TK11380CMCL [AKM]

Fixed Positive LDO Regulator, 8V, 0.37V Dropout;
TK11380CMCL
型号: TK11380CMCL
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

Fixed Positive LDO Regulator, 8V, 0.37V Dropout

文件: 总31页 (文件大小:767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APPLICATION MANUAL  
LDO REGULATOR WITH ON/OFF SWITCH  
TK113xxCM  
CONTENTS  
1 . DESCRIPTION  
2 . FEATURES  
3 . APPLICATIONS  
2
2
2
4 . PIN CONFIGURATION  
5 . BLOCK DIAGRAM  
2
2
6 . ORDERING INFORMATION  
7 . ABSOLUTE MAXIMUM RATINGS  
8 . ELECTRICAL CHARACTERISTICS  
9 . TEST CIRCUIT  
3
3
4
8
10 . APPLICATION EXAMPLE  
11 . TYPICAL CHARACTERISTICS  
12 . PIN DESCRIPTION  
13 . APPLICATIONS INFORMATION  
14 . NOTES  
8
9
23  
24  
31  
31  
15 . OFFICES  
GC3-I013D  
Page 1  
TK113xxCM  
LDO REGULATOR WITH ON/OFF SWITCH  
TK113xxCM  
1. DESCRIPTION  
4. PIN CONFIGURATION  
The TK113xxC series of low dropout (LDO) voltage  
regulators are designed for use in battery-powered  
equipment, portable communication devices or RF  
modules requiring a thermal enhanced SOT23L-6  
package. The power dissipation rating is 600mW.  
Features include an operating voltage range of +1.8V to  
+14V and an output voltage range of 1.5V to 10.0V in  
0.1V steps. The maximum continuous current power  
rating is 380mA. The load current is internally monitored  
and the device will shut down in the attendance of a short  
circuit, over-current condition at the output or a junction  
temperature exceeds 150ºC.  
Top View  
Vcont  
GND  
Np  
1
2
3
6
5
4
Vin  
GND  
Vout  
An internal PNP pass transistor is used to achieve a  
typical low dropout voltage of 105mV (typ.) at 100mA  
load current and a standby current of typically 0.1µA at  
no load.. An external capacitor can be connected to the  
noise bypass pin to lower the output noise level to  
45µVrms. This device is stable with low ESR ceramic  
capacitors.  
*2pin,5pin are connected in the IC.  
5. BLOCK DIAGRAM  
2. FEATURES  
Vin  
Vout  
Active Low (Reference : Vin) On/Off Control  
Very Good Stability : Ceramic capacitor can be used.  
: CL³0.01mF at Vout³2.5V  
Over Heat &  
High Precision Output Voltage (±2% or ±60mV)  
Excellent Ripple Rejection Ratio: -80dB at 1kHz  
Output Current : 300mA (peak 480mA)  
Very Low Dropout Voltage : 105mV at Iout=100mA  
Wide Operating Voltage Range : 1.8V~14.5V  
Very Low Noise with Noise Bypass pin  
Short Circuit Protection (Over Current Protection)  
Internal Thermal Shutdown (Over Heat Protection)  
Reverse Bias Protection  
Over Current  
Protection  
Bandgap  
Reference  
3. APPLICATIONS  
Vcont  
GND  
Np  
Any Electronic Equipment  
Battery Powered Systems  
Mobile Communication  
GC3-I013D  
Page 2  
TK113xxCM  
6. ORDERING INFORMATION  
T K 1 1 3  
C M  
L
Voltage Code  
ex. 3.3V : 33  
5.0V : 50  
Tape / Reel Code  
Package Code  
M : SOT23L  
Rank Code  
C : C Rank  
I : I Rank  
TK11320CM  
TK11321CM  
TK11328CM  
TK11333CM  
TK11347CM  
TK11380CM  
TK11322CM  
TK11325CM  
TK11330CM  
TK11338CM  
TK11350CM  
TK11326CM  
TK11327CM  
TK11332CM  
TK11345CM  
TK11360CM  
TK11329CM  
TK11335CM  
TK11348CM  
TK11331CM  
TK11340CM  
TK11355CM  
*Please contact your authorized ASAHI KASEI TOKO POWER DEVICES representatives for voltage  
availability.  
If you need a voltage other than the value listed in the above table, please contact ASAHI KASEI TOKO  
POWER DEVICES.  
7. ABSOLUTE MAXIMUM RATINGS  
Ta=25°C  
Parameter  
Absolute Maximum Ratings  
Supply Voltage  
Symbol  
Rating  
Units  
Conditions  
VccMAX  
-0.4 ~ 16  
-0.4 ~ 6  
V
V
Vout £ 2.0V  
Reverse Bias  
VrevMAX  
-0.4 ~ 12  
V
Vout ³ 2.1V  
Np pin Voltage  
VnpMAX  
VcontMAX  
Tstg  
-0.4 ~ 5  
V
Control pin Voltage  
-0.4 ~ 16  
V
Storage Temperature Range  
Power Dissipation  
-55 ~ 150  
°C  
mW  
PD  
600 when mounted on PCB  
Internal Limited Tj=150°C *  
Operating Condition  
Operating Temperature Range  
TOP  
VOP  
-40 ~ 85  
1.8 ~ 14.5  
2.1 ~ 14.5  
500  
°C  
V
TOP = -30 ~ 80 °C  
TOP = -40 ~ 85 °C  
Operating Voltage Range  
V
Short Circuit Current  
Ishort  
mA  
* PD must be decreased at rate of 4.8mW/°C for operation above 25°C.  
The maximum ratings are the absolute limitation values with the possibility of the IC breakage.  
When the operation exceeds this standard, quality can not be guaranteed.  
GC3-I013D  
Page 3  
TK113xxCM  
8. ELECTRICAL CHARACTERISTICS  
8-1. C Rank (TK113xxCMC)  
The operation between -40 ~ 85°C is guaranteed with normal test. The parameter with limit value will be guaranteed  
with test when manufacturing or SQC(Statistical Quality Control) technique.  
Vin=VoutTYP+1V,Vcont=Vin-1.8V,Ta=25°C  
Value  
Parameter  
Output Voltage  
Symbol  
Units  
Conditions  
MIN  
TYP  
MAX  
Vout  
V
Iout = 5mA  
DVin = 5V  
Refer to TABLE 1  
Line Regulation  
Load Regulation  
LinReg  
LoaReg  
0.0  
6.0  
mV  
mV Iout = 5mA ~ 100mA  
mV Iout = 5mA ~ 200mA  
mV Iout = 5mA ~ 300mA  
mV Iout = 100mA  
Refer to TABLE 1  
Refer to TABLE 1  
Refer to TABLE 1  
Dropout Voltage *1  
Vdrop  
105  
170  
235  
235  
480  
80  
170  
270  
370  
370  
mV Iout = 200mA  
mV Iout = 270mA (2.1V £ Vout £ 2.3V)  
mV Iout = 300mA (Vout ³ 2.4V)  
Maximum Output Current *2 IoutMAX  
380  
mA  
mA  
mA  
When (VoutTYP´0.9)  
Iout = 0mA  
Supply Current  
Iq  
136  
0.1  
3.0  
Standby Current  
Quiescent Current  
Control Terminal *3  
Control Current  
Control Voltage  
Istandby  
Ignd  
0.0  
1.8  
Vcont = Vin  
mA Iout = 100mA  
Icont  
1.0  
5.0  
Vcont = Vin -1.8V  
mA  
V
Vcont  
Vin-1.8  
Vout ON state (Reference :Vin)  
Vout OFF state (Reference :Vin)  
Vin-0.6  
V
Reference Value  
Np Terminal Voltage  
Vnp  
1.28  
35  
V
ppm  
/°C  
Output Voltage / Temp.  
Vo/Ta  
Output Noise Voltage  
(TK11330CM)  
CL=1.0mF, Cnp=0.01mF  
Iout=30mA  
mVrms  
Vno  
R.R  
45  
80  
Ripple Rejection  
(TK11330CM)  
CL=1.0mF, Cnp=0.01mF  
Iout=10mA, 1kHz  
dB  
CL=1.0mF, Cnp=0.01mF  
Vcont : Pulse Wave (100Hz)  
Rise Time  
tr  
100  
ms  
(TK11330CM)  
Vcont ON ® Vout´95% point  
*1: The minimum operating Voltage for Vin can be 1.8 V. Also, the minimum voltage required for Vin is  
Vin = Vdrop + Vout . As a result, operating at Vout = 2.0 V at the minimum operating voltage is not preferred.  
*2: The maximum output current is limited by power dissipation.  
*3: The input current decreases to the pA level by connecting the control terminal to GND (Off state).  
General Note : Parameters with only typical values are just reference. (Not guaranteed)  
General Note : It is possible to decrease the output noise voltage by connecting a capacitor with the noise bypass pin  
(Np). The noise level is dependent on the capacitance and capacitor characteristic.  
GC3-I013D  
Page 4  
TK113xxCM  
TABLE 1  
Load Regulation  
Iout = 200mA  
Output Voltage  
Iout = 100mA  
Iout = 300mA  
Part Number  
MIN  
TYP  
V
MAX  
TYP  
mV  
11  
11  
12  
12  
12  
12  
12  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
17  
MAX  
mV  
25  
26  
26  
27  
27  
27  
27  
27  
28  
28  
28  
28  
29  
29  
30  
31  
31  
32  
32  
33  
34  
39  
TYP  
mV  
23  
23  
24  
24  
25  
25  
25  
25  
26  
26  
26  
26  
27  
28  
28  
29  
30  
30  
31  
32  
33  
38  
MAX  
mV  
53  
53  
54  
55  
56  
56  
57  
58  
58  
59  
59  
60  
61  
63  
64  
67  
68  
68  
70  
72  
75  
87  
TYP  
mV  
37  
38  
38  
40  
40  
41  
41  
42  
42  
43  
44  
44  
45  
47  
48  
50  
51  
52  
53  
55  
58  
68  
MAX  
mV  
85  
86  
88  
91  
92  
93  
95  
96  
97  
98  
99  
101  
103  
107  
109  
115  
117  
118  
121  
127  
133  
156  
V
V
TK11320CMC  
TK11321CMC  
TK11322CMC  
TK11325CMC  
TK11326CMC  
TK11327CMC  
TK11328CMC  
TK11329CMC  
TK11330CMC  
TK11331CMC  
TK11332CMC  
TK11333CMC  
TK11335CMC  
TK11338CMC  
TK11340CMC  
TK11345CMC  
TK11347CMC  
TK11348CMC  
TK11350CMC  
TK11355CMC  
TK11360CMC  
TK11380CMC  
1.940  
2.040  
2.140  
2.440  
2.540  
2.640  
2.740  
2.840  
2.940  
3.038  
3.136  
3.234  
3.430  
3.724  
3.920  
4.410  
4.606  
4.704  
4.900  
5.390  
5.880  
7.840  
2.000  
2.100  
2.200  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.500  
3.800  
4.000  
4.500  
4.700  
4.800  
5.000  
5.500  
6.000  
8.000  
2.060  
2.160  
2.260  
2.560  
2.660  
2.760  
2.860  
2.960  
3.060  
3.162  
3.264  
3.366  
3.570  
3.876  
4.080  
4.590  
4.794  
4.896  
5.100  
5.610  
6.120  
8.160  
Notice.  
Please contact your authorized ASAHI KASEI TOKO POWER DEVICES representative for voltage availability.  
If you need a voltage other than the value listed in the above table, please contact ASAHI KASEI TOKO POWER  
DEVICES.  
GC3-I013D  
Page 5  
TK113xxCM  
8-2. I Rank (TK113xxCMI)  
The operation between -40 ~ 85°C is guaranteed with normal test. The parameter with limit value will be guaranteed  
with test when manufacturing or SQC(Statistical Quality Control) technique.  
Vin=VoutTYP+1V,Vcont=Vin-2.0V,Ta=-40 ~ 85°C  
Value  
Parameter  
Output Voltage  
Symbol  
Units  
Conditions  
MIN  
TYP  
MAX  
Vout  
V
Iout = 5mA  
DVin = 5V  
Refer to TABLE 2  
Line Regulation  
Load Regulation  
LinReg  
LoaReg  
0.0  
8.0  
mV  
mV Iout = 5mA ~ 100mA  
mV Iout = 5mA ~ 200mA  
mV Iout = 5mA ~ 300mA  
mV Iout = 100mA (Vout ³ 2.2V)  
mV Iout = 200mA (Vout ³ 2.2V)  
mV Iout = 300mA (Vout ³ 2.4V)  
Refer to TABLE 2  
Refer to TABLE 2  
Refer to TABLE 2  
Dropout Voltage *1  
Vdrop  
105  
170  
235  
480  
80  
200  
320  
440  
Maximum Output Current *2 IoutMAX  
340  
mA  
mA  
mA  
When (VoutTYP´0.9)  
Iout = 0mA  
Supply Current  
Iq  
144  
0.5  
3.6  
Standby Current  
Quiescent Current  
Control Terminal *3  
Control Current  
Control Voltage  
Istandby  
Ignd  
0.0  
1.8  
Vcont = Vin  
mA Iout = 100mA  
Icont  
1.0  
10  
Vcont = Vin – 2.0V  
mA  
V
Vcont  
Vin-2.0  
Vout ON state (Reference :Vin)  
Vout OFF state (Reference :Vin)  
Vin-0.4  
V
Reference Value  
Np Terminal Voltage  
Vnp  
1.28  
35  
V
ppm  
/°C  
Output Voltage / Temp.  
Vo/Ta  
Output Noise Voltage  
(TK11330CM)  
CL=1.0mF, Cnp=0.01mF  
Iout=30mA  
mVrms  
Vno  
R.R  
45  
80  
Ripple Rejection  
(TK11330CM)  
CL=1.0mF, Cnp=0.01mF  
Iout=10mA, 1kHz  
dB  
CL=1.0mF, Cnp=0.01mF  
Vcont : Pulse Wave (100Hz)  
Rise Time  
tr  
100  
ms  
(TK11330CM)  
Vcont ON ® Vout´95% point  
*1: The minimum operating Voltage for Vin can be 2.1 V. Also, the minimum voltage required for Vin is  
Vin = V drop + Vout . As a result, operating at Vout _ 2.0 V at the minimum operating voltage is not preferred.  
*2: The maximum output current is limited by power dissipation.  
*3: The input current decreases to the pA level by connecting the control terminal to GND (Off state).  
General Note : Parameters with only typical values are just reference. (Not guaranteed)  
General Note : It is possible to decrease the output noise voltage by connecting a capacitor with the noise bypass pin  
(Np). The noise level is depended on the capacitance and capacitor characteristic.  
GC3-I013D  
Page 6  
TK113xxCM  
TABLE 2  
Load Regulation  
Iout = 200mA  
Output Voltage  
Iout = 100mA  
Iout = 300mA  
Part Number  
MIN  
TYP  
V
MAX  
TYP  
mV  
11  
11  
12  
12  
12  
12  
12  
12  
12  
12  
12  
13  
13  
13  
13  
14  
14  
14  
14  
15  
15  
17  
MAX  
mV  
30  
31  
31  
31  
32  
32  
32  
32  
33  
33  
33  
33  
34  
34  
35  
36  
36  
36  
37  
38  
39  
43  
TYP  
mV  
23  
23  
24  
24  
25  
25  
25  
25  
26  
26  
26  
26  
27  
28  
28  
29  
30  
30  
31  
32  
33  
38  
MAX  
mV  
65  
65  
66  
68  
69  
70  
70  
71  
72  
73  
73  
74  
75  
77  
79  
82  
84  
84  
86  
89  
93  
107  
TYP  
mV  
37  
38  
38  
40  
40  
41  
41  
42  
42  
43  
44  
44  
45  
47  
48  
50  
51  
52  
53  
55  
58  
68  
MAX  
mV  
122  
124  
126  
131  
133  
135  
137  
139  
141  
143  
145  
147  
151  
157  
161  
170  
174  
176  
180  
190  
199  
238  
V
V
TK11320CMI  
TK11321CMI  
TK11322CMI  
TK11325CMI  
TK11326CMI  
TK11327CMI  
TK11328CMI  
TK11329CMI  
TK11330CMI  
TK11331CMI  
TK11332CMI  
TK11333CMI  
TK11335CMI  
TK11338CMI  
TK11340CMI  
TK11345CMI  
TK11347CMI  
TK11348CMI  
TK11350CMI  
TK11355CMI  
TK11360CMI  
TK11380CMI  
1.900  
2.000  
2.100  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.395  
3.686  
3.880  
4.365  
4.559  
4.656  
4.850  
5.335  
5.820  
7.760  
2.000  
2.100  
2.200  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.500  
3.800  
4.000  
4.500  
4.700  
4.800  
5.000  
5.500  
6.000  
8.000  
2.100  
2.200  
2.300  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.605  
3.914  
4.120  
4.635  
4.841  
4.944  
5.150  
5.565  
6.180  
8.240  
Notice.  
Please contact your authorized ASAHI KASEI TOKO POWER DEVICES representative for voltage availability.  
If you need a voltage other than the value listed in the above table, please contact ASAHI KASEI TOKO POWER  
DEVICES.  
GC3-I013D  
Page 7  
TK113xxCM  
9. TEST CIRCUIT  
6
5
4
Iin  
Icont  
V
Vin  
GND Vout  
A
A
Vin Cin  
CL  
Iout  
Vout  
+
+
V
1.0mF  
1.0mF  
Vcont GND  
Np  
3
1
2
Cnp  
0.1mF  
*2pin,5pin are connected in the IC.  
10. APPLICATION EXAMPLE  
Vout  
6
5
4
Vin  
GND Vout  
Cin  
CL  
+
+
Vin  
0.22mF  
0.22mF  
Vcont GND  
Np  
3
1
2
Cnp  
0.01mF  
GC3-I013D  
Page 8  
TK113xxCM  
11. TYPICAL CHARACTERISTICS  
11-1.DC CHARACTERISTICS  
Line Regulation  
Vin  
=VoutTYP+1V  
15  
10  
5
6
4
Iout=5mA  
113xx  
Cin  
CL  
0
1mF  
1mF  
1.8V  
1
3
-5  
Vcont  
-10  
Cnp  
0.1mF  
-15  
-20  
-25  
-30  
-35  
Vout  
=2, 3, 4, 5, 6, 8V  
0
4
8
12  
16  
Vin (V)  
Vin vs Iin  
Vin vs Iin  
2000  
1800  
1600  
1400  
1200  
1000  
800  
160  
140  
120  
100  
80  
Vout  
=2, 3, 4, 5, 6, 8V  
60  
600  
Vout  
=2, 3, 4, 5, 6, 8V  
40  
400  
20  
200  
0
0
0
4
8
12  
16  
0
4
8
12  
16  
Vin (V)  
Vin (V)  
Load Regulation  
Short Circuit Current  
Vout  
Vout  
8V  
6V  
5V  
4V  
3V  
2V  
10  
0
10  
8
2V  
3V  
4V  
5V  
6V  
8V  
-10  
-20  
-30  
-40  
-50  
6
4
2
-60  
0
0
50 100 150 200 250 300  
Iout (mA)  
0
100 200 300 400 500 600  
Iout (mA)  
GC3-I013D  
Page 9  
TK113xxCM  
Reverse Bias Current  
Vin  
=VoutTYP+1V  
80  
6
4
Iout=5mA  
113xx  
Cin  
CL  
1mF  
60  
Vout=4V  
Vout=6V  
1mF  
1.8V  
1
3
Vout=2V  
40  
Vout=3V  
Vcont  
Cnp  
0.1mF  
Vout=5V  
20  
0
Vout=8V  
10  
0
2
4
6
8
12  
Vrev(V)  
Dropout Voltage  
Vin vs Vout Regulation Point  
0
-40  
60  
40  
20  
Iout=0, 50, 100, 150, 200, 300mA  
0
-80  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-120  
-160  
-200  
-240  
0
50 100 150 200 250 300  
Iout(mA)  
-100  
0
100  
200  
300  
400  
Vin (mV) =Vin-VoutTYP  
D
Iin (Off state)  
Vin-Vcont vs Icont  
1.E-06  
1.E-07  
1.E-08  
1.E-09  
1.E-10  
-1.0  
-0.8  
-0.6  
-0.4  
-0.2  
0.0  
Vout  
VoutTYP  
Icont  
0
-2.0  
-1.0  
-1.5  
0
2
4
6
8
10 12 14 16  
0.0  
-0.5
Vcont(Reference : Vin) (V)  
Vin (V)  
GC3-I013D  
Page 10  
TK113xxCM  
GND Pin Current  
Vin  
=VoutTYP+1V  
12  
10  
8
6
4
Iout=5mA  
113xx  
Cin  
CL  
1mF  
1mF  
1.8V  
1
3
Vcont  
6
Cnp  
0.1mF  
4
2
0
0
50 100 150 200 250 300  
Iout (mA)  
Temperature Characteristics  
Iout MAX  
GND Pin Current  
Iout=300mA  
200mA  
20.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
550  
500  
450  
400  
350  
300  
100mA  
50mA  
6.0  
4.0  
2.0  
0.0  
-50 -25  
0
25  
Ta ( C)  
50  
75 100  
-50 -25  
0
25  
50  
75 100  
Ta ( C)  
°
°
Control Current  
ON/OFF Point  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
-5  
-4  
-3  
-2  
-1  
0
Vin-Vcont = 4V  
Vin-Vcont = 3V  
Vout_ON  
Vout_OFF  
Vin-Vcont = 2V  
Vin-Vcont = 1.8V  
25 50 75 100  
Ta ( C)  
0.6  
-50 -25  
0
-50 -25  
0
25  
Ta ( C)  
50  
75 100  
°
°
GC3-I013D  
Page 11  
TK113xxCM  
Dropout Voltage  
Vin  
=VoutTYP+1V  
400  
350  
300  
250  
200  
150  
100  
50  
Iout=300mA  
200mA  
6
4
Iout=5mA  
100mA  
50mA  
113xx  
Cin  
CL  
1mF  
1mF  
1.8V  
1
3
Vcont  
Cnp  
0.1mF  
0
-50 -25  
0
0
0
25  
50  
50  
50  
75 100  
75 100  
75 100  
Ta ( C)  
°
Vout (TK11320CM)  
Vout (TK11330CM)  
100  
80  
60  
100  
80  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-50 -25  
-20  
-40  
-60  
-80  
-100  
-50 -25  
25  
0
25  
50  
75 100  
Ta ( C)  
°
Ta ( C)  
°
Vout (TK11340CM)  
Vout (TK11350CM)  
100  
80  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
-20  
-40  
-60  
-80  
-100  
-50 -25  
-20  
-40  
-60  
-80  
-100  
-50 -25  
25  
0
25  
50  
75 100  
Ta ( C)  
Ta ( C)  
°
°
GC3-I013D  
Page 12  
TK113xxCM  
Vout (TK11360CM)  
Vin  
100  
80  
=VoutTYP+1V  
6
4
Iout=5mA  
113xx  
60  
Cin  
CL  
1mF  
40  
1mF  
1.8V  
1
3
20  
Vcont  
0
Cnp  
0.1mF  
-20  
-40  
-60  
-80  
-100  
-50 -25  
0
25  
50  
75 100  
Ta ( C)  
°
Vout (TK11380CM)  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-50 -25  
0
25  
50  
75 100  
Ta ( C)  
°
GC3-I013D  
Page 13  
TK113xxCM  
11-2. AC CHARACTERISTICS  
Ripple Rejection  
CL = 1mF : Ceramic (C) , Tantalum (T)  
Vout=2V  
Vripple  
Vin=VoutTYP+2V  
6
500mVp-p  
4
Iout=10mA  
113xx  
CL  
1mF  
f=100Hz ~ 1MHz  
1
3
Vcont  
Vin-1.8V  
Cnp  
0.1mF  
CL = 1mF : Ceramic (C) , Tantalum (T)  
CL = 1mF : Ceramic (C) , Tantalum (T)  
Vout=3V  
Vout=4V  
CL = 1mF : Ceramic (C) , Tantalum (T)  
CL = 1mF : Ceramic (C) , Tantalum (T)  
Vout=5V  
Vout=6V  
GC3-I013D  
Page 14  
TK113xxCM  
CL = 1mF : Ceramic (C) , Tantalum (T)  
Vout=8V  
Vripple  
Vin=VoutTYP+2V  
6
500mVp-p  
4
Iout=10mA  
113xx  
CL  
1mF  
f=100Hz ~ 1MHz  
1
3
Vcont  
Vin-1.8V  
Cnp  
0.1mF  
CL = 0.22mF : Ceramic (C) , Tantalum (T)  
CL = 0.22mF, 10mF : Tantalum (T)  
Vout=3V  
Vout=3V  
Cnp = 0.001mF, 0.1mF : Tantalum (T)  
Iout=0.5~300mA  
Vout=3V  
Vout=3V  
0
Cnp=0.01μF  
CL=0.22μF (C)  
-20  
-10  
-30  
-40  
-50  
Freq=1kHz  
-60  
-70  
-80  
Freq=400Hz  
-90  
-100  
0
50  
100  
150  
200  
250  
300  
Iout (mA)  
GC3-I013D  
Page 15  
TK113xxCM  
Low Vin  
Vout=3V  
Freq=1kHz, Cnp=0.01mF  
CL=0.22mF (C), Vripple=100mVp-p  
Vripple  
Iout=300mA  
250mA  
200mA  
150mA  
100mA  
50mA  
Vin=VoutTYP+2V  
6
500mVp-p  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
4
Iout=10mA  
113xx  
CL  
1mF  
1mA  
f=100Hz ~ 1MHz  
1
3
Vcont  
Vin-1.8V  
Cnp  
0.1mF  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Vin-Vout_Typ (V)  
The ripple rejection (R.R) characteristic depends on the  
characteristic and the capacitance value of the capacitor  
connected to the output side. The R.R characteristic of  
50kHz or more varies greatly with the capacitor on the  
output side and PCB pattern. If necessary, please confirm  
stability while operating.  
GC3-I013D  
Page 16  
TK113xxCM  
ON/OFF Transient  
Vin  
=VoutTYP+1V  
6
4
Iout=30mA  
113xx  
Cin  
CL  
1mF  
1
3
Vcont  
Cnp  
VinÛ(Vin-2V)  
f=100Hz  
CL=0.22mF, 1.0mF, 2.2mF  
CL=0.22mF, 1.0mF, 2.2mF  
Vout=3V  
Vout=3V  
1V/div  
1V/div  
250ms/div  
50ms/div  
Cnp=0.001mF, 0.01mF, 0.1mF  
Cnp=0.001mF, CL=0.22mF, 1.0mF, 2.2mF  
Vout=3V  
Vout=3V  
1V/div  
250ms/div  
1V/div  
10ms/div  
The rise time of the regulator depends on CL and Cnp; the  
fall time depends on CL.  
GC3-I013D  
Page 17  
TK113xxCM  
Vin  
=VoutTYP+1V  
Vcont  
6
4
Iout=30mA  
113xx  
Cin  
CL  
1mF  
1
3
Rise Time  
Vout  
Vcont  
Vout×95%  
Cnp  
VinÛ(Vin-2V)  
f=100Hz  
Time  
Vout=2V, 3V, 4V, 5V, 6V, 8V  
Vout=2V, 3V, 4V, 5V, 6V, 8V  
2V/div  
250ms/div  
2V/div  
25ms/div  
Vout=2V, 3V, 4V, 5V, 6V, 8V  
Vout=2V, 3V, 4V, 5V, 6V, 8V  
Vcont : one pulse (after discharge Cnp, CL)  
Vcont : one pulse (after discharge Cnp, CL)  
2V/div  
250ms/div  
2V/div  
25ms/div  
GC3-I013D  
Page 18  
TK113xxCM  
LOAD Transient  
CL=0.22mF, 1.0mF, 2.2mF, Iout=3Û33mA  
Vin  
=VoutTYP+1V  
Iout  
ONÛOFF  
6
4
11330  
Cin  
CL  
1mF  
1.8V  
1
3
Vcont  
Cnp  
0.01mF  
200mV/div  
10ms/div  
Iout=0Û30mA, 3Û33mA  
Iout=0Þ30mA, 3Þ33mA  
200mV/div  
10ms/div  
200mV/div  
1ms/div  
The output load transient characteristics can be greatly  
improved by adding a small load current to ground. (Refer  
to the above data curve)  
Increase the output capacitance CL when the load current  
change is fast and/or large.  
GC3-I013D  
Page 19  
TK113xxCM  
LINE Transient  
CL=0.22mF, 1.0mF, 2.2mF  
Vin  
5V  
4V  
6
4
Iout=30mA  
11330  
CL  
1mF  
1
3
Vcont  
Vin-1.8V  
Cnp  
0.01mF  
10mV/div  
100ms/div  
Cnp=0.001mF, 0.01mF, 0.1mF  
10mV/div  
100ms/div  
GC3-I013D  
Page 20  
TK113xxCM  
Output Noise Characteristics  
Vout vs Noise  
Vin  
100  
=VoutTYP+1V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
CL=1.0μF (Tantal)  
6
4
Iout=30mA  
113xx  
Cin  
CL  
1mF  
1mF  
1.8V  
1
3
Vcont  
Cnp  
0.01mF  
BPF=400Hz ~ 80kHz  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Vout(V)  
Cnp vs Noise (CL : Tantalum)  
Cnp vs Noise (CL : Ceramic)  
Vout=3.0V  
Vout=3.0V  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
CL=0.22uF  
CL=0.47uF  
CL=1.0uF  
CL=2.2uF  
CL=10uF  
CL=0.22uF  
CL=0.47uF  
CL=1.0uF  
CL=2.2uF  
CL=10uF  
0
0
1
10  
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Cnp (pF)  
Cnp (pF)  
Iout vs Noise (CL : Tantal)  
Iout vs Noise (CL : Ceramic)  
Vout=3.0V  
Vout=3.0V  
70  
65  
60  
55  
50  
45  
40  
35  
30  
70  
65  
60  
55  
50  
45  
40  
35  
30  
CL=0.22uF  
CL=0.22uF  
CL=0.47uF  
CL=1.0uF  
CL=2.2uF  
CL=10uF  
CL=0.47uF  
CL=1.0uF  
CL=2.2uF  
CL=10uF  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Iout (mA)  
Iout (mA)  
GC3-I013D  
Page 21  
TK113xxCM  
Frequency vs Noise  
CL=0.22mF(Ceramic), Iout=10mA, Vout=3V  
Vin  
=VoutTYP+1V  
10  
6
4
Iout=30mA  
113xx  
Cin  
CL  
1mF  
Cnp=1000pF  
1
1mF  
1.8V  
1
3
Vcont  
Cnp=0.1mF  
Cnp  
0.1  
0.01  
0.01mF  
Cnp=0.01mF  
BPF=400Hz ~ 80kHz  
10  
100  
1k  
0  
10k  
0  
100k  
Frequency (Hz)  
For better noise reduction, it is more effective to increase  
noise bypass capacitance Cnp without increasing output  
capacitance CL. The amount of noise increases with  
higher output voltages.  
GC3-I013D  
Page 22  
TK113xxCM  
12. PIN DESCRIPTION  
Pin No. Pin Description  
Internal Equivalent Circuit  
Vin  
Description  
On/Off Control Terminal  
1
Vcont  
Vcont < Vin-1.8V : ON  
Vcont > Vin-0.6V : OFF  
*C Rank  
The pull-up resister is not built-in.  
100kW  
Vcont  
1
2
3
GND  
Np  
GND Terminal  
Noise Bypass Terminal  
Np  
Connect a bypass capacitor between GND.  
3
4
Vout  
Output Terminal  
Vout  
4
Vin  
Vref  
5
6
GND  
Vin  
GND Terminal  
Input Terminal  
GC3-I013D  
Page 23  
TK113xxCM  
13. APPLICATIONS INFORMATION  
13-1. Stability  
The input capacitor is necessary when the battery is  
discharged, the power supply impedance increases, or the  
line distance to the power supply is long.  
This capacitor might be necessary on each individual IC  
even if two or more regulator ICs are used. It is not  
possible to determine this indiscriminately. Please  
confirm the stability while mounted  
Linear regulators require input and output capacitors in  
order to maintain the regulator's loop stability. If a 0.1mF  
capacitor is connected to the output side, the IC provides  
stable operation at any voltage in the practical current  
region. However, increase the CL capacitance when  
using the IC in the low current region and low voltage.  
Otherwise, the IC oscillates.  
The equivalent series resistance (ESR) of the output  
capacitor must be in the stable operation area. However,  
it is recommended to use as large a value of capacitance  
as is practical. The output noise and the ripple noise  
decrease as the capacitance value increases. ESR values  
vary widely between ceramic and tantalum capacitors.  
However, tantalum capacitors are assumed to provide  
more ESR damping resistance, which provides greater  
circuit stability. This implies that a higher level of circuit  
stability can be obtained by using tantalum capacitors  
when compared to ceramic capacitors with similar values.  
A recommended value of the application is as follows.  
Cin=CL ³ 0.22mF at Iout ³ 0.5mA  
Vin  
Vout  
TK113xxCM  
Cin³0.22mF  
CL³0.22mF  
Cnp  
³0.01mF  
GND  
However, above recommended value does not satisfy  
some conditions.  
See “Output Voltage, Output Current vs. Stable  
Operation Area“ on the next page.  
Select the CL capacitance according to the condition of  
use.  
If the fast load transient response is necessary, increase  
the CL capacitance as much as possible.  
GC3-I013D  
Page 24  
TK113xxCM  
Output Voltage, Output Current vs. Stable Operation Area  
Vout=2.0V  
Vout=3.0, 4.0V  
Vout=5.0V  
Vout=6.0V  
Vout=8.0V  
100  
100  
100  
100  
100  
Unstable Area  
Unstable Area  
Unstable Area  
10  
10  
10  
10  
10  
Stable Area  
CL=0.1uF  
Stable Area  
CL=0.1uF  
Stable Area  
CL=0.1uF  
Stable Area  
CL=0.1uF  
Stable Area  
CL=0.1uF  
1
1
1
1
1
0.1  
0.1  
0.1  
0.1  
0.1  
0.01  
0.5  
0.01  
0.01  
0.01  
0.01  
0.5  
50  
100  
150  
0.5  
50  
100  
150  
0.5  
50  
100  
150  
0.5  
50  
100  
150  
50  
100  
150  
Iout [mA]  
Iout [mA]  
Iout [mA]  
Iout [mA]  
Iout [mA]  
The above graphs show stable operation with a ceramic  
capacitor of 0.1mF (excluding the low current region). If  
the capacitance is not increased in the low voltage, low  
current area, stable operation may not be achieved. Please  
select the best output capacitor according to the voltage  
and current used. The stability of the regulator improves if  
a big output side capacitor is used (the stable operation  
area extends.) Please use as large a capacitance as is  
practical. Although operation above 150mA has not been  
described, stability is equal to or better than operation at  
150mA.  
ex. Ceramic Capacitance vs Voltage, Temperature  
Capacitance vs. Voltage  
%
100  
90  
B Curve  
80  
70  
60  
50  
F Curve  
2
4
6
8
10  
0
Bias Voltage (V)  
For evaluation  
Capacitance vs. Temperature  
%
100  
90  
Kyocera : CM05B104K10AB , CM05B224K10AB ,  
CM105B104K16A , CM105B224K16A ,  
CM21B225K10A  
Murata : GRM36B104K10 , GRM42B104K10 ,  
GRM39B104K25 , GRM39B224K10 ,  
GRM39B105K6.3  
B Curve  
80  
70  
F Curve  
60  
50  
-50 -25  
0
25 50 75 100  
Ta (°C)  
Generally, a ceramic capacitor has both a temperature  
characteristic and a voltage characteristic. Please consider  
both characteristics when selecting the part. The B curves  
are the recommend characteristics.  
GC3-I013D  
Page 25  
TK113xxCM  
13-2. Definition of term  
¨ Over Current Sensor  
¨ Output Voltage (Vout)  
The over current sensor protects the device when there is  
excessive output current. It also protects the device if the  
output is accidentally connected to ground. (When  
external transistor is used, the protection operates at 10mA  
at the base terminal)  
The output voltage is specified with Vin=(VoutTYP+1V)  
and Iout=5mA.  
¨ Maximum Output Current (Iout MAX)  
The rated output current is specified under the condition  
where the output voltage drops 0.9V times the value  
specified with Iout=5mA. The input voltage is set to  
VoutTYP+1V and the current is pulsed to minimize  
temperature effect.  
¨ Thermal Sensor  
The thermal sensor protects the device in case the junction  
temperature exceeds the safe value (TJ=150°C). This  
temperature rise can be caused by external heat, excessive  
power dissipation caused by large input to output voltage  
drops, or excessive output current. The regulator will shut  
off when the temperature exceeds the safe value. As the  
junction temperatures decrease, the regulator will begin to  
operate again. Under sustained fault conditions, the  
regulator output will oscillate as the device turns off then  
resets. Damage may occur to the device under extreme  
fault.  
¨ Dropout Voltage (Vdrop)  
The dropout voltage is the difference between the input  
voltage and the output voltage at which point the regulator  
starts to fall out of regulation. Below this value, the output  
voltage will fall as the input voltage is reduced. It is  
dependent upon the load current and the junction  
temperature.  
Please prevent the loss of the regulator when this  
protection operates, by reducing the input voltage or  
providing better heat efficiency.  
¨ Line Regulation (LinReg)  
Line regulation is the ability of the regulator to maintain a  
constant output voltage as the input voltage changes. The  
line regulation is specified as the input voltage is changed  
from Vin=VoutTYP+1V to Vin=VoutTYP+6V. It is a pulse  
measurement to minimize temperature effect.  
* In the case that the power, Vin ´ Ishort(Short Circuit Current),  
becomes more than twice of the maximum rating of its power  
dissipation in a moment, there is a possibility that the IC is  
destroyed before internal thermal protection works.  
¨ Load Regulation (LoaReg)  
Load regulation is the ability of the regulator to maintain a  
constant output voltage as the load current changes. It is a  
pulsed measurement to minimize temperature effects with  
the input voltage set to Vin=VoutTYP+1V. The load  
regulation is specified under an output current step  
condition of 5mA to 100mA.  
¨ Reverse Voltage Protection  
Reverse voltage protection prevents damage due to the  
output voltage being higher than the input voltage. This  
fault condition can occur when the output capacitor  
remains charged and the input is reduced to zero, or when  
an external voltage higher than the input voltage is applied  
to the output side  
¨ Ripple Rejection (R.R)  
Ripple rejection is the ability of the regulator to attenuate  
the ripple content of the input voltage at the output. It is  
specified with 500mVrms, 1kHz super-imposed on the  
input voltage, where Vin=Vout+2V. Ripple rejection is the  
ratio of the ripple content of the output vs. input and is  
expressed in dB.  
¨ ESD  
MM : 200pF 0W 200V or more  
HBM : 100pF 1.5kW 2000V or more  
¨Standby Current (Istandby)  
Standby current is the current which flows into the  
regulator when the output is turned off by the control  
function (Vcont=Vin).  
GC3-I013D  
Page 26  
TK113xxCM  
How to determine the thermal resistance when  
mounted on PCB  
13-3. Layout  
The thermal resistance when mounted is expressed as  
follows:  
Vout  
Vin  
Tj=qja´Pd+Ta  
Tj of IC is set around 150°C. Pd is the value when the  
thermal sensor is activated.  
If the ambient temperature is 25°C, then:  
150=qja´Pd+25  
qja=125/Pd (°C /mW)  
on/off  
Pd is easily calculated.  
Mount the IC on the print circuit board. Short between the  
output pin and ground. after that, raise input voltage from  
0V to evaluated voltage (see*1) gradually.  
At shorted the output pin, the power dissipation PD can be  
expressed as Pd=Vin ´ Iin.  
PCB Material : Glass epoxy (t=0.8mm)  
Please do derating with 4.8mW/°C at Pd=600mW and  
25°C or more. Thermal resistance (qja) is=208°C/W.  
The input current decreases gradually as the temperature  
of the chip becomes high. After a while, it reaches the  
thermal equilibrium. Use this currrent value at the thermal  
equilibrium.  
Pd(mW)  
In almost all the cases, it shows 600mW(SOT23L-6) or  
more.  
600  
-4.8mW/°C  
*1 In the case that the power, Vin ´ Ishort(Short Circuit Current),  
becomes more than twice of the maximum rating of its power  
dissipation in a moment, there is a possibility that the IC is  
destroyed before internal thermal protection works.  
Pd(mW)  
0
0
25 50  
100  
(85°C)  
150°C  
2
Pd  
The package loss is limited at the temperature that the  
internal temperature sensor works (about 150°C).  
Therefore, the package loss is assumed to be an internal  
limitation. There is no heat radiation characteristic of the  
package unit assumed because of the small size. Heat is  
carried away by the device being mounted on the PCB.  
This value changes by the material and the copper pattern  
etc. of the PCB. The losses are approximately 600mW.  
Enduring these losses becomes possible in a lot of  
applications operating at 25°C.  
D Pd  
5
3
4
0
25  
50  
75  
100  
150  
Ta (℃)  
Procedure (When mounted on PCB.)  
1. Find Pd (Vin´Iin when the output side is short-circuited).  
2. Plot Pd against 25°C.  
3. Connect Pd to the point corresponding to the 150°C with a  
straight line.  
The overheating protection circuit operates when there are  
a lot of losses with the regulator (When outside  
temperature is high or heat radiation is bad). The output  
current cannot be pulled enough and the output voltage  
will drop when the protection circuit operates. When the  
junction temperature reaches 150°C, the IC is shut down.  
However, operation begins at once when the IC stops  
operation and the temperature of the chip decreases.  
4. In design, take a vertical line from the maximum operating  
temperature (e.g., 75°C) to the derating curve.  
5. Read off the value of Pd against the point at which the vertical  
line intersects the derating curve. This is taken as the maximum  
power dissipation DPd.  
6. DPd ¸ (Vinmax-Vout)=Iout (at 75°C)  
The maximum output current at the highest operating  
temperature will be Iout @ DPd ¸ (VinMax-Vout).  
Please use the device at low temperature with better  
radiation. The lower temperature provides better quality.  
GC3-I013D  
Page 27  
TK113xxCM  
Icont (Rc=0)  
13-4. On/Off Control  
-0.8  
-0.6  
-0.4  
-0.2  
0.0  
Vout (Rc=100kW)  
It is recommended to turn the regulator Off when the  
circuit following the regulator is non-operating. A design  
with little electric power loss can be implemented. We  
recommend the use of the on/off control of the regulator  
without using a high side switch to provide an output from  
the regulator. A highly accurate output voltage with low  
voltage drop is obtained.  
VoutTYP  
Vout (Rc=0)  
Icont (Rc=100kW)  
Because the control current is small, it is possible to  
control it directly by CMOS logic.  
0
1.0  
1.2  
1.4  
1.6  
1.8  
Vcont(Reference : Vin) (-V)  
Vsat  
REG  
Parallel Connected ON/OFF Control  
On/Off Cont.  
Vout  
5V  
TK11350CM  
TK11333CM  
TK11320CM  
Vin  
Control Terminal Voltage (Vcont)  
Vcont < Vin-1.8V  
Vcont > Vin-0.6V  
*C Rank  
ON/OFF State  
ON  
3.3V  
2.0V  
OFF  
R
The pull-up resister is not built-in at control terminal. If a  
pull-up resister is necessary according as the control driver,  
connect the control terminal with a pull-up resistance (Rp-  
up).  
On/Off Cont.  
The above figure is multiple regulators being controlled by  
a single On/Off control signal. There is fear of overheating,  
because the power loss of the low voltage side IC  
(TK11320CM) is large. The series resistor (R) is put in the  
input line of the low output voltage regulator in order to  
prevent over-dissipation. The voltage dropped across the  
resistor reduces the large input-to-output voltage across  
the regulator, reducing the power dissipation in the device.  
When the thermal sensor works, a decrease of the output  
If the control function is not used, connect the control  
terminal to GND.  
It is possible to reduce the control current by inserting a  
series resister (Rc). However, be careful the ON/OFF level  
may change. Or “will change”  
Vin  
6
5
4
voltage, oscillation, etc.  
may be observed.  
Vin GND Vout  
Rp-up  
Vcont GND Np  
1
2
3
SW  
Rc  
Cnp  
GC3-I013D  
Page 28  
TK113xxCM  
13-5. Noise Bypass  
The noise and the ripple rejection characteristics depend  
on the capacitance on the Np terminal.  
The ripple rejection characteristic of the low frequency  
region improves by increasing the capacitance of Cnp.  
A standard value is Cnp=0.1mF. Increase Cnp in a design  
with important output noise and ripple rejection  
requirements. The IC will not be damaged if the capacitor  
value is increased.  
The on/off switching speed changes depending on the Np  
terminal capacitance. The switching speed slows when the  
capacitance is large.  
GC3-I013D  
Page 29  
TK113xxCM  
13-6. Outline ; PCB ; Stamps  
SOT23L-6  
Unit : mm  
Package Structure  
Mold compound : Green compound  
Terminal Material : Copper Alloy  
Mass (Reference) : 0.023g  
V OUT  
2.0V  
2.1  
V CODE  
20  
V OUT  
3.2V  
3.3  
V CODE  
32  
V OUT  
6.0V  
8.0  
V CODE  
60  
80  
21  
33  
2.2  
22  
3.5  
35  
2.5  
25  
3.8  
38  
2.6  
26  
4.0  
40  
2.7  
27  
4.5  
45  
2.8  
28  
4.7  
47  
2.9  
29  
4.8  
48  
3.0  
30  
5.0  
50  
3.1  
31  
5.5  
55  
The output voltage table indicates the standard value when manufactured.  
Please contact your authorized ASAHI KASEI TOKO POWER DEVICES representative for voltage  
availability.  
GC3-I013D  
Page 30  
TK113xxCM  
14. NOTES  
15. OFFICES  
Please be sure that you carefully discuss your planned  
purchase with our office if you intend to use the products in  
this application manual under conditions where particularly  
extreme standards of reliability are required, or if you intend  
to use products for applications other than those listed in this  
application manual.  
Power drive products for automobile, ship or aircraft  
transport systems; steering and navigation systems,  
emergency signal communications systems, and any  
system other than those mentioned above which include  
electronic sensors, measuring, or display devices, and  
which could cause major damage to life, limb or property  
if misused or failure to function.  
If you need more information on this product and other  
ASAHI KASEI TOKO POWER DEVICES products, please  
contact us.  
ASAHI KASEI TOKO POWER DEVICES CORPORATION  
13-45, Senzui 3-chome, Asaka-shi, Saitama-ken  
351-0024, Japan  
TEL: +81-48-460-1870 (Marketing Department)  
FAX: +81-48-460-1600  
Medical devices for measuring blood pressure, pulse,  
etc., treatment units such as coronary pacemakers and heat  
treatment units, and devices such as artificial organs and  
artificial limb systems which augment physiological  
functions.  
Electrical instruments, equipment or systems used in  
disaster or crime prevention.  
Semiconductors, by nature, may fail or malfunction in  
spite of our devotion to improve product quality and  
reliability. We urge you to take every possible precaution  
against physical injuries, fire or other damages which may  
cause failure of our semiconductor products by taking  
appropriate measures, including a reasonable safety margin,  
malfunction preventive practices and fire-proofing when  
designing your products.  
This application manual is effective from Aug. 2010. Note  
that the contents are subject to change or discontinuation  
without notice. When placing orders, please confirm  
specifications and delivery condition in writing.  
ASAHI KASEI TOKO POWER DEVICES is not  
responsible for any problems nor for any infringement of  
third party patents or any other intellectual property rights  
that may arise from the use or method of use of the products  
listed in this application manual. Moreover, this application  
manual does not signify that ASAHI KASEI TOKO  
POWER DEVICES agrees implicitly or explicitly to license  
any patent rights or other intellectual property rights which it  
holds.  
None of the ozone depleting substances(ODS) under the  
Montreal Protocol are used in our manufacturing process.  
YOUR DISTRIBUTOR  
GC3-I013D  
Page 31  

相关型号:

TK11380CMIL-G

Fixed Positive LDO Regulator, 8V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11380MBLB

Regulator
TOKO

TK11380UBLB

Regulator
TOKO

TK11381CMCL-G

Fixed Positive LDO Regulator, 8.1V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11381CMIL-G

Fixed Positive LDO Regulator, 8.1V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11382CMCL-G

Fixed Positive LDO Regulator, 8.2V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11382CMIL-G

Fixed Positive LDO Regulator, 8.2V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11383CMCL-G

Fixed Positive LDO Regulator, 8.3V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11383CMIL-G

Fixed Positive LDO Regulator, 8.3V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11384CMCL-G

Fixed Positive LDO Regulator, 8.4V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11385CMCL-G

Fixed Positive LDO Regulator, 8.5V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO

TK11385CMIL-G

Fixed Positive LDO Regulator, 8.5V, 0.17V Dropout, BIPolar, PDSO6, LEAD FREE, SOT-23, 6 PIN
TOKO