A4983SET-T

更新时间:2024-09-18 05:42:32
品牌:ALLEGRO
描述:DMOS Microstepping Driver with Translator

A4983SET-T 概述

DMOS Microstepping Driver with Translator DMOS细分驱动器与翻译 电机驱动器 运动控制电子器件

A4983SET-T 规格参数

是否Rohs认证: 符合生命周期:Obsolete
零件包装代码:QFN包装说明:5 X 5 MM, 0.90 MM HEIGHT, LEAD FREE, MO-220VHHD, QFN-28
针数:28Reach Compliance Code:compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.36Is Samacsys:N
模拟集成电路 - 其他类型:STEPPER MOTOR CONTROLLERJESD-30 代码:S-XQCC-N28
JESD-609代码:e3长度:5 mm
湿度敏感等级:2功能数量:1
端子数量:28最高工作温度:85 °C
最低工作温度:-20 °C最大输出电流:2.5 A
封装主体材料:UNSPECIFIED封装代码:HVQCCN
封装等效代码:LCC28,.2SQ,20封装形状:SQUARE
封装形式:CHIP CARRIER, HEAT SINK/SLUG, VERY THIN PROFILE峰值回流温度(摄氏度):260
电源:35 V认证状态:Not Qualified
座面最大高度:1 mm子类别:Motion Control Electronics
最大供电电流 (Isup):5 mA最大供电电压 (Vsup):5.5 V
最小供电电压 (Vsup):3 V标称供电电压 (Vsup):35 V
表面贴装:YES技术:BCDMOS
温度等级:COMMERCIAL EXTENDED端子面层:Matte Tin (Sn)
端子形式:NO LEAD端子节距:0.5 mm
端子位置:QUAD处于峰值回流温度下的最长时间:40
宽度:5 mmBase Number Matches:1

A4983SET-T 数据手册

通过下载A4983SET-T数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
A4983  
DMOS Microstepping Driver with Translator  
Features and Benefits  
Low RDS(ON) outputs  
Description  
The A4983 is a complete microstepping motor driver with  
Automatic current decay mode detection/selection  
Mixed and Slow current decay modes  
Synchronous rectification for low power dissipation  
Internal UVLO  
Crossover-current protection  
3.3 and 5 V compatible logic supply  
Very thin profile QFN package  
built-in translator for easy operation. It is designed to operate  
bipolar stepper motors in full-, half-, quarter-, eighth, and  
sixteenth-step modes, with an output drive capacity of up to  
35 V and ±2 A. The A4983 includes a fixed off-time current  
regulator which has the ability to operate in Slow or Mixed  
decay modes.  
The translator is the key to the easy implementation of the  
A4983. Simply inputting one pulse on the STEP input drives  
the motor one microstep. There are no phase sequence tables,  
highfrequencycontrollines,orcomplexinterfacestoprogram.  
The A4983 interface is an ideal fit for applications where a  
complex microprocessor is unavailable or is overburdened.  
Thermal shutdown circuitry  
The chopping control in the A4983 automatically selects the  
current decay mode (Slow or Mixed). When a signal occurs at  
the STEP input pin, the A4983 determines if that step results  
in a higher or lower current in each of the motor phases. If  
the change is to a higher current, then the decay mode is set  
to Slow decay. If the change is to a lower current, then the  
current decay is set to Mixed (set initially to a fast decay for  
a period amounting to 31.25% of the fixed off-time, then to a  
Package: 28-pin QFN (suffix ET)  
Continued on the next page…  
Approximate size  
Typical Application Diagram  
VDD  
0.22 μF  
0.1 μF  
0.1 μF  
VBB  
VREG  
VDD  
VCP CP1  
CP2  
VBB  
VBB  
OUT1A  
MS1  
Microcontroller or  
Controller Logic  
OUT1B  
RS1  
MS2  
A4983  
MS3  
SLEEP  
STEP  
DIR  
OUT2A  
OUT2B  
RS2  
RESET  
ENABLE  
REF  
ROSC  
4983DS  
A4983  
DMOS Microstepping Driver with Translator  
Description (continued)  
slow decay for the remainder of the off-time). This current decay  
control scheme results in reduced audible motor noise, increased  
step accuracy, and reduced power dissipation.  
lockout (UVLO), and crossover-current protection. Special power-  
on sequencing is not required.  
The A4983 is supplied in a 5 mm × 5 mm × 0.90 nominal surface  
mount QFN package with exposed thermal pad (suffix ET). The  
Internal synchronous rectification control circuitry is provided to  
improve power dissipation during PWM operation. Internal circuit  
protectionincludes:thermalshutdownwithhysteresis,undervoltage  
package is lead (Pb) free (suffix –T), with 100% matte tin plated  
leadframe.  
Selection Guide  
Part Number  
A4983SET-T  
A4983SETTR-T  
Pb-free  
Yes  
Package  
Packing  
73 pieces per tube  
28-pin QFN with exposed thermal pad  
28-pin QFN with exposed thermal pad  
Yes  
1500 pieces per 7-in. reel  
Absolute Maximum Ratings  
Characteristic  
Symbol  
Notes  
Rating  
35  
Units  
V
Load Supply Voltage  
VBB  
±2  
A
Output Current  
IOUT  
Duty Cycle < 20%  
±2.5  
A
Logic Input Voltage  
Sense Voltage  
V
–0.3 to 7  
0.5  
V
IN  
VSENSE  
VREF  
V
Reference Voltage  
4
V
Operating Ambient Temperature  
Maximum Junction  
TA  
TJ(max)  
Tstg  
Range S  
–20 to 85  
150  
ºC  
ºC  
ºC  
Storage Temperature  
–55 to 150  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
2
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Functional Block Diagram  
0.1 MF  
0.22 MF  
CP1  
CP2  
VREG  
ROSC  
VDD  
REF  
Current  
Regulator  
Charge  
Pump  
OSC  
VCP  
0.1 MF  
DMOS Full Bridge  
VBB1  
DAC  
OUT1A  
OUT1B  
PWM Latch  
Blanking  
Mixed Decay  
SENSE1  
VBB2  
STEP  
DIR  
Gate  
Drive  
DMOS Full Bridge  
RS1  
RESET  
Control  
Logic  
Translator  
MS1  
MS2  
MS3  
OUT2A  
OUT2B  
PWM Latch  
Blanking  
Mixed Decay  
ENABLE  
SLEEP  
SENSE2  
RS2  
DAC  
VREF  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
3
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
ELECTRICAL CHARACTERISTICS1 at TA = 25°C, VBB = 35 V (unless otherwise noted)  
2
Characteristics  
Output Drivers  
Symbol  
Test Conditions  
Min.  
Max.  
Units  
Typ.  
Operating  
8
0
35  
35  
V
V
Load Supply Voltage Range  
Logic Supply Voltage Range  
Output On Resistance  
VBB  
VDD  
During Sleep Mode  
Operating  
3.0  
5.5  
0.450  
0.370  
1.2  
1.2  
4
V
Source Driver, IOUT = –1.5 A  
Sink Driver, IOUT = 1.5 A  
Source Diode, IF = –1.5 A  
Sink Diode, IF = 1.5 A  
fPWM < 50 kHz  
0.350  
Ω
RDSON  
0.300  
Ω
V
Body Diode Forward Voltage  
Motor Supply Current  
VF  
V
mA  
mA  
μA  
mA  
mA  
μA  
IBB  
Operating, outputs disabled  
Sleep Mode  
2
10  
fPWM < 50 kHz  
8
Logic Supply Current  
IDD  
Outputs off  
5
Sleep Mode  
10  
Control Logic  
VIN(1)  
V
VDD×0.7  
Logic Input Voltage  
VIN(0)  
IIN(1)  
IIN(0)  
V
VDD×0.3  
–20  
<1.0  
<1.0  
20  
A  
A  
VIN = VDD×0.7  
VIN = VDD×0.3  
Logic Input Current  
–20  
20  
Microstep Select 2  
Microstep Select 3  
Input Hysteresis  
Blank Time  
RMS2  
RMS3  
100  
100  
300  
1
kΩ  
kΩ  
mV  
μs  
μs  
μs  
V
VHYS(IN)  
tBLANK  
150  
0.7  
20  
23  
0
500  
1.3  
40  
37  
4
OSC > 3 V  
30  
30  
Fixed Off-Time  
tOFF  
ROSC = 25 kΩ  
Reference Input Voltage Range  
Reference Input Current  
VREF  
IREF  
–3  
0
3
μA  
%
VREF = 2 V, %ITripMAX = 38.27%  
VREF = 2 V, %ITripMAX = 70.71%  
VREF = 2 V, %ITripMAX = 100.00%  
±15  
±5  
±5  
800  
Current Trip-Level Error3  
%
errI  
tDT  
%
Crossover Dead Time  
Protection  
100  
475  
ns  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
UVLO Enable Threshold  
UVLO Hysteresis  
TJ  
165  
15  
3
°C  
°C  
V
TJHYS  
UVLO  
UVHYS  
VDD rising  
2.35  
0.05  
2.7  
0.10  
V
1
2
Negative current is defined as coming out of (sourcing from) the specified device pin.  
Typical data are for initial design estimations only, and assume optimum manufacturing and application conditions. Performance may vary for  
individual units, within the specified maximum and minimum limits.  
3errI = (ITrip – IProg) IProg, where IProg = %ITripMAX  
I
.
×
TripMAX  
Allegro MicroSystems, Inc.  
4
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
THERMAL CHARACTERISTICS may require derating at maximum conditions  
Characteristic  
Symbol  
Test Conditions*  
Value Units  
RθJA  
Package Thermal Resistance  
Package ET; 4-layer PCB, based on JEDEC standard  
32 ºC/W  
*In still air. Additional thermal information available on Allegro Web site.  
Maximum Power Dissipation, PD(max)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (°C)  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
5
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
t
t
B
A
STEP  
t
t
D
C
MS1, MS2, MS3,  
RESET, or DIR  
Time Duration  
Symbol  
Typ.  
1
Unit  
μs  
STEP minimum, HIGH pulse width  
STEP minimum, LOW pulse width  
Setup time, input change to STEP  
Hold time, input change to STEP  
tA  
tB  
tC  
tD  
1
μs  
200  
200  
ns  
ns  
Figure 1. Logic Interface Timing Diagram  
Table 1. Microstep Resolution Truth Table  
MS1 MS2 MS3 Microstep Resolution Excitation Mode  
L
H
L
L
L
L
L
L
L
H
Full Step  
2 Phase  
Half Step  
1-2 Phase  
H
H
H
Quarter Step  
Eighth Step  
Sixteenth Step  
W1-2 Phase  
2W1-2 Phase  
4W1-2 Phase  
H
H
Allegro MicroSystems, Inc.  
6
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Functional Description  
Device Operation. The A4983 is a complete microstepping Step Input (STEP). A low-to-high transition on the STEP  
input sequences the translator and advances the motor one  
increment. The translator controls the input to the DACs and  
the direction of current flow in each winding. The size of the  
increment is determined by the combined state of inputs MS1,  
MS2, and MS3.  
motor driver with a built-in translator for easy operation with  
minimal control lines. It is designed to operate bipolar step-  
per motors in full-, half-, quarter-, and sixteenth-step modes.  
The currents in each of the two output full-bridges and all of  
the N-channel DMOS FETs are regulated with fixed off-time  
PWM (pulse width modulated) control circuitry. At each step,  
the current for each full-bridge is set by the value of its external  
Microstep Select (MS1, MS2, and MS3). Selects the  
microstepping format, as shown in table 1. MS2 and MS3 have a  
100 kΩ pull-down resistance. Any changes made to these inputs  
current-sense resistor (RS1 and RS2), a reference voltage (VREF), do not take effect until the next STEP rising edge.  
and the output voltage of its DAC (which in turn is controlled  
If the MSx pins are pulled up to VDD, it is good practice to use a  
by the output of the translator).  
high value pull-up resistor in order to limit current to these pins,  
should an overvoltage event occur.  
At power-on or reset, the translator sets the DACs and the phase  
current polarity to the initial Home state (shown in figures 2  
through 6), and the current regulator to Mixed Decay Mode for  
both phases. When a step command signal occurs on the STEP  
input, the translator automatically sequences the DACs to the  
next level and current polarity. (See table 2 for the current-level  
sequence.) The microstep resolution is set by the combined  
effect of inputs MS1, MS2, and MS3, as shown in table 1.  
Direction Input (DIR). This determines the direction of  
rotation of the motor. When low, the direction will be clockwise  
and when high, counterclockwise. Changes to this input do not  
take effect until the next STEP rising edge.  
Internal PWM Current Control. Each full-bridge is  
controlled by a fixed off-time PWM current control circuit  
that limits the load current to a desired value, ITRIP. Initially, a  
diagonal pair of source and sink FET outputs are enabled and  
current flows through the motor winding and the current sense  
resistor, RSx. When the voltage across RSx equals the DAC out-  
put voltage, the current sense comparator resets the PWM latch.  
The latch then turns off either the source FETs (when in Slow  
Decay Mode) or the sink and source FETs (when in Mixed  
Decay Mode).  
When stepping, if the new output levels of the DACs are lower  
than their previous output levels, then the decay mode for the  
active full-bridge is set to Mixed. If the new output levels of  
the DACs are higher than or equal to their previous levels, then  
the decay mode for the active full-bridge is set to Slow. This  
automatic current decay selection improves microstepping  
performance by reducing the distortion of the current waveform  
that results from the back EMF of the motor.  
The maximum value of current limiting is set by the selection  
of RSx and the voltage at the VREF pin. The transconductance  
function is approximated by the maximum value of current  
limiting, ITripMAX (A), which is set by  
If the logic circuits are pulled up to VDD, it is good practice to  
use a high value pull-up resistor in order to limit current to the  
logic inputs, should an overvoltage event occur. Logic inputs  
include: MSx, SLEEP, DIR, ENABLE, RESET, and STEP.  
ITripMAX = VREF /(8 R )  
×
S
where RS is the resistance of the sense resistor (Ω) and VREF is  
the input voltage on the REF pin (V).  
The DAC output reduces the VREF output to the current sense  
comparator in precise steps, such that  
RESET Input (RESET). The RESET input sets the trans-  
lator to a predefined Home state (shown in figures 2 through  
6), and turns off all of the FET outputs. All STEP inputs are  
ignored until the RESET input is set to high.  
Itrip = (%ITripMAX /100)  
I
TripMAX  
×
(See table 2 for %ITripMAX at each step.)  
Allegro MicroSystems, Inc.  
7
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
It is critical that the maximum rating (0.5 V) on the SENSE1 and  
SENSE2 pins is not exceeded.  
Shutdown. In the event of a fault, overtemperature (excess TJ)  
or an undervoltage (on VCP), the FET outputs of the A4983 are  
disabled until the fault condition is removed. At power-on, the  
UVLO (undervoltage lockout) circuit disables the FET outputs  
and resets the translator to the Home state.  
Fixed Off-Time. The internal PWM current control circuitry  
uses a one-shot circuit to control the duration of time that the  
DMOS FETs remain off. The one shot off-time, tOFF, is deter-  
mined by the selection of an external resistor connected from the  
ROSC timing pin to ground. If the ROSC pin is tied to an external  
voltage > 3 V, then tOFF defaults to 30 μs. The ROSC pin can be  
safely connected to the VDD pin for this purpose. The value of  
tOFF (μs) is approximately  
Sleep Mode (SLEEP). To minimize power consumption when  
the motor is not in use, this input disables much of the internal  
circuitry including the output FETs, current regulator, and charge  
pump. A logic low on the SLEEP pin puts the A4983 into Sleep  
mode. A logic high allows normal operation, as well as start-up  
(at which time the A4983 drives the motor to the Home microstep  
position). When emerging from Sleep mode, in order to allow the  
charge pump to stabilize, provide a delay of 1 ms before issuing a  
Step command.  
tOFF ROSC 825  
Blanking. This function blanks the output of the current sense  
comparators when the outputs are switched by the internal current  
control circuitry. The comparator outputs are blanked to prevent  
false overcurrent detection due to reverse recovery currents of the  
clamp diodes, and switching transients related to the capacitance  
of the load. The blank time, tBLANK (μs), is approximately  
If the SLEEP pin is pulled up to VDD, it is good practice to use  
a high value pull-up resistor in order to limit current to the pin,  
should an overvoltage event occur.  
tBLANK 1 μs  
Mixed Decay Operation. The bridge can operate in Mixed  
Decay mode, depending on the step sequence, as shown in figures  
3 through 6. As the trip point is reached, the A4983 initially goes  
into a fast decay mode for 31.25% of the off-time. tOFF. After that,  
it switches to Slow Decay mode for the remainder of tOFF. A tim-  
ing dagram for this feature appears on the next page.  
Charge Pump (CP1 and CP2). The charge pump is used to  
generate a gate supply greater than that of VBB for driving the  
source-side FET gates. A 0.1 μF ceramic capacitor, should be  
connected between CP1 and CP2. In addition, a 0.1 μF ceramic  
capacitor is required between VCP and VBB, to act as a reservoir  
for operating the high-side FET gates.  
Synchronous Rectification. When a PWM-off cycle is  
triggered by an internal fixed–off-time cycle, load current recir-  
culates according to the decay mode selected by the control logic.  
This synchronous rectification feature turns on the appropriate  
FETs during current decay, and effectively shorts out the body  
diodes with the low FET RDS(ON). This reduces power dissipation  
significantly, and can eliminate the need for external Schottky  
diodes in many applications. Synchronous rectification turns off  
when the load current approaches zero (0 A), preventing reversal  
of the load current. A timing dagram for this feature appears on  
the next page.  
VREG (VREG). This internally-generated voltage is used  
to operate the sink-side FET outputs. The VREG pin must be  
decoupled with a 0.22 μF ceramic capacitor to ground. VREG  
is internally monitored. In the case of a fault condition, the FET  
outputs of the A4983 are disabled.  
Enable Input (ENABLE). This input turns on or off all of the  
FET outputs. When set to a logic high, the outputs are disabled.  
When set to a logic low, the internal control enables the outputs as  
required. The translator inputs STEP, DIR, MS1, MS2, and MS3,  
as well as the internal sequencing logic, all remain active, indepen-  
dent of the ENABLE input state.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
8
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Current Decay Modes Timing Chart  
VPHASE  
+
0
See Enlargement A  
IOUT  
Enlargement A  
toff  
tFD  
tSD  
IPEAK  
IOUT  
t
Symbol  
toff  
Characteristic  
Device fixed off-time  
Maximum output current  
Slow decay interval  
Fast decay interval  
IPEAK  
tSD  
tFD  
IOUT  
Device output current  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
9
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Application Layout  
A low impedance ground will prevent ground bounce during  
high current operation and ensure that the supply voltage remains  
stable at the input terminal. The recommended PCB layout shown  
in the diagram below, illustrates how to create a star ground  
under the device, to serve both as low impedance ground point  
and thermal path.  
Layout The printed circuit board should use a heavy ground-  
plane. For optimum electrical and thermal performance, the  
A4983 must be soldered directly onto the board. On the under-  
side of the A4983 package is an exposed pad, which provides a  
path for enhanced thermal dissipation. The thermal pad should be  
soldered directly to an exposed surface on the PCB. Thermal vias  
are used to transfer heat to other layers of the PCB. Thermal vias  
should not have any thermal relief and should be connected to  
internal layers, if available, to maximize the dissipation area.  
Solder  
A4983  
Trace (2 oz.)  
Grounding In order to minimize the effects of ground bounce  
and offset issues, it is important to have a low impedance single-  
point ground, known as a star ground, located very close to the  
device. By making the connection between the exposed thermal  
pad and the groundplane directly under the A4983, that area  
becomes an ideal location for a star ground point.  
Signal (1 oz.)  
Ground (1 oz.)  
PCB  
Thermal (2 oz.)  
Thermal Vias  
RS1  
RS2  
C7  
C9  
VBB  
C2  
1
OUT2B  
ENABLE  
GND  
CP1  
OUT1B  
A4983  
PAD  
NC  
DIR  
GND  
REF  
R3  
C3  
CP2  
C4  
R2  
VCP  
STEP  
VDD  
NC  
VDD  
C1  
C8  
R6  
C6  
R1  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
10  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
STEP  
STEP  
100.00  
70.71  
100.00  
70.71  
Slow  
Mixed  
Slow  
Mixed  
Slow  
Mixed  
Slow  
Phase 1  
IOUT1A  
Phase 1  
IOUT1A  
0.00  
0.00  
Direction = H  
(%)  
Direction = H  
(%)  
–70.71  
–70.71  
–100.00  
100.00  
70.71  
–100.00  
100.00  
70.71  
Slow  
Slow  
Mixed  
Slow  
Mixed  
Slow  
Mixed  
Phase 2  
Phase 2  
IOUT2A  
IOUT2B  
0.00  
0.00  
Direction = H  
(%)  
Direction = H  
(%)  
Slow  
–70.71  
–70.71  
–100.00  
–100.00  
Figure 2. Decay Mode for Full-Step Increments  
Figure 3. Decay Modes for Half-Step Increments  
STEP  
100.00  
92.39  
70.71  
38.27  
Phase 1  
Slow  
Mixed  
Slow  
Mixed  
Slow  
IOUT1A  
0.00  
Direction = H  
(%)  
–38.27  
–70.71  
–92.39  
–100.00  
100.00  
92.39  
70.71  
38.27  
Slow  
Phase 2  
IOUT2B  
Mixed  
Slow  
Mixed  
Slow  
Mixed  
0.00  
Direction = H  
(%)  
–38.27  
–70.71  
–92.39  
–100.00  
Figure 4. Decay Modes for Quarter-Step Increments  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
11  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
STEP  
100.00  
92.39  
83.15  
70.71  
55.56  
38.27  
Phase 1  
IOUT1A  
19.51  
Slow  
Mixed  
Slow  
Mixed  
0.00  
Direction = H  
(%)  
–19.51  
–38.27  
–55.56  
–70.71  
–83.15  
–92.39  
–100.00  
100.00  
92.39  
83.15  
70.71  
55.56  
38.27  
Phase 2  
IOUT2B  
19.51  
Mixed  
Slow  
Mixed  
Slow  
0.00  
Direction = H  
(%)  
–19.51  
–38.27  
–55.56  
–70.71  
–83.15  
–92.39  
–100.00  
Figure 5. Decay Modes for Eighth-Step Increments  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
12  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
STEP  
100.00  
95.69  
88.19  
83.15  
77.30  
70.71  
63.44  
55.56  
47.14  
38.27  
29.03  
19.51  
9.8  
Phase 1  
IOUT1A  
Slow  
Mixed  
Slow  
Mixed  
0.00  
–9.8  
Direction = H  
(%)  
–19.51  
–29.03  
–38.27  
–47.14  
–55.56  
–63.44  
–70.71  
–77.30  
–83.15  
–88.19  
–95.69  
–100.00  
100.00  
95.69  
88.19  
83.15  
77.30  
70.71  
63.44  
55.56  
47.14  
38.27  
29.03  
19.51  
9.8  
Slow  
Phase 2  
IOUT2B  
Mixed  
Slow  
Mixed  
Slow  
0.00  
–9.8  
Direction = H  
(%)  
–19.51  
–29.03  
–38.27  
–47.14  
–55.56  
–63.44  
–70.71  
–77.30  
–83.15  
–88.19  
–95.69  
–100.00  
Figure 6. Decay Modes for Sixteenth-Step Increments  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
13  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Table 2. Step Sequencing Settings  
Home microstep position at Step Angle 45º; DIR = H  
Phase 1  
Current  
tripMax  
(%)  
Phase 2  
Current  
tripMax  
(%)  
Phase 2  
Current  
tripMax  
(%)  
Phase 1  
Current  
tripMax  
(%)  
Full  
Half  
1/4  
1/8  
1/16  
Step  
Angle  
(º)  
Full  
Half  
1/4  
1/8  
1/16  
Step  
Angle  
(º)  
Step Step Step Step Step [% I  
#
]
[% I  
]
Step Step Step Step Step  
#
[% I  
]
[% I  
]
#
#
#
#
#
#
#
#
1
1
1
1
100.00  
99.52  
98.08  
95.69  
92.39  
88.19  
83.15  
77.30  
70.71  
63.44  
55.56  
47.14  
38.27  
29.03  
19.51  
9.80  
0.00  
9.80  
0.0  
5
9
17  
33  
–100.00  
–99.52  
–98.08  
–95.69  
–92.39  
–88.19  
–83.15  
–77.30  
–70.71  
–63.44  
–55.56  
–47.14  
–38.27  
–29.03  
–19.51  
–9.80  
0.00  
0.00  
–9.80  
180.0  
185.6  
191.3  
196.9  
202.5  
208.1  
213.8  
219.4  
225.0  
230.6  
236.3  
241.9  
247.5  
253.1  
258.8  
264.4  
270.0  
275.6  
281.3  
286.9  
292.5  
298.1  
303.8  
309.4  
315.0  
320.6  
326.3  
331.9  
337.5  
343.1  
348.8  
354.4  
2
5.6  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
2
3
3
19.51  
29.03  
38.27  
47.14  
55.56  
63.44  
70.71  
77.30  
83.15  
88.19  
92.39  
95.69  
98.08  
99.52  
100.00  
99.52  
98.08  
95.69  
92.39  
88.19  
83.15  
77.30  
70.71  
63.44  
55.56  
47.14  
38.27  
29.03  
19.51  
9.80  
11.3  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
–19.51  
–29.03  
–38.27  
–47.14  
–55.56  
–63.44  
–70.71  
–77.30  
–83.15  
–88.19  
–92.39  
–95.69  
–98.08  
–99.52  
–100.00  
–99.52  
–98.08  
–95.69  
–92.39  
–88.19  
–83.15  
–77.30  
–70.71  
–63.44  
–55.56  
–47.14  
–38.27  
–29.03  
–19.51  
–9.80  
4
16.9  
2
3
4
5
6
7
8
5
22.5  
10  
11  
12  
13  
14  
15  
16  
6
28.1  
4
7
33.8  
8
39.4  
1
2
3
4
5
9
45.0  
3
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
50.6  
6
56.3  
61.9  
7
67.5  
73.1  
8
78.8  
84.4  
9
0.00  
90.0  
–9.80  
–19.51  
–29.03  
–38.27  
–47.14  
–55.56  
–63.44  
–70.71  
–77.30  
–83.15  
–88.19  
–92.39  
–95.69  
–98.08  
–99.52  
95.6  
9.80  
10  
11  
12  
13  
14  
15  
16  
101.3  
106.9  
112.5  
118.1  
123.8  
129.4  
135.0  
140.6  
146.3  
151.9  
157.5  
163.1  
168.8  
174.4  
19.51  
29.03  
38.27  
47.14  
55.56  
63.44  
70.71  
77.30  
83.15  
88.19  
92.39  
95.69  
98.08  
99.52  
2
4
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
14  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
Pin-out Diagram  
OUT2B  
ENABLE  
GND  
OUT1B  
NC  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
DIR  
CP1  
GND  
REF  
CP2  
VCP  
STEP  
VDD  
NC  
Terminal List Table  
Name  
CP1  
Number  
Description  
4
5
Charge pump capacitor terminal  
Charge pump capacitor terminal  
Reservoir capacitor terminal  
Regulator decoupling terminal  
Logic input  
CP2  
VCP  
6
VREG  
MS1  
8
9
MS2  
10  
11  
Logic input  
MS3  
Logic input  
RESET  
ROSC  
SLEEP  
VDD  
12  
13  
14  
15  
16  
17  
3, 18  
19  
21  
22  
23  
24  
26  
27  
28  
1
Logic input  
Timing set  
Logic input  
Logic supply  
STEP  
Logic input  
REF  
Gm reference voltage input  
GND  
Ground*  
DIR  
Logic input  
OUT1B  
VBB1  
DMOS Full Bridge 1 Output B  
Load supply  
SENSE1  
OUT1A  
OUT2A  
SENSE2  
VBB2  
Sense resistor terminal for Bridge 1  
DMOS Full Bridge 1 Output A  
DMOS Full Bridge 2 Output A  
Sense resistor terminal for Bridge 2  
Load supply  
OUT2B  
ENABLE  
NC  
DMOS Full Bridge 2 Output B  
Logic input  
2
7, 20, 25  
No connection  
PAD  
Exposed pad for enhanced thermal dissipation*  
*The GND pins must be tied together externally by connecting to the PAD ground plane  
under the device.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
15  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  
A4983  
DMOS Microstepping Driver with Translator  
ET Package, 28-Pin QFN with Exposed Thermal Pad  
5.15 .203  
4.85 .191  
A
B
28  
All dimensions reference, not for tooling use  
(reference JEDEC MO-220VHHD except contact length and exposed pad length and width)  
Dimensions in millimeters  
U.S. Customary dimensions (in.) in brackets, for reference only  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
1
2
A
5.15 .203  
4.85 .191  
A
B
Terminal #1 mark area  
Exposed thermal pad (terminal #1 identifier appearance  
at supplier discretion)  
C
Reference land pattern layout (reference IPC7351  
QFN50P500X500X100-29V3M) except heel extended; adjust as  
necessary to meet application process requirements and PCB  
layout tolerances; when mounting on a multilayer PCB, thermal  
vias at the exposed thermal pad land can improve thermal  
dissipation (reference EIA/JEDEC Standard JESD51-5)  
C
28X  
SEATING  
PLANE  
0.08 [.003]  
C
0.30 .012  
0.18 .007  
28X  
1.00 .039  
0.80 .031  
0.10 [.004] M  
0.05 [.002] M  
C
C
A B  
0.20 .008  
REF  
0.50 .020  
24X0.20 .008  
0.05 .002  
0.00 .000  
MIN  
0.30 .012  
NOM  
0.50 .020  
NOM  
4X0.20 .008  
MIN  
28  
.008  
4X0.20  
MIN  
1
2
0.56 .022  
REF  
3.15 .124  
NOM  
3.15 .124  
NOM  
B
.010  
R0.25  
REF  
C
4.96 .195  
NOM  
2
1
5.0 .197  
NOM  
28  
1.09 .043  
REF  
3.15 .124  
NOM  
3.15 .124  
NOM  
5.0 .197  
NOM  
4.96 .195  
NOM  
The products described here are manufactured under one or more U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to per-  
mit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the  
failure of that life support device or system, or to affect the safety or effectiveness of that device or system.The information included herein is be-  
lieved to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or  
other rights of third parties which may result from its use.  
Copyright ©2007, Allegro MicroSystems, Inc.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff, Box 15036  
16  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
www.allegromicro.com  

A4983SET-T 替代型号

型号 制造商 描述 替代类型 文档
A4983SETTR-T ALLEGRO DMOS Microstepping Driver with Translator 完全替代

A4983SET-T 相关器件

型号 制造商 描述 价格 文档
A4983SETTR ALLEGRO Motion Control Electronic, BCDMOS, PQCC28, 获取价格
A4983SETTR-T ALLEGRO DMOS Microstepping Driver with Translator 获取价格
A4984 ALLEGRO DMOS Microstepping Driver with Translator and Overcurrent Protection 获取价格
A4984S ALLEGRO BIPOLAR STEPPING MOTOR DRIVER IC 获取价格
A4984SES-T ALLEGRO BIPOLAR STEPPING MOTOR DRIVER IC 获取价格
A4984SESTR-T ALLEGRO DMOS Microstepping Driver with Translator and Overcurrent Protection 获取价格
A4984SET-T ALLEGRO BIPOLAR STEPPING MOTOR DRIVER IC 获取价格
A4984SETTR-T ALLEGRO DMOS Microstepping Driver with Translator and Overcurrent Protection 获取价格
A4984SLP-T ALLEGRO BIPOLAR STEPPING MOTOR DRIVER IC 获取价格
A4984SLPLU-T ALLEGRO BIPOLAR STEPPING MOTOR DRIVER IC 获取价格

A4983SET-T 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6