A19520LUBBTN-FSILBYKG-A [ALLEGRO]

Vibration-Tolerant Hall-Effect Transmission Speed and Direction Sensor IC;
A19520LUBBTN-FSILBYKG-A
型号: A19520LUBBTN-FSILBYKG-A
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Vibration-Tolerant Hall-Effect Transmission Speed and Direction Sensor IC

文件: 总15页 (文件大小:883K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A19520  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
FEATURES AND BENEFITS  
DESCRIPTION  
• Differential Hall-effect sensor measures ring magnets  
and ferrous targets with inherent stray field immunity  
• SolidSpeed Digital Architecture™ provides robust,  
adaptive performance with advanced algorithms that  
provide vibration immunity over the full target pitch  
• Integrated solution includes a capacitor in a single  
overmolded miniature package  
• ISO 26262:2011 ASIL B with integrated diagnostics and  
certified safety design process  
• Two-wire current source output pulse-width protocol  
supporting speed, direction, and ASIL error reporting  
• EEPROM enables factory traceability  
The A19520 is an advanced vibration-tolerant Hall-effect  
integrated circuit (IC) that measures the speed and direction  
of rotating targets. This sensor IC can directly measure ring  
magnets or be back-biased with a magnet to measure ferrous  
targets. The package features an integrated capacitor for  
electromagnetic compatibility (EMC).  
The A19520 employs intelligent algorithms that allow stable  
operation during vibration and highly dynamic air gap  
environmentscommontotransmissionapplications.Inaddition,  
the A19520 differential sensing offers inherent rejection of  
interfering common-mode magnetic fields.  
TheIChasbeendesignedtoacertifiedISO26262:2011design  
processtoalloweasyintegrationintohighsafetylevelsystems.  
Integrated diagnostics are used to detect an IC failure that  
impacts the output protocol’s accuracy, providing coverage  
compatible with ASIL B compliance.  
2
-
PACKAGE:  
2-Pin SIP  
(suffix UB)  
The A19520 is provided in a 2-pin miniature SIP package  
(suffix UB) that is lead (Pb) free, with tin leadframe plating.  
The UB package includes an IC and capacitor integrated into  
a single overmolded package, with an additional molded  
lead-stabilizing bar for robust shipping and ease of assembly.  
Not to scale  
VCC  
+
ADC  
Output  
-
Digital  
Controller  
Current  
ESD  
Generator  
Analog-to-Digital  
Front End  
and  
Amplification  
Signal Conditioning  
+
ADC  
-
GND  
Regulator  
EEPROM  
Diagnostics  
+
Oscillator  
-
Functional Block Diagram  
A19520-DS  
December 17, 2018  
MCO-0000530  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
SELECTION GUIDE*  
Part Number  
Packing  
A19520LUBBTN-FSNHPYUE-A  
A19520LUBBTN-RSNHPYUE-A  
A19520LUBBTN-FSNHPYUE  
A19520LUBBTN-RSNHPYUE  
Tape and reel, 4000 pieces per reel  
Tape and reel, 4000 pieces per reel  
Tape and reel, 4000 pieces per reel  
Tape and reel, 4000 pieces per reel  
* Not all combinations are available. Contact Allegro sales for availability and pricing of custom  
programming options.  
Configuration Options  
A19520  
L
UBB  
TN-  
ASIL Protocol:  
-A ASIL protocol enabled  
[blank] – ASIL protocol disabled  
Magnetic Temperature Compensation:  
E
0.16%/°C  
G – 0.04%/°C  
Extended Sudden Air Gap:  
K – Timed resets enabled  
U – Feature not enabled  
Calibration Mode Non-Direction Pulses:  
O – Blanked, no output during Calibration  
Y – Pulses allowed during Calibration  
Running Mode Non-Direction Pulses:  
B – Blanked, no output during Running mode  
P – Pulses allowed during Running mode  
Vibration Immunity / Direction Change:  
L – Low vibration immunity with immediate direction change detection  
H – High vibration immunity  
Pulse Widths (Typical):  
I – Intermediate, Forward = 60 µs, Reverse = 120 µs, Non-Direction = 30 µs  
N – Narrow, Forward = 45 µs, Reverse = 90 µs, Non-Direction = 180 µs  
W –Wide, Forward = 45 µs, Reverse = 180 µs, Non-Direction = 360 µs  
Number of Pulses:  
S – Single, one pulse per magnetic pole pair  
Rotation Direction:  
F – Forward, pin 1 to pin 2  
R – Forward, pin 2 to pin 1  
Packing Instructions  
Package Designation  
Operating Temperature Range  
Allegro Identifier and Device Type  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
28  
Unit  
V
Supply Voltage  
Refer to Power Derating section  
Reverse Supply Voltage  
Operating Ambient Temperature  
Maximum Junction Temperature  
Storage Temperature  
VRCC  
TA  
–18  
V
–40 to 150  
165  
°C  
°C  
°C  
TJ(max)  
Tstg  
–65 to 170  
INTERNAL DISCRETE CAPACITOR RATINGS  
Characteristic  
Symbol  
Test Conditions  
Value (Typ.)  
Unit  
Nominal Capacitance  
CSUPPLY  
Connected between pin 1 and pin 2 (refer to Figure 1)  
10  
nF  
PINOUT DIAGRAM AND TERMINAL LIST  
VSUPPLY  
1
1
2
A19520  
IC  
2
UB Package, 2-Pin SIP Pinout Diagram  
CL  
RL  
Terminal List Table  
GND  
Name  
Number  
Function  
VCC  
1
2
Supply Voltage  
Ground  
Figure 1: Typical Application Circuit  
GND  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
OPERATING CHARACTERISTICS: Valid throughout full operating and temperature ranges, unless otherwise specified  
Characteristic  
GENERAL  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
Operating, TJ < TJ(max), voltage across pin 1 and  
pin 2; does not include voltage across RL  
Supply Voltage [2]  
VCC  
4
24  
V
Undervoltage Lockout  
VCC(UV)  
IRCC  
VCC 0 V → 5 V or 5 V → 0 V  
VCC = VRCC(max)  
3.6  
3.95  
V
Reverse Supply Current [3]  
–10  
5.9  
12  
mA  
mA  
mA  
ICC(LOW)  
Low-current state  
7
8
ICC(HIGH) High-current state  
14  
16  
Supply Current  
ICC(HIGH)  
ICC(LOW)  
/
Ratio of high current to low current (isothermal)  
Refer to Figure 15  
1.9  
1.5  
ASIL Safety Current  
IRESET  
3.9  
mA  
PROTECTION CIRCUITS  
Supply Zener Clamp Voltage  
POWER-ON CHARACTERISTICS  
Power-On State  
VZsupply  
ICC = 19 mA, TA = 25°C  
28  
1
V
POS  
tPO  
V
CC > VCC(min), as connected in Figure 1  
ICC(LOW)  
mA  
ms  
Time from VCC > VCC(min), until device has  
entered calibration  
Power-On Time [4]  
OUTPUT PULSE CHARACTERISTICS, PULSE PROTOCOL [5]  
Voltage measured at pin 2 in Figure 1,  
Output Rise Time  
Output Fall Time  
tr  
tr  
RL = 100 Ω, CL = 10 pF, measured between  
10% and 90% of signal  
0
0
2
2
4
4
μs  
μs  
Voltage measured at pin 2 in Figure 1,  
RL = 100 Ω, CL = 10 pF, measured between  
10% and 90% of signal  
Pulse Width, ASIL Warning  
Pulse Width, ASIL Critical  
tw(ASILwarn) Refer to Figure 15  
tw(ASILcrit) Refer to Figure 15  
63  
4
121  
8
μs  
ms  
Continued on next page...  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
OPERATING CHARACTERISTICS (continued): Valid throughout full operating temperature ranges,  
unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
INTERMEDIATE PULSE WIDTH OPTION (PART NUMBER -xxIxxxxx)  
Threshold to Enter High-Speed Mode  
Threshold to Exit High-Speed Mode  
Pulse Width, Forward Rotation  
Pulse Width, Reverse Rotation  
Pulse Width, High-Speed  
fHIGH  
fLOW  
TCYCLE frequency increasing  
TCYCLE frequency decreasing  
TCYCLE frequency < fLOW  
TCYCLE frequency < fLOW  
TCYCLE frequency > fHIGH  
0.935  
0.850  
51  
1.1  
1
1.265  
1.150  
69  
kHz  
kHz  
μs  
tw(FWD)  
tw(REV)  
tw(HS)  
tw(ND)  
60  
120  
30  
30  
102  
25  
138  
35  
μs  
μs  
Pulse Width, Non-Direction  
25  
35  
μs  
Operating Frequency,  
Forward Rotation [6][7][8]  
fFWD  
fREV  
fND  
0
0
0
̶
̶
̶
12  
12  
12  
kHz  
kHz  
kHz  
Operating Frequency,  
[6][7][8]  
Reverse Rotation  
Operating Frequency,  
Non-Direction Pulses [6][8]  
NARROW PULSE WIDTH OPTION (PART NUMBER -xxNxxxxx)  
Pulse Width, Forward Rotation  
Pulse Width, Reverse Rotation  
Pulse Width, Non-Direction  
tw(FWD)  
tw(REV)  
tw(ND)  
38  
76  
45  
90  
52  
μs  
μs  
μs  
104  
207  
153  
180  
Operating Frequency,  
Forward Rotation [6][8]  
fFWD  
fREV  
fND  
0
0
0
̶
̶
̶
12  
7
kHz  
kHz  
kHz  
Operating Frequency,  
Reverse Rotation [6][8]  
Operating Frequency,  
Non-Direction Pulses [6][8]  
4
WIDE PULSE WIDTH OPTION (PART NUMBER -xxWxxxxx)  
Pulse Width, Forward Rotation  
Pulse Width, Reverse Rotation  
Pulse Width, Non-Direction  
tw(FWD)  
tw(REV)  
tw(ND)  
38  
45  
52  
μs  
μs  
μs  
153  
306  
180  
360  
207  
414  
Operating Frequency,  
Forward Rotation [6][8]  
fFWD  
fREV  
fND  
0
0
0
̶
̶
̶
12  
4
kHz  
kHz  
kHz  
Operating Frequency,  
Reverse Rotation [6][8]  
Operating Frequency,  
Non-Direction Pulses [6][8]  
2.2  
[1] Typical values are at TA = 25°C and VCC = 12 V. Performance may vary for individual units, within the specified maximum and minimum limits.  
[2] Maximum voltage must be adjusted for power dissipation and junction temperature; see representative for Power Derating discussions.  
[3] Negative current is defined as conventional current coming out of (sourced from) the specified device terminal.  
[4] Output transients prior to tPO should be ignored.  
[5] Timing from start of rising output transition. Measured pulse width will vary on load circuit configurations and thresholds. Pulse width measured at threshold of (ICC(HIGH)  
+ ICC(LOW)) / 2 for non-ASIL pulses and (IRESET + ICC(LOW)) / 2 for ASIL pulses.  
[6] Maximum Operating Frequency is determined by satisfactory separation of output pulses. If shorter low-state durations can be resolved, the maximum fREV and fND may  
be higher, excluding the -xxIxxxx variant or f(FWD) as filter bandwidth limitation applies.  
[7] Direction information is not available when frequency > fHIGH for the Intermediate Pulse Width option.  
[8] Zero-speed is not met when the K-variant is implemented due to the inclusion of a timed reset.  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
OPERATING CHARACTERISTICS (continued): Valid throughout full operating temperature ranges,  
unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit  
INPUT CHARACTERISTICS AND PERFORMANCE  
Operating Differential  
BDIFF(pk-pk) Peak-to-peak of differential magnetic input  
30  
–750  
0.7  
750  
1.3  
G
G
Magnetic Input [8]  
Operating Differential  
Magnetic Range [8]  
BDIFF  
Differential input signal; refer to Figure 5  
BSEQ(n+1)  
BSEQ(n)  
/
Signal cycle-to-cycle variation  
(refer to Figure 2)  
Allowable Differential Sequential  
Signal Variation  
BSEQ(n+i)  
BSEQ(n)  
/
Overall signal variation  
(refer to Figure 2)  
0.1  
Operate Point  
Release Point  
BOP  
BRP  
% of peak-to-peak IC-processed signal  
% of peak-to-peak IC-processed signal  
Required amount of amplitude separation  
70  
30  
%
%
Switch Point Separation  
BDIFF(SP-SEP) between channels at each BOP and BRP  
occurrence; refer to Figure 4  
20  
%BDIFF(pk-pk)  
Periods after tPO completed and first valid speed  
4 ×  
TCYCLE  
Initial Calibration  
TCAL  
and direction output. Constant direction of rotation.  
Refer to Figure 3 for definition of tCYCLE  
.
High Vibration (-xxxHxxxx variant)  
Low Vibration (-xxxLxxxx variant)  
High Vibration (-xxxHxxxx variant)  
1 × TCYCLE  
1 × TCYCLE  
1 × TCYCLE  
Vibration Immunity (Startup)  
Vibration Immunity (Running Mode)  
0.12 ×  
TCYCLE  
Low Vibration (-xxxLxxxx variant)  
THERMAL CHARACTERISTICS  
Based on magnetic material makeup  
(-xxxxxxxE variant)  
0.16  
0.04  
213  
%/°C  
%/°C  
°C/W  
Magnetic Temperature Coefficient [9]  
Package Thermal Resistance [10]  
TC  
Based on magnetic material makeup  
(-xxxxxxxG variant)  
Single-layer PCB with copper limited to solder  
pads  
RθJA  
[8] Differential magnetic field is measured for Channel A (E1-E2) and Channel B (E2-E3) independently. Refer to Figure 5. Each channel’s differential magnetic field is measured  
between two Hall elements with spacing determined by Figure 16. Magnetic field is measured orthogonally to the front of the package.  
[9] Magnets and magnetic encoders decrease in magnetic strength with rising temperature. The device temperature coefficient compensates, to help maintain a consistent air  
gap over temperature.  
[10] Additional thermal information is available on the Allegro website.  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
B SEQ(n)  
Target  
S
N
S
N
B SEQ(n + 1)  
B SEQ(n+i) , i ≥ 2  
TCYCLE  
BDIFF  
BDIFF = Differential Input Signal; the differential magnetic  
flux sensed by the sensor  
TCYCLE = Target Cycle; the amount of rotation that  
moves one north pole and one south pole  
across the sensor  
Figure 2: Differential Signal Variation  
Figure 3: Definition of TCYCLE  
ꢅꢆꢇꢇ  
ꢂꢃꢄꢄꢅmaꢆꢇ  
S
N
S
N
TCYCLE  
Aꢈꢈlied ꢁꢂꢃꢄꢄ  
ꢂꢃꢄꢄꢅꢈꢉ-ꢈꢉꢇ  
0 ꢀ  
BDIFF(SP)  
BDIFF(BOP)  
(BOP  
)
Channel B  
BDIFF(pk-pk)  
(BRP  
)
BDIFF(BRP)  
BDIFF(SP)  
Channel A  
ꢂꢃꢄꢄꢅminꢇ  
BDIFF(SP)  
BDIFF(SP-SEP)  
=
ꢀꢁꢂꢃ  
BDIFF(pk-pk)  
Figure 5: Differential Magnetic Input  
Figure 4: Definition of Switch Point Separation  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
FUNCTIONAL DESCRIPTION  
The A19520 sensor IC contains a single-chip Hall-effect circuit  
that supports three Hall elements. These elements are used in  
differential pairs to provide electrical signals containing informa-  
tion regarding speed, direction of target rotation, and edge posi-  
tion. The A19520 is intended for use with ring magnet targets,  
or, when back-biased with an appropriate magnet, with ferrous  
targets. The IC detects the peaks of the magnetic signals and sets  
dynamic thresholds based on these detected signals. Output edges  
are triggered by BDIFF transitions through the switch points.  
General Protocol Description  
When a target passes in front of the device (opposite the branded  
face of the package case), the sensor IC generates an output pulse  
for each magnetic pole-pair of the target or for each tooth-valley  
pair. Speed information is provided by the output pulse rate,  
while direction of target rotation is provided by the duration of  
the output pulses. The sensor IC can sense target movement in  
both the forward and reverse directions.  
For the “-xxIxxxxx” variant, when in High Speed Mode, output  
pulses will be of tw(HS) duration for either target direction of rota-  
tion.  
ROTATION DIRECTION  
When the target is rotating such that a target feature passes from  
pin 1 to pin 2, this is referred to as forward rotation. This direc-  
tion of rotation is indicated on the IC output by a tw(FWD) pulse  
width. For the “-Rxxxxxxx” variant, forward direction is indi-  
cated for target rotation from pin 2 to 1.  
Refer to Figure 6 for target orientation to the device and Figure 7  
through Figure 9 for a general output protocol understanding.  
Target Rota�on (Forward)  
S
N
S
N
S
ICC(HIGH)  
tw(FWD)  
tw(FWD)  
ICC(LOW)  
Figure 7: Output Protocol (-Fxxxxxxx),  
No High Speed Mode, Forward Rotation  
Target Rota�on (Reverse)  
S
N
S
N
S
ꢅranded ꢂace  
oꢆ Sensor  
Rotating arget  
ICC(HIGH)  
N
S
S
N
tw(REV)  
tw(REV)  
N
S
S
N
S
N
Pin 1  
Pin ꢇ  
ICC(LOW)  
Figure 8: Output Protocol (-Fxxxxxxx),  
No High Speed Mode, Reverse Rotation  
ꢀAꢁ ꢂorward Rotation ꢀ-ꢂꢃꢃꢃꢃꢃꢃꢃ ꢄariantꢁ  
Target Rota�on (Forward)  
or  
ꢅranded ꢂace  
oꢆ Sensor  
Rotating arget  
Target Rota�on (Reverse)  
S
N
S
N
S
N
S
S
N
N
S
S
N
S
N
Pin 1  
ICC(HIGH)  
Pin ꢇ  
ꢀꢅꢁ Reꢄerse Rotation ꢀ-ꢂꢃꢃꢃꢃꢃꢃꢃ ꢄariantꢁ  
tw(HS)  
tw(HS)  
Figure 6: Target Orientation Relative to Device  
(ring magnet shown).  
ICC(LOW)  
Figure 9: Output Protocol (-xxIxxxxx),  
High Speed Mode  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
arget  
Pacꢆage Case  
ꢃranded ꢇace  
Pacꢇage Case ꢀranded ꢈace  
Device Orientation to Target  
Device Orientation to Target  
ꢁPin 1  
Sideꢂ  
oꢉ ꢊiew oꢋ  
Pacꢆage Caseꢂ  
ꢁPin ꢅ  
Sideꢂ  
ꢀC  
ꢌ3  
ꢌ1  
ꢆ3  
ꢆꢅ  
ꢆ1  
ꢌꢅ  
Pole Piece  
ꢂC  
ꢃPin ꢅ Sideꢄ  
oꢌ ꢍiew oꢎ  
ꢃPin 1 Sideꢄ  
ꢁConcentratorꢂ  
ꢃacꢆ-ꢃiasing  
Rare-ꢌarth Pellet  
ꢃ Channel  
North Pole  
ꢀ Channel  
ꢆlement Pitch  
A Channel  
ꢆlement Pitch  
Soꢍth Pole  
A Channel  
Pacꢇage Caseꢄ  
Mechanical Position (Target moves past device pin 1 to pin 2)  
Mechanical Position (Target moves past device pin 1 to pin 2)  
arget  
ꢋhis ꢌole  
ꢋhis ꢌole  
ꢃRadial Ring Magnetꢄ  
sensed later  
sensed earlier  
ꢈhis tooth  
ꢈhis tooth  
sensed later  
sensed earlier  
Target Magnetic Profile  
Channel  
ꢆlement Pitch  
Target Magnetic Profile  
ꢎꢃ  
Channel  
ꢌlement Pitch  
ꢉꢀ  
ꢊꢀ  
IC Internal Differential Analog Signals, VPROC  
ꢁP ꢁP  
IC Internal Differential Analog Signals, VPROC  
ꢄP  
A Channel  
A Channel  
RP  
RP  
RP  
ꢄP  
ꢁP  
ꢀ Channel  
ꢃ Channel  
RP  
RP  
Detected Channel Switching  
Detected Channel Switching  
A Channel  
A Channel  
ꢃ Channel  
ꢀ Channel  
Device Output Signal  
Device Output Signal  
CCꢃHighꢄ  
CCꢁHighꢂ  
CCꢁLowꢂ  
CCꢃLowꢄ  
Figure 10: Basic Operation  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
Startup Detection/Calibration  
Direction information is available after calibration is complete.  
After proper supply voltage is applied to the IC, the IC detects the  
magnetic profile of the rotating target.  
Figure 11 and Figure 12 show where the first output edges may  
occur for various starting target phases.  
The calibration period occurs on the first few features of the  
target that pass in front of the IC.  
ꢁarget Rotation  
ꢁarget  
ꢂiꢃꢃerential  
Magnetic  
Proꢃile  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
ꢄꢅꢅosite  
north ꢅole  
ꢄꢅꢅosite  
N→S boundary  
CC  
ꢄꢅꢅosite  
south pole  
ꢄꢅꢅosite  
t
S→N boundary  
ꢂeꢆice Location at Power-ꢄn  
Figure 11: Startup Position Effect on First Device Output Switching (-xxxxxOxx variant)  
ꢁarget Rotation  
ꢁarget  
ꢂiꢃꢃerential  
Magnetic  
Proꢃile  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈꢉꢇꢂꢊ or  
tꢇꢈRꢋꢌꢊ  
tꢇꢈNꢂꢊ  
tꢇꢈNꢂꢊ  
tꢇꢈNꢂꢊ  
tꢇꢈNꢂꢊ  
ꢄꢅꢅosite  
north ꢅole  
tꢇꢈNꢂꢊ  
tꢇꢈNꢂꢊ  
ꢄꢅꢅosite  
N→S boundary  
CC  
ꢄꢅꢅosite  
south pole  
tꢇꢈNꢂꢊ  
tꢇꢈNꢂꢊ  
ꢄꢅꢅosite  
t
S→N boundary  
ꢂeꢆice Location at Power-ꢄn  
Figure 12: Startup Position Effect on First Device Output Switching (-xxxxxYxx variant)  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
Vibration Detection  
than the specified vibration immunity. Output pulses containing the  
Algorithms embedded in the IC’s digital controller detect the pres-  
ence of target vibration (oscillation) through analysis of the two  
magnetic input channels.  
proper direction information will resume when direction informa-  
tion is validated on constant target rotation.  
With High vibration mode, advanced algorithm detection provides  
additional immunity. As shown in Figure 14, the IC may produce  
tND pulses, depending on the vibration amplitude.  
With low vibration option, during any detected vibration, the out-  
put is blanked and no output pulses will occur for vibrations less  
Normal arget Rotation  
Normal arget Rotation  
ꢁiꢂration  
N
S
N
S
S
N
S
N
arget  
ꢃiꢄꢄerential  
Magnetic  
Profile  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
tꢇRꢊꢁꢉ  
ꢅor tꢇꢈꢆꢃꢉꢋ  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
t
Figure 13: Output Functionality in the Presence of  
Running Mode Target Vibration – Low Vibration Immunity (-xxxLBxxx variant)  
Normal arget Rotation  
Normal arget Rotation  
ꢁiꢂration  
S
N
S
N
S
N
S
N
arget  
ꢃiꢄꢄerential  
Magnetic  
Profile  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
tꢇNꢃꢉ  
tꢇNꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
-ꢌꢌꢌHPꢌꢌꢌ  
ꢁariant  
tꢇNꢃꢉ  
tꢇNꢃꢉ  
tꢇNꢃꢉ  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
t
-ꢌꢌꢌHꢍꢌꢌꢌ  
ꢁariant  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
tꢇꢈꢆꢃꢉ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
ꢅor tꢇRꢊꢁꢉꢋ  
t
Figure 14: Output Functionality in the Presence of  
Running Mode Target Vibration – High Vibration Immunity (-xxxHxxxx variant)  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
ASIL Protocol  
The A19520 sensor IC contains diagnostic circuitry that will  
continuously monitor occurrences of failure defects within the IC.  
Refer to Figure 15 for the output protocol of the ASIL Safe State  
after an internal defect has been detected. Error Protocol will result  
from faults which cause incorrect signal transmission (i.e., too few  
or too many output pulses).  
Note: If a fault exists continuously, the device will attempt recov-  
ery indefinitely. Refer to the A19520 Safety Manual for additional  
details on the ASIL Safe State Output Protocol.  
Ring Magnet  
S
S
N
S
N
S
N
S
N
S
N
CCꢃHꢂꢄHꢅ  
CCꢃLꢀꢆꢅ  
Normal  
ꢀꢁeration  
ꢇaꢈlt  
CCꢃHꢂꢄHꢅ  
ꢇaꢈlt  
Protocol  
CCꢃLꢀꢆꢅ  
RꢉSꢉꢊ  
twꢃASꢂLwarnꢅ  
or  
tPꢀ  
twꢃASꢂLcritꢅ  
Figure 15: Output Protocol (ASIL Safe State)  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
POWER DERATING  
The device must be operated below the maximum junction tem-  
perature of the device (TJ(max)). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding TJ(max)  
at a selected RθJA and TA.  
,
Example: Reliability for VCC at TA=150°C, package UB, using  
1-layer PCB.  
Observe the worst-case ratings for the device, specifically:  
RθJA=213°C/W, TJ(max) =165°C, VCC(max)= 24 V, and  
The Package Thermal Resistance (RθJA) is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity (K)  
of the printed circuit board, including adjacent devices and traces.  
Radiation from the die through the device case (RθJC ) is a rela-  
tively small component of RθJA. Ambient air temperature (TA) and  
air motion are significant external factors, damped by overmolding.  
ICC(AVG) = 14.6 mA. ICC(AVG) is computed using ICC(HIGH)(max)  
and ICC(LOW)(max), with a duty cycle of 83% computed from  
tw(REV)(max) on-time at 4 kHz maximum operating frequency.  
Calculate the maximum allowable power level (PD(max) ). First,  
invert equation 3:  
ΔTmax = TJ(max) – TA = 165°C150°C = 15°C  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, invert equation 2:  
The effect of varying power levels (Power Dissipation or PD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
P
D(max) = ΔTmax ÷RθJA =1C÷213°C/W=70.4mW  
Finally, invert equation 1 with respect to voltage:  
CC(est) = PD(max) ÷ ICC(AVG) = 70.4mW÷14.6mA=4.8 V  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
ΔT = PD  
R
×
θJA  
V
TJ = TA + ΔT  
The result indicates that, at TA, the application and device can  
dissipate adequate amounts of heat above 6.5 V at 150°C.  
For example, given common conditions such as: TA= 25°C,  
VCC = 12 V, ICC = 14 mA, and RθJA = 213°C/W, then:  
Compare VCC(est) to VCC(max). If VCC(est) ≤ VCC(max), then reli-  
able operation between VCC(est) and VCC(max) requires enhanced  
RθJA. If VCC(est) ≥ VCC(max), then operation between VCC(est) and  
VCC(max) is reliable under these conditions.  
PD = VCC  
I
= 12 V 14 mA = 168 mW  
CC  
×
×
ΔT = PD  
R
= 168 mW 213°C/W = 35.8°C  
×
×
θJA  
TJ = TA + ΔT = 25°C + 35.8°C = 60.8°C  
Power Dissipation versus Ambient Temperature  
Power Derating Curve  
26  
1400  
1200  
1000  
24  
22  
20  
18  
16  
14  
12  
10  
8
VCC(max)  
800  
1-layer PCB, Package UB  
(RθJA = 213°C/W)  
600  
1-layer PCB, Package UB  
(RθJA = 213°C/W)  
400  
200  
0
6
4
VCC(min)  
80 100 120 140 160 180  
2
20  
40  
60  
20  
40  
60  
80  
100 120 140 160 180  
Temperature (°C)  
Temperature (°C)  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference DWG-0000408, Rev. 3)  
Dimensions in millimeters – NOT TO SCALE  
Dimensions exclusive of mold flash, gate burs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.06  
4.00  
–0.05  
B
4×ꢀ0°  
E 1.50  
1.50 0.05  
1.50 E  
0.50 E  
C
1.39  
E
Mold Ejector  
Pin Indent  
+0.06  
4.00  
–0.07  
E
E1  
E3  
E2  
E
E
45°  
Branded  
Face  
19550  
Date Code  
Lot Number  
A
0.85 0.05  
0.42 0.05  
4 × 2.50 0.ꢀ0  
0.25 REF  
0.30 REF  
2.54 REF  
D
Standard Branding Reference View  
Lines 1, 2, 3 = Max 5 characters per line  
Line 1: 5-digit Part Number  
Line 2: 4-digit Date Code  
Line 3: Characters 5, 6, 7, 8 of Asembly  
Lot Number  
2
18.00 0.10  
ꢀ2.20 0.ꢀ0  
ꢀ.00 0.05  
+0.07  
0.25  
4 × 7.37 REF  
ꢀ.80 0.ꢀ0  
–0.03  
A
B
C
D
E
F
Dambar removal protrusion (8×)  
Gate and tie burr area  
Active Area Depth, 0.38 mm 0.03  
0.38 REF  
0.25 REF  
Branding scale and appearance at supplier discretion  
Hall elements (E1, E2, and E3); not to scale  
Molded Lead Bar for preventing damage to leads during shipment  
4 × 0.85 REF  
0.85 0.05  
+0.06  
ꢀ.80  
–0.07  
F
+0.06  
4.00  
ꢀ.50 0.05  
–0.05  
Figure 16: Package UB, 2-Pin SIP  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Vibration-Tolerant Hall-Effect  
Transmission Speed and Direction Sensor IC  
A19520  
Revision History  
Number  
Date  
Description  
December 17, 2018  
Initial release  
Copyright ©2018, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY