ACS37002LMABTR-U5 [ALLEGRO]

400 kHz, High Accuracy Current Sensor;
ACS37002LMABTR-U5
型号: ACS37002LMABTR-U5
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

400 kHz, High Accuracy Current Sensor

文件: 总40页 (文件大小:2625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS37002  
400 kHz, High Accuracy Current Sensor  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
FEATURES AND BENEFITS  
DESCRIPTION  
• High operating bandwidth for fast control loops or where  
high-speed currents are monitored  
400 kHz bandwidth  
TheACS37002isafullyintegratedHall-effectcurrentsensorin  
an SOICW-16 package that is factory-trimmed to provide high  
accuracy over the entire operating range without the need for  
customerprogramming.Thecurrentissenseddifferentiallyby  
two Hall plates that subtract out interfering external common-  
mode magnetic fields.  
2 µs typical response time  
• High accuracy  
1% maximum sensitivity error over temperature (K series)  
6 mV maximum offset voltage over temperature  
Non-ratiometric operation with VREF output  
Low noise LA package  
160 mVRMS for 3.3 V supply  
124 mVRMS for 5 V supply  
Differential sensing for high immunity to external  
magnetic fields  
No magnetic hysteresis  
The package construction provides high isolation by  
magnetically coupling the field generated by the current in  
the conductor to the monolithic Hall sensor IC which has no  
physical connection to the integrated current conductor. The  
MA package is optimized for higher isolation with withstand  
voltage, 4.8 kVRMS, and 0.85 mΩ conductor resistance. The  
LA package is optimized for lower noise with 3.6 kVRMS  
withstand voltage and 1 mΩ conductor resistance.  
• Adjustable fast overcurrent fault  
1 µs typical response time  
The ACS37002 has functional features that are externally  
configurable and robust without the need for programming.  
Two logic gain selection pins can be used to configure the  
device to one of four defined sensitivities and corresponding  
current ranges. A fast overcurrent fault output provides short-  
circuit detection for system protection with a fault threshold  
that is proportional to the current range and can be set with an  
analog input. The reference pin provides a stable voltage that  
corresponds to the 0A output voltage. This reference voltage  
allowsfordifferentialmeasurementsaswellasadevice-referred  
voltage to set the overcurrent fault threshold.  
Pin adjustable threshold  
• Externally configurable gain settings using two logic pins  
Four adjustable gain levels for increased design  
flexibility  
Continued on the next page…  
PACKAGE: 16-Pin SOICW (suffix MA/LA)  
Not to scale  
ACS37002  
VCC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
MCU  
GAIN_SEL_0  
GND  
IP+  
IP+  
IP+  
IP+  
RPU  
GAIN_SEL_1  
VREF  
VCC  
ADC  
ADC  
IP  
VIOUT  
IP-  
IP-  
IP-  
IP-  
CL  
CREF  
VOC  
VCC  
GND  
VCC  
Digital I/O  
OCF  
CBYPASS  
RVOC(H)  
CVOC  
RVOC(L)  
Figure 1: Typical Bidirectional Application  
For more application circuits, refer to the Application and Theory section  
ACS37002-DS, Rev. 3  
MCO-0000900  
December 16, 2020  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS 37002 K MAB TR  
-
050  
B
5 - ABC  
FEATURES AND BENEFITS (continued)  
Enabling measurement ranges from 10 to 133 A in both  
Additional Idenifiers  
unidirectional and bidirectional modes  
Low internal primary conductor resistance 0.85 mΩ (MA) and  
1 mΩ (LA) for better power efficiency  
Supply Voltage:  
5 – VCC = 5 V  
3 – VCC = 3.3 V  
• UL60950-1 (ed. 2) and UL 62368 (ed. 1) certification, highly  
isolated compact SOICW-16 surface mount package (MA)  
4.8 kVRMS rated isolation voltage  
Output Directionality:  
B – Bidirectional  
U – Unidirectional  
1097 VRMS / 1550 VDC basic isolation voltages  
565 VRMS / 880 VDC reinforced isolation voltages  
• Wide operating temperature, –40°C to 150°C  
• AEC-Q100 Grade 0, automotive qualified  
Current Sensing Range (A)  
Packing Designator  
Package Designator  
Optimized Temperature Range  
L – -40°C to 150°C  
K – -40°C to 125°C  
MA Only  
5 Digit Part Number  
Allegro Current Sensor  
CB Certificate number:  
US-32210-M3-UL  
US-36315-UL  
SELECTION GUIDE  
Optimized  
Temp. Range  
Part Number  
(click number to go to  
Performance Characteristics)  
Sensitivity [1]  
(mV/A)  
Nominal VCC  
(V)  
Current Sensing  
Range, IPR (A)  
Packing [2]  
TA (°C)  
MA Package, 16-Pin SOICW  
60, 50, 40, 30  
ACS37002LMABTR-050B5  
ACS37002LMABTR-066B5  
ACS37002LMABTR-050U5  
ACS37002LMABTR-066U5  
ACS37002LMABTR-050B3  
ACS37002LMABTR-066B3  
ACS37002LMABTR-050U3  
ACS37002LMABTR-066U3  
ACS37002KMABTR-050B5  
ACS37002KMABTR-050B3  
±33, ±40, ±50, ±66  
±66, ±80 ±100, ±133  
33, 40, 50, 66  
30, 25, 20, 15  
5
120, 100, 80, 60  
66, 80, 100, 133  
±33, ±40, ±50, ±66  
±66, ±80, ±100, ±133  
33, 40, 50, 66  
60, 50, 40, 30  
–40 to 150  
39.6, 33, 26.4, 19.8  
19.8, 16.5, 13.2, 9.9  
79.2, 66, 52.8, 39.6  
39.6, 33, 26.4, 19.8  
60, 50, 40, 30  
1000 pieces  
per 13-inch reel  
3.3  
66, 80, 100, 133  
±33, ±40, ±50, ±66  
±33, ±40, ±50, ±66  
5
–40 to 125 [3]  
39.6, 33, 26.4, 19.8  
LA Package [4], 16-Pin SOICW  
200,166.6,133.3,100  
80, 66.6, 53.3, 40  
132, 110, 88, 66  
3.3  
ACS37002LLAATR-015B5  
ACS37002LLAATR-025B5  
ACS37002LLAATR-015B3  
ACS37002LLAATR-025U3  
±10, ±12, ±15, ±20  
±25, ±30, ±37.5, ±50  
±10, ±12, ±15, ±20  
25, 30, 37.5, 50  
5
1000 pieces  
per 13-inch reel  
–40 to 150  
3.3  
105.6, 88, 70.4, 52.8  
[1] Refer to the part specific performance characteristics sections for Gain_Sel configuration.  
[2] Contact Allegro for additional options.  
[3] The device performance is optimized from –40°C to 125°C; however, the device can still operate to an ambient temperature of 150°C. The device shares the same  
qualifications as the L temperature devices unless otherwise stated.  
[4] Advanced information. LA package variation is not yet released.  
2
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
Table of Contents  
Features and Benefits........................................................... 1  
Description.......................................................................... 1  
Packages............................................................................ 1  
Selection Guide ................................................................... 2  
Absolute Maximum Ratings................................................... 4  
Isolation Characteristics........................................................ 4  
MA Package Specific Performance......................................... 4  
LA Package Specific Performance.......................................... 4  
Pinout Diagram and Terminal List........................................... 5  
Functional Block Diagram ..................................................... 6  
Common Electrical Characteristics......................................... 7  
Performance Characteristics................................................ 10  
Functional Description ........................................................ 24  
Power-On Reset Operation .............................................. 24  
Power-On................................................................... 24  
Power-Off................................................................... 24  
Power-On Timing ........................................................ 24  
Power-On Reset (POR)................................................ 24  
Power-On Delay (tPOD)................................................. 24  
Overvoltage and Undervoltage Detection........................... 25  
Undervoltage Detection Voltage Thresholds (VUVD(H/L)).... 25  
Overvoltage Detection Voltage Thresholds (VOVD(H/L))...... 25  
Overvoltage/Undervoltage  
Sensitivity Error (Esens) .................................................... 29  
Gain Selection Pins......................................................... 29  
Full Scale (FS)................................................................ 29  
Nonlinearity (ELIN)........................................................... 29  
Total Output Error (ETOT).................................................. 30  
Power Supply Offset Error (VPS) ....................................... 30  
Offset Power Supply Rejection Ratio (PSRRO) ................... 30  
Power Supply Sensitivity Error (EPS) ................................ 30  
Sensitivity Power Supply Rejection Ratio (PSRRS).............. 30  
Fault Behavior ................................................................... 31  
Overcurrent Fault (OCF) .................................................. 31  
Overcurrent Fault  
Operating Range/Point (IOCF-OR, IOCF-OP) ..................... 31  
Overcurrent Fault Hysteresis (IOCF-Hyst).......................... 31  
Voltage Overcurrent Pin (VOC) ..................................... 31  
Overcurrent Fault Error (EOCF)...................................... 32  
Overcurrent Fault Response Time (tOCF) ........................ 32  
Overcurrent Fault Reaction Time (tOCF-R) ....................... 32  
Overcurrent Fault Mask Time (tOCF-MASK) ....................... 32  
Overcurrent Fault Hold Time (tOCF-HOLD)......................... 32  
Overcurrent Fault Persist.............................................. 32  
OCF Disable............................................................... 32  
Dynamic Response Parameters........................................... 33  
Propagation Time (tpd) ..................................................... 33  
Rise Time (tR)................................................................. 33  
Response Time (tRESPONSE) ............................................. 33  
Temperature Compensation ............................................. 33  
Temperature Compensation Update Rate .......................... 33  
Application and Theory ....................................................... 34  
Application Circuits.......................................................... 34  
Theory and Functionality – VOC and OCF ......................... 35  
VOC Driven by Non-Inverting Buffered VREF ................. 35  
Power Supply Decoupling Capacitor and  
Detection Hysteresis (VOVDHys, VUVDHys) ...................... 26  
Overvoltage and Undervoltage  
Enable and Disable Time (tOVD(E/D), tUVD(E/D))................ 26  
Supply Zener Clamp Voltages....................................... 26  
Absolute Maximum Ratings.............................................. 27  
Forward and Reverse Supply Voltage ............................ 27  
Forward and Reverse Output Voltage ............................ 27  
Forward and Reverse Reference/Fault Voltage ............... 27  
Output Source and Sink Current.................................... 27  
Definitions of Operating and Performance Characteristics....... 28  
Zero Current Voltage Output (VIOUT(Q), QVO) ..................... 28  
QVO Temperature Drift (VQE) ........................................... 28  
Reference Voltage (VREF) ................................................ 28  
Reference Voltage Temperature Drift (VRE) ....................... 28  
Offset Voltage (VOE)....................................................... 28  
Output Saturation Voltage (VSAT(HIGH/LOW))......................... 28  
Output Voltage Operating Range (VOOR)............................ 28  
Sensitivity (Sens)............................................................ 29  
Output Capacitive Loads ............................................ 35  
Dynamically Change Gain in a System .............................. 36  
Thermal Performance......................................................... 37  
Thermal Rise vs. Primary Current ..................................... 37  
Evaluation Board Layout ................................................. 37  
Package Outline Drawings .................................................. 38  
MA Package................................................................... 38  
LA Package.................................................................... 39  
3
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Forward Supply Voltage  
Reverse Supply Voltage  
Forward Output Voltage  
Reverse Output Voltage  
Forward Input Voltage  
Symbol  
Notes  
Rating  
6.5  
Unit  
V
VCC  
VRCC  
VFIOUT  
VRIOUT  
VOI  
–0.5  
V
Applies to VIOUT, VOCF, and VREF  
(VCC + 0.7) ≤ 6.5  
–0.5  
V
Applies to VIOUT, VOCF, and VREF  
V
Applies to GAIN_SEL0, GAIN_SEL1, and VOC  
Applies to GAIN_SEL0, GAIN_SEL1, and VOC  
(VCC + 0.7) ≤ 6.5  
–0.5  
V
Reverse Input Voltage  
VRI  
V
Operating Ambient Temperature  
Storage Temperature  
TA  
–40 to 150  
–65 to 165  
165  
°C  
°C  
°C  
Tstg  
Maximum Junction Temperature  
TJ(max)  
ISOLATION CHARACTERISTICS  
Characteristic  
Symbol  
Notes  
Rating  
Unit  
Tested ±5 pulses at 2/minute in compliance to IEC 61000-4-5  
1.2 µs (rise) / 50 µs (width)  
Dielectric Surge Voltage  
VSURGE  
10  
kV  
Tested in compliance to IEC 61000-4-5  
8 µs (rise) / 20 µs (width)  
Surge Current [1]  
ISURGE  
CTI  
13  
kA  
V
Comparative Track Index  
[1] Certification pending.  
Material Group II  
400 to 599  
MA PACKAGE SPECIFIC PERFORMANCE  
Characteristic  
Symbol  
Notes  
Rating  
Unit  
Distance Through Insulation  
DTI  
Minimum internal distance through insulation  
90  
µm  
Agency type-tested for 60 seconds per UL 60950-1 (edition 2) and  
Dielectric Strength Test Voltage  
VISO  
62368-1 (edition 1). Production tested at 3125 VRMS for 1 second in  
accordance with UL 60950-1 (edition 2) and 62368-1 (edition 1)  
5000  
VRMS  
1550  
1097  
800  
565  
7.5  
VPK or VDC  
VRMS  
VPK or VDC  
VRMS  
Maximum approved working voltage for basic (single) isolation  
according toUL 60950-1 (edition 2) and 62368-1 (edition 1)  
Working Voltage for Basic Isolation  
VWVBI  
Working Voltage for Reinforced  
Isolation  
Maximum approved working voltage for reinforced isolation  
according to UL 60950-1 (edition 2) and 62368-1 (edition 1)  
VWVRI  
Clearance  
Creepage  
Dcl  
Dcr  
Minimum distance through air from IP leads to signal leads  
mm  
Minimum distance along package body from IP leads to signal leads  
7.9  
mm  
LA PACKAGE SPECIFIC PERFORMANCE  
Characteristic  
Symbol  
Notes  
Rating  
Unit  
Distance Through Insulation  
DTI  
Minimum internal distance through insulation  
45  
µm  
Agency type-tested for 60 seconds per UL 60950-1 (edition 2).  
Production tested at 3000 VRMS for 1 second in accordance with  
UL 60950-1  
Dielectric Strength Test Voltage  
VISO  
3600  
VRMS  
870  
616  
7.5  
7.5  
VPK or VDC  
VRMS  
mm  
Maximum approved working voltage for basic (single) isolation  
according to UL 60950-1 (edition 2)  
Working Voltage for Basic Isolation [1]  
VWVBI  
Clearance [1]  
Creepage [1]  
Dcl  
Dcr  
Minimum distance through air from IP leads to signal leads  
Minimum distance along package body from IP leads to signal leads  
mm  
[1] Certification pending.  
4
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
PINOUT DIAGRAM AND TERMINAL LIST TABLE  
16 GAIN_SEL_0  
15 GND  
IP+  
IP+  
IP+  
IP+  
IP-  
1
2
3
4
5
6
7
8
14 GAIN_SEL_1  
13 VREF  
12 VIOUT  
11 VOC  
IP-  
IP-  
10 VCC  
IP-  
9
OCF  
Figure 2: MA/LA Pinout Diagram  
Terminal List Table  
Number  
Name  
Description  
1, 2, 3, 4  
IP+  
Terminals for current being sensed; fused internally  
Terminals for current being sensed; fused internally  
Overcurrent fault, open-drain  
5, 6, 7, 8  
IP-  
9
OCF  
10  
11  
12  
13  
14  
15  
16  
VCC  
Device power supply terminal  
VOC  
Overcurrent fault operation point input  
Analog output representing the current flowing through IP  
Zero current voltage reference  
VIOUT  
VREF  
GAIN_SEL_1  
GND  
Gain selection bit 1  
Device ground terminal  
GAIN_SEL_0  
Gain selection bit 0  
5
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002  
Digital  
ꢘigital  
Regꢓlator  
ꢑꢌꢌ ꢃ10ꢆ  
Signal Path ꢌontrol  
and  
ꢒꢒPRꢋMꢙ  
ꢘigital ꢏlocꢐ  
emꢀ. ꢌontrol  
ꢕAꢁNꢖSꢒꢗꢖ1 ꢃ1ꢅꢆ  
ꢋꢌꢊ ꢃ9ꢆ  
RꢁꢕS  
ꢋꢌꢊ  
ꢊilteringꢎ  
ꢕAꢁNꢖSꢒꢗꢖ0 ꢃ1ꢇꢆ  
ꢑꢋꢌ ꢃ11ꢆ  
RꢁꢕS  
ꢋꢌꢊ  
ꢍhresholdꢎ  
ꢋꢌꢊ  
ꢌomꢀ.  
Rꢒꢊ  
ꢏꢓꢔꢔer  
ꢑRꢒꢊ ꢃ13ꢆ  
ꢁPꢂ ꢃ1,ꢄ,3,ꢅꢆ  
ꢁP- ꢃ5,ꢇ,ꢈ,ꢉꢆ  
ꢏacꢐ  
Amꢀ.  
ꢊront  
Amꢀ.  
ꢑꢁꢋUꢍ ꢃ1ꢄꢆ  
Hall  
ꢀlates  
ꢕNꢘ ꢃ15ꢆ  
ꢎꢊꢓrther inꢔormation in ꢍheory and  
Aꢀꢀlication Section  
Analog Signal Path  
ꢘigital ꢌontrol  
Figure 3: Functional Block Diagram  
6
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
COMMON ELECTRICAL CHARACTERISTICS: Valid through full operating temperature range, TA = – 40°C to 150°C,  
CBYPASS = 0.1 μF, and VCC = 5 V or 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
4.5  
3.15  
Typ.  
5
Max.  
5.5  
3.6  
18  
15  
Units  
V
5 V devices only  
Supply Voltage  
VCC  
3.3 V devices only  
3.3  
13  
12  
V
No load on VIOUT or VREF; VCC = 5 V  
No load on VIOUT or VREF; VCC = 3.3 V  
VCC to GND recommended  
mA  
mA  
µF  
kΩ  
nF  
kΩ  
nF  
kΩ  
nF  
mΩ  
mΩ  
nH  
V
Supply Current  
ICC  
Supply Bypass Capacitor  
Output Resistive Load  
Output Capacitive Load  
Reference Resistive Load  
Reference Capacitive Load  
Fault Pull-Up Resistance  
VOC Capacitive Load  
CBYPASS  
RL  
0.1  
10  
VIOUT to GND, VIOUT to VCC  
VIOUT to GND  
CL  
1
6
RVREF  
CVREF  
RPU  
VREF to GND (recommended to supply VOC); VREF to VCC  
VREF to GND  
10  
62.7  
6
4.7  
500  
1
CVOC  
VOC to GND  
MA,TA = 25°C  
LA,TA = 25°C  
0.85  
1
Primary Conductor Resistance  
Primary Conductor Inductance  
Power-On Reset Voltage  
RIP  
LIP  
4.2  
2.9  
2.5  
VPOR(H)  
VPOR(L)  
VPOR(HYS)  
VCC rising [1]  
VCC falling [1]  
2.6  
2.2  
250  
3.1  
2.8  
V
POR Hysteresis  
Power-On Time  
mV  
Time from VCC rising ≥ VUVD(DIS) after a POR event until  
power-on; VREF, OCF, VIOUT  
tPOD  
100  
μs  
VUVD(L)  
VUVD(H)  
VUVD(HYS)  
tdUVD(E)  
tdUVD(D)  
VOVD(H)  
VOVD(L)  
TA = 25°C, VCC falling [1]  
TA = 25°C, VCC rising [1]  
3.8  
4
4.3  
4.5  
V
V
Undervoltage Detection  
(UVD) Threshold [2]  
UVD Hysteresis [2]  
UVD Delay Time [2]  
250  
64  
7
mV  
µs  
µs  
V
Time from VCC falling ≤ VUVD(EN) until UVD asserts  
Time from VCC rising ≥ VUVD(DIS) until UVD clears  
TA = 25°C, VCC rising [1]  
35  
120  
6.1  
5.6  
6.3  
5.8  
6.8  
6.1  
Overvoltage Detection (OVD)  
Threshold  
TA = 25°C, VCC falling [1]  
V
Overvoltage Detection  
Hysteresis  
VOVD(HYS)  
660  
mV  
tdOVD(E)  
tdOVD(D)  
Time from VCC rising ≥ VOVD(EN) until OVD asserts  
Time from VCC falling ≤ VOVD(DIS) until OVD clears  
35  
90  
7
120  
µs  
µs  
OVD Delay Time  
Continued on the next page…  
7
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
COMMON PERFORMANCE CHARACTERISTICS (VIOUT): Valid through full operating temperature range,  
TA = – 40°C to 150°C, CBYPASS = 0.1 μF, and VCC = 5 V or 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
OUTPUT SIGNAL CHARACTERISTICS (VIOUT  
)
VSAT(H)  
VSAT(L)  
RL = 10 kΩ to GND  
RL = 10 kΩ to VCC  
VCC – 0.25  
0.15  
4.5  
3.0  
V
V
Saturation Voltage  
0.5  
0.3  
5 V linear operating range  
3.3 V linear operating range  
VIOUT shorted to GND  
V
Output Operating Range  
Output Current Limit  
VOOR  
V
IOUT(src)  
IOUT(snk)  
IOUT  
25  
mA  
VIOUT shorted to VCC  
25  
mA  
Output Drive  
4.8  
mA  
Internal Bandwidth  
Rise Time  
BW  
Small signal –3 dB, CL = 5.7 nF  
400  
0.7  
1.1  
0.7  
350  
155  
450  
200  
277  
124  
357  
160  
±0.75  
kHz  
tR  
TA = 25°C, CL = 5.7 nF, 10%-90% of 1 V output swing  
2.5  
2.5  
2
µs  
Response Time  
Propagation Delay  
tRESPONSE TA = 25°C, CL = 5.7 nF, 90% input to 90% of 1 V output swing  
μs  
tpd  
TA = 25°C, CL = 5.7 nF, 20% input to 20% of 1 V output swing  
μs  
MA Package  
LA Package  
MA Package  
LA Package  
MA Package  
LA Package  
MA Package  
LA Package  
µA/Hz  
µA/Hz  
µA/Hz  
µA/Hz  
mARMS  
mARMS  
mARMS  
mARMS  
%
Input-referenced noise density;  
TA = 25°C, CL = 5.7 nF; VCC = 5 V  
Noise Density  
IND  
Input-referenced noise density;  
TA = 25°C, CL = 5.7 nF; VCC = 3.3 V  
Input-referenced noise at 400 kHz;  
TA = 25°C, CL = 5.7 nF; VCC = 5 V  
Noise  
IN  
Input-referenced noise at 400 kHz;  
TA = 25°C, CL = 5.7 nF; VCC = 3.3 V  
Nonlinearity  
ELIN  
DC to 1 kHz, 100 mV pk-pk ripple around VCC = VCC(typ)  
IP = 0 A, change in VOE  
,
–40  
–30  
–15  
–6  
dB  
dB  
dB  
dB  
mV  
Power Supply Rejection Ratio  
Offset  
PSRRO  
1 to 100 kHz, 100 mV pk-pk ripple around VCC = VCC(typ)  
IP = 0 A, change in VOE  
,
DC to 1 kHz, 100 mV pk-pk ripple around VCC = VCC(typ)  
IP = IPR(MAX), change in Sens  
,
Power Supply Rejection Ratio  
Sens  
PSRRS  
VOE(PS)  
1 to 100 kHz, 100 mV pk-pk ripple around VCC = VCC(typ)  
IP = IPR(MAX), change in Sens  
,
Power Supply Offset Error  
VCC @ VCC(MIN) or VCC(MAX)  
–10  
10  
Power Supply Sensitivity Error ESENS(PS) VCC @ VCC(MIN) or VCC(MAX)  
–1.5  
4
1.5  
%
Common-Mode Field Rejection  
CMFR  
Input-referred error due to common-mode field  
mA/G  
Continued on the next page…  
8
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
COMMON PERFORMANCE CHARACTERISTICS (VREF, FAULT, GAIN_SEL): Valid through full operating  
temperature range, TA = – 40°C to 150°C, CBYPASS = 0.1 μF, and VCC = 5 V or 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
REFERENCE OUTPUT CHARACTERISTICS (VREF)  
Bidirectional; VCC = 5 V  
Bidirectional; VCC = 3.3 V  
2.49  
1.64  
0.49  
0.32  
2.5  
1.65  
0.5  
0.33  
25  
2.51  
1.66  
0.51  
0.34  
V
V
VREF(BI)  
Zero Current Reference Voltage  
Unidirectional; VCC = 5 V  
Unidirectional; VCC = 3.3 V  
V
VREF(UNI)  
V
IREF(SRC) Maximum current VREF can passively source  
IREF(SNK) Maximum current VREF can passively sink  
mA  
mA  
V/µs  
Reference Source Current Limit  
Reference Slew Rate  
–25  
SRREF  
CVREF = 0 nF, RVREF = 0 Ω  
0.8  
OVERCURRENT FAULT CHARACTERISTICS (OCF)  
OCF On Voltage [4]  
VFAULT-ON RPU = 4.7 kΩ, under fault condition  
0.07  
100  
0.4  
V
nA  
No Fault  
OCF Sink Current [4]  
IOCF(SNK)  
Fault Assertion  
VCC = 5 V  
0.01  
0.5  
0.33  
–10  
1.1  
2
mA  
V
VOC Operating Voltage Range  
Fault Error  
VVOC  
EOCF  
IOCF(HYS)  
tOCF-R  
VCC = 3.3 V  
1.32  
10  
V
±3  
6
%IOCF-OP  
%FS  
%FS  
μs  
VCC = 5 V  
OCF Hysteresis  
VCC = 3.3 V  
9
OCF Reaction Time [4]  
OCF Mask [4]  
Time from IOCF-OP, with a 1.2 × IOCF-OP until fault asserts  
1
1.5  
3
tOCF-MASK Time IOCF-OP must be present after tOCF-R for fault assertion [3]  
tOCF tOCF-MASK = 0.5µs  
tOCF-HOLD Minimum duration of FAULT assertion [3]  
0
0
µs  
OCF Response Time [4]  
OCF Hold Time [4]  
1
1.5  
5
µs  
0
0
ms  
GAIN SELECTION PIN CHARACTERISTICS (GAIN_SEL0, GAIN_SEL1)  
Gain Select Internal Resistor  
RGSint  
1
MΩ  
V
VCC = 5 V  
3.75  
2.25  
VH(SEL)  
GAIN_SEL Logic Input Voltage  
VCC = 3.3 V  
V
VL(SEL)  
0.5  
V
Leakage Current [4]  
ISEL(SNK)  
±10  
µA  
[1]  
V
rate +1 V/ms, for best accuracy.  
CC  
[2] Only enabled on 5V devices.  
[3] Typical value is factory default.  
[4] Guaranteed by design and bench validated  
9
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-050B5  
Selection Identifier  
ACS37002LMABTR-050B5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Digital Input  
Digital Input  
Calculation  
Bidirectional  
0
0
1
0
1
0
40  
50  
60  
50  
40  
Selection  
Combination  
33.3  
1
1
30  
66.7  
ACS37002LMABTR-050B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–50  
–40  
–33.3  
–66.7  
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
40  
50  
60  
30  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
10  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-066B5  
Selection Identifier  
ACS37002LMABTR-066B5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Bidirectional  
66.7  
Digital Input  
Digital Input  
Calculation  
0
0
1
0
1
0
30  
25  
20  
80  
Selection  
Combination  
100  
1
1
15  
133.3  
ACS37002LMABTR-066B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–66.7  
66.7  
80  
100  
133.3  
A
A
–80  
Current Sensing Range  
IPR  
–100  
A
–133.3  
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
30  
25  
20  
15  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
%
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
VOE_LTD  
VQE_LTD  
–2 ±3  
10  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–10  
–14  
–10  
–2 ±5  
±4  
10  
10  
14  
10  
mV  
mV  
mV  
mV  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
–4 ±6  
±7  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
11  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-050U5  
Selection Identifier  
ACS37002LMABTR-050U5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Digital Input  
Digital Input  
Calculation  
Bidirectional  
0
0
1
0
1
0
80  
50  
40  
100  
120  
Selection  
Combination  
33.3  
1
1
60  
66.7  
ACS37002LMABTR-050U5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
0
0
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
0
A
0
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Unidirectional; IP = 0 A, TA = 25°C  
80  
100  
120  
60  
50  
0.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
25  
100  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
12  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-066U5  
Selection Identifier  
ACS37002LMABTR-066U5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Bidirectional  
66.7  
Digital Input  
Digital Input  
Calculation  
0
0
1
0
1
0
60  
50  
40  
80  
Selection  
Combination  
100  
1
1
30  
133.3  
ACS37002LMABTR-066U5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
0
0
66.7  
80  
100  
133.3  
A
A
Current Sensing Range  
IPR  
0
A
0
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Unidirectional; IP = 0 A, TA = 25°C  
60  
50  
40  
30  
50  
0.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
25  
100  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
13  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-050B3  
Selection Identifier  
ACS37002LMABTR-050B3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
26.4  
Max IP (A)  
Digital Input  
Digital Input  
Bidirectional  
0
0
1
0
1
0
50  
40  
33  
Selection  
Combination  
39.6  
33.3  
1
1
19.8  
66.7  
ACS37002LMABTR-050B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–50  
–40  
–33.3  
–66.7  
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
26.4  
33  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
39.6  
19.8  
100  
1.65  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
14  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-066B3  
Selection Identifier  
ACS37002LMABTR-066B3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
19.8  
Max IP (A)  
Bidirectional  
66.7  
Digital Input  
Digital Input  
0
0
1
0
1
0
16.5  
80  
Selection  
Combination  
13.2  
100  
1
1
9.9  
133.3  
ACS37002LMABTR-066B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–66.7  
66.7  
80  
100  
133.3  
A
A
–80  
Current Sensing Range  
IPR  
–100  
A
–133.3  
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
19.8  
16.5  
13.2  
9.9  
100  
1.65  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
15  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-050U3  
Selection Identifier  
ACS37002LMABTR-050U3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Type  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
52.8  
Max IP (A)  
Digital Input  
Digital Input  
Bidirectional  
0
0
1
1
0
1
0
1
50  
40  
66  
Selection  
Combination  
79.2  
33.3  
66.7  
39.6  
ACS37002LMABTR-050U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
0
0
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
0
A
0
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Unidirectional; IP = 0 A, TA = 25°C  
52.8  
66  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
79.2  
39.6  
50  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
25  
100  
0.33  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
16  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LMABTR-066U3  
Selection Identifier  
ACS37002LMABTR-066U3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
39.6  
Max IP (A)  
Bidirectional  
66.7  
Type  
Digital Input  
Digital Input  
0
0
1
1
0
1
0
1
33  
80  
Selection  
Combination  
26.4  
100  
19.8  
133.3  
ACS37002LMABTR-066U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
0
0
66.7  
80  
100  
133.3  
A
A
Current Sensing Range  
IPR  
0
A
0
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Unidirectional; IP = 0 A, TA = 25°C  
39.6  
33  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
26.4  
19.8  
50  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
25  
100  
0.33  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–10  
–0.5 ±0.6  
–0.5 ±0.6  
–2 ±3  
1.75  
1.5  
10  
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
–1 ±3  
–1 ±4  
–1 ±3  
–3 ±5  
–1 ±4  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.6  
–3.4  
–10  
–10  
–10  
–1.6 ±1.2  
–1.5 ±1.1  
–3 ±4  
3.6  
3.4  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 150°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
17  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002KMABTR-050B5  
Selection Identifier  
AACS37002KMABTR-050B5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Calculation  
Bidirectional  
0
0
1
1
0
1
0
1
40  
50  
60  
30  
50  
40  
Selection  
Combination  
33.3  
66.7  
ACS37002KMABTR-050B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 125°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–50  
–40  
–33.3  
–66.7  
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
40  
50  
60  
30  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR+VREF)) / (Sens(IDEAL) × IPR)× 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1  
–0.5 ±0.6  
–0.3 ±0.5  
–2 ±3  
1.75  
1
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 125°C, TA = –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 125°C  
–10  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 125°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 125°C  
–10  
–8  
–1 ±3  
±5  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
–1 ±3  
–3 ±4  
±5  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.4  
–3.2  
–10  
–10  
–10  
–1.4 ±1.2  
–1.3 ±1.1  
–3 ±4  
3.4  
3.2  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 125°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 125°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 125°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 125°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
18  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002KMABTR-050B3  
Selection Identifier  
ACS37002KMABTR-050B3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
26.4  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Bidirectional  
0
0
1
1
0
1
0
1
50  
40  
33  
Selection  
Combination  
39.6  
33.3  
66.7  
19.8  
ACS37002KMABTR-050B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 125°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–50  
–40  
–33.3  
–66.7  
50  
40  
33.3  
66.7  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
26.4  
33  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
39.6  
19.8  
100  
1.65  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1  
–0.5 ±0.6  
–0.3 ±0.5  
–2 ±3  
1.75  
1
%
%
Sensitivity Error  
ESENS  
IP = IPR(max), TA = 25°C to 125°C, TA = –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 125°C  
–10  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 125°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 125°C  
–10  
–8  
–1 ±3  
±5  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
–1 ±3  
–3 ±4  
±5  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
TOTAL ERROR AND TOTAL ERROR COMPONENTS INCLUDING LIFETIME DRIFT [2,3]  
Total Error Including Lifetime Drift  
ETOT_LTD  
IP = IPR(max)  
–3.4  
–3.2  
–10  
–10  
–10  
–1.4 ±1.2  
–1.3 ±1.1  
–3 ±4  
3.4  
3.2  
10  
10  
10  
%
Sensitivity Error Including Lifetime Drift  
ESENS_LTD  
IP = IPR(max), TA = 25°C to 125°C or –40°C to 25°C  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 125°C  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 125°C  
%
mV  
mV  
mV  
Zero Current Reference Error Including  
Lifetime Drift  
VRE_LTD  
–2 ±3  
–2 ±5  
Offset Error Including Lifetime Drift  
QVO Error Including Lifetime Drift  
VOE_LTD  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 125°C  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
–10  
–14  
–10  
±4  
–4 ±6  
±7  
10  
14  
10  
mV  
mV  
mV  
VQE_LTD  
[[1] Typicals values are the mean ±3 sigma of production distributions. These are formatted as mean ±3 sigma.  
[2] Typicals values are the mean ±3 sigma statistical combination of production and AEC-Q100 individual drift distributions. These are formatted as mean ±3 sigma.  
[3] Lifetime drift characteristics are based on a statistical combination of production distributions and worst case distribution of parametric drift of individuals observed during AEC-Q100 qualification.  
Contact Allegro MicroSystems for further information.  
19  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LLAATR-015B5  
Selection Identifier  
ACS37002LLAATR-015B5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
133.3  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Bidirectional  
0
0
1
1
0
1
0
1
15  
12  
10  
20  
166.6  
Selection  
Combination  
200  
100  
ACS37002LLAATR-015B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–15  
–12  
–10  
–20  
15  
12  
10  
20  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
133.3  
166.6  
200  
100  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–1.5  
±1.4  
±1.3  
±1.2  
1.75  
1.5  
%
%
%
IP = IPR(max), TA = 25°C to 150°C  
IP = IPR(max), TA = –40°C to 25°C  
Sensitivity Error  
ESENS  
1.5  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
–10  
±4  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
±5  
±4  
±5  
±6  
±7  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
[1] Typicals are based on worse case mean ±3 sigma values during production or production and qualification.  
20  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LLAATR-025B5  
Selection Identifier  
ACS37002LLAATR-025B5 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Calculation  
Bidirectional  
0
0
1
1
0
1
0
1
80  
66.6  
53.3  
40  
25  
30  
Selection  
Combination  
37.5  
50  
ACS37002LLAATR-025B5 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 5 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–25  
–30  
–37.5  
–50  
25  
30  
37.5  
50  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
80  
66.6  
53.3  
40  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–1.5  
±1.4  
±1.3  
±1.2  
1.75  
1.5  
%
%
%
IP = IPR(max), TA = 25°C to 150°C  
IP = IPR(max), TA = –40°C to 25°C  
Sensitivity Error  
ESENS  
1.5  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
–10  
±4  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
±5  
±4  
±5  
±6  
±7  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
[1] Typicals are based on worse case mean ±3 sigma values during production or production and qualification.  
21  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LLAATR-015B3  
Selection Identifier  
ACS37002LLAATR-015B3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Calculation  
Bidirectional  
0
0
1
1
0
1
0
1
88  
110  
132  
66  
15  
12  
10  
20  
Selection  
Combination  
ACS37002LLAATR-015B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–15  
–12  
–10  
–20  
15  
12  
10  
20  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
88  
110  
132  
66  
100  
2.5  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–1.5  
±1.4  
±1.3  
±1.2  
1.75  
1.5  
%
%
%
IP = IPR(max), TA = 25°C to 150°C  
IP = IPR(max), TA = –40°C to 25°C  
Sensitivity Error  
ESENS  
1.5  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
–10  
±4  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
±5  
±4  
±5  
±6  
±7  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
[1] Typicals are based on worse case mean ±3 sigma values during production or production and qualification.  
22  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ACS37002LLAATR-025U3  
Selection Identifier  
ACS37002LLAATR-025U3 Gain_Sel Pin Performance Key  
Parameter (Units)  
Gain_Sel_1 (Boolean) Gain_Sel_0 (Boolean)  
Sens (mV/A)  
Calculation  
105.6  
Max IP (A)  
Type  
Digital Input  
Digital Input  
Bidirectional  
0
0
1
1
0
1
0
1
25  
30  
88  
Selection  
Combination  
70.4  
37.5  
50  
52.8  
ACS37002LLAATR-025U3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, TA = –ꢀ40°C to 150°C,  
CBYPASS = 0.1 µF, and VCC = 3.3 V, unless otherwise specified  
Characteristic  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
NOMINAL PERFORMANCE  
Gain Sel 00  
Gain Sel 01  
Gain Sel 10  
Gain Sel 11  
–25  
–30  
–30  
–50  
25  
30  
30  
50  
A
A
Current Sensing Range  
IPR  
A
A
Gain Sel 00; IPR(min) < IP < IPR(max)  
Gain Sel 01; IPR(min) < IP < IPR(max)  
Gain Sel 10; IPR(min) < IP < IPR(max)  
Gain Sel 11; IPR(min) < IP < IPR(max)  
Typ. = factory-programmed default, FS = Full-Scale  
Bidirectional; IP = 0 A, TA = 25°C  
105.6  
88  
mV/A  
mV/A  
mV/A  
mV/A  
%FS  
V
Sensitivity  
Sens  
70.4  
52.8  
100  
2.5  
Overcurrent Fault Operating Range  
Zero Current Output Voltage  
IOCF-OR  
VIOUT(Q)  
50  
200  
TOTAL ERROR (VIOUT(ACTUAL) – (Sens(IDEAL) × IPR + VREF)) / (Sens(IDEAL) × IPR) × 100  
AND TOTAL ERROR COMPONENTS  
Total Error  
ETOT  
IP = IPR(max)  
–1.75  
–1.5  
–1.5  
±1.4  
±1.3  
±1.2  
1.75  
1.5  
%
%
%
IP = IPR(max), TA = 25°C to 150°C  
IP = IPR(max), TA = –40°C to 25°C  
Sensitivity Error  
ESENS  
1.5  
VREFactual – VREFideal, IP = 0 A, TA = 25°C to 150°C  
–10  
±4  
10  
mV  
Zero Current Reference Error  
VRE  
VREFactual – VREFideal, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q) – VREF, IP = 0 A, TA = 25°C to 150°C  
VIOUT(Q) – VREF, IP = 0 A, TA = –40°C to 25°C  
VIOUT(Q), IP = 0 A, TA = 25°C to 150°C  
–10  
–8  
±5  
±4  
±5  
±6  
±7  
10  
8
mV  
mV  
mV  
mV  
mV  
Offset Error  
QVO Error  
VOE  
–8  
8
–10  
–10  
10  
10  
VQE  
VIOUT(Q), IP = 0 A, TA = –40°C to 25°C  
[1] Typicals are based on worse case mean ±3 sigma values during production or production and qualification.  
23  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
FUNCTIONAL DESCRIPTION  
ꢃoltage  
Power-On Reset Operation  
V
CC  
V
OUT  
The descriptions in this section assume: temperature = 25°C, with  
the labeled test conditions. The provided graphs in this section  
show VIOUT moving with VCC. The voltage of VIOUT during a  
high-impedance state will be most consistent with a known load  
(RLOAD,CLOAD).  
5 ꢃ  
UꢃꢄꢅHꢆ  
PꢂRꢅHꢆ  
A
ꢇꢃꢂ  
ꢀ.5 ꢃ  
HI Z  
t
Pꢂꢄ  
POWER-ON  
t
PꢂRR  
t
PꢂR-ꢂUꢁ  
As VCC ramps up, the ACS37002's VIOUT and VREF pins are  
high impedance until VCC reaches and passes VUVD(H) [2] (or  
VPOR(H) [1] if UVD is disabled). Once VCC passes [2], the device  
takes some time without VCC dropping below VPOR(L) [8] before  
the device enters normal operation.  
ꢁime  
Figure 5: tPOD behavior UVD disabled, RL = Pull-Up  
POWER-ON RESET (POR)  
If VCC falls below VPOR(L) [8] while in operation, the output will  
re-enter a high-impedance state. After VCC recovers and exceeds  
VUVD(H) [2], the output will begin reporting again after the delay  
of tPOD.  
POWER-OFF  
As VCC drops below VPOR(L) [8], the outputs will enter a high-  
impedance state. If UVD is enabled, before the device powers off,  
it will force VIOUT to GND if VCC < VUVD(L) [6] until VPOR(L) [8]  
(seen in Figure 4 and Figure 6) is reached, at which point VIOUT  
and VREF will go high Z. If UVD is disabled, then VREF and VIOUT  
will continue to report until VCC is less than VPOR(L) [8] (seen in  
Figure 7), at which point they will go high Z.  
POWER-ON DELAY (TPOD  
)
When the supply is ramped to VUVD(H) (seen in Figure 5 as [2]),  
the device will require a finite time to power its internal compo-  
nents before the outputs are released from high Z and can respond  
to an input magnetic field. Power-On Time, tPOD, is defined as  
the time it takes for the output voltage to settle within ±10% of  
its steady-state value under an applied magnetic field, which can  
be seen the time from [2] to [A]. After this delay, the output will  
Note: Since the device is entering a high Z state, and not driving  
the output, the time it takes the output to reach a steady state will  
depend on the external circuitry used.  
quickly approach VIOUT(IP) = Sens × IP + VREF  
.
ꢂoltage  
V
CC  
V
IOUT  
1
1
3
5
ꢇꢂꢃꢄHꢅ  
ꢇꢂꢃHys  
ꢇꢂꢃꢄꢆꢅ  
5
UꢂꢃꢄHꢅ  
UꢂꢃHys  
Uꢂꢃꢄꢆꢅ  
PꢇRꢄHꢅ  
PꢇRHys  
PꢇRꢄꢆꢅ  
HI Z  
ꢈꢂꢇ  
ꢉ.5  
HI Z  
HI Z  
HI Z  
ꢁime  
Figure 4: Power States Thresholds with VIOUT Behavior for a 5 V Device, RL = Pull-Down, UVD Enabled  
24  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
If UVD is disabled or it is a 3.3 V device, VIOUT and VREF will  
begin report after VCC raises above VPOR(H) (seen in Figure 7 as  
[1]) under the same conditions.  
Overvoltage and Undervoltage Detection  
(OVD/UVD)  
To ensure that the device’s output is reporting accurately, the  
device contains an overvoltage and an undervoltage detection  
flag. This flag on VIOUT can be used to alert the system when the  
supply voltage for the device is outside of the operational range.  
UVD is only active on 5 V devices.  
If VCC drops below VUVD(L) [6] after normal operation, VIOUT  
will pull to GND regardless of RLOAD configuration. The VIOUT  
will remain at GND until VCC raises above VUVD(H) [7] or VCC  
falls below VPOR(L) [8]. If VCC rises above VUVD(H) [7] after a  
UVD, event, the VIOUT and VREF outputs will resume operation.  
If VCC drops below VPOR(L) [8], the device will enter a POR  
event and reset; VIOUT and VREF will switch to high Z if this  
occurs.  
UNDERVOLTAGE DETECTION VOLTAGE  
THRESHOLDS (VUVD(H/L)  
)
The 5 V ACS37002 is factory-programmed with UVD enabled. It  
is important to note that when powering up the device for the first  
time after a POR event, VIOUT and VREF will remain high Z until  
VCC is raised above VUVD(H) (seen in Figure 6 as [2]), at which  
OVERVOLTAGE DETECTION VOLTAGE  
THRESHOLDS (VOVD(H/L)  
)
point the VIOUT and VREF outputs will begin to normal operation. When VCC raises above VOVD(H) (seen in Figure 6 as [4]), the  
ꢂoltage  
V
CC  
V
IOUT  
1
1
3
5
ꢇꢂꢃꢄHꢅ  
ꢇꢂꢃHys  
ꢇꢂꢃꢄꢆꢅ  
5
UꢂꢃꢄHꢅ  
UꢂꢃHys  
PꢇRHys  
Uꢂꢃꢄꢆꢅ  
PꢇRꢄHꢅ  
PꢇRꢄꢆꢅ  
HI Z  
ꢈꢂꢇ  
ꢉ.5  
HI Z  
HI Z  
HI Z  
ꢁime  
V
REF  
5
ꢂoltage  
Rꢍꢎꢄꢏdealꢅ  
HI Z  
HI Z  
HI Z  
ꢁime  
Figure 6: Power States Thresholds with VIOUT and VREF Behavior, 5 V Device, RL = Pull-Up, UVD Enabled  
ꢂoltage  
V
CC  
V
IOUT  
1
1
5
ꢃꢂꢉꢄHꢅ  
3
ꢃꢂꢉHys  
ꢃꢂꢉꢄꢆꢅ  
5
3.3ꢂ  
PꢃRꢄHꢅ  
PꢃRHys  
PꢃRꢄꢆꢅ  
HI Z  
ꢇꢂꢃ  
1.ꢈ5  
HI Z  
HI Z  
HI Z  
ꢁime  
V
REF  
5
1
1
ꢂoltage  
Rꢋꢌꢄꢍdealꢅ  
HI Z  
HI Z  
HI Z  
ꢁime  
Actꢎal Perꢏormance  
Figure 7: Power States Thresholds with VIOUT and VREF Behavior, 3.3 V Device, RL = Pull-Up, UVD Disabled  
25  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
output of the VREF and VIOUT pin will go high Z, VREF be pulled  
to GND, and VIOUT will be pulled to either VCC or GND,  
depending if RLoad is in a pull-up or pull-down configuration.  
If VCC ramps from >VUVD(L) [6] to <VPOR(L) [8] (both seen in  
Figure 8) faster than tUVD(E), then the device will not have time to  
report a UVD event before power off occurs.  
The disable time for OVD, tOVD(D), is the time from VOVD(L) [5]  
to the OVD clear to normal operation [C] in Figure 8. The UVD  
disable time, tUVD(D), is the time from VUVD(H) [7] to the point  
that the UVD flag clears and VIOUT returns to nominal opera-  
tion [E], also seen in Figure 8. The disable time does not have a  
counter for either UVD or UVD to release the output and resume  
reporting.  
OVERVOLTAGE/UNDERVOLTAGE DETECTION  
HYSTERESIS (VOVD(HYS), VUVD(HYS)  
)
There is hysteresis between enable and disable thresholds to  
reducing nuisance flagging and clears. There is approximately  
1 V and 0.4 V of hysteresis for Overvoltage and Undervoltage  
respectively. These can be seen represented in Figure 6 between  
the relevant thresholds.  
SUPPLY ZENER CLAMP VOLTAGES  
If the voltage applied to the device continues to increase past  
overvoltage detection, there is a point when the Zener diodes will  
turn on. These internal diodes are in place to protect the device  
from short high voltage or ESD events and should NOT be used  
as a feature to reduce the voltage on a line. Continued exposure to  
voltages higher than normal operating voltage, VCC, can weaken  
or damage the Zener diodes, which will potentially damage the  
OVERVOLTAGE AND UNDERVOLTAGE  
ENABLE AND DISABLE TIME (TOVD(E/D), TUVD(E/D)  
)
The enable time for OVD, tOVD(E), is the time from VOVD(H) [4]  
to OVD flag [B] in Figure 8. The UVD enable time, tUVD(E), is  
the time from VUVD(L) [6] to the UVD flag [D], also in Figure 8.  
The enable flag for both OVD and UVD has a counter to reduce  
transients faster than 64 µs from triggering nuisance flags.  
part.  
ꢂoltage  
V
CC  
V
IOUT  
5
ꢇꢂꢃꢄHꢅ  
ꢇꢂꢃHys  
ꢇꢂꢃꢄꢆꢅ  
5 ꢂ  
UꢂꢃꢄHꢅ  
UꢂꢃHys  
Uꢂꢃꢄꢆꢅ  
PꢇRꢄHꢅ  
PꢇRHys  
PꢇRꢄꢆꢅ  
HI Z  
ꢈꢂꢇ  
ꢉ.5 ꢂ  
A
t
t
ꢇꢂꢃꢄꢊꢅ  
t
t
Uꢂꢃꢄꢃꢅ  
t
Pꢇꢃ  
Uꢂꢃꢄꢊꢅ  
ꢇꢂꢃꢄꢃꢅ  
HI Z  
ꢁime  
Figure 8: tPOD, tOVD(E/D), and tUVD(E/D) with RL = Pull-Up  
26  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
programming or transient switching. The Reverse Output Voltage  
Absolute Maximum Ratings  
or VR-RF should not drop below –0.5 V during programming or  
transient switching. These voltages should not be used as a DC  
voltage bias for an extended time.  
These are the maximum application or environmental conditions  
that the device can be subjected before damage may occur.  
FORWARD AND REVERSE SUPPLY VOLTAGE  
OUTPUT SOURCE AND SINK CURRENT  
These are the largest voltage magnitudes that can be supplied to  
VCC from GND during programing or transient switching. This  
voltage should not be used as a DC voltage bias for an extended  
time.  
This is the maximum current that VIOUT can passively sink or  
source before damage may occur.  
AMBIENT TEMPERATURE (TA)  
FORWARD AND REVERSE OUTPUT VOLTAGE  
This is the ambient temperature of the device. The Operating  
Ambient Temperature Range is the ambient temperature range  
that the Common Electricals and Common Performance Char-  
acteristics limits are valid. The Optimized Ambient Temperature  
Range is the ambient temperature range that the device-specific  
performance characteristics limits are valid. ACS37002L devices  
have optimized performance in the –40°C to 150°C (“L” temper-  
ature) range. ACS37002K devices have optimized performance  
in the –40°C to 125°C (“K” temperature) range. The –40°C to  
125°C (“K” temperature) range devices have Device Specific  
Performance optimized within the –40°C to 125°C temperature  
range but will still operate in the –40°C to 150°C (“L” tempera-  
ture) range.  
The Forward Output Voltage or VFIOUT voltage can be no greater  
than VCC + 0.5 up to 6.5 V. This is the greatest voltage that the  
output can be biased with from GND during programming or  
transient switching. The Reverse Output Voltage or VRIOUT  
should not drop below –0.5 V during programming or transient  
switching. These voltages should not be used as a DC voltage  
bias for an extended time.  
FORWARD AND REVERSE REFERENCE/FAULT VOLTAGE  
The Forward Reference/Fault Voltage or VF-RF voltage can be no  
greater than VCC + 0.5 up to 6.5 V. This is the greatest voltage  
that the VREF and VOCF can be biased with from GND during  
27  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
DEFINITIONS OF OPERATING AND PERFORMANCE CHARACTERISTICS  
Zero Current Voltage Output (VIOUT(Q), QVO)  
Output Saturation Voltage (VSAT(HIGH/LOW))  
Zero Current Voltage Output or VIOUT(Q) (also called QVO) is  
defined as the voltage on the output, VIOUT when zero amps are  
applied through IP.  
Output Saturation Voltage, or VSAT, is defined as the voltage that  
the VIOUT does not pass as a result to an increasing magnitude  
of current. VSAT(HIGH) is the highest voltage the output can drive  
to while, VSAT(LOW) is the lowest. This can be seen in Figure  
10. Note that changing the sensitivity does not change the VSAT  
points.  
QVO Temperature Drift (VQE  
)
QVO Temperature Drift, or VQE, is defined as the drift of QVO  
from room to hot or room to cold (25°C to 125/150°C or 25°C to  
–40°C respectively). To improve over temperature performance  
the temperature drift is compensated with Allegro’s factory trim to  
remain within the limits across temperature.  
OUTPUT VOLTAGE OPERATING RANGE (VOOR  
)
The Output Voltage Operating Range, or VOOR, is the functional  
range for linear performance of VIOUT and its related datasheet  
parameters. This can be seen in Figure 10. The VOOR is the output  
region that the performance accuracy parameters are valid. It is  
Reference Voltage (VREF  
)
possible for the output to report beyond these voltages until VSAT  
but certain parameters cannot be guaranteed. The output perfor-  
,
There is a Voltage Reference Output, (VREF) on the ACS37002.  
This output reports the zero-current voltage for the output channel  
VIOUT allowing for differential measurement and a device referred  
supply for the VOC pin.  
mance is demonstrated in Figure 10 through and beyond the VOOR  
.
Voltage Output Operating Range for VCC and  
Output Modes, VOOR(Vcc, Mode)  
Reference Voltage Temperature Drift (VRE)  
VCC (V)  
Bidrectional  
±1.32  
Unidirectional  
+2.64  
Reference Voltage Temperature Drift, or VRE, is defined as  
the drift of VREF from room to hot or room to cold (25°C to  
125/150°C or 25°C to –40°C respectively).  
3.3  
5
±2  
+4  
Offset Voltage (VOE  
)
Offset Voltage, or VOE, is defined as the difference between QVO  
and VREF (see Figure 9). VOE includes the drift of QVO minus  
VREF from room to hot or room to cold (25°C to 125/150°C or  
25°C to –40°C respectively).  
Figure 9: Offset (VOFF) Between VIOUT and VREF  
Figure 10: VOOR, VSAT and SENS with Full Scale  
28  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
Sensitivity (Sens)  
Gain Selection Pins  
The ACS37002 features external gain selection pins that config-  
ures the device sensitivity. The gain select logic is latched based  
on the pin voltage at startup. Either pin may be shorted directly  
to VCC or GND, which is logic 1 or 0 respectively. Both pins  
include an internal 1 MΩ pull-down resistor to GND. Exter-  
nally floating pins will be interpreted as logic 0; if both pins are  
floating, the device will be in the 00 configuration. Specific gain  
select performance can be found in the selection Performance  
Characteristics table. To change the gain of the device, refer to  
Figure 21 in the Application and Theory section.  
Sensitivity, or Sens, is the ratio of the output swing versus the  
applied current through the primary conductor, IP. This current  
causes a voltage deviation away from QVO on the VIOUT output  
until VSAT. The magnitude and direction of the output volt-  
age swing is proportional to the magnitude and direction of the  
applied current. This proportional relationship between output  
and input is Sensitivity and is defined as:  
VOUT(I1) VOUT(I2)  
Sens =  
I1 I2  
Full Scale (FS)  
where I1 and I2 are two different currents, and where VIOUT(I1)  
and VIOUT(I2) are the voltages of the device at the applied cur-  
rents. VIOUT, I1, or I2 can be QVO with zero current.  
Full Scale, or FS, is a method to relate an input and/or output to  
the max input and/or output of the device. For example, 50%FS  
of a 10A sensor is 5A, or 50% of its maximum input current. The  
50% input of 5A will cause the output to move 50%, or 50%FS.  
FS is used to interchangeably refer to input and output deviations  
when discussing input steps, fault trip thresholds and relating  
input to output performance. FSINPUT is the input bias that results  
in FSOUTPUT and these two are directly related by the device  
actual sensitivity. Both FS can be seen in Figure 10, labeled as  
positive or negative FS input and FS output. The equation for  
input referred FS for a 5V bidirectional device is:  
Sensitivity Error (Esens  
)
Sensitivity Temperature Drift, or Esens, is the drift of Sens from  
room to hot or room to cold (25°C to 125°C or 25°C to –40°C  
respectively). No trimming/programming is needed as tempera-  
ture drift is compensated with Allegro’s factory trim.  
FS = VOOR(5V,Bi)/SensActual= ±2V/SensActual  
Note: that a percentage change in FSINPUT is equivalent to a  
resultant percentage change of FSOUTPUT and visa versa.  
Nonlinearity (ELIN  
)
As the amount of field applied to the part changes, the sensitiv-  
ity of the device can also change slightly. This is referred to as  
linearity error or ELIN (see Figure 12). Consider two currents,  
I1(1/2 FS) and I2(FS). Ideally, the sensitivity of the device is the  
same for both fields. Linearity Error is calculated as the percent  
change in sensitivity from one field to another. Error is calculated  
separately for positive (ELIN(+)) and negative (ELIN(-)) currents,  
and the percent errors are defined as:  
where:  
SensIx+ = (VIOUTIx+ – VREF) / Ix+  
and  
SensIx- = (VIOUTIx- – VREF) / Ix-  
Ix are positive and negative currents through IP, such that  
|I+2| = 2 × | I+1| and | I-2| = 2 × | I-1|.ELIN = max(ELIN(+) , ELIN(-)  
Figure 11: Output Accuracy Pocket for Room and  
Across Temperature  
)
29  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
Total Output Error (ETOT  
)
Power Supply Offset Error (VPS)  
The Total Output Error is the current measurement error from the Power Supply Offset Error or VPS is defined at the offset error in  
sensor IC as a percentage of the actual applied current. This is  
equivalent to the difference between the ideal output voltage and  
the actual output voltage, divided by the ideal sensitivity, relative  
to the current applied to the device, or simplified to:  
mV between VCC and VCC ±10% VCC. For a 5 V device, this is 5  
to 4.5 V and 5 to 5.5 V. For a 3.3 V device, this is 3.3 to 3 V and  
3.3 to 3.6 V.  
Offset Power Supply Rejection Ratio (PSRRO)  
The Offset Power Supply Rejection Ratio or PSRRO is defined  
as 20 × log of the ratio of the change of QVO in volts over a  
±100 mV variable AC VCC centered at 5 V reported as dB in  
a specified frequency range. This is an AC version of the VPS  
parameter. The equation is shown below:  
where  
VIOUT_Actual(I±) = ±I × SensActual + QVOActual  
and  
VIOUT_Ideal(I±) = ±I × SensIdeal + VREF_Actual  
Total Output Error incorporates all sources of error and is a func-  
tion of current. At relatively high currents, Total Output Error will  
be mostly due to sensitivity error, and at relatively low inputs,  
Total Output Error will be mostly due to Offset Voltage (VOE). At  
I = 0 A, Total Output Error approaches infinity due to the offset.  
An example of total error at FS can be seen in Figure 12.  
Power Supply Sensitivity Error (EPS)  
Power Supply Sensitivity Error, or EPS, is defined as the percent  
sensitivity error measured between VCC and VCC ±10%. For a  
5 V device, this is 5 to 4.5 V and 5 to 5.5 V. For a 3.3 V device,  
this is 3.3 to 3 V and 3.3 to 3.6 V.  
Sensitivity Power Supply Rejection Ratio (PSRRS)  
Note: Total Output Error goes to infinity as the amount of applied  
field approaches 0 A.  
The Sensitivity Power Supply Rejection Ratio or PSRRS is  
defined as 20 × log of the ratio of the % change the sensitivity  
over the % change in VCC (±100 mV variable AC VCC centered at  
5 V) reported as dB in a specified frequency range. This is the AC  
version of the EPS parameter. The equation is shown below:  
Figure 12: Accuracy Error  
30  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
FAULT BEHAVIOR  
VOLTAGE OVERCURRENT PIN (VOC)  
Overcurrent Fault (OCF)  
The fault trip points can be set using the VOC pin as the direct  
As the output swings, the Overcurrent Fault pin will trigger with  
an active low flag if the sensed current exceeds its comparator  
threshold. This is internally compared with either the factory-  
analog input for the fault trip point. The VOC pin voltage can be  
set using resistor dividers from VREF on bidirectional devices. The  
fault performance is valid when VVOC is within the VOC Operating  
Voltage Range or <0.1 V. The device will respond to voltage outside  
of the defined valid performance region with varied results. For a  
5 V bidirectional device, setting the VOC pin to 0.5 V selects the  
minimum trip point, IFAULT(min), and setting the pin to 2 V selects the  
maximum trip point, IFAULT(max) as defined by selection performance  
tables. All voltages between 0.5 to 2 V for 5 V option and 0.33 to  
1.321 V for 3.3 V option can linearly select a trip point between the  
programmed thresholds or via the VOC voltage when VVOC  
>
0.1 V. This flag trips symmetrically for the positive and negative  
OCF operating point.  
The implementation for the OCF circuitry is accurate over  
temperature and does not require further temperature compensa-  
tion as it is dependent on the Sens and VOFF parameters that are  
factory-trimmed flat over temperature..  
minimum and maximum levels, as shown in Figure 14. When VOC  
0.1 V, the internal EEPROM fault level will be used.  
<
OVERCURRENT FAULT OPERATING RANGE/POINT  
The resulting equation for the fault is:  
(IOCF-OR, IOCF-OP  
)
VOC(V ) [V]  
CC  
Overcurrent Fault Operating Range is the functional range that  
the OCF thresholds can be set in terms of percentage of full-scale  
output swing. The Overcurrent Fault Operating Point is the spe-  
cific point at which the OCF trigger will occur, and is set by either  
VVOC or the factory default setting. The IOCF-OP can be seen in  
Figure 13 as [9] along with the FAULT pin functionality.  
OCF%FS [%] =  
× 100 [%]  
VOC(V )100% [V]  
CC  
IOCF [A] = OCF%FS [%] × IPR [A]  
Table 1: VOC(Vcc) thresholds and corresponding percentage of the Full-Scale  
Output for Bidirectional and Unidirectional operational modes  
Fault Operation Point %FS  
VOC(3.3V) (V)  
VOC(5V) (V)  
Bidirectional  
Unidirectional  
OVERCURRENT FAULT HYSTERESIS (IOCF-HYST  
)
<0.1  
100% (factory default) 50% (factory default)  
0.330  
0.466  
0.661  
0.826  
0.991  
1.156  
1.321  
0.5  
0.75  
1
50%  
75%  
25%  
37.5%  
50%  
Overcurrent Fault Hysteresis or IOCF-HYST is defined as the  
magnitude of percent FS that must drop before a fault assertion  
will be cleared. This can be seen as the separation between the  
voltages [9] to [10] in Figure 13. Note the MASK and HOLD  
functionality are independent of each other. The ACS37002  
comes standard with an OCFHYS of 120 mV (on the output) or  
6%FS for a 5 V device and 9%FS for a 3.3 V device.  
100%  
125%  
150%  
175%  
200%  
1.25  
1.5  
1.75  
2
62.5%  
75%  
85%  
100%  
9
10  
ꢁAUꢂꢃꢄmaꢉꢅ ꢊ  
ꢋ.0 ꢌ ꢁS ꢄꢍidirectionalꢅ  
ꢅꢆꢇ-ꢅPꢈꢉnaꢊleꢋ  
ꢍꢆꢃrrentꢍ  
ꢅꢆꢇ  
hys  
1.0 ꢌ ꢁS ꢄꢎnidirectionalꢅ  
ꢅꢆꢇ-ꢅPꢈꢌisaꢊleꢋ  
ꢁAUꢂꢃ ꢄAꢅ  
ꢂꢃll-ꢃꢂ  
ꢁAUꢂꢃꢄminꢅ ꢊ  
0.5 ꢌ ꢁS ꢄꢍidirectionalꢅ  
ꢅꢆꢇ  
Hi ꢀ  
ꢎNꢌ  
Hi ꢀ  
ꢎNꢌ  
Hi ꢀ  
0.ꢋ5 ꢌ ꢁS ꢄꢎnidirectionalꢅ  
ꢇꢈꢄꢆ  
ꢇꢈꢄꢆ  
ꢅmaꢉ  
ꢈꢈ  
ꢅmin  
ꢈꢈ  
ꢇꢈ ꢄꢆꢅ  
Figure 13: Fault Thresholds and OCF Pin Functionality  
Figure 14: VOC Functional Range  
31  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
OVERCURRENT FAULT ERROR (EOCF  
)
OVERCURRENT FAULT HOLD TIME (tOCF-HOLD)  
Fault Error or EOCF is the error between the IOCF-OP(actual) and  
IOCF-OP(ideal).  
Overcurrent Fault Hold Time or tOCF-HOLD is defined as the  
minimum time OCF flag will be asserted after a sufficient OCF  
event. After the hold time has been reached, the OCF will release  
if the OCF condition has ended (seen in Figure 15 [G] until [J])  
or persist if the OCF condition is still present (seen in Figure 17  
[G] until [J]). Factory default is 0 ms.  
OVERCURRENT FAULT RESPONSE TIME (tOCF  
)
Overcurrent Response Time or tOCF is defined as the time from  
the input reaches the operating point [9] (seen in Figure 15) until  
the OCF pin falls below VFAULT-ON [G]. If the OCF Mask is  
disabled, then tOCF is equal to tOCF-R seen as the time from [9]  
until [F].  
OVERCURRENT FAULT PERSIST  
The ACS37002 has a fault persist option that will maintain the  
OCF flag if a flag occurred until a POR event.  
OVERCURRENT FAULT REACTION TIME (tOCF-R  
)
OCF DISABLE  
Overcurrent Reaction Time or tOCF-R is defined as the time from  
the current input rising above IOCF-OP at point [9] in Figure 15 until  
the OCF pin reaches VOCF-ON at point [F] with the OCF mask dis-  
able. This is the time required for the device to recognize and clear  
the fault, seen as the time between [10] until [I].  
The ACS37002 has the ability to disable overcurrent fault func-  
tionality; when this is disabled, the OCF pin will remain in high  
Z.  
OVERCURRENT FAULT MASK TIME (tOCF-MASK  
)
Overcurrent Fault Mask Time or tOCF-MASK is defined as the  
additional amount of time the OCF must be present beyond the  
tOCF-R time (seen in Figure 15 [F] until [G]). This is to reduce  
nuisance tripping of the FAULT pin. If an OCF occurs, but does  
not persist beyond tOCF-R + tOCF-MASK, it is not reported by the  
device (seen in Figure 16). This prevents short transient spikes  
from causing erroneous OCF flagging. Factory default setting is  
tOCF-MASK = 0 µs.  
Figure 16: Fault Condition Clearing  
Before Mask Time Is Reached  
Figure 17: Fault Hold with Clear Fault After Hold Time  
Figure 15: General Fault Timing.  
Note: the MASK and HOLD functionality  
are independent of each other  
32  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
DYNAMIC RESPONSE PARAMETERS  
ꢀꢁꢂUꢃꢄꢅꢆ  
The descriptions in this section assume: temperature =25°C, and  
output loads are within limits on Common Electrical table. The  
step applied is a input step that corresponds to 1 V deviation on  
the output, unless otherwise stated.  
ꢀnꢁꢂt  
ꢀꢁtꢂꢁt  
100ꢀ  
90ꢀ  
Resꢀonse ꢁime ꢂtRꢃSPꢄNSꢃ  
Propagation Time (tpd)  
The time interval between a) when the sensed current reaches  
10% of its stable value, and b) when the sensor output reaches  
10% of its stable value for a step input. See Figure 18.  
Rise ꢀime ꢁtRꢂ  
Rise Time (tR)  
The time interval between a) when the sensor reaches 10% of its  
stable value, and b) when it reaches 90% of the stable value for a  
step input. See Figure 18.  
Proꢀagation ꢁelay ꢂtPꢁ  
10ꢀ  
Response Time (tRESPONSE  
)
0ꢀ  
ꢀime  
The time interval between a) when the sensed current reaches  
90% of its stable value, and b) when the sensor output reaches  
90% of its stable value. See Figure 18.  
Figure 18: Dynamic Response Parameters  
Temperature Compensation  
To help compensate for the effects temperature has on perfor-  
mance, the ACS37002 has an integrated internal temperature sen-  
sor. This sensor and compensation algorithms help to standardize  
device performance over the full range of optimized tempera-  
tures. This allows for room temperature system calibration and  
validation of end-of-line modules.  
Temperature Compensation Update Rate  
There is an 8 ms update time that is required to maintain a valid  
temperature compensated output; that is, temperature compensa-  
tions are calculated and applied every 8 ms.  
33  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
APPLICATION AND THEORY  
Application Circuits  
GS  
Options  
GS0  
1
2
3
4
16  
VOC Options  
GND  
15  
(1) V  
supplied VOC  
REF  
R  
(2) Externally supplied VOC  
)ꢏ  
VREF  
VOC = V  
/(R  
+R  
REF× VOC  
VOC  
GS1  
VREF  
14  
13  
VOC = 0.2 V 2 V  
ꢐidirectional Oꢆꢈ  
VOC  
V
REF  
V
REF  
Options  
R
R
ACS37002  
Vref  
VREF  
VOC  
VOC  
5
12 VIOUT  
VOC  
R
V
VOC  
External  
Source  
6
7
8
11  
CC  
VCC  
10  
R
PU  
OCF  
9
(3a) No VOC supply  
EEPROM  
(3b) No VOC supply  
EEPROM  
V
V
REF  
REF  
GS Options  
OCF Options  
R
Vref  
GS = 00  
GS0  
GS = 01  
VOC  
VOC  
V
V
Other  
CC  
GS1  
GS0  
(4) Non-inverting buffered VOC supply  
VOC = V (1+R /R )  
REF×  
2
1
R
PU  
GS1  
ꢅnidirectional Oꢆꢈ  
GS = 00  
V
CC  
GS0  
GS1  
ꢆOꢉꢊꢋ  
error will also  
be gained into the  
ꢌOC inꢀutꢄ ꢉhis  
should be considered  
when selecting or  
using configuration 4.  
OCF  
V
REF  
ꢍꢊF  
R
VREF  
OCF ꢀin can be ꢀulled  
uꢀ to diꢁꢁerent suꢀꢀly  
iꢁ needed, as long as  
the ꢀin voltage does not  
eꢂceed the OCF ꢃaꢂ  
voltage ratingꢄ  
VOC  
GS = 11  
V
CC  
GS = 10  
R2  
R
1
GS0  
GS1  
GS0  
GS1  
V
CC  
Figure 19: Applications Circuits for GAIN_SEL, VOC, and FAULT pin  
These configurations are simplified to the network required for functionality.  
Bypass and load capacitors are recommend for best performance.  
34  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
Theory and Functionality – VOC and OCF  
Simplified  
ꢀaꢁlt  
ꢆꢆPRꢃM  
ꢃꢄꢀ  
ꢀaꢁlt  
ꢇhreshold  
ꢂꢃꢄ  
ꢀaꢁlt  
ꢅogic  
ꢀaꢁlt  
ꢀiltering  
Signal  
Path  
...  
...  
Detailed  
ꢀaꢁlt  
ꢆꢆPRꢃM  
ꢀaꢁlt ꢀiltering  
ꢀaꢁlt ꢇhreshold  
t
ꢋ 0,  
Hꢃꢅꢍ  
Range ꢋ 0-3 ms  
t
ꢋ 0.5 ꢌs,  
ꢃꢄꢀ  
masꢊ  
Range ꢋ 0-3 ꢌs  
ꢂꢃꢄ  
ꢀaꢁlt  
ꢅogic  
ꢈ0.ꢉ ꢂ  
Signal  
Path  
...  
...  
ꢇime ꢍelay to  
Maꢊe  
ꢇime ꢍelay to  
ꢎreaꢊ  
ꢄonnection  
ꢄonnection  
Figure 20: OCF Signal Path Simplified and Detailed Blocks of Functionality  
VOC DRIVEN BY NON-INVERTING BUFFERED VREF  
POWER SUPPLY DECOUPLING CAPACITOR AND  
OUTPUT CAPACITIVE LOADS  
If the VOC pin is being driven by a non-inverted buffered VREF  
,
it is important to consider that any error from the VREF pin will  
be gained as well. For instance, if VREF error is +10 mV and the  
gain = 4 for the non-inverting operational amplifier, then the  
VOC pin will be 40 mV from the expected target. For unidirec-  
tional devices, OCF would be subjected to an additional 4% error  
due to the error propagation from VREF through the gain stage.  
The higher the capacitive load on the outputs (VREF, VIOUT), the  
larger the decoupling capacitor should be on the power supply  
(VCC) to maintain performance.  
CLOAD  
0 nF  
1 nF  
3 nF  
6 nF  
CBYPASS  
>100 nF  
>100 nF  
>1 µF  
>10 µF  
35  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
desired configuration voltage (VH(SEL) or VL(SEL)) at or before  
Dynamically Change Gain in a System  
VCC > VPOR(H) in order to successfully change the device gain.  
The GAIN_SEL pin voltage is latched at startup, and any changes  
to the pin voltages after the devices VIOUT comes out of high Z  
will not affect gain. The cycle time to complete this operation is  
The ACS37002 has GAIN_SEL pins that are used to change the  
gain of the device on startup. If a more dynamic gain is desired,  
then reduce VCC below VPOR(L) and restart the device by return-  
ing VCC to the nominal voltage with the new desired GAIN_SEL  
configuration. The GAIN_SEL pin voltage must greater than the  
up to 2 × tPOD  
.
Figure 21: GAIN_SEL Dynamic Gain Changing Timing Diagram  
36  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
THERMAL PERFORMANCE  
The thermal capacity of the ACS37002 should be verified by the  
Thermal Rise vs. Primary Current  
end user in the application’s specific conditions. The maximum  
junction temperature, TJ(MAX) (165℃), should not be exceeded.  
Further information on this application testing is available in  
the DC and Transient Current Capability application note on the  
Allegro website.  
Self-heating due to the flow of current should be considered dur-  
ing the design of any current sensing system. The sensor, printed  
circuit board (PCB), and contacts to the PCB will generate heat  
as current moves through the system.  
The thermal response is highly dependent on PCB layout, copper  
thickness, cooling techniques, and the profile of the injected cur-  
rent. The current profile includes peak current, current “on-time”,  
and duty cycle. While the data presented in this section was  
collected with direct current (DC), these numbers may be used  
to approximate thermal response for both AC signals and current  
pulses.  
Evaluation Board Layout  
Thermal data shown in Figure 22 and Figure 23 was collected  
using the ASEK37002 Evaluation Board (TED-0002825). This  
board includes 750 mm2 of 4 oz. copper (0.1388 mm) connected  
to pins 1 through 4, and to pins 5 through 8, with thermal vias  
connecting the layers. Top and bottom layers of the PCB are  
shown below in Figure 24.  
The plot in Figure 22 shows the measured rise in steady-state die  
temperature of the ACS37002 versus continuous current at an  
ambient temperature, TA, of 25 °C. The thermal offset curves may  
be directly applied to other values of TA. Conversely, Figure 23  
shows the maximum continuous current at a given TA. Surges  
beyond the maximum current listed in Figure 24 are allowed  
given the maximum junction temperature, TJ(MAX) (165℃), is  
not exceeded.  
Figure 22: Self heating in  
the MA and LA package due to current flow  
Figure 24: Top and Bottom Layers for ASEK37002  
Evaluation Board  
Gerber files for the ASEK37002 evaluation board are available  
for download from the Allegro website. See the technical docu-  
ments section of the ACS37002 webpage.  
Figure 23: Maximum Continuous Current  
at a Given TA  
37  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
PACKAGE OUTLINE DRAWINGS  
For Reference Only – Not for Tooling Use  
(Reference MS-013AA)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
8°  
10.30 0.20  
0°  
16  
0.33  
0.20  
D
1.06  
7.50 0.10  
10.30 0.33  
0.46  
D
A
1.27  
0.40  
1.40 REF  
1
2
Branded Face  
0.25 BSC  
SEATING PLANE  
16X  
CC  
GAUGE PLANE  
2.65 MAX  
0.10  
C
SEATING  
PLANE  
0.30  
0.10  
1.27 BSC  
0.51  
0.31  
1.27  
0.65  
16  
NNNNNNN  
LLLLLLLL  
2.25  
1
B
Standard Branding Reference View  
L
9.50  
N = Device part number  
= Assembly Lot Number, first eight characters  
A
Terminal #1 mark area  
B
C
Branding scale and appearance at supplier discretion  
1
2
Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M);  
all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
PCB Layout Reference View  
D
Hall elements; not to scale  
Figure 25: Package MA, 16-Pin SOICW  
38  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
ꢉ0.ꢠ0 ꢷ0.20  
ꢥꢸ  
0ꢸ  
ꢉꢢ  
ꢱ2  
0.ꢠꢠ  
0.20  
ꢱꢉ  
ꢊ.50 ꢷ0.ꢉ0 ꢉ0.ꢠ0 ꢷ0.ꢠꢠ  
2.ꢯꢢꢢ ꢉ.5ꢉꢠ  
ꢉ.ꢯ0 ꢖꢁꢰ  
2
ꢉ.2ꢊ  
0.ꢯ0  
ꢋꢎꢒꢑꢙꢍꢙ ꢰꢒꢘꢍ  
0.25 ꢋꢀC  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢂꢅꢁ  
ꢆꢂꢌꢆꢁ ꢇꢈꢂꢅꢁ  
C
ꢉꢢꢮ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢇꢈꢂꢅꢁ  
0.ꢉ0  
C
ꢉ.2ꢊ ꢋꢀC  
2.ꢢ5 ꢦꢂꢣ  
0.5ꢉ  
0.ꢠꢉ  
0.ꢠ0  
0.ꢉ0  
ꢂCꢀꢠꢊ002 ꢟ5 Vꢧ  
ꢂCꢀꢠꢊ002 ꢟꢠ.ꢠ Vꢧ  
ꢂCꢀꢠꢊ002  
ꢈꢝꢛ ꢅꢞꢏꢶꢍꢎ  
ꢂCꢀꢠꢊ002  
ꢈꢝꢛ ꢅꢞꢏꢶꢍꢎ  
ꢰꢝꢎ ꢖꢍꢗꢍꢎꢍꢑꢘꢍ ꢡꢑꢓꢜꢨ ꢑꢝꢛ ꢗꢝꢎ ꢛꢝꢝꢓꢐꢑꢭ ꢞꢩꢍ ꢟꢎꢍꢗꢍꢎꢍꢑꢘꢍ ꢦꢀꢤ0ꢉꢠꢂꢂꢧ  
ꢱꢐꢏꢍꢑꢩꢐꢝꢑꢩ ꢐꢑ ꢏꢐꢓꢓꢐꢏꢍꢛꢍꢎꢩ  
ꢱꢐꢏꢍꢑꢩꢐꢝꢑꢩ ꢍꢲꢘꢓꢞꢩꢐꢳꢍ ꢝꢗ ꢏꢝꢓꢙ ꢗꢓꢒꢩꢴꢵ ꢭꢒꢛꢍ ꢶꢞꢎꢎꢩꢵ ꢒꢑꢙ ꢙꢒꢏꢶꢒꢎ ꢚꢎꢝꢛꢎꢞꢩꢐꢝꢑꢩ  
ꢁꢲꢒꢘꢛ ꢘꢒꢩꢍ ꢒꢑꢙ ꢓꢍꢒꢙ ꢘꢝꢑꢗꢐꢭꢞꢎꢒꢛꢐꢝꢑ ꢒꢛ ꢩꢞꢚꢚꢓꢐꢍꢎ ꢙꢐꢩꢘꢎꢍꢛꢐꢝꢑ ꢬꢐꢛꢴꢐꢑ ꢓꢐꢏꢐꢛꢩ ꢩꢴꢝꢬꢑ  
ꢃꢍꢎꢏꢐꢑꢒꢓ ꢔꢉ ꢏꢒꢎꢕ ꢒꢎꢍꢒ  
ꢀꢛꢒꢑꢙꢒꢎꢙ ꢋꢎꢒꢑꢙꢐꢑꢭ ꢖꢍꢗꢍꢎꢍꢑꢘꢍ Vꢐꢍꢬ  
ꢋꢎꢒꢑꢙꢐꢑꢭ ꢩꢘꢒꢓꢍ ꢒꢑꢙ ꢒꢚꢚꢍꢒꢎꢒꢑꢘꢍ ꢒꢛ ꢩꢞꢚꢚꢓꢐꢍꢎ ꢙꢐꢩꢘꢎꢍꢛꢐꢝꢑ  
C
ꢈꢐꢑꢍ ꢉꢹ ꢇꢒꢎꢛ ꢅꢞꢏꢶꢍꢎ  
ꢈꢐꢑꢍ 2ꢹ ꢰꢐꢎꢩꢛ ꢺ ꢘꢴꢒꢎꢒꢘꢛꢍꢎꢩ ꢝꢗ ꢂꢩꢩꢍꢏꢶꢓꢜ ꢈꢝꢛ ꢅꢞꢏꢶꢍꢎ  
ꢖꢍꢗꢍꢎꢍꢑꢘꢍ ꢓꢒꢑꢙ ꢚꢒꢛꢛꢍꢎꢑ ꢓꢒꢜꢝꢞꢛ ꢟꢎꢍꢗꢍꢎꢍꢑꢘꢍ ꢄꢇCꢊꢠ5ꢉ  
ꢀꢡꢄCꢉ2ꢊꢇꢢ00ꢣꢉꢊ5ꢤꢥꢦꢧꢨ ꢒꢓꢓ ꢚꢒꢙꢩ ꢒ ꢏꢐꢑꢐꢏꢞꢏ ꢝꢗ 0.20 ꢏꢏ ꢗꢎꢝꢏ ꢒꢓꢓ  
ꢒꢙꢪꢒꢘꢍꢑꢛ ꢚꢒꢙꢩꢨ ꢒꢙꢪꢞꢩꢛ ꢒꢩ ꢑꢍꢘꢍꢩꢩꢒꢎꢜ ꢛꢝ ꢏꢍꢍꢛ ꢒꢚꢚꢓꢐꢘꢒꢛꢐꢝꢑ ꢚꢎꢝꢘꢍꢩꢩ  
ꢎꢍꢫꢞꢐꢎꢍꢏꢍꢑꢛꢩ ꢒꢑꢙ ꢇCꢋ ꢓꢒꢜꢝꢞꢛ ꢛꢝꢓꢍꢎꢒꢑꢘꢍꢩ  
ꢻꢒꢓꢓ ꢍꢓꢍꢏꢍꢑꢛꢩ ꢟꢱꢉꢵ ꢱ2ꢧꢨ ꢑꢝꢛ ꢛꢝ ꢩꢘꢒꢓꢍ  
ꢉ.2ꢊ  
ꢉ.2ꢊ  
0.ꢢ5  
ꢉꢢ  
0.ꢢ5  
ꢉꢢ  
ꢉ.ꢢ5  
2.25  
ꢺ.ꢊ5  
ꢺ.50  
2
2
ꢇCꢋ ꢈꢒꢜꢝꢞꢛ ꢖꢍꢗꢍꢎꢍꢑꢘꢍ Vꢐꢍꢬ  
ꢻꢐꢭꢴꢤꢄꢩꢝꢓꢒꢛꢐꢝꢑ ꢇCꢋ ꢈꢒꢜꢝꢞꢛ ꢖꢍꢗꢍꢎꢍꢑꢘꢍ Vꢐꢍꢬ  
C
Figure 26: Package LA, 16-PIN SOICW  
39  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
400 kHz, High Accuracy Current Sensor  
ACS37002  
with Pin-Selectable Gains and Adjustable Overcurrent Fast Fault in SOICW-16 Package  
Revision History  
Number  
Date  
Description  
June 24, 2020  
July 8, 2020  
Initial release  
Updated Features and Benefits, Selection Guide (page 2), Working Voltage values (page 4),  
Footnote 2 (pages 10-19), Voltage Overcurrent Pin section (page 30), and Branding (page 38)  
1
2
Updated Features and Benefits, Description, and Figure 1 (page 1); added UL certification (page 2);  
updated Selection Guide table (page 2), Forward Output Voltage and Reverse Output Voltage  
symbols (page 3), Isolation Characteristics and MA Package Specific Performance tables (page 4),  
Supply Voltage, Supply Bypass Capacitor, Primary Conductor Resistance, Power-On Reset  
Voltage, Power-On Time, Undervoltage and Undervoltage Detection Threshold (page 7), Rise  
Time, Response Time, Propagation Delay Time, Noise Density (page 8), VOC Operating Voltage  
Range, OCF Reaction Time, OCF Mask, OCF Response Time (page 9); added footnote 4 (page 9);  
Performance Characteristic tables (pages 10-19); updated Current Sensing Range and Sensitivity  
values (pages 21-23); added Functional Description (pages 24-27), Definitions of Operating and  
Performance Characteristics (pages 28-32); updated Figure 20 (page 34),Theory and Functionality  
(pages 35-36).  
October 16, 2020  
Updated UVD and OVD Threshold test conditions (page 7); removed Overshoot and Settling Time  
sections and Figure 19 (page 33); fixed Figure 18 (page 33) graphical issue; updated Figure 19  
(page 34), and other minor editorial updates.  
3
December 16, 2020  
Copyright 2020, Allegro MicroSystems.  
Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit  
improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor  
for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
40  
Allegro MicroSystems  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

ACS373D

Radiation Hardened Octal Transparent Latch, Three-State
INTERSIL

ACS373D/SAMPLE

AC SERIES, 8-BIT DRIVER, TRUE OUTPUT, CDIP20
RENESAS

ACS373D/SAMPLE-02

Bus Driver, AC Series, 1-Func, 8-Bit, True Output, CMOS, CDIP20
RENESAS

ACS373DMSR

Radiation Hardened Octal Transparent Latch, Three-State
INTERSIL

ACS373DMSR-02

Bus Driver, AC Series, 1-Func, 8-Bit, True Output, CMOS, CDIP20
RENESAS

ACS373HMSR

Radiation Hardened Octal Transparent Latch, Three-State
INTERSIL

ACS373HMSR-02

AC SERIES, 8-BIT DRIVER, TRUE OUTPUT, UUC20
RENESAS

ACS373K

Radiation Hardened Octal Transparent Latch, Three-State
INTERSIL

ACS373K/SAMPLE

Bus Driver, AC Series, 1-Func, 8-Bit, True Output, CMOS, CDFP20
RENESAS

ACS373K/SAMPLE-02

AC SERIES, 8-BIT DRIVER, TRUE OUTPUT, CDFP20, METAL SEALED, CERAMIC, FP-20
RENESAS

ACS373KMSR

Radiation Hardened Octal Transparent Latch, Three-State
INTERSIL

ACS373KMSR-02

Bus Driver, AC Series, 1-Func, 8-Bit, True Output, CMOS, CDFP20
RENESAS