A81407KLVATR-1 [ALLEGRO]

Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator;
A81407KLVATR-1
型号: A81407KLVATR-1
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator

文件: 总58页 (文件大小:3082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A81407  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
DESCRIPTION  
FEATURES AND BENEFITS  
• A2-SIL™ pending—device features for safety-critical  
systems  
The A81407 is ideal for both automotive and industrial  
applications, where high temperature operation, a high level  
of integration, and robust solutions are required.  
• Automotive AEC-Q100 qualified  
• Wide input voltage range, 3.8 to 36 VIN operating range,  
40 VIN maximum  
• 2.2 MHz buck or buck/boost pre-regulator (VREG: 5.35 V)  
with low EMI frequency dithering  
• Frequency dithering and controlled slew rate help reduce  
EMI/EMC  
• Four internal linear regulators with foldback short-circuit  
protection  
The IC integrates a buck or buck/boost pre-regulator, four LDOs,  
and four floating gate drivers. The pre-regulator uses a buck or  
buck/boost topology to efficiently convert input voltages into a  
tightly regulated intermediate voltage. Frequency dithering and  
slew control help reduce EMI. The output of the pre-regulator  
supplies a 3.3 V / 375 mA linear regulator, a 5 V / 150 mA linear  
regulator,andtwo5V/120mAlinearregulators.Alloftheoutputs  
are protected against short circuits, and two are further protected  
from short-to-supply voltage in case they are used remotely.  
VUC: selectable output (3.3 V / 5.0 V) regulator for  
microcontroller  
The independent floating gate drivers can be used for input  
supply disconnect or reverse-supply protection. They can  
also be used for switched loads such as motor phases, solid  
state relays, and solenoid valves. They have the capability of  
controlling N-channel MOSFETs through SPI. An integrated  
charge pump allows the driver outputs to maintain the power  
MOSFETs in the on-state over the full supply range with high  
phase-voltage slew rates.  
V5A: 5 V general purpose LDO regulator  
V5P1 and V5P2: two LDO regulators with short-to-  
battery protection for remote sensors  
• OV and UV protection for all output rails provides ability  
to monitor health of outputs  
• Pulse Width Watchdog (PWWD), Window Watchdog  
(WWD), and Q&A Watchdog (QAWD)  
• Floating gate drivers (with charge pumps) for external  
switched load control  
• Analog multiplexor (AMUX) reports operational values  
of multiple important parameters  
• Safety signal (POE) can disable a separate function (e.g.,  
motor driver) due to a Watchdog Failure  
Diagnostic outputs from the A81407 include a Watchdog  
Fault (WD_Fn), power-on reset (NPOR), and a fault flag  
(FFn) to alert the microprocessor that a fault has occurred.  
The microprocessor can read fault registers through SPI and  
operational status via an analog multiplexor.  
Continued on next page...  
Continued on next page...  
APPLICATIONS  
PACKAGE  
38-Pin eTSSOP (suffix LV)  
Provides system power (for microcontroller/DSP, CAN,  
sensors, etc.) and high-side gate driver control (for motor  
phases and other switched loads such as solenoid valves and  
SS relays) in:  
• Industrial applications  
• Electronic power steering (EPS)  
Not to scale  
2
• Advanced braking systems (ABS)  
• Transmission control units (TCU)  
• Emissions control modules  
-
(pending)  
• Other automotive applications  
5.35 V  
(VREG)  
Buck-Boost  
Pre-regulator  
3.3 V / 5 V  
5 V LDO (V5P1)  
with Foldback &  
Short to VBAT  
Protection  
5 LDO (V5P2)  
with Foldback &  
Short to VBAT  
Protection  
5 V LDO (V5A)  
with Foldback  
Protection  
LDO (VUC)  
with Foldback  
Protection  
4ch  
Floating  
Gate  
NPOR,  
Pulse-Width,  
Window, and  
Q&A  
Drivers  
Thermal  
Shutdown  
(TSD)  
Analog MUX  
Output for  
Status Monitor  
Serial  
Interface  
(SPI)  
WD_Fn,  
POE,  
FFn  
Charge  
Pump  
Dual  
Bandgap  
Watchdogs  
A81407 Simplified Block Diagram  
A81407-DS, Rev. 2  
MCO-0000748  
December 1, 2020  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
DESCRIPTION (continued)  
FEATURES AND BENEFITS (continued)  
• Pin-to-pin and pin-to-ground tolerant at every pin  
• Control and diagnostic reporting through “secure” SPI  
□ 16-bit Data Transfers □ 5-bit Message ID  
Dualbandgaps,oneforregulationandoneforfaultchecking,improve  
safety coverage and fault detection of the A81407.  
The A81407 contains three types of watchdog timers: Pulse Width  
Watchdog (PWWD), Window Watchdog (WWD), and Q & A  
Watchdog (QAWD). The watchdog timers can be put into various  
operating states via secure SPI commands.  
□ 5-bit CRC  
□ 3-bit Frame Counter  
□ Read-Back Register  
□ Chip ID  
• Logic enable input (ENB) for microprocessor control  
• High-voltage ignition enable input (ENBAT)  
• Thermal shutdown protection  
TheA81407 is supplied in a 38-lead eTSSOPpackage (suffix “LV”)  
with exposed power pad.  
• –40°C to 150°C junction temperature range  
SELECTION GUIDE  
Part Number  
A81407KLVATR  
A81407KLVATR-1  
VUC (V)  
Package  
Packing [1]  
Lead Frame  
3.3  
5
38-pin eTSSOP with thermal pad 4000 pieces per 7-inch reel  
100% matte tin  
[1] Contact Allegro for additional packing options.  
ABSOLUTE MAXIMUM RATINGS [2]  
Characteristic  
Symbol  
Notes  
Rating  
−0.3 to 40  
Unit  
V
VIN  
VVIN  
VENBAT  
IENBAT  
−0.3 to 40  
V
ENBAT  
±75  
mA  
V
−0.3 to VVIN + 0.3  
−1.5  
LX  
VLX  
t < 250 ns  
t < 50 ns  
V
VVIN + 3  
V
GU, GV, GW, GVBB  
SU, SV, SW, SVBB  
VCP (Gate Drivers)  
CP1 (Gate Drivers)  
CP2 (Gate Drivers)  
VCP2 (Pre-Regulator)  
CP2C1 (Pre-Regulator)  
CP2C2 (Pre-Regulator)  
V5P1, V5P2  
VGU, VGV, VGW, VGVBB  
VSz – 0.3 to VSz + 12  
–6 to VVIN + 5  
VVIN – 0.3 to VVIN + 12  
VVIN – 0.3 to VVIN + 8  
VVIN – 0.3 to VVIN + 12  
VVIN – 0.3 to VVIN + 8  
−0.3 to VVIN + 0.3  
VVIN – 0.3 to VVIN + 8  
−1.0 to 40  
V
VSU, VSV, VSW, VSVBB  
VVCP  
V
V
VCP1  
V
VCP2  
V
VVCP2  
V
VCP2C1  
V
VCP2C2  
VV5P1, VV5P2  
Independent of VVIN  
V
V
All other pins  
−0.3 to 7  
Junction Temperature  
Storage Temperature Range  
TJ  
−40 to 150  
°C  
°C  
Tstg  
−40 to 150  
[2] Stresses beyond those listed in this table may cause permanent damage to the device. The absolute maximum ratings are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in the Electrical Characteristics table is not implied. Exposure to absolute-maximum-rated conditions  
for extended periods may affect device reliability.  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions [3]  
Value  
Unit  
Junction to Ambient Thermal Resistance  
RθJA  
eTSSOP-38 (LV) package  
30  
°C/W  
[3] Additional thermal information available on the Allegro website.  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Table of Contents  
Charge Pump (VCP, VCP2).............................................. 20  
Bandgap (BG1, BG2) ...................................................... 20  
Enable Inputs (ENB, ENBAT) ........................................... 20  
Linear Regulators ........................................................... 21  
Fault Detection and Reporting (NPOR, WD_Fn, FFn).......... 21  
Safe State Control Signal (POE)....................................... 21  
Startup Self-Tests ........................................................... 21  
Undervoltage Detect Self-Test .......................................... 21  
Overvoltage Detect Self-Test............................................ 21  
Overtemperature Shutdown Self-Test ................................ 21  
Power-On Enable (POE) Self-Test .................................... 22  
Analog Multiplexer Output................................................ 22  
Floating MOSFET Gate Drivers ........................................ 22  
Watchdog Timers............................................................ 22  
Serial Communication Interface ........................................... 30  
Register Mapping............................................................ 34  
Design and Component Selection ........................................ 51  
PCB Layout Recommendations ........................................... 56  
Package Outline Drawing.................................................... 57  
Features and Benefits........................................................... 1  
Description.......................................................................... 1  
Applications......................................................................... 1  
Package ............................................................................. 1  
Simplified Block Diagram ...................................................... 1  
Selection Guide ................................................................... 2  
Absolute Maximum Ratings................................................... 2  
Thermal Characteristics ........................................................ 2  
Functional Block Diagram ..................................................... 4  
Pinout Diagram and Terminal List Table .................................. 6  
Electrical Characteristics....................................................... 7  
Timing Diagrams................................................................ 16  
Summary of Fault Mode Operation....................................... 19  
Functional Description ........................................................ 20  
Overview ....................................................................... 20  
Pre-Regulator (VREG)..................................................... 20  
PWM Switching Frequency .............................................. 20  
Bias Supply (VCC) .......................................................... 20  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
FUNCTIONAL BLOCK DIAGRAM  
1 μꢃ  
ꢎ5 ꢀ  
0.ꢎꢎ μꢃ  
ꢎ5 ꢀ  
ꢎ.ꢎ μꢃ  
1ꢚ ꢀ  
1 μꢃ  
1ꢚ ꢀ  
A81407  
ꢀꢁP  
ꢀꢁPꢂ  
ꢀRꢇꢋ  
ꢂharge Pꢗmꢘ  
ꢂharge Pꢗmꢘ ꢎ  
1ꢎ ꢀꢛAꢞ  
ꢁN  
3 A  
ꢀꢁN  
100 ꢘꢃ,  
10 nꢃ,  
0.1 µꢃ  
50 ꢀ  
33 to  
100 µꢃ  
50 ꢀ  
ꢛꢋ1ꢉUꢀ  
ꢛꢋ1  
ꢛꢋ1  
ꢖꢄꢅ  
ꢀꢁPꢂ  
.ꢍ µꢃ  
50 ꢀ  
1ꢎ10  
ꢛꢋꢎ  
ꢛꢋ1  
ꢇN  
ꢌꢍ μꢃ  
ꢎ5 ꢀ ꢏ ꢐꢍR  
ꢑꢎ3ꢒ55 μꢃ ꢓ 5.3 ꢀꢔ  
ꢖ1 10 µH  
35 mΩ ꢒ ꢍ5 mΩ  
ꢛꢋꢎꢉUꢀ  
ꢛꢋꢎ  
ꢀꢂꢂ  
ꢛꢋꢎ  
ꢖꢐ  
ꢖꢋ  
1 μꢃ  
ꢀRꢇꢋ  
5.35 ꢀ  
ꢄꢎ  
SS3Pꢌ  
ꢄ1  
SS3Pꢌ  
Bꢆꢁꢇ  
PRꢈ-RꢈGꢆLAꢉOR  
ꢊꢀRꢈGꢋ  
ꢅSꢂꢎ  
ꢂꢖꢆ ꢓ ꢡSꢈS  
Q1  
ꢑwꢏ Hiccꢗꢘ Modeꢔ  
ꢂꢖꢆ ꢓ ꢡꢅSꢂ  
ꢅSꢂ1  
ꢎ ꢕΩ  
ꢛꢋ1  
ꢀꢂPUꢀ  
ꢀRꢇꢋ ꢅN  
Rꢇꢃ  
SꢞꢅP PꢊM  
ꢀRꢇꢋ  
ꢀUꢂ  
ꢃꢛ  
ꢂꢅMP  
SS  
ꢃꢅꢖꢄꢛAꢂꢆ  
0.ꢌꢍ μꢃ  
P1  
39 ꢘꢃ  
Rꢟ1  
MPꢅR  
ꢎꢎ.1 ꢕΩ  
ꢀRꢇꢋ  
3.3 ꢀ  
ꢑor 5 ꢀꢔ  
ꢖꢄꢅ  
ꢟ1  
3.3 ꢀ  
ꢃ7ꢄ ꢅA  
ꢛꢋ1  
Soꢡt Start  
tSS  
SS ꢅꢆ  
ꢞSꢄ  
1.5 nꢃ  
ꢄ1 MꢁSSꢁNꢋꢢ  
ꢁꢖꢁMꢉꢖꢐ ꢢ  
ꢖꢄꢅs ꢅN  
ꢎ.ꢎ ꢙꢃ  
1ꢚ ꢀ  
MASꢉꢈR  
Iꢁ POR  
ꢀꢁNꢉUꢀ  
ꢀꢂꢂ Uꢀ  
ꢛꢋ1ꢉUꢀ  
ꢛꢋꢎꢉUꢀ  
ꢃꢅꢖꢄꢛAꢂꢆ  
ꢢ ꢁndicates a  
latched ꢡaꢗlt  
ꢞꢇMP  
ꢞHꢇRMAꢖ  
SꢇNSꢁNꢋ  
ꢀRꢇꢋ  
ꢛꢋ1  
ꢆꢇꢈꢉSꢊ  
5 ꢀ  
ꢖꢄꢅ  
5 ꢀ  
1ꢄ0 ꢅA  
ꢀ5A  
ꢖꢄꢅs ꢅN  
ꢎ.ꢎ ꢙꢃ  
1ꢚ ꢀ  
3.1 ꢀꢞꢈP  
ꢎ.ꢚ ꢀꢞꢈP  
3.3 ꢕΩ  
ꢃAꢖꢖꢁNꢋ  
ꢄꢇꢖAꢈ  
tdꢖꢄꢅ ,ꢅꢃꢃ  
ꢇN  
ꢀRꢇꢋ ꢅN  
ꢖꢄꢅs ꢅN  
ꢇNꢛAꢞ  
SꢞARꢞUPꢏ  
SHUꢞꢄꢅꢊN  
SꢇꢠUꢇNꢂꢇ  
ꢀRꢇꢋ Uꢀ  
MPꢅR  
ꢚ00 ꢕΩ  
0.ꢎꢎ μꢃ  
ꢀ5P1ꢄꢁSꢂ  
ꢀRꢇꢋ  
Short to ꢀꢛAꢞ  
Protection  
ꢃꢅꢖꢄꢛAꢂꢆ  
µꢂ  
ꢇNAꢛꢖꢇ  
ꢇNꢛ  
ꢚ0 ꢕΩ  
5 ꢀ  
ꢖꢄꢅ  
5 ꢀ  
1ꢎ0 mA  
ꢀ5P1  
ꢖꢄꢅs ꢅN  
ꢎ.ꢎ μꢃ  
50 ꢀ  
V5P1_EN_(1:0)  
(default ON)  
ꢀ5PꢎꢄꢁSꢂ  
ꢀRꢇꢋ  
Short to ꢀꢛAꢞ  
Protection  
ꢃꢅꢖꢄꢛAꢂꢆ  
5 ꢀ  
5 ꢀ  
1ꢎ0 mA  
ꢀ5Pꢎ  
ꢖꢄꢅ  
ꢖꢄꢅs ꢅN  
V5P2_EN_(1:0)  
(default ON)  
ꢎ.ꢎ μꢃ  
50 ꢀ  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
FUNCTIONAL BLOCK DIAGRAM (continued)  
ꢁꢃꢃ  
ꢊ3.0 ꢁꢍ  
ꢁꢃꢃ  
ꢊ3.0 ꢁꢍ  
ꢁUꢆ  
A81407  
ꢁUꢆ  
MꢑSꢀ  
NPꢀRꢈꢄꢉꢊꢋꢌ0ꢍ  
ꢆS  
SPI  
MꢀSꢑ  
Sꢆꢈ  
NPꢀR  
ꢕꢁꢖꢖ ꢊw.r.t. Sꢁꢖꢖꢍ  
ꢕU ꢊw.r.t. SUꢍ  
ꢕꢁ ꢊw.r.t. Sꢁꢍ  
ꢃꢄ-  
ꢕꢐꢑꢅꢆH  
tdꢏꢑꢐ.ꢕꢚ  
μꢆ  
RꢄSꢄꢅ  
ꢀNꢄ  
SHꢀꢅ  
1ꢔꢁꢖAꢅ  
tꢎꢃ  
,AUꢐꢅ  
ꢕꢎ ꢊw.r.t. Sꢎꢍ  
ꢂꢃP  
ꢅo SPꢑ  
registers  
ꢃꢄ-  
ꢕꢐꢑꢅꢆH  
tdꢏꢑꢐ.ꢁꢖꢖ  
SꢁꢖꢖꢇUꢁ  
ꢕate-ꢃriꢝer  
ꢕate-ꢃriꢝer  
ꢄNꢁꢖꢖ  
ꢕꢁꢖꢖ  
Sꢁꢖꢖ  
ꢁUꢆ  
ꢀꢁꢂUꢁ  
ꢕAꢅꢄ  
ꢃRꢑꢁꢄR  
ꢄNAꢖꢐꢄ  
Sꢁꢖꢖ  
Uꢁ  
ꢃꢄꢅꢄꢆꢅ  
ꢁꢆP1  
ꢁꢆPꢔ  
ꢁRꢄꢕ  
ꢁUꢆ  
ꢁ5A  
ꢁ5P1  
ꢁ5Pꢔ  
VBridge  
ꢃꢄ-  
ꢕꢐꢑꢅꢆH  
tdꢀꢁ  
Pꢀꢄ  
Motor  
Phase W  
ꢄNꢎ  
ꢕꢎ  
Sꢎ  
tdUꢁ  
Bridge A  
ꢁUꢆ  
MPꢀR  
ꢅSꢃ  
Motor  
Phase V  
ꢄN  
RSꢅ  
Rꢄꢏ  
ꢕate-ꢃriꢝer  
ꢕate-ꢃriꢝer  
ꢖꢕꢔ  
ꢆꢐꢈ ꢒ ꢓSꢉS  
ꢄNꢁ  
ꢄNU  
ꢕꢁ  
Sꢁ  
ꢕU  
SU  
ꢏꢏn  
μꢆ  
ꢎꢃꢇꢏn  
ꢑNꢅꢄRRUPꢅ  
ꢏꢏ  
Bridge B  
Motor  
Phase U  
PUꢐSꢄ ꢎꢑꢃꢅH  
ꢎAꢅꢆHꢃꢀꢕ  
ꢅꢑMꢄR  
ꢎꢃꢑN  
Bridge C  
ꢆꢐꢈꢑN  
50 ꢙΩ  
ꢊPꢎꢎꢍ  
ꢁRꢄꢀ 2 Ψ  
ꢁUꢀ 2  
ꢁ5A ꢀ 2  
ꢁ5P1 ꢀ 2  
ꢁ5Pꢔ ꢀ 2  
ꢁꢄNꢖAꢀ 8 Ψ  
ꢖꢕ1  
ꢎꢑNꢃꢀꢎ  
ꢎAꢅꢆHꢃꢀꢕ  
ꢅꢑMꢄR  
WDꢀꢁn  
ꢁꢆꢆ  
ꢊꢎꢎꢍ  
WD_SEL_(1:0)  
A-MUꢛ  
WD_STATE_(2:0)  
AMUꢛꢀ  
ꢗꢘA  
ꢎAꢅꢆHꢃꢀꢕ  
ꢅꢑMꢄR  
ꢖꢕꢔ  
ꢅꢄMP  
ꢁꢑN 10 Ψ  
ꢁꢆPꢀ 12 Ψ  
ꢁꢆP ꢀ 12 Ψ  
ꢁUꢆ  
ꢆꢐꢈ ꢒ ꢓSꢉS  
ꢊꢗꢘAꢍ  
SEL_MUX_(3:0)  
ꢕNꢃ  
ꢎꢃꢇꢏn  
WDSEL(1:0)  
PꢕNꢃ  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Terminal List Table  
Number  
Name  
VCP  
Function  
Charge pump reservoir capacitor connection, for phase disconnects  
Charge pump reservoir capacitor connection, for buck/boost regulator  
Input voltage pin  
VCP  
VCP2  
VIN  
1
2
3
4
5
6
7
8
9
38 CP2C2  
37 CP2C1  
36 LX  
1
2
3
4
5
6
7
8
VCP2  
VIN  
GND  
VCC  
ENB  
Ground  
GND  
VCC  
ENB  
POE  
NPOR  
FFn  
35 CP1  
Internal voltage regulator bypass capacitor pin  
Logic enable input from a microcontroller or DSP  
Gate drive enable, latches low to put the system into a safe state  
34 CP2  
33 PGND  
32 LG  
POE  
NPOR  
Active-low, open-drain VUC fault detection output. Using SPI  
programming, Watchdog (WD) fault and/or V5A can be added to the  
NPOR logic.  
31 VREG  
30 VUC  
29 V5A  
9
FFn  
ENBAT  
GVBB  
SVBB  
GW  
Fault Flag to the microcontroller, open-drain, active low  
Ignition enable input from the key/switch via a series resistor  
Battery line MOSFET gate drive  
ENBAT 10  
GVBB  
PAD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
28 WD_Fn  
27 COMP  
26 AMUXO  
25 WDIN  
24 MOSI  
23 MISO  
22 CS  
11  
SVBB 12  
GW 13  
Battery line MOSFET source reference  
W phase MOSFET gate drive  
SW  
14  
SW  
W phase MOSFET source reference  
GV 15  
SV 16  
GV  
V phase MOSFET gate drive  
SV  
V phase MOSFET source reference  
GU 17  
SU 18  
GU  
U phase MOSFET gate drive  
21 SCK  
SU  
U phase MOSFET source reference  
V5P2 19  
20 V5P1  
V5P2  
V5P1  
SCK  
CS  
5 V protected regulator output  
5 V protected regulator output  
Package LV, 38-Pin eTSSOP  
Pinout Diagram  
SPI clock input from the microcontroller  
SPI Chip Select input from the microcontroller  
SPI data output to the microcontroller (Master Input, Slave Output)  
SPI data input from the microcontroller (Master Output, Slave Input)  
Watchdog refresh input from a microcontroller or DSP  
MISO  
MOSI  
WDIN  
AMUXO Analog Multiplexer output  
COMP  
WD_Fn  
V5A  
Error amplifier compensation network pin for the buck/boost pre-regulator  
Open-drain, WD fault output. Latches low if a WD fault is detected.  
5 V regulator output  
VUC  
3.3 V regulator output (or 5V for A81407-1)  
Voltage feedback input of the pre-regulator and input to the LDOs  
Boost gate drive output for the buck/boost pre-regulator  
Power ground  
VREG  
LG  
PGND  
CP2  
Charge pump capacitor connection  
CP1  
Charge pump capacitor connection  
LX  
Switching node for the buck/boost pre-regulator  
Charge pump capacitor connection  
CP2C1  
CP2C2  
PAD  
Charge pump capacitor connection  
Exposed thermal pad  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or VENBAT = High,  
unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
GENERAL SPECIFICATIONS  
After VVIN > VVIN(START) and VREG in regulating,  
Buck-Boost Mode  
3.8  
5.5  
13.5  
13.5  
36  
36  
V
V
Operating Input Voltage [2]  
VVIN  
After VVIN > VVIN(START) and VREG in regulating,  
Buck Mode  
VIN UVLO Start Voltage  
VIN UVLO Stop Voltage  
VIN UVLO Hysteresis  
VVIN(START)  
VVIN(STOP)  
VVIN(HYS)  
IQ  
VVIN rising  
4.55  
3.25  
4.8  
3.5  
1.3  
13  
5.05  
3.75  
V
V
VVIN falling  
VVIN(START) ‒ VVIN(STOP)  
VVIN = 13.5 V, VVREG = 5.6 V (no PWM)  
V
mA  
VIN Supply Quiescent Current [1][3]  
VVIN = 13.5 V,  
VENBAT = Low and VENB = Low, TJ = 25°C  
IQ(SLEEP)  
13  
µA  
PWM SWITCHING FREQUENCY AND DITHERING  
Switching Frequency  
Frequency Dithering  
fOSC  
Dithering off  
As a percent of fOSC  
VVIN rising  
2.0  
2.2  
±10  
9.0  
17  
2.4  
MHz  
%
V
ΔfOSC  
8.5  
9.5  
VIN Dithering Start Threshold [2]  
VVIN(DITHER,ON)  
VVIN falling  
V
VVIN falling  
7.8  
8.3  
18  
8.8  
V
VIN Dithering Stop Threshold [2] VVIN(DITHER,OFF)  
VVIN rising  
V
SYSTEM (WATCHDOG) CLOCK  
Internal Clock Frequency  
fSYS  
8
MHz  
%
Internal Clock Tolerance  
fSYS(TOL)  
‒5  
+5  
CHARGE PUMP (VCP AND VCP2)  
VVCP2 – VVIN, VVIN ≥ 9 V, IVCP2 > –5 mA,  
Buck Mode  
4.1  
3.6  
3.0  
9
6.6  
4.4  
3.8  
10  
V
V
V
V
V
VCP2 Output Voltage  
(for Pre-Regulator)  
VVCP2 – VVIN, 5.5 V < VVIN ≤ 9 V, IVCP2 > –5 mA,  
Buck Mode  
VVCP2  
VVCP2 – VVIN, 3.8 V < VVIN ≤ 5.5 V,  
VREG = 5.35 V, IVCP2 > –5 mA, Buck-Boost Mode  
VVCP – VVIN, VVIN > 9 V, IVCP > –1 mA,  
Buck Mode  
VCP Output Voltage  
(for Gate Drivers)  
VVCP – VVIN, 5.5 V < VVIN ≤ 9 V, IVCP > –1 mA,  
Buck Mode  
VVCP  
8
10  
VVCP – VVIN, 3.8 V < VVIN ≤ 5.5 V, VVREG  
5.35 V, IVCP > –1 mA, Buck-Boost Mode  
=
6.6  
9.5  
65  
V
Switching Frequency  
fCPx  
kHz  
VCC PIN VOLTAGE  
Output Voltage  
VVCC  
VVREG = 5.35 V  
TJ rising  
4.4  
V
THERMAL PROTECTION  
Thermal Shutdown Threshold [2]  
Thermal Shutdown Hysteresis [2]  
TTSD  
THYS  
165  
°C  
°C  
15  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
OUTPUT VOLTAGE SPECIFICATIONS  
Pre-Regulator Output Voltage [2]  
PULSE-WIDTH MODULATION (PWM)  
PWM Ramp Offset  
VVREG  
VVIN = 13.5 V, 0.1 A < IVREG < 1.2 A  
5.25  
5.35  
5.45  
V
VPWM(OFFS) VCOMP for 0% duty cycle  
SRLXRISE VVIN = 13.5 V, 10% to 90%, IVREG = 1 A  
VVIN = 13.5 V, 90% to 10%, IVREG = 1 A  
480  
1.4  
1.5  
85  
mV  
V/ns  
V/ns  
ns  
LX Rising Slew Rate [2]  
LX Falling Slew Rate [2]  
Buck Minimum On-Time  
Buck Maximum Duty Cycle  
SRLXFALL  
tON(BUCK,MIN)  
160  
100  
DBUCK(MAX) VVIN < 7.8 V  
After VVIN > VVIN(START), VREG regulating,  
%
60  
%
VVIN = 3.8 V  
Boost Duty Cycle  
DBST  
VVIN = 6.5 V  
29  
%
COMP to LX Current Gain  
Slope Compensation [2]  
INTERNAL MOSFET  
gmPOWER  
SE  
4.57  
1.62  
A/V  
A/µs  
1.1  
2.15  
VVIN = 13.5 V, TJ = ‒40°C [2], IDS = 0.1 A  
VVIN = 13.5 V, TJ = 25°C [3], IDS = 0.1 A  
VVIN = 13.5 V, TJ = 150°C, IDS = 0.1 A  
60  
95  
90  
mΩ  
mΩ  
mΩ  
MOSFET On Resistance  
MOSFET Leakage Current  
RDS(on)  
115  
190  
160  
VENBAT ≤ 2.2 V, VENB = Low, VLX = 0 V,  
VVIN = 16 V, 40°C < TJ < 85°C [3]  
10  
µA  
µA  
IFET(LKG)  
VENBAT ≤ 2.2 V, VENB ≤ Low, VLX = 0 V,  
VVIN = 16 V, 40°C < TJ < 150°C  
50  
150  
ERROR AMPLIFIER  
Open Loop Voltage Gain  
AVOL  
gmEA  
520  
260  
60  
720  
360  
±75  
1.52  
1.22  
dB  
µA/V  
µA/V  
µA  
VSS (internal signal) = 750 mV  
VSS (internal signal) = 500 mV  
920  
460  
Transconductance  
Output Current  
IO(EA)  
VVIN < 8.5 V  
VVIN > 9.5 V  
1.2  
0.9  
2.1  
1.7  
300  
V
Maximum Output Voltage  
VO(EA,MAX)  
V
Minimum Output Voltage  
VO(EA,MIN)  
RCOMP  
mV  
HICCUP = 1 or FAULT = 1 or  
VENBAT = Low and VENB = Low  
COMP Pull-Down Resistance  
1
kΩ  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
BOOST MOSFET (LG) GATE DRIVER  
LG High Output Voltage  
LG Low Output Voltage  
LG Source Current [1]  
LG Sink Current [1]  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VLG(ON)  
VLG(OFF)  
ILG(ON)  
VVIN = 6 V, VVREG = 5.35 V  
4.6  
5.35  
0.4  
V
VVIN = 13.5 V, VVREG = 5.35 V  
0.2  
V
VVIN = 6 V, VVREG = 5.35 V, VLG = 1 V  
VVIN =13.5 V, VVREG = 5.35 V, VLG = 1 V  
−300  
150  
mA  
mA  
ILG(OFF)  
SOFT-START  
SS Ramp Time [2]  
tSS  
900  
µs  
0 V ≤ VVREG < 0.67 V typical  
0.67 V ≤ VVREG < 1.34 V typical  
1.34 V ≤ VVREG < 2.68 V typical  
VVREG ≥ 2.68 V typical  
fOSC/8  
fOSC/4  
fOSC/2  
fOSC  
SS PWM Frequency Foldback  
fSW(SS)  
HICCUP MODE  
Hiccup Enable Delay Time [2]  
Hiccup Recovery Time [2]  
tHIC(EN)  
230  
930  
µs  
µs  
tHIC(REC)  
PWM  
cycles  
VVREG < 1.3 VTYP, VCOMP = VO(EA,MAX)  
VVREG > 1.3 VTYP, VCOMP = VO(EA,MAX)  
32  
Hiccup OCP PWM Counts  
tHIC(OCP)  
PWM  
cycles  
120  
CURRENT PROTECTIONS  
Pulse-by-Pulse Current Limit  
LX Short-Circuit Current Limit  
VVIN < 8.5 V  
3.83  
2.49  
5.3  
4.2  
2.8  
7.1  
4.77  
3.11  
A
A
A
ILIM(ton,min)  
ILIM(LX)  
VVIN > 9.5 V  
Latched fault after 2nd detection  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
MISSING ASYNCHRONOUS DIODE (D1) PROTECTION  
Detection Level  
Time Filtering [2]  
VD(OPEN)  
tD(OPEN)  
−1.9  
−1.4  
−1.0  
V
50  
250  
ns  
VUC, V5A, V5Px LINEAR REGULATORS  
VUC Accuracy and Load Regulation  
VVUC5  
10 mA < IVUC < 375 mA, VVREG = 5.25 V  
10 mA < IVUC < 375 mA, VVREG = 5.25 V  
4.9  
5.0  
5.1  
V
V
(5 VOUT  
VUC Accuracy and Load Regulation  
(3.3 VOUT  
)
VVUC33  
3.23  
3.30  
3.37  
)
VUC Output Capacitance Range [2]  
V5A Accuracy and Load Regulation  
V5A Output Capacitance Range [2]  
V5Px Accuracy and Load Regulation  
V5Px Output Capacitance Range [2]  
VUC OVERCURRENT PROTECTION  
VUC Current Limit [1]  
COUT(VUC)  
VV5A  
COUT(V5A)  
VV5Px  
1.0  
4.9  
1.0  
4.9  
1.0  
5.0  
15  
5.1  
15  
µF  
V
5 mA < IV5A < 150 mA, VVREG = 5.25 V  
5 mA < IV5Px < 120 mA, VVREG = 5.25 V  
µF  
V
5.0  
5.1  
15  
COUT(V5Px)  
µF  
IVUC(LIM)  
IVUC(FBK)  
–412  
–65  
–625  
–187  
–880  
–275  
mA  
mA  
VUC Foldback Current [1]  
VVUC = 0 V  
VV5A = 0 V  
VV5Px = 0 V  
V5A OVERCURRENT PROTECTION  
V5A Current Limit [1]  
IV5A(LIM)  
IV5A(FBK)  
–160  
–20  
–235  
–78  
–325  
–163  
mA  
mA  
V5A Foldback Current [1]  
V5Px OVERCURRENT PROTECTION  
V5Px Current Limit [1]  
IV5Px(LIM)  
IV5Px(FBK)  
–135  
–20  
–230  
–60  
–350  
–125  
mA  
mA  
V5Px Foldback Current [1]  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VUC, V5A, AND V5Px STARTUP TIMING  
[2]  
VUC Startup Time (5 VOUT  
)
tVUC5(START) CVUC = 2.2 µF ±20%, Load = 15 Ω ±10%  
tVUC33(START) CVUC = 2.2 µF ±20%, Load = 10 Ω ±10%  
0.15  
0.13  
0.22  
0.22  
1.0  
0.65  
1.2  
ms  
ms  
ms  
ms  
[2]  
VUC Startup Time (3.3 VOUT  
)
V5A Startup Time [2]  
tV5(START)  
CV5A = 2.2 µF ±20%, Load = 40 Ω ±10%  
V5Px Startup Time [2]  
tV5Px(START) CV5Px = 2.2 µF ±20%, Load = 50 Ω ±10%  
1.2  
IGNITION ENABLE (ENBAT) INPUT  
ENBAT Upper Threshold  
ENBAT Lower Threshold  
ENBAT Hysteresis  
VENBAT(H)  
VENBAT(L)  
VENBAT rising  
VENBAT falling  
2.7  
2.2  
3.1  
2.6  
500  
20  
3.5  
2.9  
V
V
VENBAT(HYS) VENBAT(H) – VENBAT(L)  
mV  
µA  
mA  
kΩ  
VENBAT = 3.5 V  
50  
5.5  
ENBAT Bias Current [1]  
IENBAT(BIAS)  
VENBAT = 40 V  
ENBAT Pulldown Resistance  
LOGIC ENABLE (ENB) INPUT  
ENB Upper Threshold  
ENB Lower Threshold  
ENB Bias Current [1]  
RENBAT  
VENBAT < 1.2 V  
600  
VENB(H)  
VENB(L)  
IENB(IN)  
RENB  
VENB rising  
VENB falling  
VENB = 3.3 V  
0.8  
2.0  
V
V
175  
µA  
kΩ  
ENB Resistance  
60  
ENB/ENBAT DELAY  
Enable Falling Delay Time  
tdLDO(OFF)  
10  
15  
20  
µs  
VUC, V5A, AND V5Px UNDERVOLTAGE DETECTION THRESHOLDS  
VV5(UV,H)  
VV5(UV,L)  
VV5 rising  
VV5 falling  
4.68  
4.65  
V
V
VUC (5 VOUT), V5A, and V5Px  
Undervoltage Thresholds  
4.50  
4.80  
VUC (5 VOUT), V5A, and V5Px  
Undervoltage Hysteresis  
VV5(UV,HYS) VV5(UV,H) – VV5(UV,L)  
30  
mV  
V3V3(UV,H)  
V3V3(UV,L)  
V3V3 rising  
V3V3 falling  
3.12  
3.1  
V
V
VUC (3.3 VOUT  
Undervoltage Thresholds  
)
2.8  
3.19  
VUC (3.3 VOUT  
Undervoltage Hysteresis  
)
V3V3(UV,HYS) V3V3(UV,H) – V3V3(UV,L)  
20  
mV  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VUC, V5A, V5P1, AND V5P2 OVERVOLTAGE PROTECTION THRESHOLDS  
VV5(OV,H)  
VV5(OV,L)  
VV5A rising  
VV5A falling  
5.15  
5.33  
5.30  
5.5  
V
V
VUC (5 VOUT), V5A, and V5Px  
Overvoltage Thresholds  
VUC (5 VOUT), V5A, and V5Px  
Overvoltage Hysteresis  
VV5(OV,HYS)  
VV5A(OV,H) – VV5A(OV,L)  
30  
mV  
V5Px Output Disconnect Threshold  
VV5Px(DISC)  
V3V3(OV,H)  
V3V3(OV,L)  
VV5Px rising  
V3V3 rising  
V3V3 falling  
3.45  
7.2  
3.66  
V
V
V
3.51  
3.49  
VUC (3.3 VOUT  
)
Overvoltage Thresholds  
VUC (3.3 VOUT  
Overvoltage Hysteresis  
)
V3V3(OV,HYS) V3V3(OV,H) – V3V3(OV,L)  
20  
mV  
VREG, VCPx, AND BG THRESHOLDS  
VVREG(OV,H)  
VVREG(OV,L)  
VVREG rising, LX PWM disabled  
VVREG falling, LX PWM enabled  
5.70  
5.95  
5.85  
6.20  
V
V
VREG Non-Latching Overvoltage  
Threshold  
VREG Non-Latching Overvoltage  
Hysteresis  
VVREG(OV,HYS) VVREG(OV,H) – VVREG(OV,L)  
VVREG rising, triggers rise of VUC linear  
100  
mV  
V
VVREG(UV,H)  
4.50  
4.75  
5.00  
regulator  
VREG Undervoltage Thresholds  
VVREG(UV,L)  
VVREG falling  
4.65  
100  
V
VREG Undervoltage Hysteresis  
VCP2 Overvoltage Thresholds  
VVREG(UV,HYS) VVREG(UV,H) – VVREG(UV,L)  
mV  
Detected on CP2C1 pin.  
VVCP2(OV,H)  
11.0  
12.5  
14.0  
V
Defined as VVIN – VCP2C1, VVIN ≥ 14 V  
VVCP2(UV,H)  
VVCP2(UV,L)  
VVCP2(UV,HYS) VVCP2(UV,H) – VVCP2(UV,L)  
VVCP(UV,H) VVCP rising, PWM enabled (w.r.t. VVIN  
VVCP(UV,L)  
VVCP2 rising, PWM enabled (w.r.t. VVIN  
)
2.78  
3.1  
2.8  
400  
6.3  
5.1  
1.2  
3.26  
V
V
VCP2 Undervoltage Thresholds  
(Pre-Regulator)  
VVCP2 falling, PWM disabled (w.r.t. VVIN  
)
VCP2 Undervoltage Hysteresis  
VCP Undervoltage Thresholds  
VCP Undervoltage Hysteresis  
mV  
V
)
5.71  
6.63  
VVCP falling, PWM disabled (w.r.t. VVIN  
)
V
VVCP(UV,HYS) VVCP(UV,H) – VVCP(UV,L)  
V
BG1 and BG2 Undervoltage  
Thresholds [2]  
VBGx(UV)  
VBG1 or VBG2 falling  
1.00  
1.05  
1.10  
V
OVERVOLTAGE FILTERING/DEGLITCH TIME  
Overvoltage Detection Delay [2]  
td(OV)  
UNDERVOLTAGE FILTERING/DEGLITCH TIME  
Undervoltage Filter/Deglitch Times [2]  
td(UV)  
Overvoltage detection delay time  
Undervoltage detection delay time  
5
5
25  
25  
µs  
µs  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
NPOR TURN-ON AND TURN-OFF DELAYS  
Time from VUC > V3V3(UV,H) (or VV5(UV,H)) to  
when the NPOR pin becomes high impedance  
NPOR Turn-On Delay  
td(NPOR,ON)  
3.7  
5
6.3  
ms  
NPOR OUTPUT VOLTAGES  
INPOR = 4 mA  
150  
400  
200  
2
mV  
mV  
µA  
NPOR Output Low Voltage  
NPOR Leakage Current [1]  
VNPOR(L)  
VVIN = 5.5 V, INPOR = 2 mA  
INPOR(LKG) VNPOR = 3.3 V  
NPOR ONE-SHOT TIME (ONLY if enabled via SPI using the NPOR_KEY)  
NPOR One-Shot “Low” Time After  
tWD(FAULT)  
1.6  
2
2.4  
ms  
Watchdog Fault  
FAULT FLAG OUTPUT VOLTAGES (FFn)  
FFn Output Voltage  
FFn Leakage Current  
VFFn(L)  
FFn is tripped, IFFn = 2 mA  
VFFn = 3.3 V  
150  
400  
2
mV  
µA  
IFFn(LKG)  
WDIN VOLTAGE THRESHOLDS AND RESISTANCE  
WDIN Upper Threshold  
VWDIN(HI)  
VWDIN(LO)  
RWDIN  
VWDIN rising  
VWDIN falling  
0.8  
2.0  
V
V
WDIN Lower Threshold  
WDIN Pull-Down Resistance [2]  
WD TIMING SPECIFICATIONS  
Watchdog Configuration Time  
WD_Fn OUTPUT SPECIFICATIONS  
50  
kΩ  
tCONFIG(WD) Can be bypassed by setting WD_SEL bits  
1000  
ms  
IWD_Fn = 4 mA  
150  
400  
200  
2
mV  
mV  
µA  
Output Low Voltage  
VWD_Fn(L)  
VVIN = 5.5 V, IWD_Fn = 1 mA  
Leakage Current  
IWD_Fn(LKG) VWD_Fn = 3.3 V  
GATE DRIVE ENABLE (POE)  
VPOE(L)  
VPOE(H)  
IPOE = 4 mA  
150  
400  
mV  
V
POE Output Voltage  
IPOE = –1.5 mA  
0.8 × VVUC  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
SERIAL INTERFACE (STRn, SDI, SDO, SCK)  
Input Low Voltage  
VIL  
VIH  
0.8  
V
V
Input High Voltage  
All logic inputs  
All logic inputs  
2.0  
Input Hysteresis  
VIhys  
250  
550  
50  
50  
mV  
kΩ  
kΩ  
V
MOSI and SCK Input Pull-Down  
CS Input Pull-Up to 3.0 V  
Output Low Voltage  
RPD  
VMOSI or VSCK = 3.3 V  
RPU  
VOL  
IOL = 1 mA [1]  
0.4  
Output High Voltage  
VOH  
IOL = –1 mA [1]  
0.8 × VVUC  
V
SPI Clock Frequency [2]  
SPI Frame Rate [2]  
fSCK  
MISO pins, CL = 20 pF  
0.1  
2.94  
50  
50  
30  
30  
300  
10  
294  
MHz  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSPI  
Clock High Time  
tSCK(H)  
tSCK(L)  
tCS(LD)  
tCS(LG)  
tCS(H)  
tMISO(EN)  
tMISO(D)  
A in Figure 1  
B in Figure 1  
C in Figure 1  
D in Figure 1  
E in Figure 1  
F in Figure 1  
G in Figure 1  
Clock Low Time  
Chip Select Lead Time  
Chip Select Lag Time  
Chip Select High Time  
Data Out (MISO) Enable Time [2]  
Data Out (MISO) Disable Time [2]  
40  
30  
Data Out (MISO) Valid Time  
From SCK Falling [2]  
tMISO(V)  
tMISO(H)  
tMOSI(SU)  
tMOSI(H)  
H in Figure 1  
J in Figure 1  
K in Figure 1  
L in Figure 1  
5
40  
ns  
ns  
ns  
ns  
Data Out (MISO) Hold Time  
From SCK Falling [2]  
Data In (MOSI) Set-Up Time  
To SCK Rising  
15  
10  
Data In (MOSI) Hold Time  
From SCK Rising  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
ꢂS  
A
Sꢂꢃ  
MꢋSꢌ  
MꢌSꢋ  
Dꢀ1  
Dꢀ0  
D0  
D31'  
D30'  
D0'  
H
Figure 1: Serial Interface Timing for Write and Read Cycles  
MISO activity assumes the Chip_ID from the previous frame was correct  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ELECTRICAL CHARACTERISTICS (continued) [1]: Valid at 3.8 V [4] ≤ VVIN ≤ 36 V, 40°C ≤ TJ ≤ 150°C, VENB = High or  
VENBAT = High, unless otherwise specified  
Characteristic  
GATE OUTPUT DRIVE (z = U, V, W)  
Turn-On Time  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
tr  
CLOAD = 10 nF, 20% to 80%  
CLOAD = 10 nF, 80% to 20%  
5
0.5  
10  
μs  
μs  
mA  
μs  
μA  
Ω
Turn-Off Time  
tf  
Turn-On Pulse Current  
Turn-On Pulse Time  
On Hold Current  
IGP  
tGP  
IGH  
8.5  
22  
12.5  
42  
400  
5
TJ = 25°C, IG = 10 mA  
Pull-Down On Resistance [3]  
RDS(on)DN  
TJ = 150°C, IG = 10 mA  
10  
9
Ω
VVIN > 5.5 V (w.r.t. VS, or VIN if VS > VVIN  
)
8
12  
V
Gz and GVBB High Output Voltage  
VGH  
4.5 V < VVIN ≤ 5.5 V (w.r.t. VS, or VIN if VS >  
VVIN), Buck-Boost mode  
7.2  
9
V
Gz and GVBB Low Output Voltage  
Gz and GVBB Passive Pull-Down  
Gz and GVBB External Load Resistance [2]  
VGL  
RGPD  
RG  
–10 μA < IG < 10 μA  
950  
VS + 0.3  
V
VG – VS < 0.3 V  
kΩ  
kΩ  
Between gate and source (using ±1% resistor)  
100  
GATE DRIVE DIAGNOSTICS AND FILTERING (z = U, V, W)  
Gz and GVBB UV Threshold Rising  
Gz and GVBB UV Threshold Hysteresis [2]  
Gz and GVBB OV Threshold Falling  
Gz and GVBB OV Threshold Hysteresis [2]  
VG(UV,H)  
VG(UV,HYS)  
VG(OV,L)  
VG rising (w.r.t. VS)  
6.0  
7.1  
V
250  
mV  
V
VG falling (w.r.t. VS)  
0.35  
1.05  
VG(OV,HYS)  
150  
1.4  
20  
mV  
ms  
μs  
Voltage detection delay, GD_UV_SEL = 0  
Voltage detection delay, GD_UV_SEL = 1  
Gz and GVBB Rising/Falling Filter Time  
tdFILT(Gz)  
15  
25  
GATE DRIVE PROPAGATION DELAYS (z = U, V, W)  
ENVBB Enable/Disable Delay Times,  
td(EN,VBB)  
From “SPI command is written” to GVBB 20%  
(enable), to GVBB 80% (disable)  
1.5  
10  
6
ms  
ms  
μs  
GD_EN_SEL = 0  
ENz Enable/Disable Delay Times,  
td(Enz)  
From “SPI command is written” to Gz  
20% (enable), to Gz 80% (disable)  
GD_EN_SEL = 0  
ENVBB and Enz Enable/Disable  
Delay Times, GD_EN_SEL = 1  
td(EN,VBB),  
td(Enz)  
From “SPI command is written” to Gz or GVBB  
20% (enable), to Gz or GVBB 80% (disable)  
SVBB DIAGNOSTICS AND FILTERING  
SVBB UV Threshold Falling  
VSVBB(UV,L) VSVBB falling (w.r.t. GND)  
VSVBB(UV,HYS)  
2.5  
650  
0.8  
20  
3.0  
V
SVBB UV Threshold Hysteresis  
mV  
ms  
µs  
Undervoltage detection delay, GD_UV_SEL = 0  
Undervoltage detection delay, GD_UV_SEL = 1  
1.0  
25  
SVBB UV Filter/Deglitch Times  
td(FILT,VBB)  
15  
[1] For input and output current specifications, negative current is defined as coming out of the node or pin (sourcing), positive current is defined as going into the node or  
pin (sinking).  
[2] Ensured by design and characterization, not production tested.  
[3] Specifications at 25°C or 85°C are guaranteed by design and characterization, not production tested.  
[4] The lowest operating voltage is only valid if the conditions VVIN > VVIN(START) and VVCP – VVIN > VVCP(UV,H) and VVREG in regulating are satisfied before VVIN is reduced.  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
13.5 ꢅ  
ꢅꢆN  
ꢋNꢐ ꢁR ꢋNꢐAHꢆꢌH  
ꢋN  
0.5 ms  
3.ꢔ ꢅ  
ꢅꢂꢂ  
ꢖꢊꢗ0 ꢘs  
ꢐꢆSꢑ  
SSꢍꢁꢏꢏSꢎ  
SSꢇ  
ꢂꢁMP  
ꢁSꢂꢈꢉ  
ꢁSꢂꢈꢊ  
ꢁSꢂ  
ꢃꢄ  
ꢅRꢋꢌ  
ꢅUꢂ  
tSS  
0.ꢉ ms  
ꢅRꢋꢌꢍUꢅ,Hꢎ  
All LDOs turn on siꢀultaneouslꢁ at ꢂ  
ꢂRꢃGꢄꢅꢂ,ꢆꢇ  
ꢅUꢂꢍUꢅ,Hꢎ  
ꢅ5A  
ꢅ5Pꢕ  
ꢅUꢂ ꢁꢓꢇ  
NPꢁR  
tdꢍNPꢁR,ꢁNꢎ  
Bꢁ deꢈault, POR onlꢁ depends on ꢂꢅꢊ  
Figure 2: Startup Timing Diagram  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ꢀꢁN  
tdꢅꢂNꢆ  
ꢂNꢃ  
and  
ꢂNꢃAꢄ  
tꢉUꢄꢅꢌAꢇꢇꢆ  
ꢀUꢍ Uꢀ  
ꢇꢈꢉ  
ꢉꢊtꢋꢊts  
tdꢅUꢀꢆ  
NPꢉR  
All LDO outputs start to decay td(EN) seconds after ENB and ENBAT are low.  
The time for an output to decay to zero, tOUT(FALL), varies for each LDO and depends on load and output capacitance.  
NPOR transitions low after VUC crosses its UV threshold  
Figure 3: Shutdown Timing Diagram  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
TIMING DIAGRAMS (not to scale)  
* is for internal signal or threshold  
ENB+ENBAT HIGH  
EN  
VHIC(EN)  
VHIC(EN)  
VHIC(EN)  
*
VSS(OFFS)  
VSS(OFFS)  
VSS(OFFS)  
*
VSS(RST)  
VSS(RST)  
SS*  
EN_HIC*  
HIC*  
32×  
OCP  
32×  
OCP  
32×  
OCP  
OCP*  
VO(EA,MAX)  
*
VPWM(OFFS)  
COMP  
fOSC  
/4  
fOSC  
/4  
fOSC  
/4  
fOSC/8  
fOSC/8  
fOSC /8  
LX  
1.3 V  
VREG  
Figure 4: Hiccup Mode Operation with VREG Shorted to GND (RLOAD < 50 mΩ)  
ENB+ENBAT HIGH  
EN  
VHIC(EN)  
VHIC(EN)  
*
VSS(OFFS)  
VSS(OFFS)  
*
VSS(RST)  
SS*  
EN_HIC*  
HIC*  
120× OCP  
120× OCP  
OCP*  
VO(EA,MAX)  
VPWM(OFFS)  
COMP  
fOSC/4 fOSC/2 fOSC  
fOSC/4 fOSC/2 fOSC  
LX  
2.7 V  
1.3 V  
VREG  
Figure 5: Hiccup Mode Operation with VREG Overloaded (RLOAD ≈ 0.5 Ω)  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Table 1: Summary of Fault Mode Operation  
FAULT  
VIN UV  
A81407 RESPONSE  
VREG  
VUC  
V5A  
V5Px [4]  
FFn  
NPOR  
WD_Fn  
POE  
GVBB  
GZ [4]  
SPI  
WD  
RESET  
Increase VIN  
Replace the IC  
MPOR,  
VCP2_UV & VCP_UV  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
High  
Low  
Off  
Off  
Off  
Off  
BG1, BG2 UV  
UV by only a small  
amount, but VUC OK  
VREG UV  
UV  
Low  
On  
On  
VUC UV  
V5A UV  
V5PX UV [4]  
VCP2 UV  
VCP UV  
UV  
UV  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Off  
On [9]  
On  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
[5]  
UV  
0 V  
Low  
VCP2_UV & VCP_UV  
No external gate drive  
GVBB off to protect FET  
0 V  
0 V  
0 V  
Low  
Off  
Off  
Off  
Off  
Off  
On [9]  
SVBB_UV  
GZ_UV [4] or GVBB_UV  
when set to ON  
GZ_OV [4] or GVBB_OV  
when set to OFF  
Inform the microcontroller  
Inform the microcontroller  
Low  
Low  
On  
On  
On  
On  
VREG OV  
VUC OV  
OV  
OV  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Off  
On [9]  
On  
On  
On  
On  
On  
Off  
Off  
Off  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
V5A OV  
V5Px OV/STB [3][4]  
OV  
Disconnect occurs >7.2 V  
OV [10]  
0 V  
0 V  
0 V  
VCP2 OV  
0 V  
0 V  
HIC  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Off  
Off  
Off  
Off  
Off  
Off  
On [9]  
On [9]  
VCC STG [3]  
VREG STG [3]  
VUC STG [3]  
V5A STG [3]  
V5PX STG [3]  
LX STG [3]  
VCC ILIM and MPOR  
Hiccup mode  
VUC Foldback ILIM  
V5A Foldback ILIM  
V5PX Foldback ILIM  
Latch off after 2×  
0 V  
Remove STG  
0 V  
0 V  
Off  
0 V  
0 V  
Low  
Low  
Off  
On [9]  
VVIN > 8.5 V, LG off  
VVIN < 8.5 V, LG active  
LG STG [3]  
Low  
VCP2 high current and fusing.  
Definitely VCP_UV too.  
VCP2 STG [3]  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Off  
Off  
Off  
On or Off  
Replace the IC  
VCP high current and fusing,  
no external gate drive.  
Likely VCP2_UV too.  
VCP STG [3]  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Off  
Off  
Off  
On or Off  
CP2C1 STG [3]  
CP2C2 STG [3]  
VCP2_UV and VCP_UV  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Low  
Low  
Low  
Off  
Off  
Off  
Off  
Off  
Off  
On  
On  
Remove STG  
Replace the IC  
VCP2 high current and fusing  
VCP high current and fusing,  
no external gate drive.  
Likely VCP2_UV too.  
CP1 STG [3]  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Low  
Off  
Off  
Off  
Off  
Off  
On or Off  
Remove STG  
Replace the IC  
CP2 STG [3]  
Watchdog Fault  
BIST Fault  
VCP high current and fusing  
PWWD, WWD, or Q&A  
Inform the microcontroller  
Inform the microcontroller  
Inform the microcontroller  
VREG cannot rise  
Low  
Low  
On  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
On  
On  
Off  
Off  
Off  
On  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
[6]  
[7]  
[8]  
[8]  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
DBE Fault  
SE Fault  
L1 missing  
0 V  
Off  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On [9]  
On [9]  
Off  
Diode D1 missing  
CCP2C1/CP2C2 missing  
CVCP2 missing  
CCP1/CP2 missing  
CVCP missing  
L1 shorted  
Latch off after 2×  
VCP2_UV and VCP_UV  
VCP2_UV & VCP_UV  
Off  
VCP2_UV, No ext. gate drive  
VCP2_UV, No ext. gate drive  
LX fault, latch off after 2×  
VCP2_UV and VCP_UV  
VCP2_UV & VCP_UV  
Off  
Replace missing  
component, or  
remove short circuit.  
Off  
On [9]  
Off  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
Low  
Low  
Low  
Low  
CCP2C1/CP2C2 shorted  
CVCP2 shorted  
CCP1/CP2 shorted  
CVCP shorted  
TSD  
Off  
Off  
VCP_UV, No ext. gate drive  
VCP_UV, No ext. gate drive  
Stop PWM, maintain SPI  
Off  
Off  
On [9]  
0 V  
0 V  
0 V  
0 V  
Low  
Low  
IC cooldown  
[1] “–” = No effect, operates normally.  
[2] MPOR = Master Power-On Reset.  
[3] STG = short-to-ground, STB = short-to-battery.  
[4] V5Px where (x = 1 or 2), GZ where (z = U or V or W).  
[5] By default, V5A UV will not affect NPOR. However, there is an option, via SPI programming, to have NPOR transition low if V5A is UV.  
[6] By default, a WD Fault will not affect FFn. However, there is an option, via SPI programming, to have FFn latch low.  
[7] By default, a WD Fault will not affect NPOR. However, there is an option, via SPI programming, to have NPOR momentarily transition low for 2 ms to reset the MCU.  
[8] By default, a WD Fault will not affect the four gate drivers. However, there is an option, via WDF_2_Gz, to have all four gate drivers turn off after a watchdog fault.  
[9] By default, the state of GVBB is off and GU/GV/GW are on after a fault, other than a watchdog fault. However, there is an option, via GD_FLT_ON, to have GU/GV/GW turn off.  
[10] V5Px STB will be reported to SPI diagnostic register (0x05) as both V5Px UV and OV fault.  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
FUNCTIONAL DESCRIPTION  
Charge Pump (VCP, VCP2)  
Overview  
The A81407 pre-regulator can be configured as an asynchronous  
buck or buck-boost converter. This pre-regulator generates a  
fixed 5.35 V (VREG) and can deliver up to 1.2 A to power the  
internal post-regulators. The post regulators generate the various  
voltage levels for the end system.  
Charge pump circuits provide the voltage necessary to drive high-  
side N-channel MOSFETs in the pre-regulator, linear regulators,  
and floating gate drivers. Four external capacitors are required  
for charge pump operation. During the first cycle of the charge  
pump, the flying capacitor between pins CP2C1 and CP2C1 is  
charged from either VIN or VREG, whichever is highest. During  
the second cycle, the voltage on the flying capacitor charges the  
VCP2 capacitor and the flying capacitor between CP1 and CP2.  
During the last cycle, the voltage on the flying capacitor charges  
the VCP capacitor. The charge pump incorporates some safety  
features:  
Pre-Regulator (VREG)  
The pre-regulator incorporates an internal high-side and a boost  
switch gate driver. An external free-wheeling diode and LC filter  
are required to complete the buck converter. By adding a MOS-  
FET and boost diode, the pre-regulator can maintain all outputs  
with input voltages down to 3.8 V.  
1. Undervoltage and overvoltage detection and reporting  
2. Overcurrent safe mode protection  
The pre-regulator provides many protection and diagnostic func-  
tions:  
Bandgap (BG1, BG2)  
1. Pulse-by-pulse and hiccup mode current limit  
2. Undervoltage and overvoltage detection and reporting  
3. Shorted switch node to ground protection  
4. Open free-wheeling diode (D1) protection  
5. High voltage rating for load dump  
Dual band gaps are implemented within the A81407. One band-  
gap is dedicated to the voltage regulation loops within each of the  
regulators, VCC, VCP, VCP2, VREG, and the four post regula-  
tors. The second is dedicated to the undervoltage and overvoltage  
monitoring functions of all the regulators. This improves safety  
coverage and fault reporting from the A81407.  
PWM Switching Frequency  
Should the regulation bandgap fail, then the output voltages will be  
The switching frequency of the A81407 is fixed at 2.2 MHz, typi- out of specification and the monitoring bandgap will report the fault.  
cal. The A81407 includes a frequency foldback scheme that starts  
If the monitoring bandgap fails, the output voltages will remain  
when VVIN is greater than 18 V. From 18 to 36 V, the switching  
in regulation, but the monitoring circuits will report the outputs  
as out of specification and trip the fault flag.  
frequency will foldback from 2.2 to 1 MHz (typical). The switch-  
ing frequency (fSW) for a given input voltage (VVIN) above 18 V  
and below 36 V is:  
The bandgap circuits include two smaller, secondary bandgaps that  
are used to monitor the undervoltage state of the main bandgaps.  
fSW in MHz = 3.4 – (1.2 / 18) × VVIN  
Enable Inputs (ENB, ENBAT)  
Bias Supply (VCC)  
Two enable pins are available on the A81407. A high signal on  
either of these pins enables the regulated outputs of the A81407.  
One enable (ENB), is logic level compatible. The second enable  
(ENBAT), is battery-level rated and can be connected to the igni-  
tion switch through a low-pass filter.  
The bias supply (VCC) is generated by an internal linear regulator.  
This supply is the first rail to start up. Most of the internal control  
circuitry is powered by this supply. The bias supply includes  
some unique features to ensure safe operation of the A81407.  
These features include:  
1. VIN input undervoltage lockout  
2. VCC undervoltage detection  
3. VCC overcurrent and short-circuit current limit  
4. Dual input operation: VIN or VREG, for ultra-low battery  
voltage operation  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
The POE signal can be used to put the system in a safe state, for  
example, by disabling the gate driver in a motor application.  
Linear Regulators  
The A81407 has four linear regulators: one (VUC) that provides  
3.3 V (or 5 V for the A81407-1), and three fixed at 5 V (V5A,  
V5P1, V5P2). Two of these regulators (V5P1, V5P2) are high-  
voltage tolerant so they are protected from connection to the bat-  
tery voltage. This makes these outputs most suitable for powering  
remote sensors or circuitry where a short-to-battery is possible.  
POE includes some additional safe systems. It is continuously  
monitored to ensure the signal output matches the A81407  
internal circuit’s demand. It is also powered by a separate internal  
power rail for added protection.  
Startup Self-Tests  
The pre-regulator supplies 5.35 V (VREG) to the linear regulators,  
which reduces power dissipation and temperature.  
The A81407 includes self-test which is performed during the  
startup sequence. This self-test verifies the operation of the  
undervoltage and overvoltage detect circuits for the main outputs,  
and the overtemperature shutdown circuitry.  
All linear regulators provide the following protection features:  
1. Current limit with foldback  
In the event the self-test fails, the A81407 will report the failure  
through SPI.  
2. Undervoltage and overvoltage detection and reporting  
Fault Detection and Reporting  
(NPOR, WD_Fn, FFn)  
Undervoltage Detect Self-Test  
The undervoltage (UV) detection circuits are verified during  
startup of the A81407. A voltage that is lower than the undervolt-  
age threshold is applied to each UV comparator; this should cause  
the corresponding undervoltage bit in the Diagnostic register to  
change state: 0→1, indicating a fault. If a diagnostic UV register  
bit does not change state, the corresponding Verify Result bit is  
latched high. So, when testing is complete, if any bits in the Verify  
Result registers are high, then verification has failed. The following  
UV comparators are tested: VREG, VUC, V5A, V5P1, and V5P2.  
There is extensive fault detection within the A81407; most have  
been discussed previously. There are two fault reporting mecha-  
nisms used by the A81407; one through hardwired pins and the  
other through serial communications interface (SPI).  
Three hardwired pins are used for fault reporting. The first pin,  
NPOR (open-drain, active low), reports on the status of the VUC  
output. By default, this signal transitions low only if VUC is out  
of regulation (undervoltage or overvoltage). However, options are  
available to: (1) report a Watchdog Fault by momentarily setting  
NPOR low for 2 ms, and (2) indicate if V5A is out of regulation.  
These additional NPOR options are selectable through SPI.  
Overvoltage Detect Self-Test  
The overvoltage (OV) detection circuits are verified during  
startup of the A81407.  
The second pin, WD_Fn (open-drain, active low), latches low if a  
Watchdog Fault is detected.  
A voltage that is higher than the overvoltage threshold is applied  
to each OV comparator; this should cause the corresponding  
overvoltage bit in the Diagnostic register to change state: 0→1,  
indicating a fault. If a diagnostic OV register bit does not change  
state, the corresponding Verify Result register bit is latched high.  
So, when testing is complete, if any bits in the Verify Result  
registers are high then verification has failed. The following OV  
comparators are tested: VREG, VUC, V5A, V5P1, and V5P2.  
A third pin, FFn (open-drain, active low), reports on all other  
faults. FFn transitions low when a fault is detected. The FFn out-  
put should be connected to an interrupt pin on the processor so it  
will check the A81407 status and take appropriate action if a fault  
occurs. By default, FFn does not report a Watchdog Fault, but it  
may be added to the FFn logic via SPI programming.  
Safe State Control Signal (POE)  
Overtemperature Shutdown Self-Test  
The safe state control signal or power-on enable (POE) is a sig-  
nal generated when certain potentially unsafe failures occur. The  
A81407 is designed to power a system microcontroller with its VUC  
output. It can also monitor this system controller using a watchdog  
function. A failure of the system controller may be considered to be  
unsafe. The following faults will cause the POE signal to be low:  
The overtemperature shutdown (TSD) detector is verified during  
startup of the A81407.  
A voltage that is higher than the overvoltage threshold is applied to  
the TSD comparator; this should cause the overtemperature bit in  
the Diagnostic register to change state: 0→1, indicating a fault. If  
the TSD register bit does not change state, the TSD Verify Result  
register bit is latched high. So, when testing is complete, if the TSD  
bit in the Verify Result registers is high, then verification has failed.  
1. Watchdog fault  
2. VUC fault  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
The floating gate-drive outputs for external N-channel MOSFETs  
Power-On Enable (POE) Self-Test  
are provided on pins GVBB, GU, GV, and GW. When Gz = 1  
(or “high”), the upper half of the driver is on and current will be  
sourced to the gate of the MOSFET, turning it on. When Gz = 0  
(or “low”), the lower half of the driver is on and will sink current  
from the external MOSFET’s gate to the respective Sz terminal,  
turning it off.  
The A81407 incorporates continuous self-testing of the power-  
on enable (POE) output. It compares the status of the POE pin  
(POE_S) with the internal expected status. If they differ for any  
reason, the FFn output pin is set low and POE_OK in the status  
register is set low.  
Analog Multiplexer Output  
The reference points for the floating drives are the load phase  
connections, SVBB, SU, SV, and SW. The discharge current from  
the floating MOSFET gate capacitance flows through these con-  
nections.  
The AMUX pin is the output of an analog multiplexer to monitor  
the voltages shown in Table 2. The output of the MUX is chosen  
through SEL_MUX_(3:0) in register 0x09. The accuracy of the  
MUX is ±6%. The driving capability of this output is 1 mA and  
the maximum voltage is 3.8 V. Typical response time from writing  
SEL_MUX_(3:0) to AMUX output change is 20 μs.  
In some applications, it may be necessary to provide a current  
recirculation path when the motor load is isolated. This will be  
necessary in situations where the motor driver does not reduce the  
load current to zero before the isolation MOSFETs are turned off.  
The recirculation path can be provided by connecting a suitably  
rated power diode to the “motor” side of the isolation MOSFETs  
and GND. See the Functional Block Diagram for more details.  
Table 2: Analog Multiplexer Output  
Node  
VREG  
VUC  
Signal Divide Ratio  
Tolerance (reference)  
1/2  
1/2  
1/2  
1/2  
1/2  
1/8  
1/12  
1/12  
1/1  
1/1  
1/10  
±6%  
±6%  
V5A  
±6%  
Watchdog Timers  
V5P1  
V5P2  
VENBAT  
VCP  
±6%  
The A81407 contains three different watchdog timers. This section  
will describe each one in detail. The selection and configuration of  
each watchdog is done through SPI. After a watchdog is selected  
and running, it cannot be reconfigured without going through a  
secure SPI procedure. The watchdog circuits are updated/latched  
when the state machine leaves the configuration mode. After leav-  
ing the CONFIG state, modifications to the watchdog registers will  
not take effect unless a CONFIG or RESTART command is issued.  
±6%  
±6%  
±6%  
VCP2  
BG1  
±6%  
±6%  
BG2  
±6%  
VIN  
±6%  
TEMP  
Output (mV) = 1440 mV – 3.92 mV/°C × TJ (°C)  
The three types of watchdogs are:  
1. Pulse Width Watchdog (PWWD) (default)  
2. Window Watchdog (WWD)  
Floating MOSFET Gate Drivers  
The A81407 has four independent floating gate drive outputs to  
drive external, low on-resistance, power N-channel MOSFETs.  
These MOSFETs should be connected as a single battery line dis-  
connect (GVBB) and three motor phase isolators (GU, GV, GW).  
The four gate drivers can be controlled independently through the  
serial interface by setting the appropriate bit in the control register.  
3. Q&A Watchdog (QAWD)  
The Pulse Width Watchdog is the default watchdog. It will auto-  
matically start with default settings if the following conditions are  
met:  
1. NPOR transitions high, and  
A charge pump (VCP) provides the above-battery supply voltage  
necessary to maintain the power MOSFETs in the on-state con-  
tinuously when the phase voltage is equal to the battery voltage.  
2. No watchdog is selected: WD_SEL_(1:0) = [0,0], and  
3. The tCONFIG(WD) configuration timer expires (1000 ms).  
A. The configuration timer can be forced to expire by  
selecting a watchdog, including the PWWD, with the  
WD_SEL_(1:0) bits.  
An internal resistor, RGPDz, between the Gz and Sz pins plus an  
integrated hold-off circuit, ensures the gate source voltage of each  
MOSFET is held close to 0 V even with the power disconnected.  
This can remove the need for additional gate source resistors  
on the isolation MOSFETs. In any case, if external gate source  
resistors (RGSz) are mandatory for the application, then the VCP  
regulator can provide sufficient current to maintain the MOSFET  
in the on-state with a gate source resistor as low as 100 kΩ.  
A watchdog fault sets pins WD_Fn and POE low. By default,  
a watchdog fault does not affect NPOR. However, at any time,  
the microcontroller can select an alternate mode for NPOR after  
a watchdog fault. This is accomplished by writing three secure  
words to the NPOR_KEY registers. In the alternate mode, a  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
watchdog fault will momentarily set NPOR low for tWD(FAULT)  
(2 ms) in an attempt to reset/restore the microcontroller.  
This delay should allow ample time for the microcontroller to  
modify the registers via SPI and begin delivering a clock to the  
WDIN pin. The tCONFIG(WD) time is shown in Figure 6, Figure 7,  
and Figure 12. Alternatively, if the microcontroller quickly modi-  
fies all registers and generates the WD clock, tCONFIG may be  
too long. In this case, simply setting WD_SEL_(1:0) ≠ [00] will  
bypass any remaining tCONFIG time and move the state machine  
from the CONFIG to the NORMAL state. Both cases are shown  
in the watchdog state diagram, Figure 12.  
By default, a watchdog fault does not affect FFn. However, at any  
time, the microcontroller can modify how FFn behaves after a  
watchdog fault. If configuration bit WDF_2_FFn is set, then FFn  
will transition low if it detects a watchdog fault.  
By default, a watchdog fault has no effect on the state of the four  
gate drivers: GVBB, GU, GV, and GW. However, at any time, the  
microcontroller can modify how the gate drivers behave after a  
watchdog fault. If configuration bit WDF_2_Gz, in register 0x08,  
is set, then all four gate drivers will turn off if a watchdog fault  
occurs.  
Clock pulses from the microcontroller must be applied to WDIN  
before the watchdog is selected (via WD_SEL) or restarted (via the  
3-word WD_KEY command). The PWWD error counter can be  
preloaded to a value set by PWWD_POE_DLY (default of 2). Pre-  
loading the error counter forces the microcontroller to send valid  
pulses before POE transitions high, effectively “pre-qualifying” the  
performance of the microcontroller. Figure 6 and Figure 7 demon-  
strate prequalification with PWWD_POE_DLY set to a value of  
10, which requires 5 valid clock pulses (‒2 counts per valid clock  
pulse) before POE transitions high.  
PULSE WIDTH WINDOW WATCHDOG (PWWD)  
The Pulse Width Watchdog circuit monitors an external clock  
applied to the WDIN pin. This clock should be generated by the  
primary microcontroller or DSP. The PWWD watchdog measures  
the time between two clock edges, either rising or falling. So the  
watchdog effectively measures both the “high” and “low” pulse  
widths, as shown in Figure 6. By default, the nominal WDIN  
pulse width (PWWD_PW) is set to 1 ms, but can be modified to  
0.5, 1.5, or 2 ms via SPI.  
After moving into NORMAL operation, if no clock edges are  
detected at WDIN for PWWD_EDGE_TO, both WD_Fn and POE  
pins transition low. By default, PWWD_EDGE_TO is 5 ms, but  
can be modified to 2.5, 10, or 15 ms via SPI. The “edge timeout”  
condition is shown as (1) in Figure 7.  
If an incorrect pulse width is detected, the watchdog incre-  
ments its fault counter by 10 (default). If a correct pulse width  
is detected, the watchdog decrements its fault counter by 2  
(default). If the watchdog fault counter exceeds 160 (default),  
then both the WD_Fn and POE pins transition low. Operation of  
the PWWD is shown in Figure 6 and Figure 7. The increment  
value (PWWD_INC), decrement value (PWWD_DEC), and  
maximum fault count (PWWD_MAX) all have alternate values  
that can be accessed via SPI.  
While in the NORMAL state, if clock activity at WDIN termi-  
nates for at least PWWD_ACT_TO, both WD_Fn and POE pins  
transition low. By default, PWWD_ACT_TO is 16 ms, but can be  
modified to 8, 24, or 32 ms via SPI. The “loss of clock activity”  
condition is shown as (2) in Figure 7.  
The pulse widths generated by a microcontroller or DSP depend  
on many factors and will have some pulse-to-pulse variation. The  
A81407 accommodates pulse width variations by allowing the  
designer to select a “window” of allowable variations. By default,  
the window tolerance (PWWD_WIN_TOL) is set to ±13%, but  
can be modified to ±8, ±18, and ±23 percent via SPI.  
The watchdog default values are loaded when:  
1. The internal rail, VCC, transitions low (i.e. VIN is removed,  
or ENB and ENBAT are both low) or  
2. The band gap, BG1, transitions low  
The watchdog performs its calculations based on an internally gen-  
erated clock. The internal clock typically has an accuracy of ±2.5%  
at 25°C, but may vary as much as ±5% due to IC process shifts and  
temperature variations. Variations in the watchdog clock result in a  
shift of the “OK Region” (i.e. the expected pulse width) at WDIN.  
This is shown as a green, shaded area in Figure 8.  
The watchdog can be restarted by the microcontroller when:  
1. The microcontroller sends either a RESTART or CONFIG  
command via the 3-word WD_KEYs  
By default, the PWWD watchdog is enabled after NPOR transi-  
tions high and remains high for at least tCONFIG(WD) (1000 ms).  
23  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Pulses low if configured  
via NPOR_KEY  
tꢂꢃꢋꢈAUꢊꢌ  
ꢄorrect Pꢉlse ꢂidths  
NPꢅR  
ꢂꢃꢈAUꢊꢁ  
ꢋlatched stateꢌ  
ꢍ tꢄꢅNꢈꢆꢎꢋꢂꢃꢌ  
SꢀꢊPꢂꢂꢃ  
+10  
+10  
+10 +10  
+10  
+10  
+10  
+10  
+10  
2 2 2 2  
2  
2  
2 2 2 2 2  
2 2 2 2 2  
+10  
20  
+10  
+10  
+10  
92  
+10  
+10  
+10  
+10  
168  
ꢂꢃꢆN  
+10  
0
10  
30  
40  
68 66 64 62 72  
50 60 70  
82  
102 100 110 120 130 140 138 148  
8
6
4
2
0
10  
8
6
4
2
0
10  
ꢂꢃꢄꢅUNꢁꢀR  
158  
ꢄorrect Pꢉlse ꢂidths  
ꢂꢃꢇꢈn  
Pꢅꢀ  
RꢀSꢁARꢁ ꢏia ꢂꢃ ꢇꢐꢀꢑs  
RꢀSꢁARꢁ  
Figure 6: Watchdog (WD) operation with both correct and incorrect pulse widths.  
1. Incorrect pulse widths increment the WD counter by 10.  
2. Correct pulse widths decrement the WD counter by 2.  
3. A WD fault occurs if the total fault count exceeds 160.  
4. PWWD_POE_DLY is set to 10. So, 5 valid pulse widths  
(10 ÷ 2 counts per valid pulse) are required before POE  
transitions high  
Pulses low if configured  
via NPOR_KEY  
Pulses low if configured  
tꢀꢁꢅꢂAUꢃꢆ  
tꢀꢁꢅꢂAUꢃꢆ  
via NPOR_KEY  
NPꢋR  
ꢈorrect Pꢐlse ꢀidths  
ꢈorrect Pꢐlse ꢀidths  
ꢀꢁAꢈꢄꢅꢄꢋꢆ  
ꢏ tꢈꢋNꢂꢇꢎꢅꢀꢁꢆ  
ꢀꢁꢍꢁꢎꢍꢅꢄꢋꢆ  
SꢍꢃPꢀꢀꢁ  
ꢀꢁꢇN  
No ꢀꢁ  
Aꢈꢄꢇꢉꢇꢄꢊ  
ꢇN  
ꢀꢁꢇN Aꢈꢄꢇꢉꢇꢄꢊ  
SꢄꢋPS  
2 2 2 2 2  
2 2 2 2 2  
1
2
10  
8
6
4
2
0
0
10  
8
6
4
2
0
10  
0
ꢀꢁꢈꢋUNꢄꢍR  
ꢀꢁꢌꢂn  
ꢀꢁꢂAUꢃꢄ  
ꢅlatched stateꢆ  
ꢀꢁꢂAUꢃꢄ  
ꢅlatched state ꢆ  
Pꢋꢍ  
RꢍSꢄARꢄ ꢑia ꢀꢁ ꢌꢒꢍꢊs  
RꢍSꢄARꢄ ꢑia ꢀꢁ ꢌꢒꢍꢊs  
RꢍSꢄARꢄ  
Figure 7: Watchdog operation with faults from:  
1. No WDIN Activity for WDEDGE(TO)  
2. WDIN Activity Stops  
3. PWWD_POE_DLY is set to 10.  
24  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
PWWD TIMING DIAGRAM (not to scale):  
ꢀatchdog ꢁetects Rising  
ꢂdge and Starts  
Monitoring  
ꢊnternal ꢀꢁ ꢆlocꢕ Set ꢖy RAꢁꢗꢉ tꢒSꢆ ꢋ 1ꢘꢇ1 MHꢙꢈ ꢋ 1 μs  
ꢊnternal ꢀꢁ ꢚimer Perio ꢉ tꢀꢁ ꢋ 1000 ꢍ 1 μs ꢋ 1000 μs  
Assume MCU  
Output Perfect  
1 ms 0%  
1 ms 0%  
ꢑꢅaranteed  
ꢒꢓ, ꢃꢄ0 μs  
Maꢎimꢅm ꢆoꢅntꢇ1080ꢈꢉ  
NMAꢏ ꢋ 10ꢄ0 ꢍ 1 ꢐs ꢋ 1080 μs  
Minimꢅm ꢆoꢅntsꢇꢀꢁ0ꢈꢉ  
MꢊN ꢋ 9ꢌ0 ꢍ 1 μs ꢋ ꢀꢁ0 μs  
t
WD Window with  
ꢃꢄ% Programmed  
Window Tolerance  
AND 0% WD  
Oscillator Error  
tWD = 1000 μs  
Guaranteed Fault Detec�on  
Guaranteed Fault Detec�on  
OK  
REGION  
-8% of 1 ms = 920 μs  
+8% of 1 ms = 1080 μs  
tOSC = 1000 μs  
ꢑꢅaranteed  
ꢒꢓ, ꢃꢄꢔ μs  
WD Window with  
ꢃꢄ% Programmed  
Window Tolerance  
AND ꢛ5% WD  
Minimꢅm ꢆoꢅntsꢇꢀꢁ0ꢈꢉ  
MꢊN ꢋ 9ꢌ0 ꢍ 1.05 μs ꢋ ꢀꢂꢂ μs  
Maꢎimꢅm ꢆoꢅntꢇ1080ꢈꢉ  
t
NMAꢏ ꢋ 10ꢄ0 ꢍ 1.05 ꢐs ꢋ 11ꢃ4 μs  
OK  
REGION  
Oscillator Error  
Guaranteed Fault Detec�on  
Guaranteed Fault Detec�on  
t
WD = 1050 μs  
tOSC = 1050 μs  
WD Output is alwaꢄs correct  
ꢑꢅaranteed  
ꢒꢓ, ꢃꢜꢝ μs  
WD Window with  
ꢃꢄ% Programmed  
Window Tolerance  
AND 5% WD  
Maꢎimꢅm ꢆoꢅntꢇ1080ꢈꢉ  
Minimum Counts(920):  
MIN = 920 × 0.95 μs = 874 μs  
NMAꢏ ꢋ 10ꢄ0 ꢍ 0.95 ꢐs ꢋ 10ꢁꢂ μs  
t
OK  
REGION  
Oscillator Error  
tWD = 950 μs  
Guaranteed Fault Detec�on  
Guaranteed Fault Detec�on  
tOSC = 950 μs  
WD Output is alwaꢄs correct  
+26 µs  
–34 µs  
1000 µs  
Required System Clock  
Figure 8: Typical Watchdog Timer System Level Functionality (times are not to scale)  
A81407 and System Operating Parameters:  
1. 1 ms pulse widths coming from the micro-controller  
2. ±8% WD Window Tolerance Selected (WDADJ = GND)  
3. ±5% WD Oscillator Tolerance (worst case maximum)  
25  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
The options available by WWD_TIMER are 0.5 to 12.5 ms for  
tWD(FAST), and 4 to 100 ms for tWD(SLOW)  
WINDOW WATCHDOG (WWD)  
.
The window watchdog monitors the time between rising edges of  
an external clock applied to the WDIN pin. This clock should be  
generated by the microcontroller or DSP. The time between rising  
edges (i.e. the frequency) of the clock must fall within an accept-  
able “window”, or a watchdog fault is generated. In general, valid  
watchdog clocks must be present at WDIN for at least tWD(SLOW)  
before POE will transition high.  
It is strongly recommended that the processor produce valid  
clock pulses at WDIN prior to selecting the watchdog or issu-  
ing a RESTART command. As shown in Figure 9 and Figure  
10, after setting WD_SEL(1:0) or issuing a RESTART com-  
mand, valid watchdog clocks should be present at WDIN for at  
least tWD(SLOW) before POE is allowed to transition high. This  
“prequalifies” correct operation of the microcontroller before  
enabling the gate driver (via POE). At least 1 complete clock  
cycle must occur during the pre-qualification time (tWD(SLOW)).  
For prequalification, the maximum WD_IN clock frequency  
(fWD_IN(MAX), including system tolerances) and the selected value  
of WWD_TIMER from register 0x0A must satisfy the following  
equation:  
After NPOR transitions high, the processor must:  
1. Program the configuration registers and initiate valid WD  
pulses on the WDIN pin and,  
2. Select the WWD by setting WD_SEL_(1:0) = [10].  
Both these tasks must be completed before tCONFIG expires.  
A window watchdog fault occurs if the time between rising clock  
edges is either too short (a “fast” fault) or too long (a “slow”  
tWD_SLOW > 1.5 / fWD_IN(MAX)  
fault). The “fast” and “slow” limits, tWD(FAST) and tWD(SLOW)  
are selected with WWD_TIMER(2:0). The default values for  
tWD(FAST) and tWD(SLOW) are 4 ms and 32 ms, respectively.  
,
Typical watchdog operation with both FAST and SLOW fault  
events, along with recommended RESTART conditions, are  
shown in Figure 9 and Figure 10.  
t
ꢀꢁꢃꢄASꢆꢇ set to ꢈ ms ꢃꢉ0.1ꢊ msꢇ  
tꢀꢁꢃꢄAUꢅꢇ  
Pulses low if configured via NPOR_KEY  
NPOR  
tꢀꢁꢃSꢅꢋꢀꢇ set to 3ꢌ ms ꢃꢉ1.ꢌꢍ msꢇ  
< tꢎꢋNꢄꢏꢐꢃꢀꢁꢇ  
t < 3.84 ms  
4.16 ms < t < 30.72 ms  
SELꢀꢀꢂ  
WD_IN  
WD_Fn  
POE  
t
1 POE pre-qualifica�on cycle  
3 POE pre-qualifica�on cycles  
tꢀꢁꢃSꢅꢋꢀꢇ  
tꢀꢁꢃSꢅꢋꢀꢇ  
RESTART  
Figure 9: Window Watchdog (WWD) Operation  
A watchdog fault occurs when the WD_IN period (T) is too short. * Signal is internal to A81407  
t
ꢂꢃꢅꢆASꢁꢈ set to ꢉ ms ꢅꢊ0.1ꢋ msꢈ  
t ꢂꢃꢅꢆAUꢇꢈ  
Pulses low if configured via NPOR_KEY  
NPOR  
tꢂꢃꢅSꢇꢌꢂꢈ set to 3ꢍ ms ꢅꢊ1.ꢍꢎ msꢈ  
4.16 ms < t < 30.72 ms  
< tꢏꢌNꢆꢐꢑꢅꢂꢃꢈ  
t > 33.28 ms  
SELꢂꢂꢄ  
WD_IN  
WD_Fn  
POE  
t
tꢂꢃꢅSꢇꢌꢂꢈ  
tꢂꢃꢅSꢇꢌꢂꢈ  
RꢀSꢁARꢁ  
Figure 10: Window Watchdog (WWD) Operation  
A watchdog fault occurs when the WD_IN period (t) is too long. * Signal is internal to A81407  
26  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
and wait for the minimum time limit to elapse (tQA(MIN)). After  
the minimum time limit expires, the microcontroller must write  
Q&A WATCHDOG  
The Q&A watchdog periodically generates a random word  
and must receive an answer code from the microcontroller or  
DSP within a specific time window. The Q&A watchdog must  
be fully configured through SPI before being “activated” with  
WD_SEL_(1:0). For example, the minimum and maximum time  
limits (tQA(MIN), tQA(MAX)) must be selected from a list of 16  
possibilities using QAWD_TIMER_(3:0). Any time POE is low,  
the microcontroller must successfully complete a Q&A session  
before POE will transition high.  
the modified word back to QAWD_RAND_(5:0). The write  
must be fully completed before the maximum time limit expires  
(tQA(MAX)), with margin. Immediately after the writeback occurs,  
both the Q&A watchdog and the microcontroller must again  
synchronize their internal timers (i.e. set them to zero and begin  
counting) to start the next Q&A session.  
The microcontroller is allowed to retry the Q&A sequence a num-  
ber of times before a Watchdog fault is declared. The number of  
retries can be selected by a 2-bit word, QAWD_RETRY_(1:0). A  
Q&A Watchdog fault occurs only after the retry counter reaches  
zero, as shown in Figure 11. The retry counter is decremented if:  
After the Q&A watchdog is activated, via WD_SEL_(1:0), the  
A81407 will generate a 6-bit random word, QAWD_RAND_(5:0)  
and start an internal timer. Shortly thereafter, the microcontroller  
must synchronize its own timer. Then the microcontroller must  
read the random word and allow enough time, with margin, to  
modify and write the word back to the watchdog. The writeback  
must not occur before the minimum time limit expires (tQA(MIN)),  
nor after the maximum time limit expires (tQA(MAX)).  
1. An answer is received before the minimum time limit expires  
(tQA(MIN)).  
2. An answer is not received before the maximum time limit  
expires (tQA(MAX)).  
The microcontroller must invert each bit of the random word  
3. An incorrect answer is received from the microcontroller.  
t ꢊꢋAꢆMꢄNꢉ  
t ꢊꢋAꢆMAꢌꢉ  
t ꢊꢋAꢆMꢄNꢉ  
t ꢊꢋAꢆMꢄNꢉ  
t ꢊꢋAꢆMꢄNꢉ  
t ꢊꢋAꢆMAꢌꢉ  
t ꢊꢋAꢆMAꢌꢉ  
tꢇꢈꢆꢃAUꢍꢉ  
NPOR  
< tꢁꢂNꢃꢄꢅꢆꢇꢈꢉ  
RETRY=2  
NPOR pulses low if configured via  
SELQAWDꢀ  
RETRY*  
NPOR_KEY  
RETRY=1  
RETRY=0  
WD_Fn  
POE  
POE transi�ons high aꢀer1  
successful Q&A session  
Watchdog starts its �mers and  
generates 6-bit random word  
Host writes “correct” 6-bit word back ,  
but aꢀer t Q&A(MAX)  
Host starts an internal �mer  
RETRY should decrement , but RETRY=0, so a  
Watchdog Fault occurs  
Host reads 6-bit random word and  
inverts each bit  
Host writes “correct” 6-bit word back aꢀer  
Host does not respond before tQ&A(MAX)  
tQ&A(MIN) but before t Q&A(MAX)  
Host reads 6-bit random word and  
inverts each bit  
Watchdog re-starts its �mers and  
generates a new 6-bit random word  
Host re-starts internal �mer  
Host re-starts internal �mer  
Host reads 6-bit random word and  
Watchdog re-starts its �mers and  
generates a new 6-bit random word  
inverts each bit  
Host writes 6-bit word back too early, before  
tQ&A(MIN) expires, RETRY decrements  
Host writes “incorrect” 6-bit word back  
aꢀer tQ&A(MIN) but before t Q&A(MAX)  
,
RETRY decrements  
Watchdog re -starts its �mers and  
generates a new 6-bit random word  
Host reads 6-bit random word but  
does not invert each bit  
Host re-starts internal �mer  
Figure 11: Q&A Selection, Operation, and Fault Examples.  
27  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
IDLꢄ ꢂWDꢃ  
Pꢀꢁ ꢂ 0  
ꢃꢄꢅꢆn ꢂ 1  
ꢇPOR ꢈ 0,  
ꢃꢄꢅSꢁꢉꢂꢏ00ꢐ  
Start  
NPꢀR ꢄelay  
ꢒꢁS  
ꢓUꢍ Uꢓ or  
ꢓUꢍ ꢀꢓꢎ  
Nꢀ  
NPꢀR  
ꢄelay  
ꢄoneꢎ  
Nꢀ  
ꢊncrement  
NPꢀR ꢄelay  
ꢒꢁS  
ꢇPOR ꢈ 1  
ꢆOꢇꢀIG ꢂWDꢃ  
Start  
ꢍonꢇigꢅꢈꢀ  
Pꢀꢁ ꢂ 0  
ꢃꢄꢅꢆn ꢂ 1  
NPꢀR ꢂ 1  
ꢍonꢇigꢌre ꢃꢄ  
Registers  
RꢄSꢅARꢅ  
RꢄSꢅARꢅ  
ꢒꢁS  
ꢊncrement  
ꢍonꢇigꢅꢈꢀ  
ꢃꢄꢅSꢁꢉꢂꢏ00ꢐꢎ  
Nꢀ  
ꢀLASꢁ ꢂWDꢃ  
Pꢀꢁ ꢂ 0  
DISABLꢄ ꢂWDꢃ  
Pꢀꢁ ꢂ 1  
ꢃꢄꢅꢆn ꢂ 1  
NPꢀR ꢂ 1  
ꢃꢄꢅꢆn ꢂ 1  
NPꢀR ꢂ 1  
Nꢀ  
ꢍonꢇigꢅꢈꢀ  
ꢄoneꢎ  
ꢒꢁS  
Uꢑdate ꢃꢄ  
ꢍircꢌits ꢇrom  
Registers  
Uꢑdate ꢃꢄ  
ꢍircꢌits ꢇrom  
Registers  
ꢀLASꢁ  
Start  
Selected ꢃꢄ  
Start  
ꢄeꢇalt ꢃꢄ  
DISABLꢄ  
ꢆOꢇꢀIG  
Pꢀꢁ ꢂ 1  
ꢃꢄꢅꢆn ꢂ 1  
NPꢀR ꢂ 1  
ꢇORMAL ꢂWDꢃ  
ꢀLASꢁ  
WIN  
WD  
PW  
WD  
Q&A  
WD  
DISABLꢄ  
ꢃatchdog ꢆaꢌlt  
Pꢀꢁ ꢂ 0  
ꢃꢄꢅꢆn ꢂ 0  
NPꢀR ꢂ 1  
RꢄSꢄꢅ ꢂWDꢃ  
RꢄSꢅARꢅ  
ꢀLASꢁ  
DISABLꢄ  
ꢃait ꢇor a RꢁSꢈARꢈ, ꢆꢉASH, or  
ꢄꢊSAꢋꢉꢁ command  
Figure 12: State Diagram of Watchdog Operation  
28  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Window Watchdog  
ꢂWWDꢃ  
Pulse Width Watchdog  
ꢂPWWDꢃ  
ꢀꢁA Watchdog  
ꢂꢀAWDꢃ  
Pꢃꢃꢄ  
ꢃꢄꢅSꢁꢆ ꢇ ꢈ01ꢉ  
ꢊAꢃꢄ  
ꢃꢄꢅSꢁꢆ ꢇ ꢈ11ꢉ  
ꢃꢃꢄ  
ꢃꢄꢅSꢁꢆ ꢇ ꢈ10ꢉ  
Pre-ꢊꢋaliꢌicationꢍ  
aꢌter one sꢋccessꢌꢋl  
ꢊA session, Pꢂꢁ ꢇ 1  
Pre-ꢊꢋaliꢌication when ꢎꢂUNꢏ  
starts ꢌromꢀꢀꢁD_ꢀꢂE_DLꢃ  
and decrements to0, Pꢂꢁ ꢇ 1  
Pre-ꢊꢋaliꢌication  
to allow Pꢂꢇ 1  
WD_Fn = 1  
POE = 0  
WD_Fn = 1  
POE = 0  
WD_Fn = 1  
POE = 0  
Set TRY =  
QAWD_RETRY  
Measure period  
of pulses at  
COUNT =  
PPWD_POE_DLY  
WD_IN (tWD(IN)  
)
Microcontroller  
starts �mer  
First-Edge  
Timeout  
expired?  
QAWD  
generates  
6-bit word  
ꢀꢁS  
Pulses  
valid for  
tWD(SLOW)  
Nꢂ  
RꢄSꢄꢅ  
State  
?
QAWD starts  
MIN and MAX  
�mers  
Nꢂ  
WD_Fn = 0, POE = 0,  
FFn = 0  
ꢀꢁS  
NPOR = 1,  
or 1 0 2ms 1  
if unlocked via SPI  
WD_Fn = 1  
POE = 1  
Microcontroller  
reads word  
Microcontroller  
inverts each bit of  
the word  
Non-Ac�vity  
Timeout  
expired?  
ꢀꢁS  
Set TRY =  
QAWD_RETRY  
Wait for RESTART,  
FLASH, or DISABLE  
Command  
Nꢂ  
Measure period  
of pulses at  
RꢄSꢄꢅ  
State  
Nꢂ  
MIN �me  
expired?  
Posi�ve or  
nega�ve  
pulse-width  
correct?  
COUNT =  
COUNT +  
PWWD_INC  
WD_IN (tWD(IN)  
)
Nꢂ  
WD_Fn = 0, POE = 0,  
FFn = 0  
WD_Fn = 1  
POE = 1  
ꢀꢁS  
NPOR = 1,  
or 1 0 2ms 1  
if unlocked via SPI  
Microcontroller  
writes word back to  
QAWD  
ꢀꢁS  
Nꢂ  
tWD(FAST) < tWD(IN)  
tWD(SLOW)  
<
ꢀꢁS  
?
Wait for RESTART,  
FLASH, or DISABLE  
Command  
COUNT =  
COUNT –  
PWWD_DEC  
COUNT  
PWWD_MAX?  
Nꢂ  
Nꢂ  
Nꢂ  
MAX �me  
expired?  
Correct  
answer?  
COUNT = 0?  
ꢀꢁS  
WD_Fn = 0, POE = 0,  
FFn = 0  
ꢀꢁS  
Nꢂ  
ꢀꢁS  
ꢀꢁS  
NPOR = 1,  
or 1 0 2ms 1  
if unlocked via SPI  
TRY = TRY о 1  
WD_Fn = 1  
POE = 1  
Wait for RESTART,  
FLASH, or DISABLE  
Command  
ꢀꢁS  
Nꢂ  
TRY = 0?  
RꢄSꢄꢅ  
State  
Figure 13: Watchdog Flowcharts  
29  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
SERIAL COMMUNICATION INTERFACE  
The A81407 provides the user with a full-duplex, four-wire,  
synchronous serial interface. It is compatible with the Serial  
Peripheral Interface (SPI) standard using mode 3 (CPOL = 1,  
CPHA = 1). The SPI interface uses an “out-of-frame” commu-  
nications protocol, meaning the logical response of the slave is  
within the next frame of the master, as shown in the following  
figure. The serial interface timing requirements are specified in  
the Electrical Characteristics table and illustrated in the Serial  
Interface Timing diagram (Figure 1).  
MISO: Master Input Slave Output (data output from the slave, or  
A81407). A 32-bit word, sent/received MSB first. This pin is high  
impedance when CS is high or when the Chip_ID (bit 30 from  
the previous frame) was incorrect. When CS is low, data from  
the slave is sent on this pin. The master reads/latches the data on  
the rising edge of SCK. The slave advances to the next bit on the  
falling edge of SCK.  
SCK: Serial Clock (input) from the master. There must be 32 ris-  
ing clock edges per frame. During each clock cycle, a full duplex  
data transmission occurs. The master sends a bit on the MOSI  
line and the slave reads it, while the slave sends a bit on the  
MISO line and the master reads it. This sequence is maintained  
even when only one-directional data transfer is intended. Data  
changes state on the falling edge of SCK and is latched on the ris-  
ing edge of SCK. SCK must be set high before CS transitions.  
ꢃrame 1  
ꢃrame ꢄ  
ꢀS  
MꢁSꢂ  
MꢂSꢁ  
CS: Chip Select (input) from the master. When CS is high MISO  
is high impedance, and activity on MOSI and SCK is ignored.  
This allows multiple SPI slaves to have common MISO, SCK, and  
MOSI connections. However, each slave must have a dedicated  
CS signal. CS is brought low to initiate a serial transfer. When 32  
data bits have been clocked into the shift register, CS must be taken  
high to latch the data into the selected register. When this occurs,  
the internal control circuits act on the new data.  
Figure 14: Out-of-Frame SPI Communication  
Each 32-bit frame has a read/write bit, WR (bit 29). This bit must  
be set to 1 to write the subsequent bits into the selected register.  
If WR is set to 0 (a read), then the data bits (20 to 5) are ignored.  
The state of the WR bit also determines the data output on MISO.  
If WR is set to 1 then general diagnostic information is output.  
If WR is set to 0 then the contents of the register selected by the  
address bits is output.  
If CS transitions high and there are fewer than 32 rising edges  
on SCK, the write will be cancelled and no data will be written  
to the registers. Similarly, if there are more than 32 rising edges  
on SCK while CS is low, the write will be cancelled and no data  
will be written. In both cases, the SE (serial error) and FF (Fault  
Flag) bits will be set high, and FFn pin (microcontroller interrupt)  
pulled low to indicate a data transfer error.  
MOSI: Master Output Slave Input (data input from the master). A  
32-bit word, sent/received MSB first. When CS is low, data from  
the master is received on this pin. The slave reads/latches the data  
on the rising edge of SCK. The master advances to the next bit on  
the falling edge of SCK.  
ꢂS  
Sꢂꢃ  
Always  
0
Always  
0
R ꢈ ꢉ  
1 or 0  
Hꢄ-ꢆ  
1 or 0  
Hꢄ-ꢆ  
MꢅSꢄ  
MꢄSꢅ  
Always  
0
Always  
1
ꢇataꢅꢃ  
ꢀit ꢁ9  
ꢀit 31  
ꢀit 30  
ꢀit 0  
Undeꢊined  
Figure 15: Example SPI Communications  
Data changes on the falling edge of SCK. Data is latched on the rising edge of SCK  
30  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
SPI FRAME DEFINITIONS:  
1. Chip_ID, bit 30 in both the MISO or MOSI frames, ensures that the A81407 only accepts commands meant for it when it shares  
SPI with a second device. For the A81407, the Chip_ID shall be internally fixed at 0. For the second device on SPI , Chip_ID  
should be internally fixed at 1. Seperate chip selects are still required for each device.  
An incorrect Chip_ID bit can have varying results on the MISO line. These results depend on what MISO is doing during the cur-  
rent frame (sending data or tri-state) and if there is an error on the MOSI data. Below table summarizes MISO response based on  
Chip_ID and errors.  
Current Frame  
Next Frame  
MOSI  
MISO  
MISO  
Bit 31  
Bit 30  
Error  
No  
0
1
0
x
x
x
x
Tri-state  
Normal response  
Tri state  
0
No  
x
Tri state  
Sending data  
x
x
Yes  
Yes  
No  
x
Sends error frame  
Tristate  
1
x = don’t care  
2. MOSI and MISO frames: include a 5-bit CRC calculated from bits 30 to bit 5.  
A. The MSB is static, so it does not need to be included in the CRC calculation. It can be checked at the Host or Device side  
independently.  
B. Polynomial of 0x12 (x5 + x2 +1) is used, with a start value of 11111b and a target of 00000b.  
C. Covers every single and dual bit errors.  
D. Achieves a Hamming Distance of 3.  
E. Every 4 consecutive bit error.  
F. Line stuck low/high detected.  
G. If a CRC Error occurs, the SE and FF bits are set to 1, and the FFn pin is pulled low  
3. MISO frame includes a 5-bit Message ID, bits 28 to 24.  
4. MISO frame includes a 3-bit Frame Counter, bits 23 to 21.  
5. Writing and reading 2-bit patterns to the read-back register checks SPI integrity.  
31  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
HOST COMMANDS:  
Bits 31 is static and must be set to 0.  
Bit 30, the Chip_ID, is fixed at 0 for the A81407.  
Bit 29 indicates a write or a read: 1 = Write, 0 = Read.  
For a read command, the data bits are considered “don’t care” (DC).  
Write command from the Host to the MOSI pin:  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
1
1
0
0
0
0
1
5-bit address  
DC  
16-bit data  
5-bit CRC  
Read command from the Host to the MOSI pin:  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
5-bit address DC  
2
0
0
0
16-bit data (ignored for a read command)  
5-bit CRC  
Device Responses:  
Bit 31 is static, fixed at 1.  
Bit 30, the Chip_ID, is fixed at 0 for the A81407  
Bit 29 indicates if the 16-bit data is valid:  
1 = valid data, no errors detected  
0 = normal response after a MOSI Write, or an error was detected (i.e. SE or CRC) so general status bits are sent  
Pattern at the MISO pin after a MOSI Read where the 16-bit data is valid (i.e. no errors detected)  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
0
0
5-bit Message ID  
(Prev_A4:0)  
Frame  
Counter  
1
0
1
16-bit data  
5-bit CRC  
Pattern at the MISO pin after an MOSI Write, or  
Pattern at the MISO pin after an MOSI Read where the 16-bits of data are not as requested (i.e. an error was detected)  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
5-bit Message ID  
(Prev_A4:0)  
Frame  
Counter  
1
0
0
5-bit CRC  
32  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
This should capture the cause of the FFn transition. The Write  
operation and status update are shown as Frame 1 / WRITEn  
in Figure 16. After the first Write, the microcontroller should  
perform a second write (in this case only, a read would also be  
acceptable). This operation is shown as Frame 2 / WRITEn+1 in  
Figure 16. During Frame 2, the 16 SPI diagnostic status bits (FF,  
SE, DBE, ENBAT_S, ENB_S, etc.) are clocked out on the MISO  
pin. If the root cause of FFn is not clear from these 16 bits, then  
the microcontroller must read each of the four status registers  
(0x00 to 0x03) to search for the root cause.  
STATUS UPDATES AND SPI PROCEDURE IF FFN→0  
The SPI diagnostic status bits of the A81407 are updated at the  
end of each SPI frame (i.e. when CS transitions high). This is  
shown by the “STATUS Latched” signal in Figure 16.  
If the FFn signal transitions low, the microcontroller must imme-  
diately perform a SPI Write. To avoid inadvertently changing  
important configuration data, the Write should be done to the  
readback register (0x0C). Any 16-bits of data will suffice. At the  
end of this Write, the SPI diagnostic status bits will be latched.  
tꢀSꢃHꢆ  
ꢊrame ꢋ  
ꢊrame n-1  
ꢀS  
ꢊrame 1  
MꢂSꢁ  
ꢃꢄata ꢁnꢆ  
WRITEn-1  
or READn-1  
WRITEn+1  
or READn+1  
WRITEn  
SꢇAꢇUS ꢈ  
ꢉatched  
STATUS n,  
why FFn0  
MꢁSꢂ  
ꢃꢄata ꢂꢅtꢆ  
STATUS n-1  
or DATA n-1  
Don͛ t Care  
ꢇhe caꢅse oꢌ ꢊꢊn actiꢍation is latched  
at the end oꢌ the ꢌollowing SPꢁ ꢌrame.  
ꢊꢊn  
Figure 16: Recommended SPI Operations after FFn→0  
* The “STATUS Latched” signal is internal to the IC  
33  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
mally, this would cause an UV fault to occur. However the fault  
flag (both FF and FFn) will not register a fault as this condition  
Register Mapping  
STATUS REGISTERS  
is expected and internally “masked”. Both the UV and OV faults  
are masked when any LDO is disabled. This allows the system to  
disable one of the V5P LDOs and still maintain interrupt func-  
tionality to the microcontroller via the fault flag (FFn) pin. Also,  
if an LDO is disabled/off, the corresponding SPI diagnostic status  
bits (V5P1_OK or V5P2_OK) will indicate “OK”, (i.e. be 1b).  
The A81407 provides four status registers. These registers are  
read only. They provide realtime status of various functions  
within the A81407.  
These registers report on the status of all four system rails: VUC,  
V5A, V5P1, and V5P2. They also report on internal rail status,  
such as VREG and the charge pumps. The general fault flag (FF),  
watchdog fault flag (WD_F), and watchdog state (WD_STATE)  
are found in these status registers.  
Control Bits  
Status Bits  
FF  
Bit  
FFn  
Pin  
V5Px_EN_1  
V5Px_EN_0  
V5Px_UV  
Don’t care  
V5Px_OV  
0
0
1
1
1
0
1
0
1
1
Don’t care  
Mask UV & OV  
Mask UV & OV  
Mask UV & OV  
If previous state was off  
If previous state was off  
CONFIGURATION REGISTERS  
1
0
0
1
1
1
0
0
Four registers in the A81407 are used for configuration. Two of  
these registers are dedicated to setting the watchdog parameters.  
The watchdog registers can only be configured while in the  
CONFIG state. This occurs after the A81407 is first enabled or the  
watchdog receives a secure SPI “RESTART” command.  
WATCHDOG MODE KEY REGISTER  
At times it may be necessary to reflash or restart the processor. To  
do this, the user should put the watchdog into “FLASH” mode.  
This is done by writing a sequence of keywords to the “wd_cmd_  
key” register. If the correct word sequence is not received, then  
the sequence must restart. While in FLASH mode, the A81407  
sets NPOR high, WD_Fn high, and POE low.  
The type of watchdog is selected via WD_SEL_(1:0). The default  
watchdog is the Pulse Width Watchdog (PWWD). The pulse width  
watchdog parameters are programmed in registers 0x0B.  
The window watchdog (WWD) fast and slow timers are pro-  
grammed in register 0x0A. The Q&A watchdog (QAWD) timers,  
allowed number of retries, and 6-bit random word reside in regis-  
ter 0x0A.  
Once flash is complete the processor must send the restart sequence  
of keywords for the watchdog to exit FLASH mode. If VCC has not  
been removed the watchdog will restart with the new configuration.  
Configuration register 0x08 and 0x09 allows the user to disable  
the PWM dither feature, modify the response to a watchdog fault  
(at pins Gz and FFn), mask faults, select the battery disconnect  
deglitch/filter time, select the phase isolator delay time, change the  
safe-state of the phase isolators, and control the analog multiplexor.  
VERIFY RESULT REGISTERS  
At power-up, the A81407 performs a self-test of the UV and OV  
detect circuits. This test should cause their diagnostic registers to  
toggle state. If any diagnostic register does NOT change state, the  
corresponding verify result register will latch high and FFn will  
be set low. Self-test requires much less than 1 ms at power-up,  
typically 350 to 500 µs.  
ENABLE/DISABLE REGISTER  
The enable/disable registers provide the user independent control  
of the V5Px outputs and the phase isolator gate drivers (GVBB,  
GU, GV, GW).  
Upon completion of power-up, the system’s microcontroller may  
be interrupted by FFn. At that time, the microcontroller should  
examine the verify result registers to determine which self-test  
failed. If a register contains a “1”, the microcontroller should  
make note of the failure and decide how to proceed.  
Two, nonadjacent control bits must be set to enable or disable an  
output. If the two bits do not match (01, or 10), then the output or  
gate drivers maintains its previous state.  
Lastly, the microcontroller should write a “1” to the failed regis-  
ter bits (RW1C) to clear it and regain functionality of FFn.  
By default, V5P1, and V5P2 are “on”, but can be disabled via  
SPI. If either LDO is disabled its output will decay to 0 V. Nor-  
34  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Table 3: Register Map  
D20  
D12  
FF  
D19  
D11  
D18  
D10  
D17  
D9  
D16  
D8  
D15  
D7  
D14  
D6  
D13  
D5  
DEC  
HEX Address  
Register  
Name  
Type  
RO  
Address  
SE  
WD_Fn_S  
WD_Fn_OK  
V5A_OK  
LG_OK  
POE_S  
POE_OK  
NPOR_S  
NPOR_OK  
TSD_F  
DBE  
UNUSED  
ENBAT_S  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0
1
status_0  
status_1  
LX_OK  
ENB_S  
V5P2_OK  
VCP_OK  
VREG_OK  
UNUSED  
*SVBB_UV  
UNUSED  
VUC_OK  
UNUSED  
GSVBB_UV  
GSVBB_OV  
V5P1_OK  
RO  
D1_OK [1]  
GSV_UV  
GSV_OV  
VCP2_OK  
GSW_UV  
GSW_OV  
[1]  
GSU_UV  
GSU_OV  
NPOR_IN_(1:0)  
*RW1C,  
RO  
2
status_2  
WD_STATE_(2:0)  
PWWD_COUNT_(7:0)  
3
status_3  
RO  
RW1C  
RW1C  
RW  
UNUSED  
UNUSED  
UNUSED  
VCP_UV  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
VUC_OV  
UNUSED  
VUC_UV  
VREG_OV  
VREG_UV  
4
diagnostic_0  
diagnostic_1  
enable/disable  
V5A_OV  
UNUSED  
UNUSED  
ENU_1  
V5A_UV  
UNUSED  
UNUSED  
ENVBB_1  
VCP2_OV (1) VCP2_UV (1)  
V5P1_OV  
UNUSED  
V5P1_UV  
UNUSED  
V5P2_OV  
UNUSED  
ENU_0  
V5P2_UV  
UNUSED  
ENVBB_0  
5
UNUSED  
ENW_1  
UNUSED  
ENV_1  
ENW_0  
ENV_0  
6
V5P2_EN_1  
WD_KEY_7  
V5P1_EN_1  
WD_KEY_6  
V5P2_EN_0  
WD_KEY_3  
V5P1_EN_0  
WD_KEY_2  
wd_cmd_keys  
WD_KEY_5  
WD_KEY_4  
WD_KEY_1  
WD_KEY_0  
7
WO  
npor_inputs_key  
NPOR_KEY_7 NPOR_KEY_6 NPOR_KEY_5 NPOR_KEY_4 NPOR_KEY_3 NPOR_KEY_2 NPOR_KEY_1 NPOR_KEY_0  
DITH_DIS  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
8
config_0  
config_1  
RW  
WDF_2_Gz  
WDF_2_FFn  
GD_FLT_ON  
MASK_(3:0)  
WD_SEL_(1:0)  
GD_UV_SEL  
GD_EN_SEL  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
9
RW  
SEL_MUX_(3:0)  
WWD_TIMER_(2:0)  
QAWD_RETRY_(1:0)  
UNUSED  
QAWD_TIMER_(3:0)  
QAWD_RAND_(5:0)  
10  
11  
12  
13  
14  
config_2: WD [2]  
config_3: WD [2]  
readback  
RW  
PWWD_EDGE_TO_(1:0)  
PWWD_DEC_(1:0)  
PWWD_ACT_TO_(1:0)  
PWWD_INC_(1:0)  
PWWD_WIN_TOL_(1:0)  
PWWD_MAX_(1:0)  
PWWD_PW_(1:0)  
PWWD_POE_DLY_(1:0)  
RW  
READBACK_(15:8)  
READBACK_(7:0)  
VUC_OV_FAIL VUC_UV_FAIL V5A_OV_FAIL V5A_UV_FAIL  
BIST_FAIL TSD_BIST_FAIL VREG_OV_FAIL VREG_UV_FAIL V5P1_OV_FAIL V5P1_UV_FAIL V5P2_OV_FAIL V5P2_UV_FAIL  
RW  
verify_result_0  
verify_result_1  
RW1C  
RW1C  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
[1] Applies only if the block diagram includes this pin or function. If the pin or function does not exist the status bit will always indicate a non-fault or OK condition.  
[2] With the exception of QAWD_RAND, the WatchDog (WD) registers only take effect after the state machine exits the CONFIG mode.  
35  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x00. Status Register 0:  
D20  
D19  
SE  
D18  
WD_Fn_S  
D10  
D17  
POE_S  
D9  
D16  
NPOR_S  
D8  
D15  
TSD_F  
D7  
D14  
DBE  
D13  
UNUSED  
D5  
Data Bit /  
Name  
FF  
D12  
D11  
D6  
Data Bit /  
Name  
UNUSED  
LX_OK  
WD_Fn_OK  
POE_OK  
NPOR_OK  
UNUSED  
ENB_S  
ENBAT_S  
ADDRESS: 00000b, TYPE: Read Only (RO)  
FF [D20]  
Fault Flag  
0
No Fault (default)  
1
Fault detected  
SE [D19]  
Serial Communications Error  
No error (default)  
0
1
Fault: less than or more than 32 rising SCK edges in a frame, or CRC Error  
WD_Fn_S [D18]  
Watchdog Fault, Pin Status  
0
Fault  
1
No fault or watchdog is disabled (default)  
POE_S [D17]  
Power On Enable internal logic status  
0
POE is low (default)  
1
POE is high  
NPOR_S [D16]  
Power On Reset internal logic status  
0
NPOR is low (default)  
1
NPOR is high  
TSD_F [D15]  
Thermal Shutdown status  
0
Temperature is OK (default)  
1
Overtemperature event  
DBE [D14]  
EEPROM configuration/calibration error of 2 or more bits at power-up  
0
No fault (default)  
1
Fault  
UNUSED [D13:D12]  
Unused at this time.  
LX_OK [D11]  
Shows the switching node of the pre-regulator is OK  
0
Fault, LX is likely shorted to ground  
1
No fault, LX is functioning/switching (default)  
WD_Fn_OK [D10]  
WD_Fn pin matches what the A81407 is demanding (the WD_F bit)  
0
Fault  
1
No fault (default)  
POE_OK [D9]  
Power On Enable output pin matches what the A81407 is demanding  
0
Fault  
1
No fault (default)  
NPOR_OK [D8]  
NPOR output pin matches what the A81407 is demanding  
0
Fault  
1
No fault (default)  
UNUSED [D7]  
Unused at this time  
ENB_S [D6]  
Status of the logic enable input pin (ENB)  
ENB is low (default)  
0
1
ENB is high  
ENBAT_S [D5]  
Status of the high voltage enable input pin (ENBAT)  
ENBAT is low (default)  
ENBAT is high  
0
1
36  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x01. Status Register 1:  
D20  
VREG_OK  
D12  
D19  
VUC_OK  
D11  
D18  
V5A_OK  
D10  
D17  
UNUSED  
D9  
D16  
UNUSED  
D8  
D15  
V5P1_OK  
D7  
D14  
V5P2_OK  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
UNUSED  
UNUSED  
LG_OK  
D1_OK  
VCP2_OK  
UNUSED  
VCP_OK  
UNUSED  
ADDRESS: 00001b, TYPE: Read Only (RO)  
VREG_OK [D20]  
Shows the voltage at the pre-regulator output pin is within regulation  
0
Fault  
1
No fault (default)  
VUC_OK [D19]  
Shows the voltage at the VUC pin is within regulation  
0
Fault  
1
No fault (default)  
V5A_OK [D18]  
Shows the voltage at the V5A output is within regulation  
0
Fault  
1
No fault (default)  
UNUSED [D17:D16]  
Unused at this time  
V5P1_OK [D15]  
Shows the voltage at the V5P1 output is within regulation  
0
Fault  
1
No fault (default), or V5P1 has been turned off  
V5P2_OK [D14]  
Shows the voltage at the V5P2 output is within regulation  
0
Fault  
1
No fault (default), or V5P2 has been turned off  
UNUSED [D13:D11]  
Unused at this time  
LG_OK [D10]  
Indicates if the Boost drive, LG pin, matches the commanded value  
0
Fault  
1
No fault, LG is either off (VVIN > 8.5 V), or working correctly (default)  
D1_OK [D9]  
Indicates if the Pre-Regulator Asynchronous diode is OK, or missing  
0
Fault, D1 is missing  
1
No fault, D1 is OK (default)  
VCP2_OK [D8]  
Shows the voltage at the VCP2 pin is within regulation  
0
Fault  
1
No fault (default)  
UNUSED [D7]  
Unused at this time  
VCP_OK [D6]  
Shows the voltage at the VCP pin is within regulation  
0
Fault  
1
No fault (default)  
Unused at this time  
UNUSED [D5]  
37  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x02. Status Register 2:  
D20  
* SVBB_UV  
D12  
D19  
D18  
GSU_UV  
D10  
D17  
GSV_UV  
D9  
D16  
GSW_UV  
D8  
D15  
NPOR_IN_1  
D7  
D14  
NPOR_IN_0  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
GSVBB_UV  
D11  
Data Bit /  
Name  
UNUSED  
GSVBB_OV  
GSU_OV  
GSV_OV  
GSW_OV  
WD_STATE_(2:0)  
ADDRESS: 00010b, TYPE: Read Only (RO)  
SVBB_UV [D20]  
GND (‒) to SVBB (+) under voltage status  
The voltage at the SVBB pin is OK (default)  
The voltage at the SVBB pin is too low  
0
1
GSVBB_UV [D19]  
Indicates the voltage from SVBB (‒) to GVBB (+) is stuck low  
Gate-to-source voltage is OK (default)  
0
1
Gate-to-source voltage is supposed to be high/on, but remains low  
Indicates the voltage from SU (‒) to GU (+) is stuck low  
Gate-to-source voltage is OK (default)  
GSU_UV [D18]  
0
1
Gate-to-source voltage is supposed to be high/on, but remains low  
Indicates the voltage from SV (‒) to GV (+) is stuck low  
Gate-to-source voltage is OK (default)  
GSV_UV [D17]  
0
1
Gate-to-source voltage is supposed to be high/on, but remains low  
Indicates the voltage from SW (‒) to GW (+) is stuck low  
Gate-to-source voltage is OK (default)  
GSW_UV [D16]  
0
1
Gate-to-source voltage is supposed to be high/on, but remains low  
NPOR_IN_1  
NPOR_IN_0  
[D14]  
NPOR Input Control  
[D15]  
0
0
1
1
0
1
0
1
VUC_OK only (default)  
VUC_OK and V5A_OK  
VUC_OK and Watchdog Fault (WD_F)  
VUC_OK and V5A_OK and Watchdog Fault (WD_F)  
Unused at this time  
UNUSED [D13:D12]  
GSVBB_OV [D11]  
Indicates the voltage from SVBB (‒) to GVBB (+) is stuck high  
Gate-to-source voltage is OK (default)  
0
1
Gate-to-source voltage is supposed to be low/off, but remains high  
Indicates the voltage from SU (‒) to GU (+) is stuck high  
Gate-to-source voltage is OK (default)  
GSU_OV [D10]  
0
1
Gate-to-source voltage is supposed to be low/off, but remains high  
Indicates the voltage from SV (‒) to GV (+) is stuck high  
Gate-to-source voltage is OK (default)  
GSV_OV [D9]  
0
1
Gate-to-source voltage is supposed to be low/off, but remains high  
Indicates the voltage from SW (‒) to GW (+) is stuck high  
Gate-to-source voltage is OK (default)  
GSW_OV [D8]  
0
1
Gate-to-source voltage is supposed to be low/off, but remains high  
WD_STATE_2 WD_STATE_1  
WD_STATE_0  
WatchDog State  
[D5]  
[D7]  
[D6]  
0
0
0
1
0
1
0
1
0
1
IDLE  
0
0
CONFIG  
0
1
RESET  
0
1
NORMAL  
1
0
FLASH  
1
0
DISABLED  
Reserved / Future Use  
Reserved / Future Use  
1
1
1
1
38  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x03. Status Register 3:  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
Data Bit /  
Name  
PWWD_COUNT_(7:0)  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
Data Bit /  
Name  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ADDRESS: 00011b, TYPE: Read Only (RO)  
PWWD_COUNT_ [D20:D13]  
Indicates the value of the error counter of the Pulse Width Watchdog  
00000000  
0 (starting value)  
.
.
.
.
.
.
10100000  
160, default maximum value  
.
.
.
.
11011100  
220, alternate maximum value selectable via SPI  
UNUSED [D12:D5]  
Unused at this time  
39  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x04. Diagnostic Register 0:  
D20  
UNUSED  
D12  
D19  
UNUSED  
D11  
D18  
UNUSED  
D10  
D17  
UNUSED  
D9  
D16  
VREG_OV  
D8  
D15  
VREG_UV  
D7  
D14  
VUC_OV  
D6  
D13  
VUC_UV  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
UNUSED  
VCP_UV  
V5A_OV  
V5A_UV  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ADDRESS: 00100b, TYPE: Read, or Write 1 to Clear (RW1C)  
UNUSED [D20:D17]  
Unused at this time  
VREG_OV [D16]  
Indicates an overvoltage occurred at the buck pre-regulator output  
0
No fault (default)  
1
Fault  
VREG_UV [D15]  
Indicates an undervoltage occurred at the buck pre-regulator output  
0
No fault (default)  
1
Fault  
VUC_OV [D14]  
Indicates an overvoltage occurred at the VUC LDO output  
0
No fault (default)  
1
Fault  
VUC_UV [D13]  
Indicates an undervoltage occurred at the VUC LDO output  
0
No fault (default)  
1
Fault  
UNUSED [D12]  
Unused at this time  
VCP_UV [D11]  
Indicates an undervoltage occurred at the VCP pin  
0
No fault (default)  
1
Fault  
V5A_OV [D10]  
Indicates an overvoltage occurred at the V5A LDO output  
0
No fault (default)  
1
Fault  
V5A_UV [D9]  
Indicates an undervoltage occurred at the V5A LDO output  
0
No fault (default)  
Fault  
1
UNUSED [D8:D5]  
Unused at this time  
40  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x05. Diagnostic Register 1:  
D20  
VCP2_OV  
D12  
D19  
VCP2_UV  
D11  
D18  
UNUSED  
D10  
D17  
UNUSED  
D9  
D16  
V5P1_OV  
D8  
D15  
V5P1_UV  
D7  
D14  
V5P2_OV  
D6  
D13  
V5P2_UV  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ADDRESS: 00101b, TYPE: Read, or Write 1 to Clear (RW1C)  
VCP2_OV [D20]  
Indicates an overvoltage occurred at the VCP2 pin  
0
No fault (default)  
1
Fault  
VCP2_UV [D19]  
Indicates an undervoltage occurred at the VCP2 pin  
0
No fault (default)  
1
Fault  
UNUSED [D18:D17]  
Unused at this time.  
V5P1_OV [D16]  
Indicates an overvoltage occurred at the V5P1 LDO output  
0
No fault (default)  
1
Fault  
V5P1_UV [D15]  
Indicates an undervoltage occurred at the V5P1 LDO output  
0
No fault (default)  
1
Fault  
V5P2_OV [D14]  
Indicates an overvoltage occurred at the V5P2 LDO output  
0
No fault (default)  
1
Fault  
V5P2_UV [D13]  
Indicates an undervoltage occurred at the V5P2 LDO output  
0
No fault (default)  
Fault  
1
UNUSED [D12:D5]  
Unused at this time.  
41  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x06. Enable/Disable Register:  
D20  
ENW_1  
D12  
D19  
D18  
ENU_1  
D10  
D17  
ENVBB_1  
D9  
D16  
ENW_0  
D8  
D15  
ENV_0  
D7  
D14  
ENU_0  
D6  
D13  
ENVBB_0  
D5  
Data Bit /  
Name  
ENV_1  
D11  
Data Bit /  
Name  
V5P2_EN_1  
V5P1_EN_1  
UNUSED  
UNUSED  
V5P2_EN_0  
V5P1_EN_0  
UNUSED  
UNUSED  
ADDRESS: 00110b, TYPE: Read or Write (RW)  
ENW_1 [D20]  
ENW_0 [D16]  
Controls the on/off status of the GW gate driver  
Disabled (default)  
0
0
0
1
Maintain previous state  
Maintain previous state  
Enabled  
1
0
1
1
ENV_1 [D19]  
ENV_0 [D15]  
Controls the on/off status of the GV gate driver  
Disabled (default)  
0
0
0
1
Maintain previous state  
Maintain previous state  
Enabled  
1
0
1
1
ENU_1 [D18]  
ENU_0 [D14]  
Controls the on/off status of the GU gate driver  
Disabled (default)  
0
0
1
0
1
0
Maintain previous state  
Maintain previous state  
Enabled  
1
1
ENVBB_1 [D17]  
ENVBB_0 [D13] Controls the on/off status of the GVBB gate driver  
0
0
1
0
1
Disabled (default)  
Maintain previous state  
Maintain previous state  
Enabled  
0
1
1
V5P2_EN_1 [D12]  
V5P2_EN_1 [D8] Controls the on/off status of the V5P2 LDO output  
0
0
1
0
1
Disabled  
0
Maintain previous state  
Maintain previous state  
Enabled (default)  
1
1
V5P1_EN_1 [D11]  
V5P1_EN_1 [D7] Controls the on/off status of the V5P1 LDO output  
0
0
1
1
0
1
0
1
Disabled  
Maintain previous state  
Maintain previous state  
Enabled (default)  
UNUSED [D10:D9]  
UNUSED [D6:D5]  
Unused at this time  
Unused at this time  
42  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x07. Watchdog Command & NPOR Input Keys:  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
Data Bit /  
Name  
WD_  
KEY_7  
WD_  
KEY_6  
WD_  
KEY_5  
WD_  
KEY_4  
WD_  
KEY_3  
WD_  
KEY_2  
WD_  
KEY_1  
WD_  
KEY_0  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
Data Bit /  
Name  
NPOR_  
KEY_7  
NPOR_  
KEY_6  
NPOR_  
KEY_5  
NPOR_  
KEY_4  
NPOR_  
KEY_3  
NPOR_  
KEY_2  
NPOR_  
KEY_1  
NPOR_  
KEY_0  
ADDRESS: 00111b, TYPE: Write Only (WO)  
Watchdog Mode Key – Three 8-bit words (WORD1 – WORD3) must be  
sent in the correct order to enable flash mode or restart the watchdog.  
If an incorrect word is receive then the register resets and the first word  
must be resent. The third 8-bit word (WORD3) is the command to force  
the Watchdog to transition from state to state.  
WD_KEY [D20:D13]  
FLASH  
Command  
CONFIG  
Command  
RESTART  
Command  
DISABLE  
Command  
WORD1 (Key)  
WORD2 (Key)  
0xD3  
0x33  
0xCC  
0xD3  
0x33  
0xCD  
0xD3  
0x33  
0xCE  
0xD3  
0x33  
0xCF  
WORD3 (Command)  
NPOR Key – Two 8-bit words (WORD1, WORD2) must be sent in the  
correct order to unlock the NPOR configuration register. If an incorrect  
word is received then the register resets and the first word must be  
resent. A third 8-bit word (WORD3) adds V5A_OK to the NPOR logic. If  
the A81407 experiences a master reset (MPOR) it will transition back to  
the default state.  
NPOR_KEY [D12:D5]  
Inputs to the NPOR logic are  
VUC_OK  
WD_F  
V5A_OK  
WORD1 (Key)  
WORD2 (Key)  
0xD4  
0x2B  
0xA5  
0xA6  
0xA7  
Yes (default)  
No (default)  
No (default)  
Yes  
Yes  
Yes  
Yes (low for 2 ms)  
No  
No  
Yes  
Yes  
WORD3 (Command)  
Yes (low for 2 ms)  
43  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x08. Configuration Register 0:  
D20  
DITH_DIS  
D12  
D19  
UNUSED  
D11  
D18  
UNUSED  
D10  
D17  
UNUSED  
D9  
D16  
UNUSED  
D8  
D15  
UNUSED  
D7  
D14  
UNUSED  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
WDF_2_Gz  
UNUSED  
WDF_2_FFn  
UNUSED  
UNUSED  
Pre-Reg Off  
UNUSED  
UNUSED  
ADDRESS: 01000b, TYPE: Read or Write (RW)  
DITH_DIS [D20]  
Controls the status of PWM frequency dithering  
Dithering is enabled (default)  
0
1
Dithering is disabled  
UNUSED [D19:D13]  
WDF_2_Gz [D12]  
0
Unused at this time.  
Determines if a watchdog fault affects the four gate drivers  
Gate drivers will not be affected if a WD_F occurs (default)  
All four gate drivers (GVBB, GU, GV, GW) will be turned off if a WD_F  
occurs.  
1
UNUSED [D11]  
Unused at this time.  
WDF_2_FFn [D10]  
Determines if a Watchdog Fault force FFn low  
FFn will not transition low if a Watchdog Fault occurs (default)  
FFn will transition low if a Watchdog Fault occurs  
Unused at this time.  
0
1
UNUSED [D9:D8]  
Pre-Reg Off [D7]  
Controls the masking of VREG_OV fault  
FFn will transition low if an overvoltage occurs on VREG (default)  
FFn will not transition low if an overvoltage occurs on VREG  
Unused at this time.  
0
1
UNUSED [D6:D5]  
44  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x09. Configuration Register 1:  
D20  
D19  
D18  
GD_FLT_ON  
D10  
D17  
GD_UV_SEL  
D9  
D16  
GD_EN_SEL  
D8  
D15  
UNUSED  
D7  
D14  
UNUSED  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
WD_SEL_(1:0)  
D12  
D11  
Data Bit /  
Name  
SEL_MUX_(3:0)  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ADDRESS: 01001b, TYPE: Read or Write (RW)  
WD_SEL_1 [D20]  
WD_SEL_0 [D19] TYPE OF ACTIVE WATCHDOG  
0
0
1
1
0
1
0
1
None, power-up value for WD_SEL_(1:0)  
Pulse Width Watchdog (PWWD) (default, after tCONFIG(WD)  
)
Window Watchdog (WWD)  
Q&A Watchdog (QAWD)  
Sets the fault-state of the three gate drivers, GU, GV, and GW,  
for any fault other than a watchdog fault.  
GD_FLT_ON [D18]  
0
Fault-state of GU, GV, and GW is off. Inverse of the fault table.  
1
GU, GV, and GW operate as shown in the fault table (default).  
GD_UV_SEL [D17]  
Selects the gate driver under voltage filter/deglitch delay times  
0
Slow  
1
Fast (default)  
GD_EN_SEL [16]  
Selects the gate driver enable/disable delay times  
0
1
Slow  
Fast (default)  
SEL_MUX_3  
[D12]  
SEL_MUX_2  
[D11]  
SEL_MUX_1  
[D10]  
SEL_MUX_0  
[D9]  
MUX  
OUTPUT  
DIVIDER  
RATIO  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VREG  
VUC  
÷2  
÷2  
÷2  
÷2  
÷2  
÷8  
÷1  
÷1  
**  
V5A  
V5P1  
V5P2  
ENBAT  
BG1  
BG2  
TEMP  
VIN  
÷10  
÷12  
÷12  
VCP2  
VCP  
Unused  
Unused  
Unused  
Unused  
** VTEMP = 1440 mV – 3.92 mV/°C × TJ (°C)  
UNUSED [D8:D5]  
Unused at this time.  
45  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x0A. Configuration Register 1 (WD):  
D20  
D19  
WWD_TIMER_(2:0)  
D11  
D18  
D10  
D17  
UNUSED  
D9  
D16  
D15  
D14  
D13  
Data Bit /  
Name  
QAWD_TIMER_(3:0)  
D12  
D8  
D7  
D6  
D5  
Data Bit /  
Name  
QAWD_RETRY_(1:0)  
QAWD_RAND_(5:0)  
ADDRESS: 01010b, TYPE: Read or Write (RW)  
WWD_TIMER_2  
[D20]  
WWD_TIMER_1  
[D19]  
WWD_TIMER_0  
[D18]  
tWD(FAST) (ms)  
tWD(SLOW) (ms)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.5  
4
1
8
2
16  
4 (default)  
32 (default)  
6
8
42  
64  
10  
12.5  
80  
100  
QAWD_  
QAWD_  
QAWD_  
QAWD_  
MIN_TIMEOUT MAX_TIMEOUT  
TIMER_3 [D16] TIMER_2 [D15] TIMER_1 [D14] TIMER_0 [D13]  
tQ&A(MIN) (ms)  
tQ&A(MAX) (ms)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.5  
1
1
2
4
2
3
8
8
16  
12  
24  
16 (default)  
32 (default)  
48  
24  
32  
64  
40  
80  
64  
128  
144  
160  
192  
256  
288  
72  
80  
96  
128  
144  
QAWD_RETRY_1 QAWD_RETRY_0 ACCEPTABLE NUMBER OF RETRIES  
[D12]  
[D11]  
0
0
1
1
0
1
0
1
0 times  
1 time (default)  
3 times  
7 times  
Randomly generated 6-bit word for the Q&A watchdog.  
These bits must support read (Q) and write (A) from the micro-  
controller during NORMAL mode of operation.  
QAWD_RAND [D10:D5]  
46  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x0B. Configuration Register 2 (WD):  
D20  
PWWD_EDGE_TO(1:0)  
D12 D11  
PWWD_DEC_(1:0)  
D19  
D18  
PWWD_NONACT_TO_(1:0)  
D10 D9  
PWWD_INC_(1:0)  
D17  
D16  
PWWD_WIN_TOL_(1:0)  
D8 D7  
PWWD_MAX_(1:0)  
D15  
D14  
D13  
Data Bit /  
Name  
PWWD_PW_(1:0)  
D6  
D5  
Data Bit /  
Name  
PWWD_POE_DLY_(1:0)  
ADDRESS: 01011b, TYPE: Read or Write (RW)  
PWWD_EDGE_TO_1 [D20]  
PWWD_EDGE_TO_0 [D19]  
FIRST-EDGE TIMEOUT (ms)  
0
0
2.5  
0
1
5 (default)  
1
0
10  
1
1
15  
PWWD_ACT_TO_1 [D18]  
PWWD_ACT_TO_0 [D17]  
NON-ACTIVITY TIMEOUT (ms)  
0
0
8
0
1
16 (default)  
1
0
24  
1
1
32  
PWWD_WIN_TOL_1 [D16]  
PWWD_WIN_TOL_0 [D15]  
WINDOW TOLERANCE (%)  
0
0
±8  
0
1
±13 (default)  
1
0
±18  
1
1
±23  
PWWD_PW_1 [D14]  
PWWD_PW_0 [D13]  
PULSE WIDTH (ms)  
0
0
0.5  
0
1
1.0 (default)  
1
0
1.5  
1
1
2.0  
PWWD_DEC [D12]  
PWWD_DEC [D11]  
DECREMENT AMOUNT (counts)  
0
0
1
0
1
2 (default)  
1
0
3
1
1
4
PWWD_INC [D10]  
PWWD_INC [D9]  
INCREMENT AMOUNT (counts)  
0
0
5
0
1
10 (default)  
1
0
20  
1
1
30  
PWWD_MAX [D8]  
PWWD_MAX [D7]  
MAXIMUM FAULT COUNTER VALUE  
0
0
1
1
0
1
0
1
80  
120  
160 (default)  
220  
Value pre-loaded into the PWWD error  
counter. This value is used to “pre-  
qualify” the WDIN clock before POE is  
allowed to transition high.  
PWWD_POE_DLY [D6]  
PWWD_POE_DLY [D5]  
0
0
1
1
0
1
0
1
2 (default)  
4
10  
16  
47  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x0C. Readback Register:  
D20  
D19  
D11  
D18  
D10  
D17  
D16  
D15  
D14  
D13  
Data Bit /  
Name  
Readback_(15:8)  
D12  
D9  
D8  
D7  
D6  
D5  
Data Bit /  
Name  
Readback_(7:0)  
ADDRESS: 01100b, TYPE: Read Only (RO)  
The host microcontroller can implement a loopback test with this  
register. The host should write a specific pattern (value) to this  
register, read it back, and compare the two results. The host should  
use at least two different write patterns to be certain there are no  
stuck bits.  
Readback [15:0]  
48  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x0D. Verify Result Register 0:  
D20  
VUC_OV_FAIL  
D12  
D19  
VUC_UV_FAIL  
D11  
D18  
V5A_OV_FAIL  
D10  
D17  
V5A_UV_FAIL  
D9  
D16  
UNUSED  
D8  
D15  
UNUSED  
D7  
D14  
UNUSED  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
BIST_FAIL  
TSD_BIST_FAIL VREG_OV_FAIL VREG_UV_FAIL V5P1_OV_FAIL  
V5P1_UV_FAIL  
V5P2_OV_FAIL  
V5P2_UV_FAIL  
ADDRESS: 01101b, TYPE: Read, or Write 1 to Clear (RW1C)  
VUC_OV_FAIL [D20]  
Indicates if the VUC overvoltage circuit failed its self-test  
0
Self-test passed (default value at power-up)  
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the VUC undervoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
VUC_UV_FAIL [D19]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5A overvoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
V5A_OV_FAIL [D18]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5A undervoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
V5A_UV_FAIL [D17]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Unused at this time.  
UNUSED [D16:D13]  
BIST_FAIL [D12]  
Indicates if the A81407 failed one or more of its self-tests  
Self-test passed (default value at power-up)  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the TSD circuit failed its self-test  
TSD_BIST_FAIL [D11]  
0
Self-test passed (default value at power-up)  
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the VREG overvoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
VREG_OV_FAIL [D10]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the VREG undervoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
VREG_UV_FAIL [D9]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5P1 overvoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
V5P1_OV_FAIL [D8]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5P1 undervoltage circuit passed its self-test  
Self-test passed (default value at power-up)  
V5P1_UV_FAIL [D7]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5P2 overvoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
V5P2_OV_FAIL [D6]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
Indicates if the V5P2 undervoltage circuit failed its self-test  
Self-test passed (default value at power-up)  
V5P2_UV_FAIL [D5]  
0
1
Self-test failed. FFn set low. Write “1” to clear and regain FFn functionality.  
49  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
0x0E. Verify Result Register 1:  
D20  
UNUSED  
D12  
D19  
UNUSED  
D11  
D18  
UNUSED  
D10  
D17  
UNUSED  
D9  
D16  
UNUSED  
D8  
D15  
UNUSED  
D7  
D14  
UNUSED  
D6  
D13  
UNUSED  
D5  
Data Bit /  
Name  
Data Bit /  
Name  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
ADDRESS: 01110b, TYPE: Read, or Write 1 to Clear (RW1C)  
[D20:D5] Unused at this time.  
50  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
DESIGN AND COMPONENT SELECTION  
The following section briefly describes the component selection  
procedure for the A81407. Refer to following pages for full sche-  
matic and recommended bill of materials.  
Pre-Regulator Output Inductor  
A 10 µH inductor is recommended for the pre-regulator buck and  
buck-boost topologies.  
Setting Up the Pre-Regulator  
A molded or distributed air gap type is recommended to aid  
passing EMC tests. Due to topology and frequency switching of  
the A81407 pre-regulator, the inductor ripple current varies with  
input voltage per Figure 18 below.  
This section discusses the component selection for the A81407  
pre-regulator. It covers the charge pump circuit, inductor, diodes,  
boost MOSFET, and input and output capacitors.  
Charge Pump Capacitors  
The charge pump circuits require four capacitors: VCP2, a 2.2 µF  
capacitor connected from pin VCP to VIN and 1 µF capacitor  
connected between pins CP2C1 and CP2C2; and VCP, a 1 µF  
capacitor connected from pin VCP2 to VCP and 0.22 µF capaci-  
tor connected between pins CP1 and CP2. These capacitors  
should be high-quality ceramic capacitors, such as an X5R or  
X7R, with a voltage rating of at least 16 V.  
PWM Switching Frequency  
The switching frequency of the A81407 is fixed at 2.2 MHz  
nominal. The A81407 includes a frequency foldback scheme that  
starts when VIN is greater than 18 V. Between 18 V and 36 V,  
the switching frequency will foldback from 2.2 MHz typical to  
1 MHz typical. The switching frequency for a given input voltage  
above 18 V and below 36 V is:  
Figure 18: Typical Peak Inductor Current versus Input  
Voltage for 0.765 A Output Current and 10 µH Inductor  
The inductor should not saturate given the peak operating current  
during overload. Equation 2 below calculates this current. In Equa-  
tion 2, VVIN(MAX) is the maximum continuous input voltage, such  
as 16 V, and VF is the asynchronous diode’s forward voltage.  
Equation 1:  
1.2  
= 3.4 −  
×
18  
Equation 2:  
(
)
×
+
=
(
)
,
0.9 ×  
× (  
+
)
)
(
After an inductor is chosen, it should be tested during output  
overload and short-circuit conditions. The inductor current should  
be monitored using a current probe. A good design should ensure  
the inductor or the regulator are not damaged when the output  
is shorted to ground at maximum input voltage and the highest  
expected ambient temperature.  
Inductor ripple current can be calculated using equations below  
for buck mode, and buck-boost mode.  
Equation 3:  
(
)
×
=
Figure 17: Typical Switching Frequency  
versus Input Voltage  
×
×
51  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Equation 4:  
Ceramic Input Capacitors  
(
)
×
The ceramic input capacitor(s) must limit the voltage ripple at the  
VIN pin to a relatively low voltage during maximum load. Equa-  
tion 8 can be used to calculate the minimum input capacitance,  
=
×
×
Pre-Regulator Output Capacitors  
Equation 8:  
The output capacitors filter the output voltage to provide an  
acceptable level of ripple voltage. They also store energy to help  
maintain voltage regulation during a load transient. The voltage  
rating of the output capacitors must support the output voltage  
with sufficient design margin.  
) × 0.25  
(
0.90 ×  
× 50  
where IVREG(MAX) is the maximum current from the pre-regulator,  
Equation 9:  
The output voltage ripple (ΔVVREG) is a function of the output  
=
)
+
+ 20  
(
capacitors parameters: CO, ESRCO, ESLCO  
.
where ILINEAR is the sum of all the internal linear regulators  
output currents, IAUX is any extra current drawn from the VREG  
output to power other devices external to the A81407.  
Equation 5:  
=  
×
+
A good design should consider the DC bias effect on a ceramic  
capacitor—as the applied voltage approaches the rated value, the  
capacitance value decreases. The X5R and X7R type capacitors  
should be the primary choices due to their stability versus both  
DC bias and temperature. For all ceramic capacitors, the DC bias  
effect is even more pronounced on smaller case sizes, so a good  
design will use the largest affordable case size.  
×
+
8 ×  
×
The type of output capacitors will determine which terms of  
Equation 6 are dominant. For ceramic output capacitors, the  
ESRCO and ESLCO are virtually zero, so the output voltage ripple  
will be dominated by the third term of Equation 5.  
Also for improved noise performance, it is recommended to add  
smaller sized capacitors close to the input pin and the D1 anode.  
Use a 0.1 µF 0603 capacitor or less.  
Equation 6:  
Buck-Boost Asynchronous Diode (D1)  
=
8 ×  
×
The highest peak current in the asynchronous diode (D1) occurs  
during overload and is limited by the A81407. Equation 3 can be  
used to calculate this current.  
To reduce the voltage ripple of a design using ceramic output  
capacitors, simply increase the total capacitance, reduce the  
inductor current ripple (i.e. increase the inductor value), or  
increase the switching frequency.  
The highest average current in the asynchronous diode occurs  
when VVIN is at its maximum, DBOOST = 0%, and DBUCK = mini-  
mum (10%),  
The transient response of the regulator depends on the number and  
type of output capacitors. In general, minimizing the ESR of the  
output capacitance will result in a better transient response. The  
ESR can be minimized by simply adding more capacitors in paral-  
lel or by using higher quality capacitors. At the instant of a fast  
load transient (di/dt), the output voltage will change by the amount:  
Equation 10:  
I
ꢀVꢁ = ꢂ.ꢃ × IVꢄꢅꢁ(Mꢀꢆ)  
where IVREG(MAX) is calculated using Equation 10.  
Boost MOSFET (Q1)  
Equation 7:  
The RMS current in the boost MOSFET (Q1) occurs when VVIN is  
at its minimum and both the buck and boost operate at their maxi-  
mum duty cycles (approximately 64% and 58%, respectively),  
=  
×
+
×
After the load transient occurs, the output voltage will deviate  
from its nominal value for a short time. This time will depend  
on the system bandwidth, the output inductor value, and output  
capacitance. Eventually, the error amplifier will bring the output  
voltage back to its nominal value.  
Equation 11:  
2
2
( / )  
(
/
)
=
×
+
1,  
(
)
[
]
2
12  
52  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
where ΔIL(B/B) and IPEAK are derived using Equation 3 and Equa-  
tion 5, respectively.  
Boost Diode (D2)  
In buck mode, this diode will simply conduct the output current.  
However, in buck-boost mode, the peak currents in this diode  
may increase a lot. The A81407 limits the peak current to the  
value calculated using Equation 3. The average current is simply  
the output current.  
Linear Regulators  
The four linear regulators only require a single ceramic capacitor  
located near A81407 terminals to ensure stable operation. The  
range of acceptable values is shown in the Electrical Characteris-  
tics table. A 2.2 μF capacitor per regulator is recommended.  
Also, since the V5P1 and V5P2 are used to power remote cir-  
cuitry, their load may include external wiring. The inductance of  
this wiring may cause LC-type ringing and negative spikes on  
the V5P1 (V5P2) pin if a “fast” short-to-ground occurs. A small  
Schottky diode is recommended to be placed close to the V5P1  
(V5P2) pin to clamp this negative spike. The MSS1P5 (or equiva-  
lent) is a good choice.  
Internal Bias (VCC)  
The internal bias voltage should be decoupled at the VCC pin  
using a 1 μF ceramic capacitor. It is not recommended to use this  
pin as a source.  
Signal Pins (NPOR, FFn, POE)  
The A81407 has many signal level pins. The NPOR, FFn, and  
ENBAT are open-drain outputs and require external pull-up resis-  
tors. Allegro recommends sizing the external pull-up resistors so  
each pin will sink less than 2 mA when it is a logic low. The POE  
signal is push-pull output and does not require an external pull-up  
resistor.  
53  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
ꢂ3  
1 ꢄꢅ  
ꢂꢋ  
0.ꢈꢈ ꢄꢅ  
ꢂ1  
ꢈ.ꢈ ꢄꢅ  
ꢂꢈ  
1 ꢄꢅ  
ꢓ1  
10 ꢄH  
3ꢃ  
3ꢈ  
ꢓꢔ  
ꢓꢒ  
ꢂ5  
ꢊꢈ  
SS3Pꢋ  
ꢂꢃ  
0ꢅ  
ꢂ13  
0.1 ꢄꢅ  
ꢂ1ꢈ  
10 nꢅ  
3
ꢊ1  
SS3Pꢋ  
ꢀin  
0ꢅ  
N  
ꢂꢇ  
ꢋꢇ ꢄꢅ  
ꢂꢑ  
ꢋ.ꢇ ꢄꢅ  
11  
10 nꢅ  
ꢂ9  
ꢋ.ꢇ ꢄꢅ  
ꢂ10  
0.1 ꢄꢅ  
R1  
Rꢈ  
5.ꢃꢈ Ω  
ꢑ.ꢃꢃ Ω  
ꢒNꢊ  
ꢌ1  
ꢈꢇ  
ꢂꢆMP  
ꢂ1ꢋ  
39 ꢐꢅ  
R3  
.1 ꢉΩ  
ꢈ ꢉΩ  
5
ꢀꢂꢂ  
ꢂ15  
1.5 nꢅ  
31  
33  
ꢂ1ꢃ  
1 ꢄꢅ  
ꢀUꢂ  
ꢀRꢍꢒ  
PꢒNꢊ  
ꢂ1ꢇ  
10 nꢅ  
ꢂ1ꢑ  
0.1 ꢄꢅ  
ꢂ19  
10 ꢄꢅ  
ꢂꢈ0  
10 ꢄꢅ  
ꢂꢈ1  
10 ꢄꢅ  
ꢂꢈꢈ  
10 ꢄꢅ  
ꢂꢈ3  
10 ꢄꢅ  
R5  
ꢈ0 ꢉΩ  
NPꢆR  
ꢍNꢎ  
30  
ꢈ9  
ꢀUꢂ  
ꢀ5A  
Rꢃ  
3.3 ꢉΩ  
10  
ꢂꢈꢃ  
ꢈ.ꢈ ꢄꢅ  
ꢂ30  
0.1 ꢄꢅ  
ꢂꢈ5  
ꢈ.ꢈ ꢄꢅ  
ꢂꢈ9  
0.1 ꢄꢅ  
ꢍNꢎAꢏ  
ꢂꢈꢋ  
0.ꢈꢈ ꢄꢅ  
ꢀUꢂ  
Rꢇ  
ꢀUꢂ  
Rꢑ  
19  
ꢈ0  
ꢀ5P1  
ꢀ5Pꢈ  
ꢈ0 ꢉΩ  
ꢈ0 ꢉΩ  
ꢈ5  
ꢂꢈꢇ  
ꢈ.ꢈ ꢄꢅ  
ꢊ3  
MSS1P5  
ꢊ3  
MSS1P5  
ꢂꢈꢑ  
ꢈ.ꢈ ꢄꢅ  
ꢂ31  
0.1 ꢄꢅ  
ꢂ3ꢈ  
0.1 ꢄꢅ  
ꢖꢁN  
ꢖꢅn  
ꢈꢑ  
9
11  
1ꢈ  
13  
1ꢋ  
15  
1ꢃ  
1ꢇ  
1ꢑ  
ꢅꢅn  
ꢎ  
ꢈꢃ  
ꢈ3  
ꢈꢋ  
ꢈ1  
ꢈꢈ  
Pꢍ  
Sꢎ  
ꢒꢕ  
AMUꢔꢆ  
MꢁSꢆ  
MꢆSꢁ  
Sꢕ  
ꢒꢀ  
Sꢂꢗ  
ꢂS  
Sꢀ  
ꢒU  
SU  
Figure 19: Typical Application Schematic  
Table 4: Bill of Materials  
Ref. Des.  
Description  
Qty.  
Footprint  
Manufacturer  
Manufacturer P/N  
U1  
A81407 Buck-Boost w/ 4 LDOs, 4 Drivers,  
SPI  
1
TSSOP-38  
Allegro MicroSystems  
Q1  
FET, N, 20 V / 30 V, 25 mΩ and 14 nCMAX  
@ 4.5 VGS  
1
PQFN  
ST  
STL10N3LLH5  
NVTFS4823N  
SQS420EN  
3.3 mm × 3.3 mm Onsemi  
Vishay  
R3  
Resistor, 22.1 kΩ, 1/10 W, 1%  
Resistor, 20 kΩ, 1/10 W, 5%  
Resistor, 3.3 kΩ, 1/10 W, 5%  
Resistor, 2.00 kΩ, 1/16 W, 1%  
Resistor, 8.66 Ω, 1/4W, 1%  
Resistor, 5.62 Ω, 1/10W, 1%  
1
3
1
1
1
1
0603  
0603  
0603  
0402  
1206  
0603  
Panasonic  
ERJ-3EKF2212V  
R5, R7, R8  
Panasonic  
Panasonic  
Vishay  
ERJ-3EKF2002V  
R6  
ERJ-3EKF3301V  
R4  
CRCW04022K00FKED  
CRCW12068R66FKEA  
ERJ-3RQF5R6V  
R1  
Vishay  
R2  
Panasonic  
Continued on next page...  
54  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Table 4: Bill of Materials (continued)  
Ref. Des.  
Description  
Qty.  
Footprint  
0603  
Manufacturer  
TDK  
Murata  
Taiyo Yuden  
Manufacturer P/N  
C1  
Capacitor, Ceramic, 2.2 µF, 16 V, 10%, X7R  
1
C1608X7S1C225K080AC  
GRM188Z71E225KE43D  
EMK107BB7225KA-T  
C2, C3, C16  
C4, C24  
Capacitor, Ceramic, 1 µF, 35 V, 10%, X7R  
Capacitor, Ceramic, 0.22 µF, 50 V, 10%, X7R  
Capacitor, Ceramic, 4.7 µF, 50 V, 10%, X7R  
3
2
2
0603  
0603  
1210  
TDK  
Taiyo Yuden  
C1608X7R1V105K080AC  
GMK107AB7105KAHT  
Murata  
TDK  
GCM188R71H224KA64J  
CGA3E3X7R1H224K080AB  
C8, C9  
Murata  
TDK  
Taiyo Yuden  
GRM32ER71H475KA88L  
C3225X7R1H475K250AB  
UMK325B7475KM-T  
C10, C13, C18,  
C29, C30, C31, C32  
Capacitor, Ceramic, 0.1 µF, 50 V, 10%, X7R  
Capacitor, Ceramic, 10 µF, 16 V, 10%, X7R  
7
5
0603  
1206  
Murata  
TDK  
GCM188L81H104KA57D  
CGA3E2X7R1H104K080AA  
C19, C20, C21,  
C22, C23  
Murata  
TDK  
GRM31CR71C106KAC7L  
C3216X7R1C106K  
Taiyo Yuden  
EMK316B7106KL-TD  
C25, C26  
Capacitor, Ceramic, 2.2 µF, 16 V, 10%, X7R  
Capacitor, Ceramic, 2.2 µF, 50 V, 10%, X7R  
2
0805  
TDK  
Murata  
CGA4J3X7R1C225K125AB  
GCM21BR71C225KA64L  
C27, C28  
C7  
2
1
0805  
8mm  
TDK  
CGA4J3X7R1H225M125AE  
Capacitor, Electrolytic, 47 µF, 35 V, 20%,  
125°C  
Nichicon  
Panasonic  
UCX1V470MCL1GS  
EEE-TP1V470AP  
United Chemi Con  
EMHB350ADA470MHA0G  
C14  
C15  
Capacitor, Ceramic, 39 pF, 50 V, 5%, COG  
Capacitor, Ceramic, 1.5 nF, 50 V, 10%, X7R  
1
1
0603  
0603  
Murata  
TDK  
GCM1885C1H390JA16D  
CGA2B2C0G1H390J050BA  
Murata  
TDK  
GCM188R71H152KA37D  
CGA3E2X7R1H152K080AA  
C11, C12, C17  
C5  
Capacitor, Ceramic, 10 nF, 50 V, 10%, X7R  
Capacitor, Ceramic, 680 pF, 50 V, 10%, COG  
3
1
0603  
0603  
TDK  
CGA1A2X7R1H101K030BA  
Murata  
TDK  
GCM1555C1H681JA16D  
CGA3E2C0G1H681J080AA  
C6  
Capacitor, Ceramic, 220 pF, 50 V, 10%, COG  
Diode, Schottky, 3 A, 40 V  
1
2
0603  
SMP  
eSMP  
Murata  
TDK  
GCM1555C1H221JA16D  
CGA3E2C0G1H221J080AA  
D1, D2  
Vishay  
SS3P4-M3/84A  
SS3P4-M3/84A  
D3, D4  
L1  
Diode, Schottky, 1 A, 50 V  
2
1
Vishay  
Vishay  
MSS1P5-M3/89A  
Inductor, 10 µH, 5.4 Adc, 6.4Asat, 52 mΩ max  
8.6 mm ×  
8.2 mm ×  
4 mm  
IHLP3232DZER100M11  
55  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
PCB LAYOUT RECOMMENDATIONS  
The input ceramic capacitors must be located as close as possible sible to VCP, CP1/CP2 and VCP2, CP2C1/CP2C2.  
to the VIN pins. In general, the smaller capacitors (0402, 0603)  
The ceramic capacitors for the LDOs (VUC, V5A, V5P1, and  
must be placed very close to the VIN pin. The larger capacitors  
V5P2) must be placed near their output pins. The V5P1 and V5P2  
should be placed within 0.5 inches of the VIN pin. There must  
outputs must have a 1 A / 40 V Schottky diode located very close  
not be any vias between the input capacitors and the VIN pins.  
to their pins to limit negative voltages.  
The pre-regulator asynchronous diode (D1), input ceramic  
capacitors, and RC snubber must be routed on one layer and  
pin.  
“star” grounded at a single location with multiple vias.  
The VCC bypass capacitor must be placed very close to the VCC  
The COMP network of pre-regulator (C14, C15, and R3) must be  
The pre-regulator output inductor (L1) should be located close to  
the LX pins. The LX trace widths (to L1, D1, and D2) should be  
relatively wide and preferably on the same layer as the IC.  
located very close to the COMP pin.  
The thermal pad under the A81407 must connect to the ground  
plane(s) with multiple vias.  
The pre-regulators output ceramic capacitors should be located  
near the VREG pin. There must be 1 or 2 smaller ceramic capaci-  
tors as close as possible to the VREG pin.  
The boost MOSFET (Q1) and the boost diode (D2) must be  
placed very close to each other. Q1 should have thermal vias to a  
polygon on the bottom layer. Also, there should be “local” bypass  
capacitors from D2 cathode to Q1 source.  
The four charge pump capacitors must be placed as close as pos-  
56  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference JEDEC MO-153 BDT-1)  
Dimensions in millimeters  
NOT TO SCALE  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
9.70 0.10  
8º  
0º  
6.50 0.10  
38  
0.20  
0.09  
B
4.40 0.10 6.40 BSC  
3.00 0.10  
A
1.00 REF  
0.60 0.15  
1
2
0.25 BSC  
Branded Face  
SEATING PLANE  
GAUGE PLANE  
C
38X  
0.90 0.05  
1.10 MAX  
0.10  
C
SEATING  
PLANE  
0.27  
0.17  
0.15  
0.00  
0.50 BSC  
0.50  
0.30  
1.70  
38  
3.00 6.00  
1
2
Terminal #1 mark area  
Exposed thermal pad (bottom surface)  
A
B
C
6.5  
Reference land pattern layout (reference IPC7351 SOP50P640X120-39M);  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances; when  
mounting on a multilayer PCB, thermal vias at the exposed thermal pad land  
can improve thermal dissipation (reference EIA/JEDEC Standard JESD51-5)  
C
PCB Layout Reference View  
Figure 20: Package LV, 38-Pin eTSSOP  
57  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
Multi-Output Regulator with Buck or Buck-Boost Pre-Regulator,  
4× LDO Outputs, Watchdog, 4× Gate Drivers, and SPI  
A81407  
Revision History  
Number  
Date  
Description  
December 10, 2019  
Initial release  
Updated Product Title, Features and Benefits, Description, and Applications (page 1) and Overview  
section (page 20)  
1
2
June 10, 2020  
December 1, 2020  
Updated “CS Input Pull-Up to 3.3 V” to “CS Input Pull-Up to 3.0 V” (page 14).  
Copyright 2020, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
58  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

A8145300

P O T T I N G B O X E S
ETC

A814AY-100M

Fixed Inductors for Surface Mounting
TOKO

A814AY-100M=P3

General Purpose Inductor, 10uH, 20%, 1 Element, Ferrite-Core, SMD, 4538, CHIP
TOKO

A814AY-101K

Fixed Inductors for Surface Mounting
TOKO

A814AY-101K=P3

General Purpose Inductor, 100uH, 10%, 1 Element, SMD
TOKO

A814AY-102K

Fixed Inductors for Surface Mounting
TOKO

A814AY-102K=P3

General Purpose Inductor, 1000uH, 10%, 1 Element, SMD
TOKO

A814AY-120M

Fixed Inductors for Surface Mounting
TOKO

A814AY-120M=P3

General Purpose Inductor, 12uH, 20%, 1 Element, Ferrite-Core, SMD, 4538, CHIP
TOKO

A814AY-121K

Fixed Inductors for Surface Mounting
TOKO

A814AY-121K=P3

General Purpose Inductor, 120uH, 10%, 1 Element, SMD
TOKO

A814AY-122K

Fixed Inductors for Surface Mounting
TOKO