
-20  
-65  
85  
150  
°C  
°C  
Note: 1. AVSS1, DVSS1, AVSS2, DVSS2 and PVSS must be connected to the same analog ground plane.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(AVSS1, AVSS2, DVSS1, DVSS2, PVSS=0V; Note: 1)  
Parameter  
Power Supply (Note: 2)  
Symbol  
TVDD  
DVDD1  
DVDD2  
AVDD1  
AVDD2  
PVDD  
min  
2.7  
4.75  
4.75  
4.75  
4.75  
8.5  
typ  
3.3  
5.0  
5.0  
5.0  
5.0  
9.0  
max  
5.25  
5.25  
5.25  
5.25  
5.25  
12.6  
Units  
V
V
V
V
V
V
Note: 2. The AVDD1, AVDD2, DVDD1 and DVDD2 must be the same voltage.  
The TVDD must not exceed any of AVDD1, AVDD2, DVDD1 and DVDD2 voltage.  
*AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.  
MS0610-E-01  
2007/07  
- 6 -  
 
[AK4682]  
ANALOG CHARACTERISTICS  
(Ta=25°C; TVDD = 3.3V; DVDD1, DVDD2, AVDD1, AVDD2= 5.0V; PVDD = 9V; AVSS1, AVSS2, DVSS1,  
DVSS2, PVSS = 0V; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement Frequency = 20Hz∼  
20kHz at fs=48kHz, 20Hz~40kHz at fs=96kHz; 20Hz~40kHz at fs=192kHz, all blocks are synchronized, unless  
otherwise specified)  
Parameter  
min  
typ  
max  
Units  
Analog Input to Analog Output Characteristics (LIN1-6, RIN1-6 pin to LOUT1-3, ROUT1-3 pin)  
S/(N+D)  
S/N  
Input=2Vrms  
Input=0ff, A-weighted  
-
-
92  
96  
dB  
dB  
Input Impedance  
Maximum Input Voltage  
Gain  
40  
2
-
kΩ  
Vrms  
dB  
(Note: 4)  
-
0
-
-
Analog Input (LIN1-6, RIN1-6 pin) to ADC Analog Input Characteristics  
Resolution  
S/(N+D)  
DR  
S/N  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
Input Voltage  
Power Supply Rejection  
24  
Bits  
dB  
dB  
dB  
dB  
(-1dBFS) fs=48kHz  
(-60dBFS) fs=48kHz, A-weighted  
(input off) fs=48kHz, A-weighted  
80  
88  
88  
90  
88  
96  
96  
100  
0.2  
50  
2.2  
60  
(Note: 3)  
0.6  
-
2.4  
dB  
ppm/°C  
Vrms  
dB  
AIN= 2.2 x AVDD1/5  
(Note: 5)  
2
DAC to Analog Output (LOUT1-3, ROUT1-3 pin) Characteristics  
Resolution  
24  
Bits  
S/(N+D)  
(0dBFS) fs=48kHz  
fs=96kHz  
fs=192kHz  
(-60dBFS) fs=48kHz, A-weighted  
fs=96kHz  
fs=96kHz, A-weighted  
fs=192kHz  
fs=192kHz, A-weighted  
(“0” data) fs=48kHz, A-weighted  
fs=96kHz  
76  
-
-
94  
-
-
-
-
94  
-
-
86  
84  
84  
102  
96  
102  
96  
102  
102  
96  
102  
96  
102  
100  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
DR  
S/N  
fs=96kHz, A-weighted  
fs=192kHz  
fs=192kHz, A-weighted  
-
-
90  
Interchannel Isolation  
Interchannel Gain Mismatch  
Gain Drift  
Output Voltage  
Load Resistance  
Load Capacitance  
Power Supply Rejection  
0.2  
50  
2
0.5  
-
2.15  
dB  
ppm/°C  
Vrms  
AOUT= 2 x AVDD2/5  
(AC Load)  
1.85  
5
kΩ  
pF  
dB  
30  
(Note: 5)  
50  
Note: 3. This value is the interchannel isolation between all the channels of the LIN1-6 and RIN1-6.  
Note: 4. Maximum input level that satisfy S/(N+D)>80dB.  
Note: 5. PSR is applied to AVDD1, AVDD2, DVDD1, DVDD2 and PVDD with 1kHz, 50mVpp.  
MS0610-E-01  
2007/07  
- 7 -  
 
[AK4682]  
Power Supplies  
Parameter  
min  
typ  
max  
Units  
Power Supply Current  
Normal Operation (PDN pin = “H”)  
TVDD  
DVDD1+AVDD1  
DVDD2+AVDD2  
PVDD  
1
3
mA  
mA  
mA  
mA  
37  
33  
15  
55  
50  
25  
Power-Down Mode (PDN pin = “L”; Note: 6)  
TVDD  
10  
10  
10  
10  
100  
100  
100  
100  
μA  
μA  
μA  
μA  
DVDD1+AVDD1  
DVDD2+AVDD2  
PVDD  
Note: 6. All digital inputs including clock pins (MCLKA, MCLKB, BICKA, BICKB, LRCKA, LRCKB and  
SDTIA1-0) are held at DVDD1, DVDD2, DVSS1 or DVSS2.  
FILTER CHARACTERISTICS  
(Ta=-20°C ~+85°C; TVDD=2.7 ~ 5.25V; DVDD1, DVDD2, AVDD1, AVDD2=4.75 ~ 5.25V; PVDD=8.5 ~ 12.6V;  
fs=48kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note: 7)  
PB  
0
-
-
18.9  
-
-
kHz  
kHz  
kHz  
±0.1dB  
-0.2dB  
-3.0dB  
20.0  
23.0  
Stopband  
SB  
PR  
SA  
GD  
ΔGD  
28.0  
68  
kHz  
dB  
dB  
1/fs  
µs  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.04  
(Note: 8)  
16  
0
Group Delay Distortion  
ADC Digital Filter (HPF):  
Frequency Response (Note: 7)  
-3dB  
-0.1dB  
FR  
1.0  
6.5  
Hz  
Hz  
DAC Digital Filter:  
Passband  
(Note: 7)  
-0.1dB  
-6.0dB  
PB  
0
-
26.2  
21.8  
-
kHz  
kHz  
kHz  
dB  
dB  
1/fs  
24.0  
Stopband  
SB  
PR  
SA  
GD  
Passband Ripple  
Stopband Attenuation  
Group Delay  
±0.02  
54  
(Note: 8)  
20  
DAC Digital Filter + Analog Filter:  
FR  
FR  
FR  
dB  
dB  
dB  
Frequency Response: 0 20.0kHz  
±0.2  
±0.3  
±1.0  
40.0kHz (Note: 9)  
80.0kHz (Note: 9)  
Note: 7. The passband and stopband frequencies scale with fs.  
For example, 21.8kHz at –0.1dB is 0.454 x fs (DAC). The reference frequency of these responses is 1kHz.  
Note: 8. The calculating delay time occurred at digital filtering. This time is from setting the input of analog s signal to  
setting the 24bit data of both channels to the output register of PORTB.  
For DAC, this time is from setting the 20/24bit data of both channels on input register of PORTA to the  
output of analog signal.  
Note: 9. 40.0kHz@fs=96kHz, 80.0kHz@fs=192kHz.  
MS0610-E-01  
2007/07  
- 8 -  
 
[AK4682]  
DC CHARACTERISTICS  
(Ta=-20°C ~+85°C; TVDD=2.7 ~ 5.25V; DVDD1, DVDD2, AVDD1, AVDD2=4.75 ~ 5.25V; PVDD=8.512.6V)  
Parameter  
Symbol  
min  
typ  
max  
Units  
High-Level Input Voltage  
Low-Level Input Voltage  
VIH  
VIL  
2.2  
-
-
-
-
-
0.8  
-
V
V
High-Level Output Voltage ( Iout=-400μA)  
Low-Level Output Voltage  
VOH  
VOL  
TVDD-0.4  
-
V
V
0.4  
(Iout= -400μA(except SDA pin), 3mA(SDA pin))  
Input Leakage Current  
Iin  
-
-
±10  
μA  
SWITCHING CHARACTERISTICS  
(Ta=-20°C ~+85°C; TVDD=2.7 ~ 5.25V; DVDD1, DVDD2, AVDD1, AVDD2=4.75 ~ 5.25V; PVDD=8.512.6V; CL=  
20pF (except for SDA pin), Cb=400pF(SDA pin))  
Parameter  
Symbol  
min  
typ  
max  
Units  
Master Clock Timing  
Frequency  
fECLK  
dECLK  
8.192  
40  
36.864  
60  
MHz  
%
Duty  
50  
Master Clock (Note: 10)  
256fsn, 128fsd:  
Pulse Width Low  
Pulse Width High  
384fsn, 192fsd:  
Pulse Width Low  
Pulse Width High  
512fsn, 256fsd, 128fsq:  
Pulse Width Low  
Pulse Width High  
768fsn, 384fsd, 192fsq:  
Pulse Width Low  
Pulse Width High  
LRCKA (LRCKB) Timing (Slave Mode)  
Normal mode  
fCLK  
8.192  
27  
27  
12.288  
20  
20  
16.384  
15  
15  
24.576  
10  
10  
12.288  
18.432  
24.576  
36.864  
MHz  
ns  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
MHz  
ns  
ns  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
fCLK  
tCLKL  
tCLKH  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
Duty Cycle  
fsn  
fsd  
fsq  
Duty  
32  
64  
120  
45  
48  
96  
192  
55  
kHz  
kHz  
kHz  
%
TDM 128 mode  
LRCKA frequency  
“H” time  
“L” time  
LRCKB Timing (Master Mode)  
Normal mode  
LRCKB frequency  
Duty Cycle  
fs  
tLRH  
tLRL  
32  
1/128fs  
1/128fs  
96  
48  
kHz  
ns  
ns  
fs  
Duty  
32  
kHz  
%
50  
Power-down & Reset Timing  
PDN Pulse Width  
PDN “” to SDTOB valid  
(Note: 11)  
(Note: 12)  
tPD  
tPDV  
150  
ns  
1/fs  
522  
Note: 10 MCLKB supports only the normal mode (256fsn, 384fsn, 512fsn, 768fsn).  
Note: 11 The AK4682 can be reset by bringing the PDN pin = “L”.  
Note: 12 These cycles are the number of LRCKB rising from PDN rising.  
MS0610-E-01  
2007/07  
- 9 -  
 
[AK4682]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Audio Interface Timing (Slave Mode)  
Normal mode(PORTA)  
BICKA Period  
BICKA Pulse Width Low  
Pulse Width High  
LRCKA Edge to BICKA “” (Note: 13)  
BICKA “” to LRCKA Edge (Note: 13)  
SDTIA1-2 Hold Time  
SDTIA1-2 Setup Time  
Normal mode(PORTB)  
BICKB Period  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tSDH  
tSDS  
81  
32  
32  
20  
20  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tLRS  
324  
128  
128  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BICKB Pulse Width Low  
Pulse Width High  
LRCKB Edge to BICKB “” (Note: 13)  
BICKB “” to LRCKB Edge (Note: 13)  
LRCKB to SDTOB (MSB)  
BICKB “” to SDTOB  
TDM 128 mode  
80  
80  
80  
tBSD  
BICKA Period  
BICKA Pulse Width Low  
Pulse Width High  
LRCKA Edge to BICKA “”  
BICKA “” to LRCKA Edge  
SDTIA1-2 Hold Time  
tBCK  
tBCKL  
tBCKH  
tLRB  
tBLR  
tSDH  
tSDS  
81  
32  
32  
20  
20  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note: 13)  
(Note: 13)  
SDTIA1-2 Setup Time  
Audio Interface Timing (Master Mode)  
Normal mode  
BICKB Frequency  
BICKB Duty  
fBCK  
dBCK  
tMBLR  
tBSD  
64fs  
50  
Hz  
%
ns  
ns  
BICKB “” to LRCKB Edge  
-40  
40  
20  
BICKB “” to SDTO  
Control Interface Timing (I2C Bus):  
SCL Clock Frequency  
fSCL  
tBUF  
tHD:STA  
-
1.3  
0.6  
400  
-
-
kHz  
μs  
μs  
Bus Free Time Between Transmissions  
Start Condition Hold Time  
(prior to first clock pulse)  
Clock Low Time  
Clock High Time  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
1.3  
0.6  
0.6  
0
0.1  
-
-
0.6  
-
-
-
-
-
-
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
pF  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling (Note: 14)  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
Pulse Width of Spike Noise Suppressed by Input Filter  
Capacitive load on bus  
0.3  
0.3  
-
50  
400  
tF  
tSU:STO  
tSP  
Cb  
0
Note: 13 BICK rising edge must not occur at the same time as LRCK edge.  
Note: 14 Data must be held for sufficient time to bridge the 300 ns transition time of SCL.  
Note: 15 I2C is a registered trademark of Philips Semiconductors.  
MS0610-E-01  
2007/07  
- 10 -  
 
[AK4682]  
Timing Diagram  
1/fCLK  
VIH  
VIL  
MCLK  
tCLKH  
tCLKL  
1/fsn, 1/fsd, 1/fsq  
VIH  
VIL  
LRCK  
tBCK  
VIH  
BICK  
VIL  
tBCKH  
tBCKL  
Clock Timing (Normal mode)  
1/fCLK  
VIH  
VIL  
MCLK  
LRCK  
BICK  
tCLKH  
tCLKL  
1/fsn, 1/fsd  
VIH  
VIL  
tLRH  
tLRL  
tBCK  
VIH  
VIL  
tBCKH  
tBCKL  
Clock Timing (TDM 128 mode)  
LRCK= LRCKB, LRCKA,  
BICK= BICKA, BICKB,  
SDTI= SDTIA,  
SDTO= SDTOB.  
MS0610-E-01  
2007/07  
- 11 -  
[AK4682]  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRB  
tLRS  
VIH  
VIL  
tBSD  
SDTO  
50% TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (Normal mode)  
VIH  
VIL  
LRCK  
BICK  
tBLR  
tLRB  
VIH  
VIL  
tBSD  
SDTO  
50%TVDD  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
Audio Interface Timing (TDM 128 mode)  
MS0610-E-01  
2007/07  
- 12 -  
[AK4682]  
LRCK  
BICK  
50% TVDD  
50% TVDD  
tMBLR  
tBSD  
50% TVDD  
SDTO  
Audio Interface timing (Master Mode)  
tPD  
VIH  
VIL  
PDN  
tPDV  
SDTO  
50% TVDD  
Power Down & Reset Timing  
VIH  
VIL  
SDA  
tLOW tR  
tHIGH  
tBUF  
tF  
tSP  
VIH  
VIL  
SCL  
tHD:STA  
Stop Start  
tHD:DAT  
tSU:DAT tSU:STA  
tSU:STO  
Stop  
Start  
I2C Bus mode Timing  
MS0610-E-01  
2007/07  
- 13 -  
[AK4682]  
OPERATION OVERVIEW  
System Clock  
The AK4682 has two audio serial interface (PORTA, PORTB) can operate asynchronously. At each PORT, the external  
clocks, which are required to operate the AK4682, are MCLKA (MCLKB), LRCKA (LRCKB) and BICKA (BICKB).  
The MCLKA (MCLKB) must be synchronized with LRCKA (LRCKB) but the phase is not critical. The PORT A is the  
audio data interface for DAC and the PORTB is for ADC.  
Master/Slave Mode  
The MSB pin and MSB bit are internally ORed and select the master/slave mode of PORTB. PORTA is slave mode only.  
In master mode, LRCKB pin and BICKB pin are output pins. In slave mode, LRCKA (LRCKB) pin and BICKA  
(BICKB) pin are input (Table 1).  
The AK4682 is slave mode at power-down (PDN pin = “L”). To change to the master mode, set MSB pin “H” or write  
“1” to MSB bit. Until when setting MSB pin “H” or writing “1” to MSB bit, LRCKB and BICKB pins are input pins.  
Pull-up (or down) resistor with around 100kohm is required to prevent the floating of these input pins.  
MSB bit  
(default: “0”)  
PORTB (ADC)  
BICKB, LRCKB  
PORTA (DAC)  
BICKA, LRCKA  
PDN pin  
L
MSB pin  
L
H
L
L
H
x
x
0
1
x
Input (slave mode)  
Output “L”(master mode)  
Input (slave mode)  
Input (slave mode)  
Input (slave mode)  
Input (slave mode)  
Input (slave mode)  
Input (slave mode)  
(x: Don’t care)  
H
Output (master mode)  
Output (master mode)  
Table 1. Master/Salve Mode  
ADC Clock Control  
In master mode (MSB bit = “1”), the CKSB1-0 bits select the clock frequency (Table 2). The external clock (MCLKB)  
must always be supplied except in the power-down mode. The ADC is in power-down mode until MCLKB is supplied.  
CKSB1  
CKSB0  
Clock Speed  
256fs  
0
0
1
1
0
1
0
1
(default)  
384fs  
512fs  
768fs  
Table 2. PORTB Master Clock Control (ADC Master Mode)  
In slave mode (MSB bit = “0”. default), external clocks (MCLKB, BICKB, LRCKB) must always be present whenever  
the ADC is in normal operation mode (PDN pin = “H” and PWAD = “1”). The master clock (MCLKB) must be  
synchronized with LRCKB but the phase is not critical. If these clocks are not provided, the ADC may draw excess  
current because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the ADC  
must be in the power-down mode (PDN pin = “L” or PWAD = “0”) or in the reset mode (RSTN bit = “0”). After  
exiting reset at power-up etc., the ADC is in the power-down mode until MCLKB and LRCKB are input.  
MS0610-E-01  
2007/07  
- 14 -  
 
[AK4682]  
LRCKB  
fs  
MCLKB (MHz)  
Sampling  
Speed  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
32.0kHz  
44.1kHz  
48.0kHz  
-
-
-
-
-
-
8.1920  
11.2896  
12.2880  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Normal  
Table 3. System clock example (ADC Slave Mode)  
DAC Clock Control  
External clocks (MCLKA, BICKA, LRCKA) must always be present whenever the DAC is in normal operation mode  
(PDN pin = “H” and PWDA = “1”). The master clock (MCLKA) must be synchronized with LRCKA but the phase is  
not critical. If these clocks are not provided, the DAC may draw excess current because the device utilizes dynamic  
refreshed logic internally. If the external clocks are not present, the DAC must be in the power-down mode (PDN pin =  
“L” or PWDA = “0”) or in the reset mode (RSTN bit = “0”). After exiting reset at power-up etc., the DAC is in the  
power-down mode until MCLKA and LRCKA are input.  
There are two modes for controlling the sampling speed of DAC. One is the Manual Setting Mode (ACKS bit = “0”)  
using the DFS1-0 bits, and the other is Auto Setting Mode (ACKS bit = “1”).  
1. Manual Setting Mode (ACKS bit = “0”)  
When the ACKS bit = “0”, DAC is in Manual Setting Mode and the sampling speed is selected by DFS1-0 bits (Table  
4).  
DFS1  
DFS0  
DAC Sampling Speed (fs)  
(default)  
0
0
1
1
0
1
0
1
Normal Speed Mode  
32kHz~48kHz  
64kHz~96kHz  
120kHz~192kHz  
-
Double Speed Mode  
Quad Speed Mode  
Not Available  
(Note: ADC is always in Normal Speed Mode)  
Table 4.DAC sampling speed (ACKS bit = “0”, Manual Setting Mode)  
LRCKA  
fs  
32.0kHz  
44.1kHz  
48.0kHz  
MCLKA (MHz)  
BICKA (MHz)  
256fs  
8.1920  
11.2896  
12.2880  
384fs  
512fs  
768fs  
64fs  
12.2880  
16.9344  
18.4320  
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
2.0480  
2.8224  
3.0720  
Table 5. DAC system clock example (DAC Normal Speed Mode @Manual Setting Mode)  
LRCKA  
fs  
MCLKA (MHz)  
BICKA (MHz)  
64fs  
128fs  
192fs  
256fs  
384fs  
88.2kHz  
96.0kHz  
11.2896  
12.2880  
16.9344  
18.4320  
22.5792  
24.5760  
33.8688  
36.8640  
5.6448  
6.1440  
Table 6. DAC system clock example(DAC Double Speed Mode @Manual Setting Mode)  
MS0610-E-01  
2007/07  
- 15 -  
 
[AK4682]  
LRCKA  
Fs  
MCLKA (MHz)  
192fs 256fs  
BICKA (MHz)  
128fs  
384fs  
64fs  
176.4kHz  
192.0kHz  
22.5792  
24.5760  
33.8688  
36.8640  
-
-
-
-
11.2896  
12.2880  
Table 7. DAC system clock example (DAC Quad Speed Mode @Manual Setting Mode)  
2. Auto Setting Mode (ACKS bit = “1”)  
When the ACKS bit = “1”, DAC is in Auto Setting Mode and the sampling speed is selected automatically by the ratio  
MCLKA/LRCKA as shown in the Table 8. and the internal master clock is set to the appropriate frequency (Table 9). In  
this mode, the setting of DFS1-0 bits are ignored.  
MCLKA  
DAC Sampling Speed (fs) LRCKA  
512fs, 768fs  
256fs, 384fs  
128fs, 192fs  
Normal Speed Mode  
Double Speed Mode  
Quad Speed Mode  
32kHz~48kHz  
64kHz~96kHz  
120kHz~192kHz  
(Note: ADC is always in Normal Speed Mode)  
Table 8. DAC Sampling Speed (ACKS bit = “1”, Auto Setting Mode)  
LRCKA  
fs  
MCLKA (MHz)  
Sampling  
Speed  
128fs  
192fs  
256fs  
384fs  
512fs  
768fs  
32.0kHz  
44.1kHz  
48.0kHz  
88.2kHz  
96.0kHz  
176.4kHz  
192.0kHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16.3840  
22.5792  
24.5760  
24.5760  
33.8688  
36.8640  
Normal  
22.5792  
24.5760  
33.8688  
36.8640  
-
-
-
-
-
-
-
-
Double  
Quad  
-
-
22.5792  
24.5760  
33.8688  
36.8640  
-
-
-
-
Table 9. DAC System clock example (Auto Setting Mode)  
DAC Audio Data Control  
The DAC1, DAC2 bits select the output data for each DAC.  
DAC1 bit  
DAC1 Source  
Normal Mode  
TDM Mode  
TDMA bit = “0”  
TDMA bit = “1”  
(default)  
0
1
SDTIA1  
SDTIA2  
L1, R1  
L2, R2  
Table 10. DAC1 Source Control  
DAC2 Source  
DAC2 bit  
Normal Mode  
TDM Mode  
TDMA bit = “0”  
TDMA bit = “1”  
0
1
SDTIA1  
L1, R1  
L2, R2  
(default)  
SDTIA2  
Table 11. DAC2 Source Control  
MS0610-E-01  
2007/07  
- 16 -  
 
[AK4682]  
De-emphasis Filter  
The AK4682 includes the digital de-emphasis filter (tc=50/15μs) by IIR filter. This filter corresponds to three sampling  
frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis filter is off in Double speed mode and Quad speed mode. De-  
emphasis of each DAC can be set individually by register.  
Mode  
DEM11  
DEM10  
DEM  
(DEM21)  
(DEM20)  
0
1
2
3
0
0
1
1
0
1
0
1
44.1kHz  
OFF  
48kHz  
32kHz  
(default)  
Table 12. De-emphasis control  
ADC Digital High Pass Filter  
The ADC has a digital high pass filter for DC offset cancel. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz and  
scales with sampling rate (fs).  
Audio Serial Interface Format  
Each PORTA/B can select independent audio interface format. The TDMA, DIFA1-0 bits control the audio format for  
PORTA and support normal mode and TDM128 mode. The DIFB1-0 bits control the audio format for PORTB and  
support only normal mode. The default is mode 2. In all modes the serial data is MSB-first, 2’s complement format. The  
SDTOB pins are clocked out on the falling edge of BICKB pins and the SDTIA1-0 pins are latched on the rising edge  
of BICKA pins.  
1. Setting for the PORTA  
1-1.Normal mode: TDMA bit = “0” (default)  
The TDMA bit = “0” sets the AK4682 audio serial interface format to the normal mode. The DIFA1-0 bits select  
following eight serial data format (Table 13).  
Mode  
DIFA1  
bit  
DIFA0  
bit  
SDTIA1-2  
LRCKA  
BICKA  
L/R  
I/O  
speed  
I/O  
0
1
2
3
0
0
1
1
0
1
0
1
20bit, Right justified  
24bit, Right justified  
24bit, Left justified  
24bit, I2S  
H/L  
H/L  
H/L  
L/H  
I
I
I
I
I
I
I
I
48fs  
48fs  
48fs  
48fs  
(default)  
Table 13 Audio Interface Format (Normal mode.)  
1-2. TDM 128 mode: TDMA bit = “1”  
The TDMA bits = “1” set the AK4682 audio serial interface format to the TDM 128 mode. The four channel serial  
data (SDTIA1, 2) is input to the SDTIA1 pin. The data of SDTIA2 pin is not used. The TDM 128 mode is not  
available in Quad Speed Mode.  
Mode  
DIFA1  
bit  
DIFA0  
bit  
SDTIA1-2  
LRCKA  
BICKA  
start  
I/O  
speed  
I/O  
8
9
10  
11  
0
0
1
1
0
1
0
1
20bit, Right justified  
24bit, Right justified  
24bit, Left justified  
24bit, I2S  
I
I
I
I
128fs  
128fs  
128fs  
128fs  
I
I
I
I
(default)  
Table 14. Audio Interface Format (TDM 128 mode.)  
MS0610-E-01  
2007/07  
- 17 -  
 
[AK4682]  
2. Setting for the PORTB  
2-1: Normal mode:  
The PORTB supports only the normal mode. The DIFB1-0 bits select following eight serial data format (Table 15).  
Mode  
MSB pin  
MSB bit  
DIFB1  
DIFB0  
SDTOB  
LRCKB  
BICKB  
L/R I/O speed I/O  
0
0
0
0
0
24bit, L J  
H/L  
I
I
48fs  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
1
1
1
x
x
x
x
1
2
3
4
5
6
7
8
9
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
24bit, L J  
24bit, L J  
24bit, I2S  
24bit, L J  
24bit, L J  
24bit, L J  
24bit, I2S  
24bit, L J  
24bit, L J  
24bit, L J  
24bit, I2S  
H/L  
H/L  
L/H  
H/L  
H/L  
H/L  
L/H  
H/L  
H/L  
H/L  
L/H  
I
I
I
I
I
I
48fs  
48fs  
48fs  
64fs  
64fs  
64fs  
64fs  
64fs  
64fs  
64fs  
(default)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
10  
11  
64fs  
Table 15. Audio Interface Format (Normal mode, x: Don’t care. L J: Left justified.)  
MS0610-E-01  
2007/07  
- 18 -  
 
[AK4682]  
LRCK  
0
0
0
0
1
2
12  
13  
14  
24  
25  
31  
0
1
2
12  
13  
14  
24  
24  
28  
25  
25  
29  
31  
31  
31  
31  
0
0
0
0
1
1
1
1
BICK(64fs)  
SDTO(o)  
SDTI(i)  
23 22  
12 11 10  
19 18  
0
23 22  
12 11 10  
19 18  
0
23  
Don’t Care  
8
7
1
0
Don’t Care  
8
7
1
0
SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 1. Mode 0, 4 Timing  
LRCK  
1
2
8
9
10  
24  
25  
31  
0
1
2
8
9
10  
BICK(64fs)  
SDTO(o)  
SDTI(i)  
23 22  
16 15 14  
23 22  
0
23 22  
16 15 14  
23 22  
0
23  
Don’t Care  
8
7
1
0
Don’t Care  
8
7
1
0
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 2. Mode 1, 5 Timing  
LRCK  
1
2
21  
22  
23  
24  
28  
29  
30  
31  
0
1
2
22  
23  
24  
30  
BICK(64fs)  
SDTO(o)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
23  
23  
Don’t Care  
Don’t Care  
SDTI(i)  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 3.Mode 2, 6 Timing  
LRCK  
1
2
3
22  
23  
24  
25  
29  
30  
31  
0
1
2
3
22  
23  
24  
25  
29  
30  
BICK(64fs)  
SDTO(o)  
SDTI(i)  
23 22  
23 22  
2
2
1
1
0
0
23 22  
23 22  
2
2
1
1
0
0
Don’t Care  
Don’t Care  
23:MSB, 0:LSB  
Lch Data  
Rch Data  
Figure 4. Mode 3, 7 Timing  
MS0610-E-01  
2007/07  
- 19 -  
[AK4682]  
128 BICK  
LRCKA  
(mode 8)  
BICKA(128fs)  
18  
0
18  
0
19  
0
0
19  
19  
19  
18  
19 18  
SDTIA1(i)  
SDTIA2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
(Don’t Care)  
Figure 5. Mode 8 Timing  
128 BICK  
LRCKA  
(mode 9)  
BICKA(128fs)  
22  
0
22  
0
23  
0
0
19  
23  
23  
22  
23 22  
SDTIA1(i)  
SDTIA2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
(Don’t Care)  
Figure 6. Mode 9 Timing  
128 BICK  
LRCKA  
(mode 10)  
BICKA(128fs)  
22  
23 22  
0
23  
22  
23  
0
23 22  
0
0
23 22  
SDTIA1(i)  
SDTIA2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
(Don’t Care)  
Figure 7. Mode 10 Timing  
MS0610-E-01  
2007/07  
- 20 -  
[AK4682]  
128 BICK  
LRCKA  
(mode 11)  
BICKA(128fs)  
22  
0
22  
0
23  
0
23  
23  
23  
22  
23 22  
0
SDTIA1(i)  
SDTIA2(i)  
L2  
L1  
R1  
R2  
32 BICK  
32 BICK  
32 BICK  
32 BICK  
(Don’t Care)  
Figure 8. Mode 11 Timing  
MS0610-E-01  
2007/07  
- 21 -  
[AK4682]  
Digital Volume Control  
The AK4682 has channel-independent digital volume control (256 levels, 0.5dB step). The IATL7-0, IATR7-0 bits set  
the volume level of each ADC channel (Table 16). The OAT1L7-0, OAT1R7-0, OAT2L7-0 and OAT2R7-0 bits set  
each DAC channel (Table 17).  
IATL7-0,  
Attenuation Level  
IATR7-0  
00H  
01H  
02H  
:
+24dB  
+23.5dB  
+22.0dB  
:
2FH  
30H  
31H  
+0.5dB  
0dB  
-0.5dB  
:
(default)  
FEH  
FFH  
-103dB  
MUTE (-)  
Table 16.ADC Digital Volume (IATT)  
OAT1L7-0,  
OAT1R7-0,  
OAT2L7-0,  
OAT2R7-0  
00H  
Attenuation Level  
+12dB  
+11.5dB  
+11.0dB  
:
01H  
02H  
:
17H  
18H  
+0.5dB  
0dB  
(default)  
19H  
-0.5dB  
:
FEH  
FFH  
-115dB  
MUTE (-)  
Table 17.DAC Digital Volume (OATT)  
ATSAD (ATSDA) bits (Table 18, Table 19) control the transition time of attenuation. The transition between each  
attenuation level is the soft transition. Therefore, the switching noise does not occur in the transition.  
Mode  
0
1
ATSAD  
ATT speed  
1061/fs  
256/fs  
(default)  
0
1
Table 18. Transition time of attenuation (ADC)  
Mode  
0
1
ATSDA  
ATT speed  
1061/fs  
256/fs  
(default)  
0
1
Table 19. Transition time of attenuation (DAC)  
MS0610-E-01  
2007/07  
- 22 -  
 
[AK4682]  
The transition between set values is soft transition of 1061 levels in Mode 0. It takes 1061/fs (22ms@fs=48kHz) from  
00H to FFH(MUTE) in mode 0. If PDN pin goes to “L”, the IATL7-0, IATR7-0 (OAT1L7-0, OAT1R7-0, OAT2L7-0,  
OAT2R7-0) bits are initialized to 30H(18H). The ATTs goes to their default value when RSTN bit = “0”. When RSTN  
bit return to “1”, the ATTs fade to their current value.  
Soft mute operation  
The ADC and DAC have the soft mute function. The soft mute operation is performed at digital domain. When the  
SMAD/SMDA bits go to “1”, the output signal is attenuated by -during ATT_DATA×ATT transition time (Table 18,  
Table 19) from the current ATT level. When the SMAD/SMDA bits are returned to “0”, the mute is cancelled and the  
output attenuation gradually changes to the ATT level during ATT_DATA×ATT transition time. If the soft mute is  
cancelled before attenuating to -after starting the operation, the attenuation is discontinued and returned to ATT level  
by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission.  
SMAD/SMDA bits  
(1)  
(1)  
ATT Level  
Attenuation  
(3)  
-
GD  
GD  
(2)  
AOUT  
Notes:  
(1) ATT_DATA×ATT transition time (Table 18, Table 19). For example, in Normal Speed Mode, this time is  
1061/fs cycles (256/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH  
(2) The analog output corresponding to the digital input has a group delay, GD.  
(3) If the soft mute is cancelled before attenuating to -after starting the operation, the attenuation is discontinued  
and returned to ATT level by the same cycle.  
Figure 9. Soft Mute Function  
MS0610-E-01  
2007/07  
- 23 -  
[AK4682]  
Stereo Matrix Control  
The AK4682 has independent stereo matrix control for DAC1 and DAC2. The PL23-20 and PL13-10 bits control each  
matrix.  
PL13  
PL12  
PL11  
PL10 DAC1 Lch Output DAC1 Rch Output  
Note  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
R
L
(L+R)/2  
MUTE  
R
R
R
R
R
L
L
L
L
L
REVERSE  
STEREO  
(L+R)/2  
MUTE  
R
(default)  
L
(L+R)/2  
MUTE  
R
(L+R)/2  
(L+R)/2  
(L+R)/2  
(L+R)/2  
L
(L+R)/2  
MONO  
Table 20. PL13-10: DAC1 Stereo Matrix Control  
PL23  
PL22  
PL21  
PL20 DAC2 Lch Output DAC2 Rch Output  
Note  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
MUTE  
R
L
(L+R)/2  
MUTE  
R
R
R
R
R
L
L
L
L
L
REVERSE  
STEREO  
(L+R)/2  
MUTE  
R
(default)  
L
(L+R)/2  
MUTE  
R
(L+R)/2  
(L+R)/2  
(L+R)/2  
(L+R)/2  
L
(L+R)/2  
MONO  
Table 21. PL23-20: DAC2 Stereo Matrix Control  
STEREO: Normal stereo output  
REVERSE: L/R Reverse output  
MONO: Monaural output  
MUTE: Mute operation  
MS0610-E-01  
2007/07  
- 24 -  
 
[AK4682]  
The stereo matrix control has the four channel independent soft transition using soft muting function.  
DAC1 Lch Setting  
(Control Register)  
L
(L+R)/2  
R
L
R
R
(1)  
(1)  
(1)  
(3)  
(3)  
(1)  
ATT Level  
Attenuation  
-
GD  
(2)  
GD  
(2)  
GD (2)  
DAC1 Lch OUT  
L
(L+R)/2  
L
R
Notes:  
(1) ATT_DATA×ATT transition time (Table 18, Table 19). For example, in Normal Speed Mode, this time is  
1061/fs cycles (256/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH  
(2) The analog output corresponding to the digital input has a group delay, GD.  
(3) If the soft mute is cancelled before attenuating to -after starting the operation, the attenuation is discontinued  
and returned to ATT level by the same cycle.  
Figure 10. Soft Mute Function for Stereo Matrix Control  
MS0610-E-01  
2007/07  
- 25 -  
[AK4682]  
Input Selector, Input Attenuator  
The AK4682 includes 8:4 stereo input/output selectors. The AIN2-0, AOUT12-10, AOUT22-20, AOUT32-30 bits set  
each input channel (Table 22, Table 23, Table 24, Table 25). To select the DAC1 or DAC2, set PWAD bit = PWDA bit  
= PWANA bit = “1”.  
AIN3 bit  
AIN2 bit  
AIN1 bit  
AIN0 bit  
Input Selector  
LIN1 / RIN1  
LIN2 / RIN2  
LIN3 / RIN3  
LIN4 / RIN4  
LIN5 / RIN5  
LIN6 / RIN6  
DAC1L/DAC1R  
DAC2L/DAC2R  
Mute  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
(default)  
Table 22. Input Selector (for ADC, x: Don’t care)  
AOUT13 bit AOUT12 bit AOUT11 bit AOUT10 bit  
Input Selector  
LIN1 / RIN1  
LIN2 / RIN2  
LIN3 / RIN3  
LIN4 / RIN4  
LIN5 / RIN5  
LIN6 / RIN6  
DAC1L/DAC1R (default)  
DAC2L/DAC2R  
Mute  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
Table 23. Input Selector (for L/ROUT1, x: Don’t care)  
AOUT23 bit AOUT22 bit AOUT21 bit AOUT20 bit  
Input Selector  
LIN1 / RIN1  
LIN2 / RIN2  
LIN3 / RIN3  
LIN4 / RIN4  
LIN5 / RIN5  
LIN6 / RIN6  
DAC1L/DAC1R  
DAC2L/DAC2R (default)  
Mute  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
Table 24. Input Selector (for L/ROUT2, x: Don’t care)  
AOUT33 bit AOUT32 bit AOUT31 bit AOUT30 bit  
Input Selector  
LIN1 / RIN1  
LIN2 / RIN2  
LIN3 / RIN3  
LIN4 / RIN4  
LIN5 / RIN5  
LIN6 / RIN6  
DAC1L/DAC1R  
DAC2L/DAC2R  
Mute  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
x
0
0
1
1
0
0
1
1
x
0
1
0
1
0
1
0
1
x
(default)  
Table 25. Input Selector (for L/ROUT3, x: Don’t care)  
MS0610-E-01  
2007/07  
- 26 -  
 
[AK4682]  
[Input selector switching sequence]  
The input selector should be changed after soft mute to avoid the switching noise of the input selector (Figure 11).  
1. Enable the soft mute before changing channel.  
2. Change channel.  
3. Disable the soft mute.  
SMUTE  
(1)  
(1)  
DATT Level  
Attenuation  
Channel  
(2)  
-∞  
LIN1/RIN1  
LIN2/RIN2  
Figure 11. Input channel switching sequence example  
The period of (1) varies in the setting value of DATT. It takes 1028/fs to mute when DATT value is +24dB.  
When changing channels, the input channel should be changed during (2). The period of (2) should be around 200ms  
because there is some DC difference between the channels.  
MS0610-E-01  
2007/07  
- 27 -  
 
[AK4682]  
Power ON/OFF Sequence  
The each block of the AK4682 are placed in the power-down mode by bringing PDN pin “L” and both digital filters are  
reset at the same time. PDN pin “L” also reset the control registers to their default values. In the power-down mode, the  
DAC outputs go to AVDD2 voltage and SDTOB pin goes to “L”. This reset must always be done after power-up.  
In slave mode, after exiting reset at power-up etc., the DAC (ADC) starts to operate from the rising edge of LRCKA  
(LRCKB) after MLCKA (MCLKB), and then the device is in the power-down mode until MCLKA (MCLKB) and  
LRCKA (LRCKB) are input. In slave mode, the DAC (ADC) starts to operate by the input of MLCKA (MCLKB) after  
exiting reset.  
The analog initialization cycle of ADC starts after exiting the power-down mode. Therefore, the output data, SDTOB  
becomes available after 522/fs cycles of LRCKB clock. In case of the DAC, an analog initialization cycle starts after  
exiting the power-down mode. The analog outputs are AVDD2 voltage during the initialization. Figure 12 shows the  
sequences of the power-down and the power-up.  
The ADC and all DACs can be powered-down individually by PWAD and PWDA bits. These bits don’t initialize the  
internal register values. When PWAD bit = “0”, the SDTOB pin goes to “L”. When PWDA bit = “0”, the DAC outputs  
go to AVDD2 voltage. Since some click noise may occur, the analog output should muted externally if the click noise  
influences system application.  
Power  
PDN  
(1)  
522/fs  
ADC Internal  
State  
Init Cycle  
Normal Operation  
Normal Operation  
Power-down  
Power-down  
516/fs (2)  
DAC Internal  
State  
Init Cycle  
(3)  
GD  
GD  
ADC In  
(Analog)  
ADC Out  
(Digital)  
(4)  
(5)  
“0”data  
“0”data  
“0”data  
“0”data  
DAC In  
(Digital)  
(3)  
GD  
GD  
(6)  
(6)  
(6)  
DAC Out  
(Analog)  
(7)  
Clock In  
MCLK,LRCK,SCLK  
Don’t care  
Don’t care  
External  
Mute  
Mute ON  
(8)  
Mute ON  
Notes:  
(1) The analog part of ADC is initialized after exiting the power-down state.  
(2) The analog part of DAC is initialized after exiting the power-down state.  
(3) Digital output corresponding to analog input and analog output corresponding to digital input have the group  
delay (GD).  
(4) ADC output is “0” data at the power-down state.  
(5) Click noise occurs at the end of initialization of the analog part. Please mute the digital output externally if the  
click noise influences system application.  
(6) Click noise occurs at the rising/falling edge of PDN and at 512/fs after the rising edge of PDN.  
(7) When the external clocks (MCLKA (MCLKB), BICKA (BICKB), and LRCKA (LRCKB)) are stopped, the AK4682  
must be in the power-down mode.  
(8) Please mute the analog output externally if the click noise (6) influences system application.  
Figure 12. Power-down/up sequence example  
MS0610-E-01  
2007/07  
- 28 -  
 
[AK4682]  
Reset Function  
When RSTN bit = “0”, ADC and DACs are powered-down but the internal register are not initialized. The DAC outputs  
go to AVDD2 voltage and SDTOB pins go to “L”. Because some click noise occurs, the analog output should muted  
externally if the click noise influences system application. The Figure 13 shows the power-up sequence.  
RSTN bit  
4~5/fs (8)  
1~2/fs (8)  
Internal  
RSTN bit  
(1)  
516/fs  
ADC Internal  
State  
Digital Block Power-down  
Digital Block Power-down  
Normal Operation  
Normal Operation  
Init Cycle  
DAC Internal  
State  
Normal Operation  
GD  
Normal Operation  
(2)  
GD  
ADC In  
(Analog)  
(3)  
ADC Out  
(Digital)  
(4)  
“0”data  
DAC In  
(Digital)  
“0”data  
(2)  
GD  
GD  
(6)  
(5)  
(6)  
DAC Out  
(Analog)  
(7)  
Don’t care  
Clock In  
MCLK,LRCK,SCLK  
Notes:  
(1) The analog part of ADC is initialized after exiting the reset state.  
(2) Digital output corresponding to analog input and analog output corresponding to digital input have the group  
delay (GD).  
(3) ADC output is “0” data at the power-down state.  
(4) Click noise occurs when the internal RSTN bit becomes “1”. Please mute the digital output externally if the click  
noise influences system application.  
(5) When RSTN bit = “0”, the analog outputs go to AVDD2 voltage.  
(6) Click noise occurs at 45/fs after RSTN bit becomes “0”, and occurs at 12/fs after RSTN bit becomes “1”. This  
noise is output even if “0” data is input.  
(7) The external clocks (MCLKA (MCLKB), BICKA (BICKB), LRCKA (LRCKB)) can be stopped in the reset mode.  
When exiting the reset mode, “1” should be written to RSTN bit after the external clocks (MCLKA (MCLKB),  
BICKA (BICKB), LRCKA (LRCKB)) are fed.  
(8) There is a delay about 4~5/fs from RSTN bit “0” to the internal RSTN bit “0”.  
Figure 13. Reset sequence example  
MS0610-E-01  
2007/07  
- 29 -  
 
[AK4682]  
Serial Control Interface  
AK4682 supports the fast-mode I2C-bus system (max: 400kHz).  
1. Data transfer  
All commands are preceded by a START condition. After the START condition, a slave address is sent. After the  
AK4682 recognizes the START condition, the device interfaced to the bus waits for the slave address to be transmitted  
over the SDA line. If the transmitted slave address matches an address for one of the devices, the designated slave  
device pulls the SDA line to LOW (ACKNOWLEDGE). The data transfer is always terminated by a STOP condition  
generated by the master device.  
1-1. Data validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line  
can only change when the clock signal on the SCL line is LOW except for the START and the STOP condition.  
SCL  
SDA  
DATA LINE  
STABLE :  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
Figure 14. Data transfer  
1-2. START and STOP condition  
A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. All sequences start from  
the START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. All  
sequences end by the STOP condition.  
SCL  
SDA  
START CONDITION  
STOP CONDITION  
Figure 15. START and STOP conditions  
MS0610-E-01  
2007/07  
- 30 -  
[AK4682]  
1-3. ACKNOWLEDGE  
ACKNOWLEDGE is a software convention used to indicate successful data transfers. The transmitting device will  
release the SDA line (HIGH) after transmitting eight bits. The receiver must pull down the SDA line during the  
acknowledge clock pulse so that that it remains stable “L” during “H” period of this clock pulse. The AK4682 will  
generates an acknowledge after each byte has been received.  
In the read mode, the slave, the AK4682 will transmit eight bits of data, release the SDA line and monitor the line for an  
acknowledge. If an acknowledge is detected and no STOP condition is generated by the master, the slave will continue  
to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the  
STOP condition.  
Clock pulse  
for acknowledge  
SCL FROM  
MASTER  
1
8
9
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
START  
CONDITION  
Figure 16. Acknowledge on the I2C-bus  
1-4. FIRST BYTE  
The first byte, which includes seven bits of slave address and one bit of R/W bit, is sent after the START condition. If  
the transmitted slave address matches an address for one of the device, the receiver who has been addressed pulls down  
the SDA line.  
The most significant five bits of the slave address are fixed as “00100”. The next two bits are “10”. These two bits  
identify the specific device on the bus. The eighth bit (LSB) of the first byte (R/W bit) defines whether a write or read  
condition which the master requests. A “1” indicates that the read operation is to be executed. A “0” indicates that the  
write operation is to be executed.  
0
0
1
0
0
1
0
R/W  
Figure 17. The First Byte  
MS0610-E-01  
2007/07  
- 31 -  
[AK4682]  
2. WRITE Operations  
Set R/W bit = “0” for the WRITE operation of the AK4682.  
After receipt of the start condition and the first byte, the AK4682 generates an acknowledge, and awaits the second byte  
(register address). The second byte consists of the address for control registers of AK4682. The format is MSB first, and  
those most significant 3-bits are “Don’t care”.  
*
*
*
A4  
A3  
A2  
A1  
A0  
(*: Don’t care)  
Figure 18. The Second Byte  
After receipt of the second byte, the AK4682 generates an acknowledge, and awaits the third byte. Those data after the  
second byte contain control data. The format is MSB first, 8bits.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 19. Byte structure after the second byte  
The AK4682 is capable of more than one byte write operation by one sequence.  
After receipt of the third byte, the AK4682 generates an acknowledge, and awaits the next data again. The master can  
transmit more than one words instead of terminating the write cycle after the first data word is transferred. After the  
receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next  
address automatically. If the address exceeds 0DH prior to generating the stop condition, the address counter will “roll  
over” to 00H and the previous data will be overwritten.  
S
S
T
O
P
T
A
R
T
Slave  
Address  
Register  
Address(n)  
Data(n)  
Data(n+1)  
Data(n+x)  
S
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
Figure 20. WRITE Operation  
MS0610-E-01  
2007/07  
- 32 -  
[AK4682]  
3. READ Operations  
Set R/W bit = “1” for the READ operation of the AK4682.  
After transmission of a data, the master can read next address’s data by generating the acknowledge instead of  
terminating the write cycle after the receipt of the first data word. After the receipt of each data, the internal 5bits  
address counter is incremented by one, and the next data is taken into next address automatically. If the address exceeds  
0DH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be  
overwritten.  
The AK4682 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ.  
3-1. CURRENT ADDRESS READ  
The AK4682 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) was to address “n”, the next CURRENT READ operation  
would access data from the address “n+1”.  
After receipt of the slave address with R/W bit set to “1”, the AK4682 generates an acknowledge, transmits 1byte data  
which address is set by the internal address counter and increments the internal address counter by 1. If the master does  
not generate an acknowledge to the data but generate the stop condition, the AK4682 discontinues transmission  
S
S
T
O
P
T
A
R
T
Slave  
Address  
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
S
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
Figure 21. CURRENT ADDRESS READ  
3-2. RANDOM READ  
Random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/W bit set to “1”, the master must first perform a “dummy” write operation.  
The master issues the start condition, slave address(R/W=“0”) and then the register address to read. After the register  
address’s acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit set to  
“1”. Then the AK4682 generates an acknowledge, 1byte data and increments the internal address counter by 1. If the  
master does not generate an acknowledge to the data but generate the stop condition, the AK4682 discontinues  
transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
Slave  
Address  
Word  
Address(n)  
Slave  
Address  
Data(n)  
Data(n+1)  
Data(n+x)  
S
S
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 22. RANDOM READ  
MS0610-E-01  
2007/07  
- 33 -  
[AK4682]  
Register Map  
Addr  
00H  
01H  
02H  
Register Name  
Powerdown 1  
Powerdown 2  
D7  
0
0
D6  
0
0
D5  
PWANA  
PWDA PWAD  
DIFB1 DIFB0  
D4  
0
D3  
0
0
D2  
D1  
D0  
SMAD SMDA RSTN  
0
0
0
Audio Data Format  
0
0
0
TDMA DIFA1 DIFA0  
DAC1 ATSAD ATSDA  
03H De-emphasis/ ATT speed DEM21 DEM20 DEM11 DEM10 DAC2  
04H  
05H  
Clock Control  
Stereo Matrix Control  
0
ACKS  
PL22  
DFS1  
PL21  
DFS0  
PL20  
0
CKSB1 CKSB0  
MSB  
PL10  
AIN0  
PL23  
PL13  
PL12  
AIN2  
PL11  
AIN1  
06H Input Selector Control 1 AOUT13 AOUT12 AOUT11 AOUT10 AIN3  
07H Input Selector Control 2 AOUT33 AOUT32 AOUT31 AOUT30 AOUT23 AOUT22 AOUT21 AOUT20  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
ADC Lch Volume  
ADC Rch Volume  
DAC1 Lch Volume  
DAC1 Rch Volume  
DAC2 Lch Volume  
DAC2 Rch Volume  
IATL7 IATL6  
IATR7 IATR6 IATR5  
OAT1L7 OAT1L6 OAT1L5 OAT1L4 OAT1L3 OAT1L2 OAT1L1 OAT1L0  
OAT1R7 OAT1R6 OAT1R5 OAT1R4 OAT1R3 OAT1R2 OAT1R1 OAT1R0  
OAT2L7 OAT2L6 OAT2L5 OAT2L4 OAT2L3 OAT2L2 OAT2L1 OAT2L0  
OAT2R7 OAT2R6 OAT2R5 OAT2R4 OAT2R3 OAT2R2 OAT2R1 OAT2R0  
IATL5  
IATL4  
IATR4  
IATL3  
IATR3  
IATL2  
IATR2  
IATL1  
IATR1 IATR0  
IATL0  
Note: For addresses from 0EH to 1FH, data must not be written.  
When PDN pin goes to “L”, the registers are initialized to their default values.  
When RSTN bit goes to “0”, the internal timing is reset, but registers are not initialized to their default values.  
Unused bits must contain a “0” data.  
MS0610-E-01  
2007/07  
- 34 -  
[AK4682]  
Register Definitions  
Addr  
00H  
Register Name  
Powerdown 1  
Default  
D7  
0
0
D6  
0
0
D5  
PWANA  
1
D4  
0
0
D3  
0
0
D2  
D1  
D0  
RSTN  
1
SMAD SMDA  
0
0
RSTN: Internal timing reset  
0: Reset. Registers are not initialized.  
1: Normal operation (default)  
SMDA: DAC Soft Mute Enable  
0: Normal operation (default)  
1: All DAC outputs soft-muted  
SMAD: ADC Soft Mute Enable  
0: Normal operation (default)  
1: ADC outputs soft-muted  
PWANA: Power management for 2Vrms analog I/O  
0: Power OFF  
1: Power ON (default)  
Addr  
01H  
Register Name  
Powerdown 2  
Default  
D7  
0
0
D6  
0
0
D5  
D4  
D3  
0
0
D2  
0
0
D1  
0
0
D0  
0
0
PWDA PWAD  
1
1
PWAD: Power-down control of ADC  
0: Power-down  
1: Normal operation (default)  
PWDA: Full-Power-down control of DAC1-2  
0: Power-down  
1: Normal operation (default)  
Addr  
02H  
Register Name  
Audio Data Format  
Default  
D7  
0
0
D6  
0
0
D5  
D4  
D3  
0
0
D2  
D1  
D0  
DIFB1 DIFB0  
TDMA DIFA1 DIFA0  
1
1
0
1
1
DIFA1-0, TDMA: Audio format control for PORTA  
Refer Table 13, Table 14.  
DIFB1-0: Audio format control for PORTB  
Refer Table 15.  
MS0610-E-01  
2007/07  
- 35 -  
[AK4682]  
D0  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
03H De-emphasis/ ATT speed DEM21 DEM20 DEM11 DEM10 DAC2  
DAC1 ATSAD ATSDA  
Default  
0
1
0
1
1
0
0
0
ATSDA: DAC digital Attenuator transition time control  
ATSAD: ADC digital Attenuator transition time control  
Refer Table 18, Table 19.  
DAC2-1: DAC Data control  
Refer Table 10, Table 11  
DEM11-10: DAC1 De-emphasis filter control  
DEM21-20: DAC2 De-emphasis filter control  
Refer Table 12.  
Addr  
04H  
Register Name  
Clock Control  
Default  
D7  
0
0
D6  
ACKS  
0
D5  
DFS1  
0
D4  
DFS0  
0
D3  
0
0
D2  
D1  
D0  
MSB  
0
CKSB1 CKSB0  
0
0
MSB: ADC Master/Slave control  
Refer Table 1.  
CKSB1-0: ADC Clock control for Master mode.  
Refer Table 2.  
DFS1-0: DAC Sampling Speed Control  
These settings are ignored in Auto Setting Mode. Refer Table 4.  
ACKS: DAC Auto Setting Mode  
0: Disable, Manual Setting Mode (default)  
1: Enable, Auto Setting Mode  
Master clock frequency is detected automatically at ACKS bit “1”. In this case, the DFS1-0 bits are  
ignored. When this bit is “0”, DFS1-0 bits set the sampling speed mode.  
Addr  
05H  
Register Name  
Stereo Matrix Control  
Default  
D7  
PL23  
1
D6  
PL22  
0
D5  
PL21  
0
D4  
PL20  
1
D3  
PL13  
1
D2  
PL12  
0
D1  
PL11  
0
D0  
PL10  
1
PL13-10: DAC1 Stereo Matrix Control.  
Refer Table 20.  
PL23-20: DAC2 Stereo Matrix Control.  
Refer Table 21.  
MS0610-E-01  
2007/07  
- 36 -  
[AK4682]  
Addr  
06H  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
AIN2  
0
D1  
AIN1  
0
D0  
AIN0  
0
Input Selector Control 1 AOUT13 AOUT12 AOUT11 AOUT10 AIN3  
Default  
0
1
1
0
0
AIN3-0: ADC input selector control  
0000: LIN1/RIN1 (default)  
0001: LIN2/RIN2  
0010: LIN3/RIN3  
0011: LIN4/RIN4  
0100: LIN5/RIN5  
0101: LIN6/RIN6  
0110: DAC1L/DAC1R  
0111: DAC2L/DAC2R  
1xxx: Mute (x: don’t care)  
AOUT13-10: L/ROUT1 input selector control  
0000: LIN1/RIN1  
0001: LIN2/RIN2  
0010: LIN3/RIN3  
0011: LIN4/RIN4  
0100: LIN5/RIN5  
0101: LIN6/RIN6  
0110: DAC1L/DAC1R (default)  
0111: DAC2L/DAC2R  
1xxx: Mute (x: don’t care)  
Addr  
Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
07H Input Selector Control 2 AOUT33 AOUT32 AOUT31 AOUT30 AOUT23 AOUT22 AOUT21 AOUT20  
Default  
0
0
0
0
0
1
1
1
AOUT23-20: L/ROUT2 input selector control  
0000: LIN1/RIN1  
0001: LIN2/RIN2  
0010: LIN3/RIN3  
0011: LIN4/RIN4  
0100: LIN5/RIN5  
0101: LIN6/RIN6  
0110: DAC1L/DAC1R  
0111: DAC2L/DAC2R (default)  
1xxx: Mute (x: don’t care)  
AOUT33-30: L/ROUT3 input selector control  
0000: LIN1/RIN1 (default)  
0001: LIN2/RIN2  
0010: LIN3/RIN3  
0011: LIN4/RIN4  
0100: LIN5/RIN5  
0101: LIN6/RIN6  
0110: DAC1L/DAC1R  
0111: DAC2L/DAC2R  
1xxx: Mute (x: don’t care)  
MS0610-E-01  
2007/07  
- 37 -  
[AK4682]  
Addr  
08H  
09H  
Register Name  
ADC Lch Volume  
ADC Rch Volume  
Default  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IATL0  
IATL7 IATL6 IATL5 IATL4 IATL3 IATL2 IATL1  
IATR7 IATR6 IATR5 IATR4 IATR3 IATR2 IATR1 IATR0  
0
0
1
1
0
0
0
0
IATL7-0, IATR7-0: ADC Volume level control  
Refer Table 16.  
Addr  
0AH  
0BH  
0CH  
0DH  
Register Name  
DAC1 Lch Volume  
DAC1 Rch Volume  
DAC2 Lch Volume  
DAC2 Rch Volume  
Default  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OAT1L7 OAT1L6 OAT1L5 OAT1L4 OAT1L3 OAT1L2 OAT1L1 OAT1L0  
OAT1R7 OAT1R6 OAT1R5 OAT1R4 OAT1R3 OAT1R2 OAT1R1 OAT1R0  
OAT2L7 OAT2L6 OAT2L5 OAT2L4 OAT2L3 OAT2L2 OAT2L1 OAT2L0  
OAT2R7 OAT2R6 OAT2R5 OAT2R4 OAT2R3 OAT2R2 OAT2R1 OAT2R0  
0
0
0
1
1
0
0
0
OAT1L7-0, OAT1R7-0, OAT2L7-0, OAT2R7-0: DAC Volume level control  
Refer Table 17.  
MS0610-E-01  
2007/07  
- 38 -  
[AK4682]  
SYSTEM DESIGN  
Figure 23 shows the system connection diagram. The evaluation board is available which demonstrates application  
circuits, the optimum layout, power supply arrangements and measurement results.  
3.3V to 5V  
5V Digital  
Analog in  
Digital  
+
10u  
0.1u  
1
DVSS1  
MCLKB  
TVDD  
RIN2 36  
LIN2  
35  
2
+
Analog in  
5V Analog  
3
NC  
RIN1  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
10u 0.1u  
LRCKB  
4
5
BICKB  
LIN1  
0.1u 10u  
+
6
AVDD1  
AVSS1  
VCOM3  
VCOM36  
AVSS2  
AVDD2  
ROUT3  
SDTOB  
7
PDN  
8
LRCKA  
BICKA  
MCLKA  
9
+
+
10  
11  
12  
10u  
+
5V Analog  
SDTIA1  
SDTIA2  
0.1u  
+
+
9V to 12V  
Analog  
Digital Ground  
Analog Ground  
5V Digital  
Analog out  
Figure 23. Typical Connection Diagram (Master Mode)  
Notes:  
- DVSS1, AVSS1, DVSS2, AVSS2 and PVSS must be connected the same analog ground plane.  
MS0610-E-01  
2007/07  
- 39 -  
 
[AK4682]  
1. Grounding and Power Supply Decoupling  
The AK4682 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2, DVDD1,  
DVDD2, TVDD and PVDD are usually supplied from analog supply in system. If AVDD1, AVDD2, DVDD1, DVDD2  
and TVDD are supplied separately, the power up sequence is not critical. AVSS1, DVSS1, AVSS2, DVSS2 and PVSS  
of the AK4682 must be connected to analog ground plane. System analog ground and digital ground should be  
connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should  
be as near to the AK4682 as possible, with the small value ceramic capacitor being the nearest.  
2. Voltage Reference Inputs  
The voltage of AVDD1 sets the ADC input range, AVDD2 sets the DAC analog output range. VCOM3 and VCOM36  
are signal grounds of this chip. An electrolytic capacitor 10μF parallel with a 0.1μF ceramic capacitor attached between  
these VCOM pins and AVSS1 pin eliminates the effects of high frequency noise. No load current may be drawn from  
these VCOM pins. All signals, especially clocks, should be kept away from the AVDD1, AVDD2, VCOM3 and  
VCOM36 pins in order to avoid unwanted coupling into the AK4682.  
3. Analog Inputs  
The AK4682 receives the analog input through the single-ended Pre-amp using external resistors. The input range is 2.2  
x AVDD1/5 Vrms (typ. fs=48kHz) at each analog input pins. Each input pins are biased internally. The ADC output  
data format is 2’s complement. The internal digital HPF removes the DC offset.  
The AK4682 samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples  
of 64fs. The AK4682 includes an anti-aliasing filter (RC filter) to attenuate a noise around 64fs.  
4. Analog Outputs  
The analog outputs are also single-ended and centered on around the AVDD2 voltage. The output signal range scales  
with the supply voltage and nominally 2 x AVDD2/5 Vrms at each analog output pins. The DAC input data format is 2’s  
complement. The output voltage is a positive full scale for 7FFFFFH(@24bit) and a negative full scale for  
800000H(@24bit). The ideal output is AVDD2 voltage for 000000H(@24bit). The internal analog filters remove most  
of the noise generated by the delta-sigma modulator of DAC beyond the audio passband.  
DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets a few mV.  
5. Attention to the PCB Wiring  
Attention should be given to avoid coupling with other signals on each analog input/output pins. Unused input pins  
among LIN1-6 and RIN1-6 pins should be left open.  
MS0610-E-01  
2007/07  
- 40 -  
[AK4682]  
PACKAGE  
48pin LQFP(Unit: mm)  
1.70Max  
9.0 ± 0.2  
0.13 ± 0.13  
7.0  
1.40 ± 0.05  
36  
25  
37  
24  
13  
48  
1
12  
0.145 ± 0.05  
0.5  
0.22 ± 0.08  
0.10 M  
0° ∼ 10°  
0.10  
0.5 ± 0.2  
Package & Lead frame material  
Package molding compound:  
Lead frame material:  
Lead frame surface treatment:  
Epoxy  
Cu  
Solder (Pb free) plate  
MS0610-E-01  
2007/07  
- 41 -  
[AK4682]  
MARKING  
AK4682EQ  
XXXXXXX  
1
1) Pin #1 indication  
2) Asahi Kasei Logo  
3) Marking Code: AK4682EQ  
4) Date Code: XXXXXXX (7 digits)  
REVISION HISTORY  
Date (YY/MM/DD)  
07/04/24  
Revision Reason  
Page  
12  
Contents  
00  
First Edition  
Audio Interface Timing (Normal and TDM128  
mode) were changed.  
07/07/02  
01  
Error Correct  
MS0610-E-01  
2007/07  
- 42 -  
[AK4682]  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
EMD Corporation (AKEMD) or authorized distributors as to current status of the products.  
z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application  
or use of any information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,  
or strategic materials.  
z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support,  
or other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the  
use approved with the express written consent by Representative Director of AKEMD. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety  
or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or  
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or  
property.  
z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise  
places the product with a third party, to notify such third party in advance of the above content and conditions, and  
the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from  
any and all claims arising from the use of said product in the absence of such notification.  
MS0610-E-01  
2007/07  
- 43 -  

相关型号:

AKD4682-A

24bit CODEC that has two channels of ADC and four channels of DAC
AKM

AKD4683

Asynchronous Multi-Channel Audio CODEC with DIR/T
AKM

AKD4683-A

AK4683 Evaluation Board Rev.1
AKM

AKD4683-B

24bit CODEC that has two channels of ADC and four channels of DAC with internal DIR, DIT
AKM

AKD4685

Multi-channel CODEC with Differential Analog I/O
AKM

AKD4686

Multi-channel CODEC with Capless Stereo Selector
AKM

AKD4686-B

AK4686 Evaluation Board Rev.0
AKM

AKD4687

Asynchronous Stereo CODEC with Capless Stereo Selector
AKM

AKD4687-A

Evaluation board Rev.2 for AK4687
AKM

AKD4691

4ch ADC + 2ch DAC with MIC/HP/SPK-AMP
AKM

AKD4691-A

Evaluation board Rev.0 for AK4691
AKM

AKD4702

Evaluation board Rev.A for AK4702
AKM