A1192LLHLU-T [ALLEGRO]

Hall Effect Sensor,;
A1192LLHLU-T
型号: A1192LLHLU-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Hall Effect Sensor,

传感器 换能器
文件: 总22页 (文件大小:1113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A119x and A119x-F  
Programmable, Chopper-Stabilized, Two-Wire Hall-Effect Switches  
FEATURES AND BENEFITS  
▪ꢀChoiceꢀofꢀfactory-setꢀtemperatureꢀcoefficientꢀ(TC)ꢀforꢀuseꢀ  
with ferrite or rare-earth magnets  
▪ꢀFieldꢀprogrammableꢀforꢀoptimizedꢀswitchpoints  
▪ꢀAEC-Q100ꢀautomotiveꢀqualified  
▫ꢀOn-boardꢀvoltageꢀregulator:ꢀ3ꢀtoꢀ24ꢀVꢀoperation  
▪ꢀHigh-speed,ꢀ4-phaseꢀchopperꢀstabilization  
▫ꢀLowꢀswitchpointꢀdriftꢀthroughoutꢀtemperatureꢀrange  
▫ꢀLowꢀsensitivityꢀtoꢀthermalꢀandꢀmechanicalꢀstresses  
▪ꢀOn-chipꢀprotectionꢀ  
DESCRIPTION  
The A119x and A119x-F comprise a family of two-wire,  
unipolar,Hall-effectswitches,whichcanbetrimmedbytheuser  
atend-of-linetooptimizemagneticswitchpointaccuracyinthe  
application.Thelatter(-Foption)aretemperature-compensated  
forusewithferritemagnets.Thesedevicesareproducedonthe  
AllegroadvancedBiCMOSwaferfabricationprocess,which  
implements a high-frequency, 4-phase, chopper stabilization  
technique. This technique achieves magnetic stability over  
the full operating temperature range, and eliminates offsets  
inherent in devices with a single Hall element that are exposed  
to harsh application environments.  
▫ꢀSupplyꢀtransientꢀprotection  
▫ꢀReverse-batteryꢀprotection  
▫ꢀIndustry-leadingꢀISOꢀ7637-2ꢀperformanceꢀthroughꢀuseꢀofꢀ  
proprietary,ꢀ40ꢀVꢀclampingꢀstructure  
▪ꢀSolid-stateꢀreliability  
▪ꢀRobustꢀEMCꢀandꢀESDꢀperformanceꢀ  
▪ꢀUBꢀpackageꢀwithꢀintegratedꢀ0.1ꢀµFꢀbypassꢀcapacitor  
The A119x and A119x-F family has a number of automotive  
applications.Theseincludesensingseattrackposition,seatbelt  
bucklepresence,hood/trunklatching,andshiftselectorposition.  
Two-wire unipolar switches are particularly advantageous in  
cost-sensitive applications because they require one less wire  
for operation versus the more traditional open-collector output  
switches. Additionally, the system designer inherently gains  
diagnostics because there is always output current flowing,  
which should be in either of two narrow ranges. Any current  
level not within these ranges indicates a fault condition.  
PACKAGES  
3-pin SOT23-W  
2 mm × 3 mm × 1  
mm (suffix LH)  
3-pin ultramini SIP  
1.5 mm × 4 mm × 3  
mm (suffix UA)  
2-pin ultramini SIP  
1.5 mm × 4 mm × 4  
mm (suffix UB)  
All family members are offered in three package styles. The LH  
is a SOT-23Wstyle, miniature, low-profile package for surface-  
mount applications. The UA is a 3-pin, ultra-mini, single inline  
package(SIP)forthrough-holemounting.TheUBisa2-pinsingle  
inline package (SIP) for through-hole mounting that integrates  
the power supply decoupling capacitor. All three packages are  
lead (Pb) free, with 100% matte-tin leadframe plating.  
Not to scale  
UB package only  
0.1 µF  
V+  
VCC  
Program/Lock  
OffsetAdjust  
ICC Adjust  
Regulator  
To all subcircuits  
LH & UA  
package  
only  
Clock/Logic  
0.01 µF  
Polarity  
Amp  
Schmitt  
Trigger  
Low-Pass  
Filter  
GND  
UA package only  
GND  
Functional Block Diagram  
A1190-DS, Rev. 9  
MCO-0000486  
September 19, 2019  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
SELECTION GUIDE  
Output (ICC) in  
South Polarity  
Field  
Supply Current  
at ICC(L)  
Magnetic Operate  
Point, BOP  
(G)  
Temperature  
Coefficient  
Part Number  
Package  
Packing [1]  
(mA)  
A1190LLHLT-T [2]  
A1190LLHLX-T  
A1190LUA-T [3]  
LH (3-pin SOT23-W surface-mount)  
LH (3-pin SOT23-W surface-mount)  
UA (3-pin SIP through-hole)  
UB (2-pin SIP through-hole)  
LH (3-pin SOT23-W surface-mount)  
LH (3-pin SOT23-W surface-mount)  
LH (3-pin SOT23-W surface-mount)  
LH (3-pin SOT23-W surface-mount)  
UA (3-pin SIP through-hole)  
UA (3-pin SIP through-hole)  
UB (2-pin SIP through-hole)  
UB (2-pin SIP through-hole)  
LH (Surface mount)  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
SmCo  
SmCo  
SmCo  
SmCo  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
SmCo  
Ferrite  
2 to 5  
A1190LUBTN-T  
A1192LLHLT-T [2]  
A1192LLHLT-F-T [2]  
A1192LLHLX-T  
A1192LLHLX-F-T  
A1192LUA-T [3]  
13-in. reel, 4000 pieces/reel  
7-in. reel, 3000 pieces/reel  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
Low  
A1192LUA-F-T [3]  
A1192LUBTN-T  
A1192LUBTN-F-T  
A1193LLHLT-T [2]  
A1193LLHLT-F-T [2]  
A1193LLHLX-T  
A1193LLHLX-F-T  
A1193LUA-T [3]  
Bulk, 500 pieces/bag  
10 to 200  
13-in. reel, 4000 pieces/reel  
13-in. reel, 4000 pieces/reel  
7-in. reel, 3000 pieces/reel  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
5 to 6.9  
LH (Surface mount)  
LH (Surface mount)  
LH (Surface mount)  
High  
UA (3-pin SIP through-hole)  
UA (3-pin SIP through-hole)  
UB (2-pin SIP through-hole)  
UB (2-pin SIP through-hole)  
A1193LUA-F-T [3]  
A1193LUBTN-T  
A1193LUBTN-F-T  
Bulk, 500 pieces/bag  
13-in. reel, 4000 pieces/reel  
13-in. reel, 4000 pieces/reel  
[1] Contact Allegrofor additional packing options.  
[2] These variants available only through authorized distributors.  
[3] Contact factory for availability.  
RoHS  
COMPLIANT  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
28  
Unit  
V
Forward Supply Voltage  
Reverse Supply Voltage  
VRCC  
B
–18  
V
Magnetic Flux Density  
Unlimited  
–40 to 150  
165  
G
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
TA  
Range L  
°C  
°C  
°C  
TJ(max)  
Tstg  
–65 to 170  
INTERNAL DISCRETE CAPACITOR RATINGS (UB PACKAGE ONLY)  
Characteristic  
Rated Normal Capacitance  
Rated Voltage  
Symbol  
CSUPPLY  
VCSUPPLY  
Notes  
Rating  
0.1  
Unit  
µF  
V
Connected between VCC and GND  
50  
Rated Capacitor Tolerance  
Temperature Designator  
±10  
%
X7R  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
PINOUT DIAGRAMS AND TERMINAL LIST TABLE  
Pinout Diagrams  
3
NC  
2
1
2
2
1
1
3
LH Package [1]  
UA Package  
UB Package  
Terminal List Table  
Name  
LH package [1] UA package  
Number  
Function  
UB package  
Connects power supply to chip;  
used to apply programming  
signal  
1
VCC  
VCC  
VCC  
LH package: no connection, it  
is highly recommended that this  
pin be tied to GND  
2
3
NC  
GND  
GND  
GND  
UA, UB package: ground  
terminal  
GND  
Ground terminal  
[1] Package style LH pin 2 is not internally connected to the IC ground and therefore should not be used as a  
ground reference pin. For maximum EMC and ESD robustness it is highly recommended that this pin be tied  
to ground.  
PROGRAMMABLE PARAMETERS  
Quantity  
of Bits  
Name  
Functional Description  
B
OP Trim  
Fine trim of Programmable Magnetic Operating Point  
Lock access to programming  
6
1
Programming Lock  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
ELECTRICAL CHARACTERISTICS: Valid at TA = –40°C to 150°C, TJ < TJ(max), through operating supply voltage range,  
unless otherwise noted  
Characteristics  
Supply Voltage [1]  
Symbol  
Test Conditions  
Operating, TJ ≤ 165°C  
Min.  
3
Typ.  
Max.  
24  
5
Unit  
V
VCC  
A1190  
B > BOP  
B > BOP  
B < BRP  
B < BRP  
B > BOP  
2
mA  
mA  
mA  
mA  
mA  
V
ICC(L)  
A1192, A1192-F  
A1193, A1193-F  
A1190, A1192, A1192-F  
A1193, A1193-F  
5
6.9  
6.9  
17  
17  
Supply Current  
5
12  
12  
28  
ICC(H)  
Supply Zener Clamp Voltage  
Supply Zener Clamp Current  
Reverse Supply Current  
VZ(sup)  
IZ(sup)  
IRCC  
ICC = ICC(L)(max) + 3 mA, TA = 25°C  
VZ(sup) = 28 V  
ICC(L)(max)  
+ 3 mA  
mA  
mA  
VRCC = –18 V  
–1.6  
LH, UA package (no bypass capacitor [2]);  
capacitance of probe CS = 20 pF  
90  
mA/µs  
Output Slew Rate  
di/dt  
fC  
UB package (integrated capacitor3);  
capacitance of probe CS = 20 pF  
0.22  
700  
mA/µs  
kHz  
µs  
Chopping Frequency  
LH, UA packages: A1190,  
A1192, A1192-F  
CBYP = 0.01 µF,  
B >BOP +10 G  
25  
UB package3: A1190, A1192,  
A1192-F  
B >BOP +10 G  
25  
25  
µs  
µs  
Power-Up Time [4]  
ton  
LH, UA packages: A1193,  
A1193-F  
CBYP = 0.01 µF,  
B < BRP 10 G  
UB package3: A1193, A1193-F B < BRP 10 G  
ton < ton(max), VCC slew rate > 25 mV/µs  
25  
µs  
Power-Up State [5][6]  
POS  
ICC(H)  
[1]  
V
represents the generated voltage between the VCC pin and the GND pin.  
CC  
[2] Measured without bypass capacitor between VCC pin and the GND pin. Use of a bypass capacitor results in slower current change.  
[3] Measured with internal bypass capacitor (0.1 µF) between VCC and GND. Additional bypass capacitance results in slower current change.  
[4] Guaranteed by characterization and design.  
[5] Power-Up State as defined is true only with a VCC slew rate of 25 mV/µs or greater.  
[6] For t > ton and BRP < B < BOP, Power-Up State is not defined.  
MAGNETIC CHARACTERISTICS [1]: Valid at TA = –40°C to 150°C, TJ ≤ TJ (max), unless otherwise noted  
Characteristics  
Initial Operate Point  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit [2]  
BOP(init)  
–14  
10  
G
Programmable Magnetic  
Operating Point  
BOP  
TA = 25°C  
10  
200  
G
Average Magnetic Step Size [3] STEPBOP TA = 25°C, VCC = 5 V  
A1190, A1192, A1193  
3
5
4.8  
±20  
–0.25  
7.5  
G
G
Switchpoint Temperature Drift  
ΔBOP  
A1192-F, A1193-F  
10 to 200 G  
%/°C  
G
Hysteresis  
BHYS  
30  
[1] Relative values of B use the algebraic convention, where positive values indicate south magnetic polarity, and negative values indicate north  
magnetic polarity; therefore greater B values indicate a stronger south polarity field (or a weaker north polarity field, if present).  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] STEPBOP is a calculated average from the cumulative programmed bits.  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions*  
Value  
Unit  
Package LH, on 1-layer PCB based on JEDEC standard  
228  
°C/W  
Package LH, on 2-layer PCB with 0.463 in.2 of copper area each side  
Package UA, on 1-layer PCB with copper limited to solder pads  
Package UB, on 1-layer PCB with copper limited to solder pads  
110  
165  
213  
°C/W  
°C/W  
°C/W  
Package Thermal Resistance  
RθJA  
*Additional thermal information available on the Allegro website.  
Power Derating Curve  
25  
24  
23  
V
CC(max)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
2-layer PCB, Package LH  
(RθJA = 110ºC/W)  
1-layer PCB, Package UA  
(RθJA = 165ºC/W)  
1-layer PCB, Package UB  
(RθJA = 213ºC/W)  
8
7
6
5
1-layer PCB, Package LH  
(RθJA = 228ºC/W)  
4
V
CC(min)  
3
2
20  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (ºC)  
Power Dissipation vs. Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
2-layer PCB, Package LH  
(RθJA = 110ºC/W)  
1-layer PCB, Package UA  
(RθJA = 165ºC/W)  
1-layer PCB, Package UB  
(RθJA = 213ºC/W)  
800  
700  
600  
500  
1-layer PCB, Package LH  
(RθJA = 228ºC/W)  
400  
300  
200  
100  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (°C)  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
CHARACTERISTIC PERFORMANCE  
A1190  
A1190  
Average Supply Current (Low) versus Supply Voltage  
Average Supply Current (Low) versus Temperature  
5.0  
4.5  
4.0  
5.0  
4.5  
4.0  
T
= 150°C  
A
T
= 25°C  
A
V
= 24 V  
= 3.0 V  
CC  
3.5  
3.0  
2.5  
2.0  
3.5  
3.0  
2.5  
2.0  
V
CC  
T
= –40°C  
A
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
Supply Voltage, VCC (V)  
Ambient Temperature, TA (°C)  
A1192, A1193  
A1192, A1193  
Average Supply Current (Low) versus Supply Voltage  
Average Supply Current (Low) versus Temperature  
7.0  
7.0  
6.5  
6.5  
T
T
= 150°C  
= –40°C  
A
V
= 24 V  
= 3.0 V  
CC  
A
6.0  
5.5  
5.0  
6.0  
5.5  
5.0  
T
A
= 25°C  
V
CC  
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
Supply Voltage, VCC (V)  
Ambient Temperature, TA (°C)  
A1190, A1192, A1193  
A1190, A1192, A1193  
Average Supply Current (High) versus Supply Voltage  
Average Supply Current (High) versus Temperature  
17  
17  
16  
16  
T
T
= –40°C  
= 150°C  
= 25°C  
A
V
= 24 V  
CC  
15  
14  
13  
12  
15  
14  
13  
12  
A
V
= 3.0 V  
CC  
T
A
2
6
10  
14  
18  
22  
26  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
Supply Voltage, VCC (V)  
Ambient Temperature, TA (°C)  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
A1190, A1192, A1193  
Average Switchpoint Hysteresis versus Temperature  
30  
25  
20  
15  
V
V
= 24 V  
= 3.0 V  
CC  
CC  
10  
5
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140 160  
Ambient Temperature, T (°C)  
A
A1190, A1192, A1193  
Average Operate Point versus Code  
160  
140  
120  
100  
80  
Bit #5  
Bit #4  
60  
B
OP(init)  
40  
Bit #3  
20  
Bit #2  
Bit #1  
Bit #0  
0
-20  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Code  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
FUNCTIONAL DESCRIPTION  
The A1190, A1192, and A1192-F output, ICC, switches low after  
the magnetic field at the Hall sensor IC exceeds the operate point  
threshold, BOP. When the magnetic field is reduced to below the  
release point threshold, BRP, the device output goes high. This is  
shown in figure 1, panel A.  
at the Hall sensor IC exceeds the operate point threshold, BOP  
When the magnetic field is reduced to below the release point  
threshold, BRP, the device output goes low (panel B).  
.
The difference between the magnetic operate and release points  
is called the hysteresis of the device, BHYS. This built-in hyster-  
esis allows clean switching of the output even in the presence of  
In the case of reverse output polarity, as in the A1193 and  
A1193-F, the device output switches high after the magnetic field external mechanical vibration and electrical noise.  
I+  
I+  
ICC(H)  
ICC(H)  
ICC(L)  
ICC(L)  
0
0
B+  
B–  
B+  
B–  
BHYS  
BHYS  
(A) Hysteresis curve for A1190, A1192, and A1192-F  
(B) Hysteresis curve for A1193 and A1193-F  
Figure 1. Alternative switching behaviors are available in the A119x device family. On the horizontal axis, the B+ direction indicates  
increasing south polarity magnetic field strength, and the B– direction indicates decreasing south polarity field strength (including the  
case of increasing north polarity).  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
V+  
VCC  
RSENSE  
A119x  
V+  
VCC  
CBYP  
0.01 µF  
CBYP  
0.01 µF  
A119x  
GND  
GND  
ECU  
RSENSE  
(A) Low-Side Sensing (LH package)  
(B) High-Side Sensing (LH package)  
V+  
VCC  
RSENSE  
VCC  
A119x  
V+  
CBYP  
0.01 µF  
CBYP  
0.01 µF  
A119x  
GND  
GND  
GND  
GND  
ECU  
RSENSE  
(C) Low-Side Sensing (UA package)  
(D) High-Side Sensing (UA package)  
V+  
VCC  
RSENSE  
A119x  
V+  
VCC  
A119x  
0.1 µF  
0.1 µF  
GND  
GND  
ECU  
RSENSE  
(E) Low-Side Sensing (UB package)  
(F) High-Side Sensing (UB package)  
Figure 2. Typical application circuits  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
Chopper Stabilization Technique  
When using Hall-effect technology, a limiting factor for  
atꢀbaseꢀband,ꢀwhileꢀtheꢀDCꢀoffsetꢀbecomesꢀaꢀhigh-frequencyꢀsig-  
nal. The magnetic-sourced signal then can pass through a low-  
passꢀfilter,ꢀwhileꢀtheꢀmodulatedꢀDCꢀoffsetꢀisꢀsuppressed.ꢀꢀTheꢀ  
chopper stabilization technique uses a 350 kHz high frequency  
clock. For demodulation process, a sample and hold technique is  
used, where the sampling is performed at twice the chopper fre-  
quency. This high-frequency operation allows a greater sampling  
rate, which results in higher accuracy and faster signal-process-  
ing capability. This approach desensitizes the chip to the effects  
of thermal and mechanical stresses, and produces devices that  
have extremely stable quiescent Hall output voltages and precise  
recoverability after temperature cycling. This technique is made  
possible through the use of a BiCMOS process, which allows  
the use of low-offset, low-noise amplifiers in combination with  
high-density logic integration and sample-and-hold circuits.  
switchpoint accuracy is the small signal voltage developed  
across the Hall element. This voltage is disproportionally small  
relative to the offset that can be produced at the output of the  
Hall sensor IC. This makes it difficult to process the signal while  
maintaining an accurate, reliable output over the specified oper-  
ating temperature and voltage ranges. Chopper stabilization is  
a unique approach used to minimize Hall offset on the chip. The  
Allegroꢀtechnique,ꢀnamelyꢀDynamicꢀQuadratureꢀOffsetꢀCancella-  
tion, removes key sources of the output drift induced by thermal  
and mechanical stresses. This offset reduction technique is based  
on a signal modulation-demodulation process. The undesired  
offset signal is separated from the magnetic field-induced signal  
in the frequency domain, through modulation. The subsequent  
demodulation acts as a modulation process for the offset, causing  
the magnetic field-induced signal to recover its original spectrum  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 3. Chopper stabilization circuit (Dynamic Quadrature Offset Cancellation)  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
PROGRAMMING GUIDELINES  
Overview  
Definition of Terms  
Programming is accomplished by sending a series of input volt-  
ageꢀpulsesꢀseriallyꢀthroughꢀtheꢀVCCꢀ(supply)ꢀpinꢀofꢀtheꢀdevice.ꢀ  
A unique combination of different voltage level pulses controls  
the internal programming logic of the device to select a desired  
programmable parameter and change its value. There are three  
voltage levels that must be taken into account when program-  
ming. These levels are referred to as highꢀ(VPH), midꢀ(VPM), and  
lowꢀ(VPL) (see figure 1 and table 1).  
Register. The section of the programming logic that controls the  
choice of programmable modes and parameters.  
Bit Field. The internal fuses unique to each register, represented  
as a binary number. Changing the bit field selection in a particu-  
lar register causes its programmable parameter to change, based  
on the internal programming logic.  
Key.ꢀAꢀseriesꢀofꢀVPM voltage pulses used to select a register or mode.  
The A119x family features two programmable modes, Try mode  
and Blow mode.  
tACTIVE  
tPr  
tBLOW  
tPf  
• In Try mode, programmable parameter values are set and mea-  
sured. A parameter value is stored temporarily, and reset after  
cycling the supply voltage.  
VPH  
• In Blow mode, the value of a programmable parameter may  
be permanently set by blowing solid-state fuses internal to the  
device.ꢀDeviceꢀlockingꢀisꢀalsoꢀaccomplishedꢀinꢀthisꢀmode.  
VPM  
VPL  
The programming sequence is designed to help prevent the  
device from being programmed accidentally; for example, as a  
result of noise on the supply line. Although any programmable  
variable power supply can be used to generate the pulse wave-  
forms, Allegro highly recommends using the Allegro Sensor IC  
EvaluationꢀKit,ꢀavailableꢀthroughꢀyourꢀlocalꢀAllegroꢀsalesꢀrepre-  
sentative. The manual for the kit provides additional information  
on programming these devices, and is available for download on  
the Allegro MicroSystems website.  
tLOW  
tLOW  
(Supply  
cycled)  
0
Programming  
pulses  
Blow  
pulse  
Figure 4. Programming pulse definition (see table 1)  
Table 1. Programming Pulse Requirements, Protocol at TA = 25°C (refer also to figure 4)  
Characteristic  
Symbol  
Notes  
Min. Typ. Max. Unit  
VPL  
4.5  
12.5  
21  
5
5.5  
14  
27  
V
V
V
Programming Voltage  
VPM  
Measured at the VCC pin.  
VPH  
tPr = 11 µs, VCC = 5 → 26 V, CBLOW = 0.1 µF (min). Minimum supply current  
required to ensure proper fuse blowing. CBLOW must be connected between the  
VCC and GND pins during programming to provide the current necessary for fuse  
blowing.  
Programming Current  
Pulse Width  
IPP  
175  
mA  
tLOW  
tACTIVE  
tBLOW  
tPr  
Duration at VPL separating pulses at VPM or VPH  
.
20  
20  
90  
5
µs  
µs  
Duration of pulses at VPM or VPH for key/code selection.  
Duration of pulse at VPH for fuse blowing.  
100  
µs  
Pulse Rise Time  
Pulse Fall Time  
VPL to VPM, or VPL to VPH  
.
100  
100  
µs  
tPf  
VPH to VPL, or VPM to VPL  
.
5
µs  
Blow Pulse Slew Rate  
SRBLOW  
375  
mV/µs  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
Code. The number used to identify the combination of fuses  
activated in a bit field, expressed as the decimal equivalent of the  
binary value. The LSB of a bit field is denoted as code 1, or bit 0.  
Programming Procedure  
Programming involves selection of a register, a mode, and then  
setting values for parameters in the register for evaluation or for  
fuse blowing. Figure 10 provides an overview state diagram.  
Addressing. Setting the bit field code in a selected register by  
seriallyꢀapplyingꢀaꢀpulseꢀtrainꢀthroughꢀtheꢀVCCꢀpinꢀofꢀtheꢀdevice.ꢀ  
Eachꢀparameterꢀcanꢀbeꢀmeasuredꢀduringꢀtheꢀaddressingꢀprocess,ꢀ  
but the internal fuses must be blown before the programming  
code (and parameter value) becomes permanent.  
Register SelectionꢀEachꢀprogrammableꢀparameterꢀcanꢀbeꢀ  
accessed through a specific register. To select a register, a  
sequenceꢀofꢀvoltageꢀpulsesꢀconsistingꢀofꢀaꢀVPH pulse, a series of  
VPMꢀpulses,ꢀandꢀaꢀVPHꢀpulseꢀ(withꢀnoꢀVCC supply interruptions)  
mustꢀbeꢀappliedꢀseriallyꢀtoꢀtheꢀVCCꢀpin.ꢀTheꢀquantityꢀofꢀVPM  
pulses is called the key, and uniquely identifies each register. The  
pulses for selection of register key 1, is shown in figure 5. No  
VPM pulse is sent for key 0. The register selections are shown in  
table 2.  
Fuse Blowing.ꢀApplyingꢀaꢀVPH pulse of sufficient duration to  
permanently set an addressed bit by blowing a fuse internal to the  
device. Once a bit (fuse) has been blown, it cannot be reset.  
Blow Pulse.ꢀAꢀVPH pulse of sufficient duration to blow the  
addressed fuse.  
Mode Selection After register selection, the mode is selected,  
either Try or Blow mode. Try mode is selected by default. To  
select Blow mode, that mode selection key must be sent.  
Cycling the Supply. Powering-down, and then powering-up the  
supply voltage. Cycling the supply is used to clear the program-  
ming settings in Try mode.  
Table 2. Programming Logic Table  
Register  
Bit Field Address (Code)  
Description  
Binary Format  
[MSB → LSB]  
Decimal  
Equivalent  
Key  
Name  
TRY MODE  
Initial value (below minimum |BOP| ) (Try mode sequence  
starts with code 1); Code corresponds to bit field value (code  
1 selects bit field value 000001)  
000000  
111111  
111111  
0
63  
0
0
B
OP Trim Up Counting  
Maximum selectable value (above maximum |BOP| )  
Initial value (above maximum |BOP| ) (Try mode sequence  
starts with code 1); Code is automatically inverted (code 1  
selects bit field value 111110)  
1
7
B
OP Trim Down Counting  
000000  
000111  
001111  
63  
7
Minimum selectable value (below minimum |BOP|)  
Check integrity of all fuse bits versus low threshold  
Check integrity of all fuse bits versus high threshold  
Fuse Check  
15  
BLOW MODE  
Initial value (below minimum |BOP| ); (Only allows selection  
of 1 bit per sequence)  
000000  
0
0
7
BOP Trim  
Maximum selectable value (above maximum |BOP| ); (Only  
allows selection of 1 bit per sequence)  
111111  
001000  
63  
8
Programming Lock  
Locks out access to all registers except Fuse Check  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
Try Mode In Try mode, bit field addressing is accomplished by  
applyingꢀaꢀseriesꢀofꢀVPMꢀpulsesꢀtoꢀtheꢀVCCꢀpinꢀofꢀtheꢀdevice,ꢀasꢀ  
shownꢀinꢀfigureꢀ6.ꢀEachꢀpulseꢀincreasesꢀtheꢀbitꢀfieldꢀvalueꢀforꢀtheꢀ  
selected parameter, increasing by one on the falling edge of each  
additionalꢀVPM pulse. When addressing the bit field in Try mode,  
theꢀquantityꢀofꢀVPM pulses is represented by a decimal number  
called the code. Addressing activates the corresponding fuse  
locations in the given bit field by increasing the binary value of  
anꢀinternalꢀDAC,ꢀupꢀtoꢀtheꢀmaximumꢀpossibleꢀcode.ꢀAsꢀtheꢀvalueꢀ  
of the bit field code increases, the value of the programmable  
parameterꢀchanges.ꢀMeasurementsꢀcanꢀbeꢀtakenꢀafterꢀeachꢀVPM  
pulse to determine if the required result for the programmable  
parameter has been reached. Cycling the supply voltage resets  
all the locations in the bit field that have un-blown fuses to their  
initial states.  
Blow Mode After the required code is determined for a given  
parameter, its value can be set permanently by blowing individual  
fuses in the appropriate register bit field. Blowing is accom-  
plished by selecting the register, then the Blow mode selection  
key, followed by the appropriate bit field address, and ending  
the sequence with the Blow pulse. The Blow mode selection key  
isꢀaꢀsequenceꢀofꢀnineꢀVPMꢀpulsesꢀfollowedꢀbyꢀoneꢀVPH pulse. A  
complete example is provided in figure 12.  
TheꢀBlowꢀpulseꢀconsistsꢀofꢀaꢀVPH pulse of sufficient duration,  
tBLOW, to permanently set an addressed bit by blowing a fuse  
internalꢀtoꢀtheꢀdevice.ꢀDueꢀtoꢀpowerꢀrequirements,ꢀtheꢀfuseꢀforꢀ  
each bit in the bit field must be blown individually. The A119x  
family built-in circuitry allows only one fuse at a time to be  
blown.ꢀDuringꢀBlowꢀmode,ꢀtheꢀbitꢀfieldꢀcanꢀbeꢀconsideredꢀaꢀ“one-  
hot”ꢀshiftꢀregister.ꢀTableꢀ3ꢀrelatesꢀtheꢀquantityꢀofꢀVPM pulses to  
the binary and decimal values for Blow mode bit field address-  
ing. It should be noted that the simple relationship between the  
quantityꢀofꢀVPMꢀpulsesꢀandꢀtheꢀcorrespondingꢀcodeꢀis:  
When setting the BOP Trim parameter, as an aid to programming,  
values can be traversed from low to high, or from high to low. To  
accommodate this direction selection, the value of the bit field  
(and code) defaults to the value 1, on the falling edge of the final  
registerꢀselectionꢀVPH pulse (see figure 5). A complete example is  
provided in figure 11.  
2n = Code,  
whereꢀnꢀisꢀtheꢀquantityꢀofꢀVPM pulses. The bit field has an initial  
state of decimal code 0 (binary 000000).  
VPH  
Bit Field Selection  
Address Code Format  
(Decimal Equivalent)  
Code 5  
VPM  
(Binary)  
Code in Binary  
1
0 1  
Fuse Blowing  
Target Bits  
Bit 2  
Bit 0  
VPL  
Key  
Fuse Blowing  
Address Code Format  
Code 4  
(Decimal Equivalents)  
Code 1  
0
Figure 5. Register selection pulse sequence  
Figure 7. Example of code 5 broken into its binary components  
VPH  
Table 3. Blow Mode Bit Field Addressing  
Quantity of  
VPM Pulses  
Binary Register  
Setting  
Equivalent Code  
VPM  
1
2
3
4
5
6
000001  
000010  
000100  
001000  
010000  
100000  
1
2
VPL  
4
8
16  
32  
0
Figure 6. Try mode bit field addressing pulses  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
To correctly address the fuses to be blown, the code represent-  
ing the required parameter value must be translated into a binary  
number.ꢀForꢀexample,ꢀasꢀshownꢀinꢀfigureꢀ7,ꢀdecimalꢀcodeꢀ5ꢀisꢀ  
equivalent to the binary number 101. Therefore bit 2 must be  
addressed and blown, the device power supply cycled, and then  
bit 0 must be addressed and blown. The order of blowing bits,  
however, is not important. Blowing bit 0 first, and then bit 2 is  
acceptable.  
Setting the fuse threshold high checks that all blown fuses are  
properly blown. Setting fuse threshold low checks all un-blown  
fusesꢀareꢀproperlyꢀintact.ꢀTheꢀsupplyꢀcurrentꢀincreasesꢀbyꢀ250ꢀµAꢀ  
if a marginal fuse is detected. If all fuses are correctly blown or  
fully intact, there will be no change in supply current.  
Additional Guidelines  
The additional guidelines in this section should be followed to  
ensureꢀtheꢀproperꢀbehaviorꢀofꢀtheseꢀdevices:  
Note:ꢀAfterꢀblowing,ꢀtheꢀprogrammingꢀisꢀnotꢀreversible,ꢀevenꢀ  
after cycling the supply power. Although a register bit field fuse  
cannot be reset after it is blown, additional bits within the same  
register can be blown at any time until the device is locked. For  
example, if bit 1 (binary 10) has been blown, it is still possible to  
blow bit 0. The end result would be binary 11 (decimal code 3).  
•ꢀAꢀ0.1ꢀμFꢀblowingꢀcapacitor,ꢀCBLOW, must be mounted between  
theꢀVCCꢀpinꢀandꢀtheꢀGNDꢀpinꢀduringꢀprogramming,ꢀtoꢀensureꢀ  
enough current is available to blow fuses.  
• The power supply used for programming must be capable of  
deliveringꢀatꢀleastꢀVPHꢀandꢀ175ꢀmA.  
• Be careful to observe the tLOW delay time before powering  
down the device after blowing each bit.  
Locking the Device  
After the required code for each parameter is programmed, the  
device can be locked to prevent further programming of any  
parameters.ꢀToꢀdoꢀso,ꢀperformꢀtheꢀfollowingꢀsteps:  
• Lock the device (only after all other parameters have been pro-  
grammed and validated) to prevent any further programming of  
the device.  
1.ꢀ EnsureꢀthatꢀtheꢀCBLOW capacitor is mounted.  
2.ꢀ SelectꢀtheꢀProgrammingꢀLockꢀregisterꢀ(keyꢀ7).  
3. Select Blow mode (key 9).  
BOP Selection  
Selecting BOP should be done in two stages. First, Try mode  
should be used to adjust BOP and monitor the output state. Then  
the optimum BOP is set permanently using Blow mode.  
4.ꢀ Addressꢀbitꢀ3ꢀ(001000)ꢀbyꢀsendingꢀfourꢀVPM pulses.  
5. Send one Blow pulse, at IPPandSRBLOW, and sustain it for  
Use the BOP Trim Up Counting register to increase the BOP selec-  
tion by one Magnetic Step Size, StepBOP, increment with each  
bit field pulse (see figure 8). Use the BOPꢀTrimꢀDownꢀCountingꢀ  
register to decrease the BOP selection by one StepBOPwith each  
bit field pulse (see figure 9). As an aid to programming, when  
using down-counting method, the A119x automatically inverts  
the bit field selection (code 0 in down-counting sets the bit field  
value 111111, and the actual bit field value decreases until code  
63ꢀsetsꢀbitꢀfieldꢀvalueꢀ000000).ꢀ  
tBLOW  
.
6.ꢀ DelayꢀforꢀaꢀtLOW interval, then power-down.  
7.ꢀ Optionallyꢀcheckꢀallꢀfuses.ꢀ  
Fuse Checking  
Incorporated in the A119x family is circuitry to simultaneously  
check the integrity of the fuse bits. The fuse checking feature is  
enabledꢀbyꢀusingꢀtheꢀFuseꢀCheckꢀregisterꢀ(selectionꢀkeyꢀ7),ꢀandꢀ  
while in Try mode, applying the codes shown in table 2. The  
register is only valid in Try mode and is available before or after  
the Programming Lock bit is set.  
Note that the release point, BRP, is a value below BOP. The  
difference is specified by the Hysteresis, BHYS , which is not  
programmable.  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
(Code 0,  
(Code 63,  
Bit value 111111 )  
Bit value 111111 )  
BOP  
BOP  
|B (max)|  
OP  
|B (max)|  
OP  
BHYS  
BHYS  
BRP  
BRP  
(Code 63,  
Bit value 000000)  
(Code 0,  
Bit value 000000 )  
|B (min)|  
OP  
|B (min)|  
OP  
BOP  
BOP  
BHYS  
BHYS  
BRP  
BRP  
0
31  
63  
0
31  
63  
Try Mode, Bit Field Code  
Try Mode, Bit Field Code  
Figure 8. BOP Selection Up-Counting  
Figure 9. BOP Selection Down-Counting  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
Figure 10. Programming state diagram  
Figure 11. Example of Try mode pulse sequence, Register Key = BOP selection down counting  
Figure 12. Example of Blow mode pulse sequence, Register Key = BOP selection bit field 2 (code 4)  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
Power Derating  
The device must be operated below the maximum junction tem-  
perature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems Web site.)  
Example:ꢀReliabilityꢀforꢀVCC at TA=150°C, package UA, using a  
low-KꢀPCB.  
Observeꢀtheꢀworst-caseꢀratingsꢀforꢀtheꢀdevice,ꢀspecifically:ꢀꢀ  
RθJA=165ꢀ°C/W,ꢀTJ(max) =165°C,ꢀVCC(max)= 24ꢀV,ꢀandꢀ  
ICC(max) = 17 mA.  
Calculate the maximum allowable power level, PD(max). First,  
invertꢀequationꢀ3:  
TheꢀPackageꢀThermalꢀResistance,ꢀRθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
ItsꢀprimaryꢀcomponentꢀisꢀtheꢀEffectiveꢀThermalꢀConductivity,ꢀK,ꢀ  
of the printed circuit board, including adjacent devices and traces.  
Radiationꢀfromꢀtheꢀdieꢀthroughꢀtheꢀdeviceꢀcase,ꢀRθJC, is relatively  
small component of RθJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
ΔTmax = TJ(max) – TAꢀ=ꢀ165°C150°C = 15°C  
This provides the allowable increase to TJ resulting from internal  
powerꢀdissipation.ꢀThen,ꢀinvertꢀequationꢀ2:  
ꢀꢀꢀꢀPD(max) = ΔTmax÷RθJAꢀ=15°C÷165ꢀ°C/W=91mW  
Finally,ꢀinvertꢀequationꢀ1ꢀwithꢀrespectꢀtoꢀvoltage:  
ꢀꢀꢀꢀVCC(est) = PD(max) ÷ ICC(max)=ꢀ91mW÷17ꢀmA=5ꢀV  
                                                                                                           
Theꢀeffectꢀofꢀvaryingꢀpowerꢀlevelsꢀ(PowerꢀDissipation,ꢀPD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
The result indicates that, at TA, the application and device can  
dissipateꢀadequateꢀamountsꢀofꢀheatꢀatꢀvoltagesꢀ≤VCC(est)  
.
PDꢀ=ꢀVIN  
I
(1)  
(2)  
×
IN  
CompareꢀVCC(est)ꢀtoꢀVCC(max).ꢀIfꢀVCC(est)ꢀ≤ꢀVCC(max), then reli-  
ableꢀoperationꢀbetweenꢀVCC(est)ꢀandꢀVCC(max) requires enhanced  
RθJA.ꢀꢀIfꢀVCC(est)ꢀ≥ꢀVCC(max),ꢀthenꢀoperationꢀbetweenꢀVCC(est)  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀΔT = PD  
R
θJA  
×
TJ = TA + ΔT  
(3) andꢀVCC(max) is reliable under these conditions.  
Forꢀexample,ꢀgivenꢀcommonꢀconditionsꢀsuchꢀas:ꢀTA= 25°C,  
VCC = 12ꢀV, ICC = 4 mA, and RθJA = 140 °C/W, then:  
PDꢀ=ꢀVCC  
I
=ꢀ12ꢀV 4 mA = 48 mW  
×
×
CC  
ΔT = PD  
R
= 48 mW 140ꢀ°C/Wꢀ=ꢀ7°C  
θJA  
×
×
TJ = TA + ΔTꢀ=ꢀ25°Cꢀ+ꢀ7°Cꢀ=ꢀ32°C  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding  
TJ(max), at a selected RθJA and TA.  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
PACKAGE OUTLINE DRAWINGS  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000628)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.125  
2.975  
–0.075  
D
1.ꢀ9  
ꢀ° ꢀ°  
A
3
+0.020  
0.180  
–0.053  
0.96  
D
+0.19  
–0.06  
+0.10  
1.91  
2.ꢀ0  
2.90  
–0.20  
0.70  
D
1.00  
0.25 MIN  
2
1
0.55 REF  
0.25 BSC  
0.95  
Seating Plane  
Gauge Plane  
Branded Face  
PCB Layout Reference View  
B
8× 10° 5°  
1.00 0.13  
+0.10  
NNN  
0.05  
–0.05  
0.95 BSC  
0.ꢀ0 0.10  
C
Standard Branding Reference View  
N
= Last three digits of device part number  
A
B
Active Area Depth, 0.28 0.0ꢀ mm  
Reference land pattern layout; all pads a minimum of 0.20 mm from all adjacent pads;  
adjust as necessary to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall elements, not to scale  
Package LH, 3-Pin SOT23W  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
For ꢀeference Only ꢁ Not for Tooling ꢂꢃe  
(ꢋeference ꢆWꢄ-0000404, ꢋeꢇ. 1)  
NOT TO SCALꢀ  
ꢆimensions in millimeters  
ꢆimensions eꢐclusiꢇe of mold flash, gate burrs, anꢅ ꢅambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
ꢎ0.0ꢉ  
ꢏ0.05  
4.09  
45ꢂ  
B
C
2.05 NOꢁ  
1.52 ꢃ0.05  
10ꢂ  
1.44 NOꢁ  
ꢁolꢅ ꢀꢊector  
Pin Inꢅent  
ꢎ0.0ꢉ  
ꢏ0.05  
3.02  
45ꢂ  
Branꢅeꢅ  
Face  
0.79 ꢋꢀF  
A
1.02  
ꢁAX  
NNN  
1
1
2
3
Stanꢅarꢅ Branꢅing ꢋeference ꢌiew  
ꢍ Supplier emblem  
N ꢍ Last three ꢅigits of ꢅeꢇice part number  
14.99 ꢃ0.25  
ꢎ0.03  
0.41  
ꢏ0.06  
ꢎ0.05  
ꢏ0.07  
0.43  
ꢆambar remoꢇal protrusion (6ꢈ)  
ꢄate anꢅ tie bar burr area  
A
Actiꢇe Area ꢆepth, 0.50 mm ꢃ0.0ꢉ  
Branꢅing scale anꢅ appearance at supplier ꢅiscretion  
Hall element (not to scale)  
1.27 NOꢁ  
Package UA, 3-Pin SIP, Gate Relief  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000408, Rev. 3)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.06  
–0.05  
4.00  
B
4×ꢀ0°  
ꢀ.50 0.05  
E
2.00  
C
E
1.75  
Mold Ejector  
Pin Indent  
+0.06  
4.00  
–0.07  
E
45°  
Branded  
Face  
A
0.85 0.05  
0.42 0.ꢀ0  
4 × 2.50 0.ꢀ0  
0.25 REF  
0.30 REF  
NNN  
YYWW  
2.54 REF  
LLLL  
D
Standard Branding Reference View  
2
= Supplier emblem  
18.00 0.10  
ꢀ2.20 0.ꢀ0  
N
Y
W
L
= Last three digits of device part number  
= Last 2 digits of year of manufacture  
= Week of manufacture  
ꢀ.00 0.ꢀ0  
= Lot number  
+0.07  
0.25  
4 × 7.37 REF  
ꢀ.80 0.ꢀ0  
–0.03  
A
B
C
D
Dambar removal protrusion (8×)  
Gate and tie burr area  
0.38 REF  
0.25 REF  
Active Area Depth, 0.38 mm 0.03  
Branding scale and appearance at supplier discretion  
4 × 0.85 REF  
0.85 0.05  
E
Hall element; not to scale  
F
Thermoplastic Molded Lead Bar for alignment during shipment  
+0.06  
ꢀ.80  
–0.07  
F
+0.06  
4.00  
ꢀ.50 0.05  
–0.05  
Package UB, 2-Pin SIP  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Programmable, Chopper-Stabilized,  
Two-Wire Hall-Effect Switches  
A119x and A119x-F  
REVISION HISTORY  
Number  
Date  
Description  
4
5
6
7
8
9
May 24, 2013  
Update application information  
September 21, 2015  
February 3, 2016  
February 25, 2016  
August 9, 2018  
Added AEC-Q100 qualification under Features and Benefits  
Added UB package option; added -F part option.  
Removed A1190-F part option.  
Added footnote to LH package (page 3)  
September 19, 2019  
Updated LH, UA, and UB package drawings, and minor editorial updates  
Copyright 2019, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

A1192LLHLX-F-T

Programmable, Chopper-Stabilized, Two-Wire Hall-Effect Switches
ALLEGRO

A1192LLHLX-T

Hall Effect Sensor, 1mT Min, 20mT Max, BICMOS, Plastic/epoxy, Rectangular, 3 Pin, Surface Mount, SOT-23, 3 PIN
ALLEGRO

A1192LUA-F-T

Hall Effect Sensor,
ALLEGRO

A1192LUA-F-T3

Programmable, Chopper-Stabilized, Two-Wire Hall-Effect Switches
ALLEGRO

A1192LUA-T

Hall Effect Sensor, 1mT Min, 20mT Max, BICMOS, Plastic/epoxy, Rectangular, 3 Pin, Through Hole Mount, SIP-3
ALLEGRO

A1192LUA-T3

Programmable, Chopper-Stabilized, Two-Wire Hall-Effect Switches
ALLEGRO

A1192LUBLU-F-T

Hall Effect Sensor,
ALLEGRO

A1192LUBLU-T

Hall Effect Sensor,
ALLEGRO

A1192LUBTN-F-T

Hall Effect Sensor,
ALLEGRO

A1192LUBTN-T

Hall Effect Sensor,
ALLEGRO

A1193

Programmable, Chopper-Stabilized, Two Wire Hall-Effect Switches
ALLEGRO

A1193LLHLT-F-T

Hall Effect Sensor, Rectangular, Surface Mount, SOT-23W, 3 PIN
ALLEGRO