ACS724KMATR-20AB-T [ALLEGRO]

Analog Circuit, 1 Func, BICMOS, PDSO16, SOIC-16;
ACS724KMATR-20AB-T
型号: ACS724KMATR-20AB-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Analog Circuit, 1 Func, BICMOS, PDSO16, SOIC-16

信息通信管理 光电二极管
文件: 总21页 (文件大小:944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACS724KMA  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
DESCRIPTION  
FEATURES AND BENEFITS  
Differential Hall sensing rejects common-mode fields  
Patented integrated digital temperature compensation  
circuitry allows for near closed loop accuracy over  
temperature in an open loop sensor  
TheAllegroACS724KMAcurrentsensorICisaneconomical  
andprecisesolutionforACorDCcurrentsensinginindustrial,  
commercial, and communication systems. The small package  
is ideal for space-constrained applications while also saving  
costs due to reduced board area. Typical applications include  
motorcontrol,loaddetectionandmanagement,switched-mode  
power supplies, and overcurrent fault protection.  
UL60950-1 (ed. 2) certified  
Dielectric Strength Voltage = 4.8 kVRMS  
Basic Isolation Working Voltage = 1097 VRMS  
Reinforced Isolation Working Voltage = 565 VRMS  
Industry-leading noise performance with greatly improved  
bandwidth through proprietary amplifier and filter design  
techniques  
Filter pin allows user to filter output for improved  
resolution at lower bandwidth  
• 0.85 mΩ primary conductor resistance for low power loss  
and high inrush current withstand capability  
Low-profile SOIC16 package suitable for space-  
constrained applications  
The device consists of a precise, low-offset, linear Hall  
sensor circuit with a copper conduction path located near the  
surface of the die.Applied current flowing through this copper  
conduction path generates a magnetic field which is sensed  
by the integrated Hall IC and converted into a proportional  
voltage. The current is sensed differentially in order to reject  
common-mode fields, improving accuracy in magnetically  
noisyenvironments.Theinherentdeviceaccuracyisoptimized  
through the close proximity of the magnetic field to the Hall  
transducer. A precise, proportional voltage is provided by the  
low-offset,chopper-stabilizedBiCMOSHallIC,whichincludes  
Allegro’spatenteddigitaltemperaturecompensation,resulting  
inextremelyaccurateperformanceovertemperature.Theoutput  
of the device has a positive slope when an increasing current  
flows through the primary copper conduction path (from pins  
1 through 4, to pins 5 through 8), which is the path used for  
current sensing. The internal resistance of this conductive path  
is 0.85 mΩ typical, providing low power loss.  
4.5 to 5.5 V single supply operation  
Output voltage proportional to AC or DC current  
Continued on the next page…  
TÜV America  
Certificate Number:  
U8V 14 11 54214 030  
CB Certificate Number:  
CB 14 11 54214 029  
US-22339-A1-UL  
The terminals of the conductive path are electrically isolated  
from the sensor leads (pins 9 through 16). This allows the  
ACS724KMAcurrentsensorICtobeusedinhigh-sidecurrent  
sense applications without the use of high-side differential  
amplifiers or other costly isolation techniques.  
Package: 16-pin SOICW (suffix MA)  
Continued on the next page…  
Not to scale  
16  
ACS724KMA NC  
1
2
3
The ACS724KMA outputs  
IP+  
IP+  
IP+  
IP+  
15  
an analog signal, VIOUT, that  
changes proportionally with  
GND  
NC  
+IP  
14  
4
the bidirectional AC or DC  
primary sensed current, IP,  
within the specified measure-  
ment range.  
13  
12  
11  
10  
9
FILTER  
IP  
VIOUT  
NC  
CF  
5
6
7
CL  
1 nF  
IP–  
IP–  
IP–  
IP–  
The FILTER pin can be used  
to decrease the bandwidth in  
order to optimize the noise  
performance.  
–IP  
VCC  
NC  
8
CBYPASS  
0.1 µF  
Typical Application  
ACS724KMA-DS, Rev. 8  
MCO-0000217  
June 22, 2018  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
FEATURES AND BENEFITS (continued)  
DESCRIPTION (continued)  
Factory-trimmed sensitivity and quiescent output voltage for  
improved accuracy  
Chopper stabilization results in extremely stable quiescent  
output voltage  
The ACS724KMA is provided in a low-profile surface-mount  
SOIC16 package. The leadframe is plated with 100% matte tin,  
whichiscompatiblewithstandardlead(Pb)freeprintedcircuitboard  
assembly processes. Internally, the device is Pb-free. The device is  
fully calibrated prior to shipment from the factory.  
Nearly zero magnetic hysteresis  
Ratiometric output from supply voltage  
SELECTION GUIDE  
Sens(Typ) at VCC = 5 V  
Part Number  
IPR (A)  
TA (°C)  
Packing [1]  
(mV/A)  
166  
ACS724KMATR-12AB-T  
ACS724KMATR-20AB-T  
ACS724KMATR-30AB-T  
ACS724KMATR-30AU-T  
ACS724KMATR-65AB-T  
±12  
±20  
±30  
30  
100  
66  
–40 to 125  
Tape and Reel, 1000 pieces per reel  
132  
±65  
30.75  
[1] Contact Allegro for additional packing options.  
2
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
6
Units  
V
Supply Voltage  
Reverse Supply Voltage  
Output Voltage  
VRCC  
–0.1  
V
VIOUT  
VRIOUT  
TA  
VCC + 0.5  
–0.1  
V
Reverse Output Voltage  
Operating Ambient Temperature  
Junction Temperature  
V
Range K  
–40 to 125  
165  
°C  
°C  
TJ(max)  
Storage Temperature  
Tstg  
–65 to 165  
°C  
ISOLATION CHARACTERISTICS  
Characteristic  
Symbol  
Notes  
Rating  
Unit  
Tested ±5 pulses at 2/minute in compliance to IEC 61000-4-5  
1.2 µs (rise) / 50 µs (width).  
Dielectric Surge Strength Test Voltage  
Dielectric Strength Test Voltage  
VSURGE  
10000  
4800  
V
Agency type-tested for 60 seconds per UL 60950-1  
(edition 2). Production tested at 3000 VRMS for 1 second, in  
accordance with UL 60950-1 (edition 2).  
VISO  
VRMS  
1550  
1097  
800  
VPK  
VRMS or VDC  
VPK  
Maximum approved working voltage for basic (single) isolation  
according to UL 60950-1 (edition 2).  
Working Voltage for Basic Isolation  
VWVBI  
Maximum approved working voltage for reinforced isolation  
according to UL 60950-1 (edition 2).  
Working Voltage for Reinforced Isolation  
VWVRI  
565  
7.5  
VRMS or VDC  
Clearance  
Creepage  
Dcl  
Dcr  
Minimum distance through air from IP leads to signal leads.  
mm  
Minimum distance along package body from IP leads to signal  
leads  
8.2  
mm  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Test Conditions*  
Value Units  
Mounted on the Allegro 85-0738 evaluation board with 700 mm2 of 4 oz.  
copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with  
thermal vias connecting the layers. Performance values include the power  
consumed by the PCB.  
Package Thermal Resistance  
(Junction to Ambient)  
RθJA  
23  
5
°C/W  
°C/W  
Package Thermal Resistance  
(Junction to Lead)  
RθJL  
Mounted on the Allegro ASEK724 evaluation board.  
*Additional thermal information available on the Allegro website.  
3
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
V
CC  
VCC  
Master Current  
Supply  
To All Subcircuits  
POR  
Programming  
Control  
Hall  
Current  
Drive  
C
0.1 µF  
BYPASS  
EEPROM and  
Control Logic  
Temperature  
Sensor  
Offset  
Control  
IP+  
IP+  
IP+  
IP+  
Sensitivity  
Control  
+
+
VIOUT  
R
F(int)  
IP  
IP–  
IP–  
IP–  
GND  
FILTER  
C
F
Functional Block Diagram  
16 NC  
IP+  
IP+  
IP+  
IP+  
IP-  
1
2
3
4
5
6
7
8
Terminal List Table  
15 GND  
14 NC  
Number  
1, 2, 3, 4  
5, 6, 7, 8  
Name  
Description  
IP+  
IP-  
Terminals for current being sensed; fused internally  
Terminals for current being sensed; fused internally  
13 FILTER  
12 VIOUT  
11 NC  
No internal connection; recommended to be left unconnected in order to  
maintain high creepage  
IP-  
9, 16  
10  
NC  
VCC  
NC  
IP-  
10 VCC  
Device power supply terminal  
IP-  
9 NC  
No internal connection; recommened to connect to GND for the best ESD  
performance  
11, 14  
12  
13  
15  
VIOUT  
FILTER  
GND  
Analog output signal  
Pinout Diagram  
Terminal for external capacitor that sets bandwidth  
Signal ground terminal  
4
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
COMMON ELECTRICAL CHARACTERISTICS [1]: Valid through the full range of TA = –40°C to 125°C and VCC= 5 V,  
unless otherwise specified  
Characteristic  
Symbol  
VCC  
Test Conditions  
Min.  
4.5  
Typ.  
5
Max.  
5.5  
14  
10  
Units  
V
Supply Voltage  
Supply Current  
ICC  
VCC within VCC(min) and VCC(max)  
VIOUT to GND  
10  
mA  
nF  
Output Capacitance Load  
Output Resistive Load  
Primary Conductor Resistance  
Internal Filter Resistance [2]  
Common Mode Field Rejection Ratio  
Primary Hall Coupling Factor  
Secondary Hall Coupling Factor  
Hall Plate Sensitivity Matching  
Hysteresis  
CL  
RL  
VIOUT to GND  
4.7  
kΩ  
mΩ  
kΩ  
dB  
RIP  
TA = 25°C  
0.85  
1.7  
40  
4.5  
0.5  
±1  
150  
3
RF(INT)  
CMFRR  
G1  
Uniform external magnetic field  
TA = 25°C  
G/A  
G/A  
%
G2  
TA = 25°C  
SensMATCH  
IHYS  
TA = 25°C  
Difference in offset after a ±40 A pulse  
IP = IP(max), TA = 25°C, CL = 1 nF  
IP = IP(max), TA = 25°C, CL = 1 nF  
IP = IP(max), TA = 25°C, CL = 1 nF  
Small signal –3 dB, CL = 1 nF  
mA  
μs  
Rise Time  
tr  
Propagation Delay  
tpd  
2
μs  
Response Time  
tRESPONSE  
BW  
4
μs  
Internal Bandwidth  
120  
kHz  
Input-referenced noise density;  
TA = 25°C, CL = 1 nF  
µARMS/  
Hz  
Noise Density  
IND  
450  
Input-referenced noise; CF = 4.7 nF,  
CL = 1 nF, BW = 18 kHz, TA = 25°C  
Noise  
IN  
60  
±1  
mARMS  
Nonlinearity  
ELIN  
Through full range of IP  
%
SENS_RAT_  
COEF  
Sensitivity Ratiometry Coefficient  
V
CC = 4.5 to 5.5 V, TA = 25°C  
CC = 4.5 to 5.5 V, TA = 25°C  
1.3  
QVO_RAT_  
COEF  
Zero-Current Output Ratiometry Coefficient  
Saturation Voltage [3]  
V
1
VOH  
VOL  
RL = 4.7 kΩ, TA = 25°C  
RL = 4.7 kΩ, TA = 25°C  
VCC – 0.5  
V
V
0.5  
Output reaches 90% of steady-state  
level, TA = 25°C, IP = IPR(max) applied  
Power-On Time  
tPO  
80  
μs  
Shorted Output to Ground Current  
Shorted Output to VCC Current  
ISC(GND)  
ISC(VCC)  
TA = 25°C  
TA = 25°C  
3.3  
45  
mA  
mA  
[1] Device may be operated at higher primary current levels, IP, ambient temperatures, TA, and internal leadframe temperatures, provided the Maximum Junction Tempera-  
ture, TJ(max), is not exceeded.  
[2]  
R
forms an RC circuit via the FILTER pin.  
F(INT)  
[3] The sensor IC will continue to respond to current beyond the range of IP until the high or low saturation voltage; however, the nonlinearity in this region will be worse than  
through the rest of the measurement range.  
5
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
xKMATR-12AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = 40°C to 125°C, VCC = 5 V, unless oth-  
                                                                                                                                             
erwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Units  
IPR  
–12  
12  
A
Sens  
IPR(min) < IP < IPR(max)  
166  
mV/A  
VCC  
0.5  
×
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
ACCURACY PERFORMANCE  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±1  
±3  
2.5  
%
%
Total Output Error [2]  
ETOT  
TOTAL OUTPUT ERROR COMPONENTS [3]: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C, measured at IP = IPR(max)  
–2  
±1  
2
%
%
Sensitivity Error  
Offset Voltage  
ESENS  
TA = –40°C to 25°C, measured at IP = IPR(max)  
IP = 0 A, TA = 25°C to 125°C  
±2.8  
±5  
–15  
15  
mV  
mV  
VOE  
IP = 0 A, TA = –40°C to 25°C  
±20  
LIFETIME DRIFT CHARACTERISTICS  
Sensitivity Error Lifetime Drift  
Total Output Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
[1] Typical values with +/- are 3 sigma values.  
[2] Percentage of IP, with IP = IPR(max).  
[3] A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
6
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
xKMATR-20AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = 40°C to 125°C, VCC = 5 V, unless oth-  
                                                                                                                                             
erwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.[1]  
Max.  
Units  
IPR  
–20  
20  
A
Sens  
IPR(min) < IP < IPR(max)  
100  
mV/A  
VCC  
0.5  
×
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
ACCURACY PERFORMANCE  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±1  
±3  
2.5  
%
%
Total Output Error [2]  
ETOT  
TOTAL OUTPUT ERROR COMPONENTS [3]: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C, measured at IP = IPR(max)  
–2  
±1  
2
%
%
Sensitivity Error  
Offset Voltage  
ESENS  
TA = –40°C to 25°C, measured at IP = IPR(max)  
IP = 0 A, TA = 25°C to 125°C  
±2.8  
±5  
–15  
15  
mV  
mV  
VOE  
IP = 0 A, TA = –40°C to 25°C  
±20  
LIFETIME DRIFT CHARACTERISTICS  
Sensitivity Error Lifetime Drift  
Total Output Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
[1] Typical values with +/- are 3 sigma values.  
[2] Percentage of IP, with IP = IPR(max).  
[3] A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
7
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
xKMATR-30AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = 40°C to 125°C, VCC = 5 V, unless oth-  
                                                                                                                                             
erwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.[1]  
Max.  
Units  
IPR  
–30  
30  
A
Sens  
IPR(min) < IP < IPR(max)  
66  
mV/A  
VCC  
0.5  
×
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
ACCURACY PERFORMANCE  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±0.8  
±2.7  
2.5  
%
%
Total Output Error [2]  
ETOT  
TOTAL OUTPUT ERROR COMPONENTS [3]: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C, measured at IP = IPR(max)  
–2  
±0.7  
±2.6  
±7  
2
%
%
Sensitivity Error  
Offset Voltage  
ESENS  
TA = –40°C to 25°C, measured at IP = IPR(max)  
IP = 0 A, TA = 25°C to 125°C  
–15  
15  
mV  
mV  
VOE  
IP = 0 A, TA = –40°C to 25°C  
±15  
LIFETIME DRIFT CHARACTERISTICS  
Sensitivity Error Lifetime Drift  
Total Output Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
[1] Typical values with +/- are 3 sigma values.  
[2] Percentage of IP, with IP = IPR(max).  
[3] A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
8
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
xKMATR-30AU PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = 40°C to 125°C, VCC = 5 V, unless oth-  
                                                                                                                                             
erwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.[1]  
Max.  
Units  
IPR  
0
30  
A
Sens  
IPR(min) < IP < IPR(max)  
132  
mV/A  
VCC  
0.1  
×
Zero Current Output Voltage  
VIOUT(Q)  
Unidirectional; IP = 0 A  
V
ACCURACY PERFORMANCE  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±0.7  
±2.5  
2.5  
%
%
Total Output Error [2]  
ETOT  
TOTAL OUTPUT ERROR COMPONENTS [3]: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C, measured at IP = IPR(max)  
–2  
±0.7  
±2.5  
±7  
2
%
%
Sensitivity Error  
Offset Voltage  
ESENS  
TA = –40°C to 25°C, measured at IP = IPR(max)  
IP = 0 A, TA = 25°C to 125°C  
–15  
15  
mV  
mV  
VOE  
IP = 0 A, TA = –40°C to 25°C  
±20  
Lifetime Drift Characteristics  
Sensitivity Error Lifetime Drift  
Total Output Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
[1] Typical values with +/- are 3 sigma values.  
[2] Percentage of IP, with IP = IPR(max).  
[3] A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
9
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
xKMATR-65AB PERFORMANCE CHARACTERISTICS: TA Range K, valid at TA = 40°C to 125°C, VCC = 5 V, unless oth-  
                                                                                                                                             
erwise specified  
Characteristic  
NOMINAL PERFORMANCE  
Current Sensing Range  
Sensitivity  
Symbol  
Test Conditions  
Min.  
Typ.[1]  
Max.  
Units  
IPR  
–65  
65  
A
Sens  
IPR(min) < IP < IPR(max)  
30.75  
mV/A  
VCC  
0.5  
×
Zero Current Output Voltage  
VIOUT(Q)  
Bidirectional; IP = 0 A  
V
ACCURACY PERFORMANCE  
IP = IPR(max), TA = 25°C to 125°C  
IP = IPR(max), TA = –40°C to 25°C  
–2.5  
±1  
±3  
2.5  
%
%
Total Output Error [2]  
ETOT  
TOTAL OUTPUT ERROR COMPONENTS [3]: ETOT = ESENS + 100 × VOE/(Sens × IP)  
TA = 25°C to 125°C, measured at IP = IPR(max)  
–2  
±1  
2
%
%
Sensitivity Error  
Offset Voltage  
ESENS  
TA = –40°C to 25°C, measured at IP = IPR(max)  
IP = 0 A, TA = 25°C to 125°C  
±2.8  
±5  
–15  
15  
mV  
mV  
VOE  
IP = 0 A, TA = –40°C to 25°C  
±20  
LIFETIME DRIFT CHARACTERISTICS  
Sensitivity Error Lifetime Drift  
Total Output Error Lifetime Drift  
Esens_drift  
Etot_drift  
±1  
±1  
%
%
[1] Typical values with +/- are 3 sigma values.  
[2] Percentage of IP, with IP = IPR(max).  
[3] A single part will not have both the maximum/minimum sensitivity error and maximum/minimum offset voltage, as that would violate the maximum/minimum total output  
error specification. Also, 3 sigma distribution values are combined by taking the square root of the sum of the squares. See Application Information section.  
10  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
CHARACTERISTIC PERFORMANCE  
xKMATR-12AB  
Zero Current Output Voltage vs. Temperature  
Offset Voltage vs. Temperature  
2540  
2530  
2520  
2510  
2500  
2490  
2480  
2470  
2460  
40.0  
30.0  
20.0  
10.0  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensitivity vs. Temperature  
Sensitivity Error vs. Temperature  
174  
172  
170  
168  
166  
164  
162  
160  
158  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
2.0  
1.5  
5.0  
4.0  
3.0  
1.0  
2.0  
0.5  
1.0  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-5.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
+3 Sigma  
Average  
-3 Sigma  
11  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
CHARACTERISTIC PERFORMANCE  
xKMATR-20AB  
Zero Current Output Voltage vs. Temperature  
Oset Voltage vs. Temperature  
2520  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
2475  
2470  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-50  
0
50  
100  
150  
150  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensivity vs. Temperature  
Sensivity Error vs. Temperature  
103  
102  
101  
100  
99  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
98  
97  
96  
-50  
0
50  
100  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Total Error at IPR(max) vs. Temperature  
Nonlinearity vs. Temperature  
3.0  
2.0  
2.0  
1.5  
1.0  
1.0  
0.5  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
0
50  
100  
150  
-50  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
+3 Sigma  
Average  
-3 Sigma  
12  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
CHARACTERISTIC PERFORMANCE  
xKMATR-30AB  
Zero Current Output Voltage vs. Temperature  
Oset Voltage vs. Temperature  
2515  
2510  
2505  
2500  
2495  
2490  
2485  
2480  
15  
10  
5
0
-5  
-10  
-15  
-20  
-50  
0
50  
100  
150  
150  
150  
-50  
-50  
-50  
0
50  
100  
150  
150  
150  
Temperature (°C)  
Temperature (°C)  
Sensivity vs. Temperature  
Sensivity Error vs. Temperature  
68  
67  
67  
66  
66  
65  
65  
64  
64  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-50  
0
50  
100  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
2.0  
1.5  
2.0  
1.0  
1.0  
0.0  
0.5  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
0
50  
100  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
+3 Sigma  
Average  
-3 Sigma  
13  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
CHARACTERISTIC PERFORMANCE  
xKMATR-30AU  
Zero Current Output Voltage vs. Temperature  
Oset Voltage vs. Temperature  
525  
520  
515  
510  
505  
500  
495  
490  
485  
480  
475  
25  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
-25  
-50  
-50  
-50  
0
50  
100  
150  
150  
150  
-50  
-50  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Sensivity vs. Temperature  
Sensivity Error vs. Temperature  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
4.0  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
0
50  
100  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
Nonlinearity vs. Temperature  
Total Error at IPR(max) vs. Temperature  
2.0  
1.5  
3.0  
2.0  
1.0  
1.0  
0.5  
0.0  
0.0  
-1.0  
-2.0  
-3.0  
-4.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
50  
100  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
+3 Sigma  
Average  
-3 Sigma  
14  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
CHARACTERISTIC PERFORMANCE  
ACS724 TYPICAL FREQUENCY RESPONSE  
ACS724 Frequency Response  
5
0
-5  
-10  
101  
102  
103  
104  
105  
Frequency [Hz]  
50  
0
-50  
-100  
-150  
101  
102  
103  
104  
105  
Frequency [Hz]  
15  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
DEFINITIONS OF ACCURACY CHARACTERISTICS  
sensitivity error, and at relatively low currents, ETOT will be mostly  
due to Offset Voltage (VOE). In fact, at IP = 0, ETOT approaches  
infinity due to the offset. This is illustrated in Figure 1 and Figure 2.  
Figure 1 shows a distribution of output voltages versus IP at 25°C  
and across temperature. Figure 2 shows the corresponding ETOT  
versus IP.  
Sensitivity (Sens)  
The change in sensor IC output in response to a 1A change  
through the primary conductor. The sensitivity is the product  
of the magnetic coupling factor (G/A) (1 G = 0.1 mT) and the  
linear IC amplifier gain (mV/G). The linear IC amplifier gain is  
programmed at the factory to optimize the sensitivity (mV/A) for  
the full-scale current of the device.  
Accuracy Across  
Temperature  
Increasing  
V
(V)  
IOUT  
Nonlinearity (ELIN  
)
Accuracy at  
25°C Only  
The nonlinearity is a measure of how linear the output of the sen-  
sor IC is over the full current measurement range. The nonlinear-  
ity is calculated as:  
Ideal V  
IOUT  
Accuracy Across  
Temperature  
Accuracy at  
25°C Only  
V
IOUT (IPR(max)) VIOUT(Q)  
× 100 (%)  
1–  
ELIN  
=
{
[
[ {  
2 × VIOUT (IPR(max)/2) VIOUT(Q)  
I
(min)  
PR  
+I (A)  
P
V
IOUT(Q)  
where VIOUT(IPR(max)) is the output of the sensor IC with the  
maximum measurement current flowing through it and  
VIOUT(IPR(max)/2) is the output of the sensor IC with half of the  
maximum measurement current flowing through it.  
–I (A)  
P
Full Scale I  
P
I (max)  
PR  
Zero Current Output Voltage (V  
)
0 A  
IOUT(Q)  
The output of the sensor when the primary current is zero. For  
a unipolar supply voltage, it nominally remains at 0.5 × VCC for  
a bidirectional device and 0.1 × VCC for a unidirectional device.  
Accuracy at  
25°C Only  
Decreasing  
(V)  
V
Accuracy Across  
Temperature  
IOUT  
For example, in the case of a bidirectional output device, VCC  
=
Figure 1: Output Voltage versus Sensed Current  
5.0 V translates into VIOUT(Q) = 2.50 V. Variation in VIOUT(Q) can  
be attributed to the resolution of the Allegro linear IC quiescent  
voltage trim and thermal drift.  
+E  
TOT  
Offset Voltage (VOE)  
The deviation of the device output from its ideal quiescent value  
of 0.5 × VCC (bidirectional) or 0.1 × VCC (unidirectional) due to  
nonmagnetic causes. To convert this voltage to amperes, divide  
by the device sensitivity, Sens.  
Across Temperature  
25°C Only  
Total Output Error (ETOT  
)
The difference between the current measurement from the sensor  
IC and the actual current (IP), relative to the actual current. This  
is equivalent to the difference between the ideal output voltage  
and the actual output voltage, divided by the ideal sensitivity,  
relative to the current flowing through the primary conduction  
path:  
–I  
P
+I  
P
V
IOUT_ideal(IP) – VIOUT(IP)  
ETOT(IP) =  
× 100 (%)  
–E  
TOT  
Sensideal(IP)  
× IP  
The Total Output Error incorporates all sources of error and is a  
function of IP. At relatively high currents, ETOT will be mostly due to  
Figure 2: Total Output Error versus Sensed Current  
16  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
 
 
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
APPLICATION INFORMATION  
Here, ESENS and VOE are the ±3 sigma values for those error  
terms. If there is an average sensitivity error or average offset  
voltage, then the average Total Error is estimated as:  
Estimating Total Error versus Sensed Current  
The Performance Characteristics tables give distribution  
(±3 sigma) values for Total Error at IPR(max); however, one often  
wants to know what error to expect at a particular current. This  
can be estimated by using the distribution data for the compo-  
nents of Total Error, Sensitivity Error, and Offset Voltage. The  
±3 sigma value for Total Error (ETOT) as a function of the sensed  
current (IP) is estimated as:  
100 × VOE  
AVG  
ETOT (IP) = ESENS  
+
AVG  
AVG  
Sens × IP  
The resulting total error will be a sum of ETOT and ETOT_AVG  
.
Using these equations and the 3 sigma distributions for Sensitiv-  
ity Error and Offset Voltage, the Total Error versus sensed current  
(IP) is shown here for the ACS724KMATR-20AB. As expected,  
as one goes towards zero current, the error in percent goes  
towards infinity due to division by zero (refer to Figure 3).  
2
100 × VOE  
(Sens × I )  
2
ETOT(IP) = ESENS  
+
P
20  
15  
10  
5
–40ºC +3σ  
–40ºC –3σ  
25ºC +3σ  
25ºC –3σ  
85ºC +3σ  
85ºC –3σ  
0
–5  
–10  
–15  
–20  
0
5
10  
15  
20  
25  
Current (A)  
Figure 3: Predicted Total Error as a Function of Sensed  
Current for the ACS724KMATR-20AB  
17  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
 
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
DEFINITIONS OF DYNAMIC RESPONSE CHARACTERISTICS  
Power-On Time (tPO)  
V
V
CC  
V
(typ)  
CC  
When the supply is ramped to its operating voltage, the device  
requires a finite time to power its internal components before  
responding to an input magnetic field.  
V
IOUT  
90% V  
IOUT  
Power-On Time (tPO) is defined as the time it takes for the output  
voltage to settle within ±10% of its steady-state value under an  
applied magnetic field, after the power supply has reached its  
minimum specified operating voltage (VCC(min)) as shown in the  
chart at right (refer to Figure 4).  
V
CC  
(min)  
t
PO  
t
t
1
2
t = time at which power supply reaches  
1
minimum specified operating voltage  
t = time at which output voltage settles  
2
within ±10% of its steady state value  
under an applied magnetic field  
Rise Time (tr)  
The time interval between: a) when the sensor IC reaches 10%  
of its full-scale value; and b) when it reaches 90% of its full-  
scale value (refer to Figure 5). The rise time to a step response is  
used to derive the bandwidth of the current sensor IC, in which  
ƒ(–3 dB) = 0.35/tr . Both tr and tRESPONSE are detrimentally  
affected by eddy current losses observed in the conductive IC  
ground plane.  
0
t
Figure 4: Power-On Time  
Primary Current  
(%)  
90  
V
IOUT  
Propagation Delay (tpd)  
Rise Time, t  
r
20  
10  
0
The propagation delay is measured as the time interval between:  
a) when the primary current signal reaches 20% of its final value,  
and b) when the device reaches 20% of its output corresponding  
to the applied current (refer to Figure 5).  
t
Propagation Delay, t  
pd  
Figure 5: Rise Time and Propagation Delay  
Response Time (tRESPONSE  
)
The time interval between: a) when the primary current signal  
reaches 90% of its final value, and b) when the device reaches  
90% of its output corresponding to the applied current (refer to  
Figure 6).  
Primary Current  
(%)  
90  
V
IOUT  
Response Time, t  
RESPONSE  
0
t
Figure 6: Response Time  
18  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
 
 
 
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
NOT TO SCALE  
All dimensions in millimeters.  
15.75  
9.54  
1.27  
0.65  
Package Outline  
Slot in PCB to maintain >8 mm creepage  
once part is on PCB  
2.25  
7.25  
1.27  
3.56  
17.27  
Current  
In  
Current  
Out  
Perimeter holes for stitching to the other,  
matching current trace design, layers of  
the PCB for enhanced thermal capability.  
21.51  
Figure 7: High-Isolation PCB Layout  
19  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
PACKAGE OUTLINE DRAWING  
For Reference Only – Not for Tooling Use  
(Reference MS-013AA)  
NOT TO SCALE  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
8°  
10.30 0.20  
0°  
16  
0.33  
0.20  
7.50 0.10  
10.30 0.33  
A
1.27  
0.40  
1.40 REF  
1
2
Branded Face  
0.25 BSC  
SEATING PLANE  
16X  
CC  
GAUGE PLANE  
2.65 MAX  
0.10  
C
SEATING  
PLANE  
0.30  
0.10  
1.27 BSC  
0.51  
0.31  
1.27  
0.65  
16  
NNNNNNN  
LLLLLLLL  
2.25  
1
B
Standard Branding Reference View  
L
9.50  
N = Device part number  
= Assembly Lot Number, first eight characters  
A
Terminal #1 mark area  
B
C
Branding scale and appearance at supplier discretion  
1
2
Reference land pattern layout (reference IPC7351 SOIC127P600X175-8M);  
all pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
PCB Layout Reference View  
Figure 8: Package MA, 16-Pin SOICW  
20  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  
High-Accuracy, Hall-Effect-Based Current Sensor IC with  
Common-Mode Field Rejection in High-Isolation SOIC16 Package  
ACS724KMA  
Revision History  
Number  
Date  
December 11, 2015 Initial release  
Description  
1
2
3
4
January 8, 2016  
March 18, 2016  
April 13, 2016  
June 15, 2017  
Added ACS724KMATR-65AB-T variant  
Added ACS724KMATR-30AB-T variant, UL/TUV certification; removed solder balls reference in Description  
Corrected Package Outline Drawing branding information (page 17).  
Added ACS724KMATR-12AB-T variant; corrected packing information  
Added Sensitivity Ratiometry Coefficient and Zero-Current Output Ratiometry Coefficient to Electrical  
Characteristics table (page 5).  
5
November 27, 2017  
6
7
8
January 12, 2018  
January 22, 2018  
June 22, 2018  
Added Dielectric Surge Strength Test Voltage to Isolation Characteristics table (page 3).  
Added Common Mode Field Rejection Ratio characteristic (page 5).  
Added Typical Frequency Response plots (page 15).  
Copyright ©2018, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
Copies of this document are considered uncontrolled documents.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
21  
Allegro MicroSystems, LLC  
955 Perimeter Road  
Manchester, NH 03103-3353 U.S.A.  
www.allegromicro.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY