ALD500R-50PE [ALD]

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE; 具有精密电压基准精密积分模拟处理器
ALD500R-50PE
型号: ALD500R-50PE
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
具有精密电压基准精密积分模拟处理器

文件: 总12页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCED  
LINEAR  
DEVICES, INC.  
ALD500RAU/ALD500RA/ALD500R  
PRECISION INTEGRATING ANALOG PROCESSOR  
WITH PRECISION VOLTAGE REFERENCE  
BENEFITS  
APPLICATIONS  
• Low cost, simple functionality  
• Wide dynamic signal range  
• Very high noise immunity  
• 4 1/2 digits to 5 1/2 digits plus sign measurements  
• Precision analog signal processor  
• Precision sensor interface  
• Automatic compensation and cancellation  
of error sources  
• Easy to use to acquire bipolar signals  
• Up to 19 bit (18 bit + sign bit) single conversion  
or 21 bit (20 bit + sign bit) multiple conversion  
and noise performance  
• High accuracy DC measurement functions  
• Portable battery operated instruments  
• Computer peripheral  
• PCMCIA  
• Inherently linear and stable with temperature  
and component variations  
FEATURES  
• Resolution up to 18 bits plus sign bit and over-range bit  
• Accuracy independent of input source impedances  
• Accurate on-chip voltage reference  
PIN CONFIGURATION  
ALD500R  
• Tempco as low as 10 ppm/°C guaranteed  
• Chip select - power down mode  
• High input impedance of 1012  
I
1
2
3
4
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C
V
B
S
• Inherently filters and integrates any external noise spikes  
• Differential analog input  
• Wide bipolar analog input voltage range ±3.5V  
• Automatic zero offset compensation  
• Low linearity error - as low as 0.001% typical  
• Fast zero-crossing comparator - 1µs  
• Low power dissipation - 6mW typical  
• Automatic internal polarity detection  
• Low input current - 2pA typical  
+
C
INT  
-
V
DGND  
C
C
OUT  
AZ  
B
B
A
UF  
6
7
AGND  
-
+
C
V
V
REF  
REF  
N/C  
N/C  
IN  
+
C
-
8
IN  
+
9
V
REF  
REF  
-
10  
• Optional digital control from a microcontroller, an ASIC, or  
V
a dedicated digital circuit  
• Flexible conversion speed vs. resolution trade-off  
QE, PE, SE PACKAGE  
N/C pin is connected internally. Connect to V .  
-
*
Ordering Information  
Resolution Endpoint Voltage Reference  
Linearity Accuracy/Tempco  
Package Type  
Operating  
Temperature  
20L PDIP  
20L SOIC  
20L QSOP  
ALD500R-50QE  
20LCDIP  
16 bit  
17 bit  
18 bit  
17 bit  
18 bit  
17 bit  
18 bit  
18 bit  
0.015%  
0.01%  
0.5% 50ppm/C  
0.3% 20ppm/C  
ALD500R-50PE  
ALD500R-50SE  
0°C to 70°C  
0°C to 70°C  
ALD500RA-20PE  
ALD500RAU-20PE  
ALD500RA-10PE  
ALD500RAU-10PE  
ALD500RA-20PEI  
ALD500RA-20SE  
ALD500RAU-20SE  
ALD500RA-10SE  
ALD500RAU-10SE  
ALD500RA-20SEI  
ALD500RA-20QE  
ALD500RAU-20QE  
ALD500RA-10QE  
ALD500RAU-10QE  
ALD500RA-20QEI  
0.005%  
0.01%  
0.2% 10ppm/C  
0.3% 20ppm/C  
0.3% 20ppm/C  
0°C to 70°C  
0.005%  
0.01%  
-40°C to +85°C  
0.005%  
0.005%  
ALD500RAU-20PEI ALD500RAU-20SEI ALD500RAU-20QEI  
ALD500RAU-20DE -55°C to +125°C  
* Contact factory for customized voltage reference voltage levels, accuracy and tempco specifications.  
Rev. 1.01 © 1999 Advanced Linear Devices, Inc., 415 Tasman Drive, Sunnyvale, California 94089-1706Tel: (408) 747-1155, Fax: (408) 747-1286  
http://www.aldinc.com  
FIGURE 1. ALD500R Functional Block Diagram  
C
REF  
R
INT  
C
INT  
-
V
+
REF  
(11)  
V
REF  
(12)  
C
AZ  
R
REF  
C
INT  
(2)  
+
-
C
R
C
= 100K  
= 0.1µF  
C
BUF  
(5)  
C
AZ  
(4)  
REF  
B
REF  
(8)  
REF  
(7)  
REF  
INT  
SW  
SW  
R
R
+
-
SW  
IN  
Buffer  
+
Integrator  
-
+
V
IN  
(14)  
+
-
SW  
SW  
R
R
+
-
Comp1  
-
Level  
Shift  
Comp2  
+
C
(17)  
OUT  
SW  
Az  
SW  
AZ  
+
-
SW  
SW  
SW  
R
R
S
Polarity  
Detection  
DGND  
(18)  
AGND  
(6)  
SW  
SW  
IN  
G
-
V
Analog  
IN  
(13)  
Phase  
Decoding  
Logic  
Switch  
Control  
Signals  
REF  
Control  
Bias  
A
B
V
V
N/C N/C  
SS DD  
(3) (19) (10) (9)  
C
B
C
S
(20)  
(15) (16)  
Control Logic  
I
B
(1)  
GENERAL THEORY OF OPERATION  
GENERAL DESCRIPTION  
The ALD500RAU/ALD500RA/ALD500R are integrating  
dual slope analog processors, designed to operate on ±5V  
power supplies for building precision analog-to-digital  
converters. The ALD500RAU/ALD500RA/ALD500R  
feature specifications suitable for 18 bit/17 bit/16 bit  
resolution conversion, respectively. Together with three  
capacitors, tworesistors, andadigitalcontroller, aprecision  
Analog to Digital converter with auto zero can be  
implemented. The digital controller can be implemented  
by an external microcontroller, under either hardware  
(fixed logic) or software control. For ultra high resolution  
applications, up to 23 bit conversion can be implemented  
with an appropriate digital controller and software.  
Dual-Slope Conversion Principles of Operation  
The basic principle of dual-slope integrating analog to digital  
converter is simple and straightforward. A capacitor, CINT, is  
charged with the integrator from a starting voltage, VX, for a  
fixed period of time at a rate determined by the value of an  
unknown input voltage, which is the subject of measurement.  
Then the capacitor is discharged at a fixed rate, based on an  
external reference voltage, back to VX where the discharge  
time, or deintegration time, is measured precisely. Both the  
integration time and deintegration time are measured by a  
digital counter controlled by a crystal oscillator. It can be  
demonstrated that the unknown input voltage is determined  
by the ratio of the deintegration time and integration time, and  
isdirectlyproportionaltothemagnitudeoftheexternalreference  
voltage.  
The ALD500R series of analog processors accept  
differential inputs and the external digital controller first  
counts the number of pulses at a fixed clock rate that a  
capacitor requires to integrate against an unknown analog  
input voltage, then counts the number of pulses required  
to deintegrate the capacitor against a known internal  
reference voltage. This unknown analog voltage can then  
be converted by the microcontroller to a digital word, which  
is translated into a high resolution number, representing  
an accurate reading. This reading, when ratioed against  
the reference voltage, yields an accurate, absolute voltage  
measurement reading.  
The major advantages of a dual-slope converter are:  
a. Accuracy is not dependent on absolute values of  
integration time tINT and deintegration time tDINT, but is  
dependent on their relative ratios. Long-term clock frequency  
variations will not affect the accuracy. A standard crystal  
controlledclockrunningdigitalcountersisadequatetogenerate  
very high accuracies.  
b. Accuracy is not dependent on the absolute values of  
R
INT and CINT, as long as the component values do not vary  
The ALD500R analog processors consist of on-chip digital  
control circuitry to accept control inputs, integrating buffer  
amplifiers, analog switches, and voltage comparators and  
a highly accurate, ultra-stable voltage reference. It  
functions in four operating modes, or phases, namely auto  
zero, integrate, deintegrate, and integrator zero phases.  
At the end of a conversion, the comparator output goes  
from high to low when the integrator crosses zero during  
deintegration. ALD500R analog processors also provide  
direct logic interface to CMOS logic families.  
through a conversion cycle, which typically lasts less than 1  
second.  
c. Offset voltage values of the analog components, such  
as VX, are cancelled out and do not affect accuracy.  
d. Accuracyofthesystemdependsmainlyontheaccuracy  
and the stability of the voltage reference value.  
2
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  
e. Very high resolution, high accuracy measurements  
can be achieved simply and at very low cost.  
reference voltage is integrated  
VREF = Reference Voltage  
CINT = Integrating Capacitor value  
RINT = Integrating Resistor value  
Aninherentbenefitofthedualslopeconvertersystemisnoise  
immunity. The input noise spikes are integrated (averaged to  
near zero) during the integration periods. Integrating ADCs Actual data conversion is accomplished in two phases: Input  
are immune to the large conversion errors that plague SignalIntegrationPhaseandReferenceVoltageDeintegration  
successiveapproximationconvertersandotherhighresolution Phase.  
converters and perform very well in high-noise environments.  
The integrator output is initialized to 0V prior to the start of  
Theslowconversionspeedoftheintegratingconverterprovides InputSignalIntegrationPhase. DuringInputSignalIntegration  
inherentnoiserejectionwithatleasta20dB/decadeattenuation Phase, internal analog switches connect VIN to the buffer  
rate. Interferencesignalswithfrequenciesatintegralmultiples input where it is maintained for a fixed integration time period  
oftheintegrationperiodare,theoretically,completelyremoved. (tINT). This fixed integration period is generally determined by  
Integrating converters often establish the integration period to a digital counter controlled by a crystal oscillator. The  
reject 50/60Hz line frequency interference signals.  
application of VIN causes the integrator output to depart 0V at  
a rate determined by VIN and a direction determined by the  
polarity of VIN.  
The relationship of the integrate and deintegrate (charge  
and discharge) of the integrating capacitor values are  
shown below:  
The Reference Voltage Deintegration Phase is initiated  
immediately after tINT, within 1 clock cycle. During  
ReferenceVoltage Deintegration Phase, internal analog  
switchesconnectareferencevoltagehavingapolarityopposite  
that of VIN to the integrator input. Simultaneously the same  
digital counter controlled by the same crystal oscillator used  
above is used to start counting clock pulses. The Reference  
VoltageDeintegrationPhaseismaintaineduntilthecomparator  
output inside the dual slope analog processor changes state,  
indicating the integrator has returned to 0V. At that point the  
digital counter is stopped. The Deintegration time period  
(tDINT), as measured by the digital counter, is directly  
proportional to the magnitude of the applied input voltage.  
. .  
tINT / RINT CINT)  
VINT = VX - (VIN  
(integrate cycle)  
(1)  
(2)  
(3)  
. .  
tDINT / RINT CINT)  
VX = VINT - (VREF  
(deintegrate cycle)  
Combining equations 1 and 2 results in:  
IN / VREF = -tDINT / tINT  
where:  
V
After the digital counter value has been read, the digital  
counter, the integrator, and the auto zero capacitor are all  
reset to zero through an Integrator Zero Phase and an Auto  
Zero Phase so that the next conversion can begin again. In  
practice, this process is usually automated so that analog-to-  
digital conversion is continuously updated. The digital control  
Vx = An offset voltage used as starting voltage  
VINT = Voltage change across CINT during tINT and  
during tDINT (equal in magnitude)  
VIN = Average, or an integrated, value of input voltage  
to be measured during tINT (Constant VIN)  
tINT = Fixed time period over which unknown voltage is ishandledbyamicroprocessororadedicatedlogiccontroller.  
integrated  
The output, in the form of a binary serial word, is read by a  
microprocessor or a display adapter when desired.  
tDINT = Unknown time period over which a known  
C
INT  
INTEGRATOR  
-
R
INT  
V
INT  
COMPARATOR  
-
C
ANALOG  
INPUT  
OUT  
+
(V  
)
IN  
+
S1  
POLARITY  
DETECTION  
PHASE  
CONTROL  
SWITCH DRIVER  
POLARITY CONTROL  
VOLTAGE  
REFERENCE  
REF  
SWITCHES  
CONTROL  
LOGIC  
A
B
V
= 4.1V MAX  
INT  
V
V
IN FULL SCALE  
MICROCONTROLLER  
(CONTROL LOGIC  
+ COUNTER)  
V
V
IN 1/2 FULL SCALE  
V
x
0
t
DINT  
t
t
INT  
DINT  
Figure 2. Basic Dual-Slope Converter  
ALD500RAU/ALD500RA/ALD500R  
Advanced Linear Devices  
3
ABSOLUTE MAXIMUM RATINGS  
+
Supply voltage, V  
13.2V  
-0.3V to V +0.3V  
600 mW  
+
Differential input voltage range  
Power dissipation  
Operating temperature range PE, SE package  
Operating temperature range QE package  
Storage temperature range  
0°C to +70°C  
-55°C to +125°C  
-65°C to +150°C  
+260°C  
Lead temperature, 10 seconds  
OPERATING ELECTRICAL CHARACTERISTICS  
+
-
T
= 25°C V = +5V V = -5V (V supply ± 5V) unless otherwise specified; C = C = 0.47µf  
AZ REF  
A
500RAU  
Typ  
500RA  
Typ  
500R  
Typ  
Parameter  
Symbol  
Min  
15  
Max  
Min  
30  
Max  
Min  
60  
Max  
Unit  
Test Conditions  
Notes 1, 7  
Resolution  
µV  
Zero-Scale  
Error  
Z
0.0025  
0.003  
0.003  
0.005  
0.005  
0.008  
%
%
0°C to 70°C  
SE  
End Point  
Linearity  
E
0.001  
0.005  
0.007  
0.003 0.010  
0.015  
0.005 0.015  
0.020  
%
%
Notes 1, 2  
0°C to +70°C  
NL  
Best Case  
Straight Line  
Linearity  
N
0.0025  
0.004  
0.6  
0.003 0.005  
0.008  
0.003 0.008  
0.015  
Notes 1, 2  
L
0°C to +70°C  
0°C to +70°C  
Notes 1, 7  
Zero-Scale  
Temperature  
Coefficient  
TC  
ZS  
0.3  
0.15  
0.3  
0.15  
0.7  
0.3  
0.15  
0.01  
0.012  
1.3  
0.7  
µV/°C  
ppm/°C  
%
0.3  
0.35  
0.35  
Full-Scale  
Symmetry Error  
(Rollover Error)  
S
0.005  
0.008  
1.3  
0.008  
0.010  
1.3  
0°C to 70°C  
YE  
%
Full-Scale  
TC  
FS  
ppm/°C  
0°C to +70°C  
Temperature  
Coefficient  
Note 7  
Input  
Current  
I
2
2
2
pA  
V
V
= 0V  
IN  
IN  
Common-Mode CMVR  
Voltage Range  
V
+1.5  
+0.9  
+1.5  
V
V
V
-1.5  
DD  
-0.9  
DD  
-1.5  
DD  
V
V
V
+1.5  
SS  
+0.9  
SS  
+1.5  
SS  
V
V
V
-1.5 V +1.5  
SS  
V
V
V
-1.5  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
Integrator  
Output Swing  
VINT  
V
SS  
-0.9 V +0.9  
SS  
-0.9  
-1.5  
V
Analog Input  
Signal Range  
VIN  
V
SS  
-1.5 V +1.5  
SS  
V
AGND = 0V  
Voltage  
Reference  
Range  
VREF  
V
+1  
SS  
V
-1  
DD  
V
SS  
+1  
V
-1 V + 1  
V
-1  
DD  
V
DD SS  
4
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  
DC & AC ELECTRICAL CHARACTERISTICS  
= 25°C V supply = ±5.0V unless otherwise specified; C = C = 0.47µf  
REF  
T
A
AZ  
500RAU  
Typ  
500RA  
Typ  
500R  
Typ  
0.6  
Parameter  
Symbol Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
+
Supply Current  
I
S
0.6  
1.0  
0.6  
1.0  
1.0  
mA  
V
= 5V , A =1,B=1  
Power Dissipation  
P
10  
10  
10  
mW  
V
V supply= ±5V  
D
Positive Supply Range  
V
+S  
4.5  
-4.5  
4
5.5  
4.5  
-4.5  
4
5.5  
4.5  
5.5  
Note 4  
Negative Supply Range  
V
-S  
-5.5  
0.4  
1
-5.5  
0.4  
1
-4.5  
4
-5.5  
0.4  
1
V
V
V
V
V
Note 4  
Comparator Logic 1,  
Output High  
V
OH  
I
I
= 400µA  
SOURCE  
Comparator Logic 0,  
Output Low  
V
OL  
= 1.1mA  
SINK  
Logic 1, Input High  
Voltage  
V
IH  
3.5  
3.5  
3.5  
Logic 0, Input Low  
Voltage  
V
IL  
Logic Input Current  
Comparator Delay  
I
t
0.01  
1
0.01  
1
0.01  
1
µA  
L
µsec  
Note 5  
D
Figure 3. ALD500R TIMING DIAGRAM  
1 Conversion Cycle  
123,093  
Clock Pulses  
123,093  
Clock Pulses  
0.5416 µs  
~
~
1.8432 MHz Clock  
A INPUT  
66.667 msec.  
66.667 msec.  
B INPUT  
COUT  
NOT VALID  
NOT VALID  
Positive Input Signal  
COUT  
Negative Input Signal  
Auto Zero  
Phase  
Input Signal  
Integration  
Phase  
Reference  
Voltage  
Deintegration  
Phase  
Integrator Zero  
Phase  
Auto Zero  
Phase  
Clock data in  
or clock data out  
of counters within the  
the microcontroller  
or fixed logic controller,  
as needed.  
Fixed period of  
approx.1 msec.  
Variable  
number of  
clock pulses.  
Fixed number  
of clock pulses  
by design.  
At VIN MAX,  
max. number of  
clock pulses  
Stop counter upon  
detection of comparator  
output going from high  
to low state.  
START  
REPEAT  
CONVERSION  
CYCLE  
CONVERSION  
CYCLE  
~
= 246,185  
START INTEGRATION CYCLE  
START DEINTEGRATION CYCLE  
START INTEGRATOR ZERO CYCLE  
ALD500RAU/ALD500RA/ALD500R  
Advanced Linear Devices  
5
DC ELECTRICAL CHARACTERISTICS  
T
= 25°C V supply = +5.0V unless otherwise specified; C = C  
= 0.47µf, R  
= 100K(1% metal film)  
A
AZ REF  
REF  
Parameter  
Symbol  
500RAU-10  
500RA-10  
500RAU-20  
500RA-20  
500RAU-50  
Unit  
Test Conditions  
500RA-50  
500R-50  
Typ  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max  
Voltage Reference  
V
R
0.998 1.000 1.002 0.997 1.000  
1.003 0.995  
1.000  
1.005  
V
Supply Voltage  
Rejection Ratio  
V
95  
3
95  
7
95  
dB  
RSR  
Temperature  
Coefficient  
V
10  
20  
15  
-0.08  
10  
50 ppm/C°  
RTC  
Long Term Drift  
Warm Up Time  
V  
t  
/
-0.08  
10  
-0.08  
10  
ppm/  
1000hrs  
Note 7  
Note 7  
REF  
min.  
Positive Supply  
Operating Voltage Range  
V+  
V-  
I
4.5  
5.5  
4.5  
5.5  
4.5  
5.5  
V
V
Negative Supply  
Operating Voltage Range  
-5.5  
-4.5  
-5.5  
-4.5  
-5.5  
-4.5  
Power Down Supply  
Current  
25  
25  
25  
µA  
Note 7  
PD  
NOTES:  
1. Integrate time 66 msec., Auto Zero time 66 msec., V  
= 4V, V = 2.0V Full Scale  
IN  
INT  
Resolution = V  
INT  
/integrate time/clock period  
2. End point linearity at ±1/4, ±1/2, ±3/4 Full Scale after Full Scale adjustment.  
3. Rollover Error also depends on C , C , C characteristics.  
INT REF AZ  
~
4. Contact factory for other power supply operating voltage ranges, including Vsupply = ±3V or Vsupply = ±2.5V.  
5. Recommended selection of clock periods of one of the following:  
t clk = 0.27µsec, 0.54µsec, or 1.09µsec  
which corresponds to clock frequencies of 3.6864 MHz, 1.8432 MHz, 0.9216 MHz respectively.  
6.  
R
REF  
is 100K 1% metal film, 50 ppm/C.  
7. Sample tested parameter.  
6
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
-
1
I
Bias circuit pin. Connect a 0.1µF capacitor from this pin to V to minimize noise.  
B
2
C
INT  
Integrator capacitor connection.  
-
V
3
Negative power supply.  
4
C
The Auto-zero capacitor connection.  
The Integrator resistor buffer connection.  
This pin is analog ground.  
AZ  
5
BUF  
6
AGND  
-
7
C
Negative reference capacitor connection.  
Positive reference capacitor connection.  
REF  
+
C
8
REF  
-
Internally connected. Connect to V for normal operation.  
9
N/C  
N/C  
-
10  
11  
12  
13  
14  
15  
16  
17  
Internally connected. Connect to V for normal operation.  
-
V
External voltage reference (-) connection. High impedance load (100M) only.  
External voltage reference (+) connection. High impedance load (100M) only.  
Negative analog input.  
REF  
+
V
REF  
-
V
IN  
+
V
Positive analog input.  
IN  
A
B
C
Converter phase control MSB Input.  
Converter phase control LSB Input.  
Comparator output. C  
OUT  
is LOW when a negative input voltage is being integrated. A HIGH-to-LOW transition on C  
that the Deintegrate phase is completed. C  
time the Integrator Zero phase.  
is HIGH during the Integration phase when a positive input voltage is being integrated and  
signals the processor  
is undefined during the Auto-Zero phase. It should be monitored to  
OUT  
OUT  
OUT  
18  
19  
20  
DGND  
Digital ground.  
+
V
Positive power supply.  
C
S
Chip select - power down pin. Logic 1 = power on. Logic 0 = power down.  
Table 1. Conversion Phase and Control Logic Internal Analog Switch Functions  
Switch Functions  
Input  
Connect  
Reference Input Auto Zero  
Polarity  
Reference  
Sample  
V
=AGND  
IN  
System  
Offset  
Conversion Control  
Phase  
Logic  
+
-
SW  
R
SW  
SW  
SW  
SW  
SW  
SW  
S
IN  
R or  
AZ  
R
G
Auto Zero  
A = 0, B = 1  
A = 1, B = 0  
Open  
Open  
Open  
Closed  
Open  
Closed  
Open  
Closed  
Open  
Open  
Open  
Input Signal  
Integration  
Closed  
Reference Voltage A = 1, B = 1  
Deintegration  
Open  
Open  
Closed*  
Open  
Open  
Open  
Open  
Closed  
Closed  
Open  
Integrator  
A = 0, B = 0  
Closed  
Closed  
Output Zero  
+
-
R
*SW would be closed for a positive input signal. SW would be closed for a negative input signal.  
R
ALD500RAU/ALD500RA/ALD500R  
Advanced Linear Devices  
7
ALD500RAU/ALD500RA/ALD500RCONVERSIONCYCLE  
time and depends on system parameters and component  
value selections. The total number of clock pulses or clock  
The ALD500RAU/ALD500RA/ALD500R conversion cycle counts, during integration phase determine the resolution of  
takes place in four distinct phases, the Auto Zero Phase, the the conversion. For high resolution applications, this total  
Input Signal Integration Phase, the Reference Voltage number of clock pulses should be maximized. The basic unit  
Deintegration Phase, and the Integrator Zero Phase. A typical  
of resolution is in µV/count. Before the end of this phase,  
measurementcycleusesallfourphasesinanordersequence comparator output is sampled by the microcontroller. This  
as mentioned above. The internal analog switch status for phaseisterminatedbychanginglogicinputsABfrom10to11.  
each of these phases is summarized in Table 1.  
Reference Voltage Deintegration Phase (DINT Phase)  
The following is a detailed description of each one of the four  
phases of the conversion cycle.  
At the end of the Input Signal Integration Phase, Reference  
Voltage Deintegration Phase begins. The previously charged  
reference capacitor is connected with the proper polarity to  
ramp the integrator output back to zero. The ALD500RAU/  
ALD500RA/ALD500Ranalogprocessorsautomaticallyselects  
Auto Zero Phase (AZ Phase)  
The analog-to-digital conversion cycle begins with the Auto  
Zero Phase, when the digital controller applies low logic level the proper logic state to cause the integrator to ramp back  
to input A and high logic level to input B of the analog toward zero at a rate proportional to the reference voltage  
processor. During this phase, the reference voltage is stored stored on the reference capacitor. The time required to return  
on reference capacitor CREF, comparator offset voltage and to zero is measured by the counter in the digital processor  
the sum of the buffer and integrator offset voltages are stored  
using the same crystal oscillator. The phase is terminated by  
on auto zero capacitor CAZ. During the Auto Zero Phase, the the comparator output after the comparator senses when the  
comparator output is characterized by an indeterminate integrator output crosses zero. The counter contents are then  
waveform.  
transferred to the register. The resulting time measurement  
is proportional to the magnitude of the applied input voltage.  
During the Auto Zero Phase, the external input signal is  
disconnected from the internal circuitry of the ALD500RAU/ The duration of this phase is precisely measured from the  
ALD500RA/ALD500R by opening the two SWIN analog transition of AB from 10 to 11 to the falling edge of the  
switches and connecting the internal input nodes internally to comparator output, usually with a crystal controlled digital  
analogground. Afeedbackloop,closedaroundtheintegrator counter chain. The comparator delay contributes some error  
and comparator, charges the CAZ capacitor with a voltage to  
compensate for buffer amplifier, integrator and comparator comparator delay and overshoot will result in error timing,  
in this phase. The typical comparator delay is 1µ . The  
sec  
offset voltages.  
which translates into error voltages. This error can be zeroed  
and minimized during Integrator Output Zero Phase and  
This is the system initialization phase, when a conversion is corrected in software, to within ±1 count of the crystal clock  
ready to be initiated at system turn-on. In practice the  
converter can be operated in continuous conversion mode, LSB).  
(which is equivalent to within ± 1 LSB, when 1 clock pulse = 1  
whereAZphasemustbelongenoughforthecircuitconditions  
to settle out any system errors. Typically this phase is set to Integrator Zero Phase ( INTZ Phase)  
be equal to tINT  
.
This phase guarantees the integrator output is at 0V when the  
Auto Zero phase is entered, and that only system offset  
voltages are compensated. This phase is used at the end of  
Input Signal Integration Phase (INT Phase)  
During the Input Signal Integration Phase (INT), the thereferencevoltagedeintegrationandisusedforapplications  
ALD500RAU/ALD500RA/ALD500Rintegratesthedifferential with high resolutions. If this phase is not used, the value of the  
+
-
voltage across the (V IN) and (V IN) inputs. The differential  
Auto-Zero capacitor (CAZ) must be much greater than the  
voltage must be within the device's common-mode voltage value of the integration capacitor (CINT) to reduce the effects  
range CMVR. The integrator charges CINT for a fixed period of charge-sharing. The Integrator Zero phase should be  
of time, or counts a fixed number of clock pulses, at a rate programmed to operate until the Output of the Comparator  
determined by the magnitude of the input voltage. During this  
phase, the analog inputs see only the high impedance of the  
returns "HIGH". A typical Integrator Zero Phase lasts 1msec.  
noninverting operational amplifier input of the buffer. The The comparator delay and the controller's response latency  
integratorrespondsonlytothevoltagedifferencebetweenthe may result in Overshoot causing charge buildup on the  
analog input terminals, thus providing true differential analog integrator at the end of a conversion. This charge must be  
inputs.  
removed or performance will degrade. The Integrator Output  
Zero phase should be activated (AB = 00) until COUT goes  
The input signal polarity is determined by software control at high. Atthispoint,theintegratoroutputisnearzero. AutoZero  
the end of this phase: COUT = 1 for positive input polarity; Phase should be entered (AB = 01) and the ALD500RAU/  
C
OUT = 0 for negative input polarity. The value is, in effect, the ALD500RA/ALD500R is held in this state until the next  
sign bit for the overall conversion result.  
conversion cycle.  
The duration of this phase is selected by design to be a fixed  
8
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  
+
-
Differential Inputs (V IN,V IN)  
(+) or (-) input voltages will cause a roll-over error. This error  
can be minimized by using a large reference capacitor in  
The ALD500RAU/ALD500RA/ALD500R operates with comparison to the stray capacitance.  
differential voltages within the input amplifier common-mode  
voltage range. The amplifier common-mode range extends Phase Control Inputs (A, B)  
from 1.5V below positive supply to 1.5V above negative  
supply. Within this common-mode voltage range, common- The A and B logic inputs select the ALD500RAU/ALD500RA/  
mode rejection is typically 95dB.  
ALD500R operating phase. The A and B inputs are normally  
driven by a microprocessor I/O port or external logic, using  
The integrator output also follows the common-mode voltage. CMOS logic levels. For logic control functions of A and B logic  
When large common-mode voltages with near full-scale inputs, see Table 1.  
differential input voltages are applied, the input signal drives  
the integrator output to near the supply rails where the Comparator Output (COUT  
)
integrator output is near saturation. Under such conditions,  
linearity of the converter may be adversely affected as the By monitoring the comparator output during the Input Signal  
integrator swing can be reduced. The integrator output must Integration Phase, which is a fixed signal integrate time  
notbeallowedtosaturate. Typically, theintegratoroutputcan period, the input signal polarity can be determined by the  
swing to within 0.9V of either supply rails without loss of microcontroller controlling the conversion. The comparator  
linearity.  
output is HIGH for positive signals and LOW for negative  
signals during the Input Signal Integration Phase. The state of  
the comparator should be checked by the microcontroller at  
the end of the Input Signal Integration Phase, just before  
Analog Ground  
AnalogGroundisV-IN duringAutoZeroPhaseandReference transition to the Reference Voltage Deintegration Phase. For  
Voltage Deintegration Phase. If V- is different from analog very low level input signals noise may cause the comparator  
ground, a common-mode voltage exists at the inputs. This output state to toggle between positive and negative states.  
common mode signal is rejected by the high common mode For the ALD500RAU/ALD500RA/ALD500R, this noise has  
rejection ratio of the converter. In most applications, V  
set at a fixed known voltage (i.e., power supply ground). All  
other ground connections should be connected to digital At the start of the Reference Voltage Deintegration Phase,  
IN  
-
is been minimized to typically within one count.  
IN  
ground in order to minimize noise at the inputs.  
comparator output is set to HIGH state. During the Reference  
VoltageDeintegrationPhase,themicrocontrollermustmonitor  
the comparator output to make a HIGH-to-LOW transition as  
the integrator output ramp crosses zero relative to analog  
+
-
Differential Reference (V REF, V REF  
)
The reference voltage can be anywhere from 1V of the power ground. This transition indicates that the conversion is  
supply voltage rails of the converter. Roll-over error is caused complete. The microcontroller then stops and records the  
by the reference capacitor losing or gaining charge due to the pulsecount. Theinternalcomparatordelayis1µsec,typically.  
straycapacitanceonitsnodes. Thedifferenceinreferencefor The comparator output is undefined during the Auto Zero  
Phase.  
Positive Input Signal (VIN  
)
0V  
Negative Input Signal (VIN  
)
ANALOG INPUT  
REFERENCE  
DEINTEGRATE  
INTEGRATE  
ANALOG INPUT  
INTEGRATE  
REFERENCE  
DEINTEGRATE  
INTEGRATOR  
OUTPUT  
INTEGRATOR  
OUTPUT  
(V  
)
INT  
ZERO  
CROSSING  
ZERO  
CROSSING  
(V  
)
INT  
EXTERNAL INPUT  
EXTERNAL INPUT  
POLARITY DETECTION  
POLARITY DETECTION  
COMPARATOR  
OUTPUT  
COMPARATOR  
OUTPUT  
(C  
)
(C  
)
OUT  
OUT  
Figure 4. Comparator Output  
ALD500RAU/ALD500RA/ALD500R  
Advanced Linear Devices  
9
where:  
APPLICATIONS AND DESIGN NOTES  
VIN MAX = Maximum input voltage desired  
(full count voltage)  
= Integrating Resistor value  
Determination and Selection of System Variables  
RINT  
Theprocedureoutlinedbelowallowstheusertodeterminethe  
values for the following ALD500RAU/ALD500RA/ALD500R  
system design variables:  
For minimum noise and maximum linearity, RINT should be in  
the range of between 50kto 150k.  
Integrating Capacitor (CINT  
)
(1) Determine Input Voltage Range  
(2) Clock Frequency and Resolution Selection  
(3) Input Integration Phase Timing  
(4) Integrator Timing Components (RINT, CINT  
(5) Auto Zero and Reference Capacitors  
(6) Voltage Reference  
The integrating capacitor should be selected to maximize  
integrator output voltage swing VINT, for a given integration  
time, without output level saturation. For +/-5V supplies,  
recommended VINT range is between +/- 3 Volt to +/-4 Volt.  
Using the 20µA buffer maximum output current, the value of  
the integrating capacitor is calculated as follows:  
)
System Timing  
-6  
.
CINT = (tINT) (20 x 10 ) / VINT  
Figure 3 and Figure 4 show the overall timing for a typical  
system in which ALD500RAU/ALD500RA/ALD500R is  
interfaced to a microcontroller. The microcontroller drives the  
A, B inputs with I/O lines and monitors the comparator output,  
COUT, using an I/O line or dedicated timer-capture control pin.  
It may be necessary to monitor the state of the comparator  
output in addition to having it control a timer directly during the  
Reference Deintegration Phase.  
where: tINT  
VINT  
=
=
Input Integration Phase Period  
Maximum integrator output  
voltage swing  
It is critical that the integrating capacitor must have a very low  
dielectricabsorption, aschargelossorgainduringconversion  
directlyconvertsintoanerrorvoltage. Polypropylenecapacitors  
are recommended while Polyester and Polybicarbonate  
capacitors may also be used in less critical applications.  
There are four critical timing events: sampling the input  
polarity;capturingthedeintegrationtime;minimizingovershoot  
and properly executing the Integrator Output Zero Phase.  
Reference (CREF) and Auto Zero (CAZ) Capacitors  
Selecting Input Integration Time  
CREF and CAZ must be low leakage capacitors (e.g.  
polypropylene types). The slower the conversion rate, the  
larger the value CREF must be. Recommended capacitor  
values for CREF and CAZ are equal to CINT. Larger values for  
CAZ and CREF may also be used to limit roll-over errors.  
For maximum 50/60 cycle noise rejection, Input Integration  
Time must be picked as a multiple of the period of line  
frequency. For example, tINT times of 33msec, 66msec and  
100 msec maximize 60Hz line rejection, and 20msec, 40  
msec, 80msec, and 100 msec maximize 50Hz line rejection.  
Note that tINT of 100 msec maximizes both 60 Hz and 50Hz  
line rejection.  
Calculate VREF  
The reference deintegration voltage is calculated using:  
.
.
VREF = (VINT) (CINT) (RINT) / 2(tINT  
)
INT and DINT Phase Timing  
The ALD500RAU/ALD500RA/ALD500R requires an external  
in order to operate properly. This R should be a 1%  
metal film 100Kresistor, 50 ppm/C. Any other loading must  
be high impedance (100M).  
The duration of the Reference Deintegrate Phase (DINT) is a  
function of the amount of voltage charge stored on the  
R
REF  
REF  
integrator capacitor during INT phase, and the value of VREF  
.
The DINT phase must be initiated immediately following INT  
phaseandterminatedwhenanintegratoroutputzero-crossing  
is detected. In general, the maximum number of counts  
chosenforDINT phaseistwicetothreetimesthatofINTphase  
with VREF chosen as a maximum voltage relative to VIN. For  
example, VREF = VIN(max)/2 would be a good reference  
voltage.  
Converter Noise  
The converter noise is the total algebraic sum of the integrator  
noise and the comparator noise. This value is typically 14 µV  
peak to peak. The higher the value of the reference voltage,  
the lower the converter noise. Such sources of noise errors  
canbereducedbyincreasedintegrationtimes,whicheffectively  
filter out any such noise. If the integration time periods are  
selected as multiples of 50/60Hz frequencies, then 50/60Hz  
noise is also rejected, or averaged out. The signal-to-noise  
ratio is related to the integration time (tINT) and the integration  
time constant (RINT) (CINT) as follows:  
Integrating Resistor (RINT  
)
The desired full-scale input voltage and amplifier output  
current capability determine the value of RINT. The buffer and  
integrator amplifiers each have a full-scale current of 20µA.  
The value of RINT is therefore directly calculated as follows:  
-6  
.
.
S/N (dB) = 20 Log ((VINT / 14 x 10 ) tINT /(RINT CINT))  
RINT  
= VIN MAX / 20 µA  
This converter noise can also be reduced by using multiple  
samples and mathematically averaged. For example, taking  
16samplesandaveragingthereadingsresultinamathematical  
(by software) filtering of noise to less than 4µV.  
10  
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  
DESIGN EXAMPLES  
We now apply these equations in the following  
design examples.  
EQUATIONS AND DERIVATIONS  
Dual Slope Analog Processor equations and derivations  
are as follows:  
t
INT  
.
.
1
V
t
(1)  
REF DINT  
V
(t)dt =  
IN  
Design Example 1:  
.
R
C
INT  
0
INT  
R
C
INT  
INT  
For V (t) = V (constant):  
IN  
IN  
1. Pick resolution = 16 bit.  
1
2. Pick t  
= 4x  
= 4 x 16.6667 msec.  
= 66.6667ms  
INT  
.
V
t
1
.
REF DINT  
60Hz  
(2)  
.
t
V
=
IN  
INT  
.
C
INT  
R
.
C
INT  
R
INT  
INT  
= 0.0666667 sec.  
t
t
DINT  
(2a)  
(3)  
.
. .  
V
= V  
REF  
IN  
3. Pick clock period = 1.08507 µs and number of counts  
INT  
0.0666667  
= 61440  
over t  
=
INT  
.
t
I
INT  
B
-6  
C
=
1.08507x10  
INT  
V
INT  
4. Pick V MAX value, e.g., V MAX = 2.0 V  
IN  
I MAX = 20µA  
IN  
At V MAX, the current I is also at a maximum level,  
IN  
B
2.0  
for a given R  
value:  
INT  
R
INT  
=
= 100 kΩ  
B
-6  
20x10  
V
IN  
I
B
V
MAX  
IN  
(4)  
R
INT  
=
=
5. Applying equation (3) to calculate C  
-6  
INT:  
I MAX  
B
C
INT  
= (0.0666667)(20x10 )/4 where V  
~
= 4.0V  
INT  
From equation (2a),  
0.33 µF  
=
.
V
t
IN INT  
(5a)  
(5b)  
~
and C C : C C  
REF AZ  
= =  
~
V
=
6. Pick C  
0.33 µF  
REF  
REF  
AZ  
INT  
= 133.3333 msec  
t
DINT  
OR  
7. Pick t  
= 2 x t  
INT  
DINT  
.
t
V
MAX  
IN  
INT  
MAX  
V
=
REF  
.
.
R
INT  
V
INT  
MAX  
C
INT  
t
DINT  
8. Calculate V  
=
V
REF  
t
MAX  
DINT  
Rearranging equations (3) and (4):  
.
-6  
3
C
V
INT  
4 x 0.33 x 10 x 100 x 10  
INT  
t
=
(6)  
(7)  
INT  
=
V
-3  
I
133.3333 x 10  
B
and  
V
MAX  
IN  
~
=
1.00V  
I MAX =  
B
R
INT  
At V  
V
MAX, equation (6) becomes:  
INT = INT  
.
Design Example 2:  
1. Select resolution of 17 bit. Total number of  
C
=
V
MAX  
INT  
INT  
t
INT  
(6a)  
I MAX  
B
counts during t  
is131,072.  
INT  
Combining (6a) and (7):  
.
.
R
INT  
.
C
V
MAX  
INT  
INT  
MAX  
. .  
(8)  
t
=
2. We can pick t  
of 16.6667 msec. x 5 = 83.3333 msec.  
INT  
INT  
V
IN  
In equation (5b), substituting equation (8) for t  
or alternately, pick t  
equal  
INT  
16.6667 msec. x 6 = 100.00 msec.  
(for 60 Hz rejection)  
:
INT  
.
.
R
INT  
C
INT  
V
INT  
MAX  
which is t  
= 20.00 msec. x 5  
INT  
.
V
MAX  
V
MAX  
IN  
IN  
(9)  
= 100.00 msec. (for 50 Hz rejection)  
V
=
=
REF  
t
MAX  
DINT  
.
.
Therefore, using t  
= 100 msec. would achieve  
C
V
INT  
MAX  
MAX  
R
INT  
INT  
INT  
both 50 Hz and 60 Hz cycle noise rejection. For this  
example, the following calculations would assume  
t
DINT  
t
of 100 msec. Now select period equal to  
For t  
MAX = 2 x t  
,
INT  
0.5425 µsec. (clock frequency of 1.8432 MHz)  
DINT  
INT  
equation (9) becomes:  
.
.
R
INT  
C
V
MAX  
INT  
INT  
2t  
(10)  
V
=
REF  
INT  
ALD500RAU/ALD500RA/ALD500R  
Advanced Linear Devices  
11  
3. Pick V MAX = ±2V  
IN  
Design Example 4:  
Objective: 5 1/2 digit + sign +over-range measurement.  
For I MAX = 20µA, applying equation (4),  
B
1. Pick t  
= 133.333 msec. for 60Hz noise rejection.  
INT  
2
R
=
= 100 KΩ  
INT  
(16.6667 msec. x 8 cycles)  
Frequency = 1.8432 MHz  
clock period = 0.5425 µsec.  
-6  
20x10  
4. Calculate, using equation (3) for C  
-6  
:
INT  
C
= (0.1) x (20 x 10 /4)  
~
INT  
During Input Integrate Phase,  
(assume V MAX = 4V)  
= 0.5 µF  
INT  
-3  
133.333 x 10  
total count =  
-6  
0.5425 x 10  
Use C  
INT  
0.47µF as the closest practical value.  
= 245776  
5. Pick C  
and C = 0.47 µF  
AZ  
REF  
For V  
= 4.0V, the basic resolution is  
INT  
6. Pick t  
= 2 x t  
= 200 msec.  
INT  
DINT  
4
or 16.276 µV/count  
245776  
7. Calculate the value for V  
, from equation (10):  
REF  
For V MAX = 2.00V, the input resolution is  
IN  
.
.
V
REF  
=
C
V
MAX  
R
INT  
V
MAX  
INT  
INT  
IN  
16.276  
x
= 8.138 µV/count  
V MAX  
INT  
t
MAX  
DINT  
-6  
3
0.5 x 10 x 4 x 100 x 10  
2. Pick V range = ± 2V  
IN  
=
-3  
200 x 10  
2
= 100 KΩ  
For I = 20 µA, R  
INT  
=
B
= 1.00V  
-6  
20 x 10  
~
-6  
= (0.133333) x (20 x 10 )/4 = 0.67 µF  
3. Calculate C  
INT  
Design Example 3:  
4. Pick C  
REF  
= C = 0.67 µF  
AZ  
1. Pick resolution of 18 bit. Total number of counts during  
t
is 262,144.  
5. Select t  
DINT  
= 2 x t  
= 266.667 msec.  
INT  
INT  
2. Pick t  
= 16.66667 msec. x 10 cycles  
= 0.1666667 sec.  
6. Calculate V  
as shown in Design Example 1,  
INT  
REF  
substituting the appropriate values:  
.
.
R
INT  
C
V
MAX  
INT  
INT  
MAX  
V
=
This t  
allows clock period of 0.5425 µsec.  
REF  
INT  
and still achieve 18 bits resolution.  
t
DINT  
~
= 1.005V  
3. Again, as shown from previous example, pick V MAX = ±2V  
IN  
2
For I MAX = 20 µA,  
R
=
INT  
= 100 KΩ  
B
-6  
20x10  
4. Next, we calculate C  
INT:  
-6  
C
INT  
= (0.1666667) x (20 x 10 )/4  
~
(V MAX = 4.0V)  
INT  
= 0.83 µF  
In this case, use CINT = 1.0 µF to keep  
V
INT  
< 4.0V  
5. Pick C  
and C = 1.0 µF  
AZ  
REF  
6. Select t  
DINT  
= 2 x t  
= 333.333 msec.  
INT  
7. Calculate V  
as shown in the previous examples  
REF  
= 1.00V  
and V  
REF  
12  
Advanced Linear Devices  
ALD500RAU/ALD500RA/ALD500R  

相关型号:

ALD500R-50QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500R-50SE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10PE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-10SE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20PE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20PEI

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20QE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20QEI

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20SE

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD

ALD500RA-20SEI

PRECISION INTEGRATING ANALOG PROCESSOR WITH PRECISION VOLTAGE REFERENCE
ALD