AS4C16M32MS-7BCN [ALSC]

Multiple Burst Read with Single Write Operation;
AS4C16M32MS-7BCN
型号: AS4C16M32MS-7BCN
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

Multiple Burst Read with Single Write Operation

文件: 总48页 (文件大小:3864K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
512M Low Power Mobile SDRAM (MSDR)  
Revision History  
512M AS4C32M16MS-7BCN/AS4C32M16MS-6BIN - 54 ball FBGA PACKAGE  
512M AS4C16M32MS-7BCN/AS4C16M32MS-6BIN - 90 ball FBGA PACKAGE  
Revision Details  
Rev 1.0 Preliminary datasheet  
Date  
Jun 2016  
Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211  
Alliance Memory Inc. reserves the right to change products or specification without notice  
Confidential  
- 1/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
- Drive Strength (DS) Option: Full, 1/2, 1/4 and 3/4  
- Auto Temperature Compensated Self Refresh  
(Auto TCSR)  
Features  
- 4 banks x 8Mbit x 16 organization  
- 4 banks x 4Mbit x 32 organization  
- High speed data transfer rates up to 166 MHz  
- Full Synchronous Dynamic RAM, with all signals  
referenced to clock rising edge  
- Partial Array Self Refresh (PASR) option: Full, 1/  
2, 1/4, 1/8 and 1/16  
- Deep Power Down (DPD) mode  
- Programmable Power Reduction Feature by patial  
array activation during Self-Refresh  
- Operating Temperature Range  
Commercial (-25°C to 85°C)  
- Single Pulsed RAS Interface  
- Data Mask for Read/Write Control  
- Four Banks controlled by BA0 & BA1  
- Programmable CAS Latency: 2, 3  
- Programmable Wrap Sequence:  
Sequential or Interleave  
Industrial (-40°C to +85°C)  
- Programmable Burst Length:  
1, 2, 4, 8, Full page for Sequential Type  
1, 2, 4, 8 for Interleave Type  
- Multiple Burst Read with Single Write Operation  
- Automatic and Controlled Precharge Command  
- Random Column Address every CLK (1-N Rule)  
- Power Down Mode and Clock Suspend Mode  
- Auto Refresh and Self Refresh  
- Refresh Interval:  
8192 cycles/64 ms  
- Available in 54-ball (32M x16) and 90-ball (16M x32)FBGA  
- VDD=1.8V, VDDQ=1.8V  
- LVTTL Interface  
Table 1. Key Specifications  
AS4C32M16MS/AS4C16M32MS  
-6/7  
tCK(3)  
tAC(3)  
tRAS  
Clock Cycle time(min.)  
Access time from CLK (max.)  
Row Active time(min.)  
6/7.5 ns  
5/5.4 ns  
42/45 ns  
60/67.5 ns  
Row Cycle time(min.)  
tRC  
Tableꢀ2.ꢀOrderingꢀInformationꢀ  
PartꢀNumberꢀ  
AS4C32M16MS-7BCNꢀ  
AS4C32M16MS-6BINꢀ  
AS4C16M32MS-7BCNꢀ  
AS4C16M32MS-6BINꢀ  
Orgꢀ  
Temperatureꢀ  
MaxClockꢀ(MHz)ꢀ  
Packageꢀ  
133  
54-ballꢀFBGA  
54-ballꢀFBGA  
90-ballꢀFBGA  
90-ballꢀFBGA  
32Mx16ꢀ  
32Mx16ꢀ  
16Mx32  
16Mx32ꢀ  
Commercial ꢀꢀ-25°Cꢀtoꢀ+85°Cꢀ  
Industrial ꢀ-40°Cꢀtoꢀ+85°Cꢀ  
Commercial ꢀꢀ-25°Cꢀtoꢀ+85°Cꢀ  
Industrial ꢀ-40°Cꢀtoꢀ+85°Cꢀ  
166ꢀ  
133  
166ꢀ  
Confidential  
- 2/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
512Mb Mobile SDRAM Addressing  
Configuration  
32MX16  
16MX32  
16MX32  
(Reduced page size)  
# of Bank  
4
4
4
Bank Address  
Auto precharge  
Row Address  
Column Address  
BA0 ~ BA1  
A10/AP  
BA0 ~ BA1  
A10/AP  
BA0 ~ BA1  
A10/AP  
A0 ~ A12  
A0 ~ A9  
A0 ~ A12  
A0 ~ A8  
A0 ~ A13  
A0 ~ A7  
54 Pin (X16) BGA PIN CONFIGURATION  
Top View  
9
8
7
6
5
ꢀꢁꢁꢁꢁꢁꢂꢁꢁꢁꢁꢁꢃ  
1
65C bmm!)7Y :*!D T Q  
A
B
C
D
E
F
2
3
4
8
9
:
B
C
D
E
F
G
H
I
K
W T T  
E R 26  
E R 24  
E R 22  
E R :  
W T T R  
W E E R  
W T T R  
W E E R  
W T T  
W E E R  
W T T R  
W E E R  
W T T R  
W E E  
E R 1  
E R 3  
E R 4  
E R 7  
ME R N  
W E E  
E R 2  
E R 4  
E R 6  
E R 8  
E R 25  
E R 23  
E R 21  
E R 9  
V E R N  
B 23  
E O V 2  
D L  
D L F  
B :  
D B T  
C B 1  
S B T  
C B 2  
X F  
D T  
G
H
J
B 22  
B 8  
B 9  
B 7  
B 5  
B 1  
B 4  
B 2  
B 3  
B 210B Q  
W T T  
B 6  
W E E  
O puf!2;!Uif!E O V !qjo!n vtu!cf!dpoofdufe!up!W T T -!W T T R -!ps!mf gu!gmpbujoh/  
Confidential  
- 3/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
90 Pin (X32) BGA PIN CONFIGURATION  
Top View  
9
8
7
6
5
ꢀꢁꢁꢁꢁꢁꢂꢁꢁꢁꢁꢁꢃ  
:1C bmm!)7Y 26*!D T Q  
A
B
C
D
E
F
2
3
4
8
9
:
B
C
D
E
F
G
H
I
K
L
M
N
O
Q
S
E R 37  
E R 39  
W T T R  
W T T R  
W E E R  
W T T  
E R 35  
W E E R  
E R 38  
E R 3:  
E R 42  
E R N 4  
B 6  
W T T  
W T T R  
E R 36  
E R 41  
O D  
W E E  
W E E R  
E R 33  
E R 28  
O D  
E R 34  
W T T R  
E R 31  
E R 29  
E R 27  
E R N 3  
B 1  
E R 32  
E R 2:  
W E E R  
W E E R  
W T T R  
W E E  
B 4  
B 3  
B 5  
B 7  
B 210B Q  
B 242  
B 2  
G
H
B 8  
B 9  
B 23  
B :  
C B 2  
B 22  
D L  
D L F  
E O V 3  
C B 1  
D T  
S B T  
E R N 2  
W E E R  
W T T R  
W T T R  
E R 22  
E R 24  
O D  
D B T  
W E E  
X F  
E R N 1  
W T T R  
W E E R  
W E E R  
E R 5  
J
K
/
E R 9  
W T T  
E R :  
E R 25  
W T T R  
W T T  
E R 8  
E R 6  
E R 4  
W T T R  
E R 1  
E R 21  
E R 23  
W E E R  
E R 26  
E R 7  
E R 2  
W E E R  
W E E  
0
1
3
E R 3  
O p uf !2 ;!B 2 4 !jt!pomz!bwbjmbcmf!gps!sfevdfe!qbhf.tj{f!dpogjhvsbujpo/  
O p uf !3 ;!U i f !E O V !q jo!n vtu!cf!dpoofdufe!up!W T T -!W T T R -!ps!mf gu!gmpbujoh/  
5
Confidential  
- 4/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Description  
The AS4C32M16MS / AS4C16M32MS is a four bank Synchronous DRAM organized as 4 banks x  
8Mbit x 16 and 4 banks x 4Mbit x 32. The AS4C32M16MS / AS4C16M32MS achieves high speed data  
transfer rates up to 166 MHz by employing a chip architecture that prefetches multiple bits and then  
synchronizes the output data to a system clock. All of the control, address, data input and output circuits  
are synchronized with the positive edge of an externally supplied clock.  
Operating the four memory banks in an interleaved fashion allows random access operation to occur at  
higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up to 166 MHz is  
possible depending on burst length, CAS latency and speed grade of the device.  
Signal Pin Description  
Pin  
Type  
Signal Polarity  
Function  
CLK  
Input  
Pulse  
Positive  
Edge  
The system clock input. All of the SDRAM inputs are sampled on the rising edge of the  
clock.  
CKE  
CS  
Input  
Input  
Level Active High Activates the CLK signal when high and deactivates the CLK signal when low, thereby  
initiates either the Power Down mode or the Self Refresh mode.  
Pulse Active Low CS enables the command decoder when low and disables the command decoder when  
high. When the command decoder is disabled, new commands are ignored but previous  
operations continue.  
RAS, CAS Input  
WE  
Pulse Active Low When sampled at the positive rising edge of the clock, CAS, RAS, and WE define the  
command to be executed by the SDRAM.  
A0 - A13  
Input  
Level  
During a Bank Activate command cycle, A0-A12 defines the row address (RA0-RA12)  
and A0-A13 defines the row address (RA0-RA13) for 16Mx32 reduced page size when  
sampled at the rising clock edge.  
During a Read or Write command cycle, A0-A9 defines the column address (CA0-CA9)  
for 32Mx16, A0-A8 defines the column address (CA0-CA8) for 16Mx32 and A0-A7 de-  
fines tthe column address (CA0-CA7) for 16Mx32 reduced page size when sampled at  
the rising clock edge.  
In addition to the column address, A10(=AP) is used to invoke autoprecharge operation  
at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and  
BA0, BA1 defines the bank to be precharged. If A10 is low, autoprecharge is disabled.  
During a Precharge command cycle, A10(=AP) is used in conjunction with BA0 and BA1  
to control which bank(s) to precharge. If A10 is high, all four banks will BA0 and BA1 are  
used to define which bank to precharge.  
BA0,  
BA1  
Input  
Level  
Level  
Selects which bank is to be active.  
DQx  
Input  
Data Input/Output pins operate in the same manner as on conventional DRAMs.  
Output  
LDQM  
UDQM  
Input  
Pulse Active High The Data Input/Output mask places the DQ buffers in a high impedance state when sam-  
pled high. In Read mode, DQM has a latency of two clock cycles and controls the output  
buffers like an output enable. In Write mode, DQM has a latency of zero and operates as  
a word mask by allowing input data to be written if it is low but blocks the write operation  
if DQM is high. If it’s high, LDM corresponds to DQ0-DQ7, and UDM corresponds to data  
on DQ8-DQ15 in 32Mx16. DM0 corresponds to DQ0-DQ7, DM1 corresponds to data on  
DQ8-DQ15, DM2 corresponds to DQ16-DQ23, and DM3 corresponds to data on DQ24-  
DQ31 in 16Mx32.  
(DM0~3)  
VDD, VSS Supply  
Power and ground for the input buffers and the core logic.  
VDDQ  
VSSQ  
Supply  
Isolated power supply and ground for the output buffers to provide improved noise  
immunity.  
NC  
Input  
No connect.  
Confidential  
- 5/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Operation Definition  
All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and DQM at the  
positive edge of the clock. The following list shows the thruth table for the operation commands.  
Device CKE CKE  
A0-9,  
BA0  
BA1  
Operation  
State  
n-1  
n
X
X
X
X
X
X
X
X
X
X
H
L
CS  
L
RAS CAS WE DQM A11,12 A10  
Row Activate  
Idle3  
H
L
H
H
H
H
L
H
L
H
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
V
V
V
V
V
X
X
V
X
X
X
X
V
L
V
V
V
V
V
V
X
V
X
X
X
X
Read  
Active3  
Active3  
Active3  
Active3  
Any  
H
L
Read w/Autoprecharge  
Write  
H
L
L
H
L
H
L
L
Write with Autoprecharge  
Row Precharge  
Precharge All  
H
L
L
L
H
L
H
L
H
H
L
L
Any  
H
L
L
L
H
V
X
X
X
X
Mode Register Set  
No Operation  
Idle  
H
L
L
L
Any  
H
L
H
X
L
H
X
L
H
X
H
H
X
X
X
X
X
L
Device Deselect  
Auto Refresh  
Any  
H
H
L
Idle  
H
Self Refresh Entry 6  
Self Refresh Exit 6  
Idle  
H
L
L
L
Idle  
H
L
X
H
X
H
X
H
X
H
X
H
X
H
(Self Refr.)  
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
Power Down Entry  
Power Down Exit  
Idle  
Active4  
H
L
Any  
H
L
(Power  
Down)  
H
Data Write/Output Enable  
Data Write/Output Disable  
Deep Power Down Entry  
Deep Power Down Exit  
Active  
Active  
Idle  
H
H
H
L
X
X
L
X
X
L
X
X
H
X
X
X
H
X
X
X
L
L
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Deep power-  
Down  
H
X
X
Notes:  
1. V = Valid , x = Don’t Care, L = Low Level, H = High Level  
2. CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the commands  
are provided.  
3. These are state of bank designated by BA0, BA1 signals.  
4. Power Down Mode can not entry in the burst cycle.  
5. After Deep Power Down mode exit a full new initialization of memory device is mandatory  
6. Extended grade does not guarantee self-refresh function  
Confidential  
- 6/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Power On and Initialization  
The default power on state of the mode register is supplier specific and may be undefined. The following power  
on and initialization sequence guarantees the device is preconditioned to each users specific needs. Like a  
conventional DRAM, the Synchronous DRAM must be powered up and initialized in a pre-defined manner. During  
power on, all VDD and VDDQ pins must be built up simultaneously to the specified voltage when the input signals  
are held in the “NOP” state. The CLK signal must be started at the same time. After power on, the device requires  
a 100μs delay prior to issuing any command other than a COMMAND INHIBIT or NOP. Starting at some point  
during this 100us period and continuing at least through the end of this period, COMMAND INHIBIT or NOP  
commands should be applied. After the 100us delay is satisfied by issuing at least one COMMAND INHIBIT or  
NOP command, a PRECHARGE command must be issued. All banks must then be pre-charged, which places  
the device in the all banks idle state. Once all banks have been pre-charged, the Mode Register and Extended  
Mode Register Set Command must be issued to initialize the Mode Register. A minimum of two Auto Refresh  
cycles (CBR) are also required. These may be done before or after programming the Mode Register. Failure to  
follow these steps may lead to unpredictable start-up modes.  
Programming the Mode Register  
The Mode register designates the operation mode at the read or write cycle. This register is divided into 4  
fields. A Burst Length Field to set the length of the burst, an Addressing Selection bit to program the column  
access sequence in a burst cycle (interleaved or sequential), a CAS Latency Field to set the access time at clock  
cycle and a Operation mode field to differentiate between normal operation (Burst read and burst Write) and a  
special Burst Read and Single Write mode. The mode set operation must be done before any activate com-  
mand after the initial power up. Any content of the mode register can be altered by re-executing the mode set  
command. All banks must be in pre-charged state and CKE must be high at least one clock before the mode  
set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS,  
CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing  
defines parameters to be set as shown in the previous table.  
Extended Mode Register  
The extended Mode Register controls functions beyond those controlled by the Mode Register. These  
additional functions are unique to the mobile SDRAM and includes the selection of drive strength (DS). The device  
has four drive strength options: Full, 12, 1/4 or 3/4. And a Partial-Array Self-Refresh field (PASR). The PASR  
field is used to specify whether partial bank 1/2, 1/4, 1/8, 1/16 or all banks of the SDRAM array are enabled.  
Disabled banks will not be refreshed in Self-Refresh mode and written data will be lost. When only bank 0 is  
selected, it’s possible to partially select only half or more quarter of bank 0. The default setting for DS is full-  
strength, while PASR is full memory. Both DS and PASR can be set during the initialization sequence and can be  
modified when the part is idle. Additionally, the device has internal temperature sensor control self refresh  
cycle automatically. This is the device internal Temperature Compensated Self Refresh (TCSR).  
Read and Write Operation  
When RAS is low and both CAS and WE are high at the positive edge of the clock, a RAS cycle starts. According  
to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the wordline  
are set. A CAS cycle is triggered by setting RAS high and CAS low at a  
clock timing after a necessary delay, t  
or a write (WE = L) at this stage.  
, from the RAS timing. WE is used to define either a read (WE = H)  
RCD  
SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write  
operations are allowed at up to a 166 MHz data rate. The numbers of serial data bits are the burst length  
programmed at the mode set operation, i.e., one of 1, 2, 4, 8. Column addresses are segmented by the burst  
length and serial data accesses are done within this boundary. The first column address to be accessed is supplied  
at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length  
and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is ‘2’, then the  
rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.  
Confidential  
- 7/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Address Input for Mode Set (Mode Register Operation)  
BA1 BA0 An~ A10 A9  
Operation Mode  
Address Bus (Ax)  
Mode Register  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
CAS Latency BT Burst Length  
Burst Type  
Operation Mode  
A3  
0
Type  
BA1 BA0 An~A10 A9 A8 A7  
Mode  
Sequential  
Interleave  
Burst Read/Burst  
Write  
0
0
0
0
0
0
0
0
0
1
Burst Read/Single  
Write  
1
0
0
Burst Length  
CAS Latency  
Length  
A6  
0
A5  
0
A4  
0
Latency  
Reserve  
Reserve  
2
A2  
A1  
A0  
Sequential Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
1
2
0
0
1
0
1
0
4
4
0
1
1
3
8
8
1
0
0
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Full page  
Reserve  
Reserve  
Reserve  
Reserve  
1
0
1
1
1
0
1
1
1
Similar to the page mode of conventional DRAM’s, burst read or write accesses on any column  
address are possible once the RAS cycle latches the sense amplifiers. The maximum t or the refresh  
RAS  
interval time limits the number of random column accesses. A new burst access can be done even before the  
previous burst ends. The interrupt operation at every clock cycles is supported. When the previous burst is  
interrupted, the remaining addresses are overridden by the new address with the full burst length. An  
interrupt which accompanies with an operation change from a read to a write is possible by exploiting  
DQM to avoid bus contention.  
When two or more banks are activated sequentially, interleaved bank read or write operations are  
possible. With the programmed burst length, alternate access and pre-charge operations on two or  
more banks can realize fast serial data access modes among many different pages. Once two or more  
banks are activated, column to column interleave operation can be done between different pages.  
Confidential  
- 8/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Extended Mode Register Table  
BA1 BA0 An~ A10 A9  
Address Bus (Ax)  
Mode Register  
A8 A7 A6 A5 A4 A3 A2 A1 A0  
all have to be set to "0"  
1*)  
DS  
0*)  
TCSR**  
PASR  
Drive Strength  
A6  
0
A5  
0
Drive Strength  
Full  
1/2  
1/4  
3/4  
0
1
Partial-Array Self Refresh:  
1
0
banks to be self-refreshed  
A1 A0  
A2  
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
all banks  
1/2 array (BA1=0)  
1/4 array (BA1=0, BA0=0)  
Reserved  
0
0
0
1
Reserved  
1
1/8 array (BA1=BA0=0,  
RA11=0)  
1
1
1
1
0
1
1/16 array (BA1=BA0=0,  
RA11=RA10=0)  
Reserved  
* *On-die temperature sensor is used in place of TCSR. Setting these bits will have no effect.  
*)BA1 and BA0 must be 1, 0 to select the Extended Mode Register (Vs. the Mode Register)  
The extended Mode Register can be set during the initialization sequence. Once the device is operational, the  
extended Mode Register set can be issued anytime when the part is idle.  
Extended grade does not guarantee self-refresh function.  
Confidential  
- 9/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Burst Length and Sequence:  
Burst Starting Address Sequential Burst Addressing  
Interleave Burst Addressing  
(decimal)  
Length  
(A2 A1 A0)  
(decimal)  
2
xx0  
xx1  
0, 1  
1, 0  
0, 1  
1, 0  
4
8
x00  
x01  
x10  
x11  
0, 1, 2, 3  
1, 2, 3, 0  
2, 3, 0, 1  
3, 0, 1, 2  
0, 1, 2, 3  
1, 0, 3, 2  
2, 3, 0, 1  
3, 2, 1, 0  
000  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
7
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
1
0
3
2
5
4
7
6
2
3
0
1
6
7
4
5
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
4
5
2
3
0
1
7
6
5
4
3
2
1
0
Full Page  
nnn  
Cn, Cn+1, Cn+2  
Not supported  
Data Disable Latency t  
). It also provides a data  
Refresh Mode  
DQZ  
SDRAM has two refresh modes, Auto Refresh  
and Self Refresh. Auto Refresh is similar to the CAS  
-before-RAS refresh of conventional DRAMs. All of  
banks must be precharged before applying any re-  
fresh mode. An on-chip address counter increments  
the word and the bank addresses and no bank infor-  
mation is required for both refresh modes.  
The chip enters the Auto Refresh mode, when  
RAS and CAS are held low and CKE and WE are  
held high at a clock timing. The mode restores word  
line after the refresh and no external precharge  
mask function for writes. When DQM is activated,  
the write operation at the next clock is prohibited  
(DQM Write Mask Latency t  
= zero clocks).  
DQW  
Power Down  
In order to reduce standby power consumption, a  
power down mode is available. All banks must be  
precharged and the necessary Precharge delay  
(t ) must occur before the SDRAM can enter the  
RP  
Power Down mode. Once the Power Down mode is  
initiated by holding CKE low, all of the receiver cir-  
cuits except CLK and CKE are gated off. The Power  
Down mode does not perform any refresh opera-  
tions, therefore the device can’t remain in Power  
command is necessary. A minimum t time is re-  
RC  
quired between two automatic refreshes in a burst  
refresh mode. The same rule applies to any access  
command after the automatic refresh operation.  
The chip has an on-chip timer and the Self Re-  
fresh mode is available. It enters the mode when  
RAS, CAS, and CKE are low and WE is high at a  
clock timing. All of external control signals including  
the clock are disabled. Returning CKE to high en-  
ables the clock and initiates the refresh exit opera-  
Down mode longer than the Refresh period (t  
) of  
REF  
the device. Exit from this mode is performed by tak-  
ing CKE “high”. One clock delay is required for  
mode entry and exit.  
Auto Precharge  
Two methods are available to precharge  
SDRAMs. In an automatic precharge mode, the  
CAS timing accepts one extra address, CA10, to  
determine whether the chip restores or not after the  
operation. If CA10 is high when a Read Command  
is issued, the Read with Auto-Precharge function  
is initiated. The SDRAM automatically enters the  
precharge operation one clock before the last data  
out for CAS latencies 2, and two clocks for CAS la-  
tencies 3. If CA10 is high when a Write Command is  
tion. After the exit command, at least one t delay  
RC  
is required prior to any access command. Extended  
grade does not guarantee self-refresh function.  
DQM Function  
DQM has two functions for data I/O read and  
write operations. During reads, when it turns to  
“high” at a clock timing, data outputs are disabled  
and become high impedance after delay (DQM  
Confidential  
- 10/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
issued, the Write with Auto-Precharge function is  
initiated. The SDRAM automatically enters the pre-  
Once a burst read or write operation has been ini-  
tiated, there are several methods in which to termi-  
nate the burst operation prematurely. These  
methods include using another Read or Write Com-  
mand to interrupt an existing burst operation, use a  
Pre-charge Command to interrupt a burst cycle and  
close the active bank, or using the Burst Stop Com-  
mand to terminate the existing burst operation but  
leave the bank open for future Read or Write Com-  
mands to the same page of the active bank. When  
interrupting a burst with another Read or Write  
Command care must be taken to avoid I/O conten-  
tion. The Burst Stop Command, however, has the  
fewest restrictions making it the easiest method to  
use when terminating a burst operation before it has  
been completed. If a Burst Stop command is issued  
during a burst write operation, then any residual  
data from the burst write cycle will be ignored. Data  
that is presented on the I/O pins before the Burst  
Stop Command is registered will be written to the  
memory.  
charge operation a time delay equal to t  
recovery time) after the last data in.  
(Write  
WR  
Precharge Command  
There is also a separate precharge command  
available. When RAS and WE are low and CAS is  
high at a clock timing, it triggers the precharge  
operation. Three address bits, BA0, BA1 and A10  
are used to define banks as shown in the following  
list. The precharge command can be imposed one  
clock before the last data out for CAS latency = 2,  
two clocks before the last data out for CAS latency  
= 3. Writes require a time delay twr from the last  
data out to apply the precharge command.  
Bank Selection by Address Bits:  
A10 BA0 BA1  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
Bank 0  
Bank 1  
Bank 2  
Bank 3  
all Banks  
Deep Power Down Mode  
The Deep Power Down mode is an unique  
with very low standby currents. All internal voltage  
generators inside the Mobile SDRAM are stopped; all  
memory data is lost in this mode. To enter the Deep  
Power Down mode all banks must be precharged  
Burst Termination  
Recommended Operation and Characteristics  
T = -25 to 85 °C(Commercial); -40 to 125°C(Extended) V = 0 V; V = 1.8 V,V  
= 1.8V  
A
SS  
DD  
DDQ  
Limit Values  
Parameter  
Symbol  
VDD  
min.  
max.  
Unit Notes  
Supply voltage  
1.7  
1.7  
1.95  
1.95  
VDD+0.3  
0.3  
V
I/O Supply Voltage  
VDDQ  
VIH  
V
V
1, 2  
1, 2  
1, 2  
Input high voltage (AC)  
Input low voltage (AC)  
Output high voltage (IOUT = – 0.1 mA)  
Output low voltage (IOUT = 0.1 mA)  
0.8xVDDQ  
– 0.3  
0.9*VCCQ  
VIL  
V
VOH  
VOL  
V
0.2  
V
Input leakage current, any input  
II(L)  
– 1  
1
μA  
(0 V < VIN < 3.6 V, all other inputs = 0 V)  
Output leakage current  
IO(L)  
– 1.5  
1.5  
μA  
(DQ is disabled, 0 V < VOUT < VCC  
)
Note:  
1. All voltages are referenced to VSS  
.
2. VIH may overshoot to VCC + 2 V for pulse width of < 3ns with 1.8V. VIL may undershoot to -2 V for pulse width < 3ns with 1.8V. Pulse  
width measured at 50% points with amplitude measured peak to DC reference.  
Confidential  
- 11/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Absolute Maximum Ratings*  
Operating temperature range (commercial)-25 to 85 °C  
Operating temperature range (industrial) -40 to 85 °C  
Storage temperature range ............... -55 to 150 °C  
Input/output voltage.............................-0.5 to 2.4 V  
Power supply voltage ..........................-0.5 to 2.4 V  
*Note:  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage of the device.  
Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Operating Currents T =-25 to 85 °C(Commercial)/-40 to 85 °C(Industrial);  
A
V
= 0 V; V = 1.8 V,V = 1.8V(Recommended Operating Conditions unless otherwise noted)  
DDQ  
SS  
DD  
Max.  
Symbol Parameter & Test Condition  
-6  
-7  
Unit  
Note  
ICC1  
Operating Current  
1 bank operation  
50  
45  
mA  
7
tRC = tRCMIN., tRC = tCKMIN  
.
Active-precharge command cycling,  
without Burst Operation  
ICC2P  
ICC2N  
Precharge Standby Current  
in Power Down Mode  
tCK = min.  
0.3  
10  
0.3  
10  
mA  
mA  
7
CS =VIH, CKEVIL(max)  
Precharge Standby Current  
in Non-Power Down Mode  
CS =VIH, CKEVIL(max)  
tCK = min.  
ICC3N  
ICC3P  
ICC4  
No Operating Current  
CKE VIH(MIN.)  
20  
5
20  
5
mA  
mA  
mA  
t
CK = min, CS = VIH(min)  
bank ; active state ( 4 banks)  
CKE VIL(MAX.)  
(Power down mode)  
Burst Operating Current  
75  
70  
7,8  
7
t
CK = min  
Read/Write command cycling  
ICC5  
IZZ  
Auto Refresh Current  
95  
10  
95  
10  
mA  
uA  
t
CK = min  
Auto Refresh command cycling  
Deep Power Down Current  
Notes:  
7. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of tCK and  
tRC. Input signals are changed one time during tCK  
8. These parameter depend on output loading. Specified values are obtained with output open.  
.
Confidential  
- 12/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Temperature Compensated/Partial Array Self-Refresh Currents  
Extended Mode  
Register A[2:0]  
Tcase [oC]  
Parameter & Test Condition  
Symb.  
max.  
Unit  
Note  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
85oC max.  
45oC max.  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
ICC6  
600  
300  
480  
260  
420  
250  
420  
250  
400  
250  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
uA  
full array activations, all banks  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/2 array activations  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/4 array activation  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/8 array activation  
Self Refresh Current  
Self Refresh Mode  
CKE=Low, tck=min,  
1/16 array activation  
Confidential  
- 13/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
AC Characteristics  
T = -25 to 85 °C(Commercial)/-40 to 85 °C(Industrial) V = 0 V; V = 1.8 V,V = 1.8V, tT=1 ns  
A
SS  
DD  
DDQ  
Limit Values  
-7  
-6  
#
Symbol Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
Note  
Clock and Clock Enable  
1
2
3
tCK  
fCK  
tAC  
Clock Cycle Time  
CAS Latency = 3  
CAS Latency = 2  
6
9
7.5  
9
ns  
ns  
6
Clock Frequency  
CAS Latency = 3  
CAS Latency = 2  
166  
110  
133  
110  
MHz  
MHz  
Access Time from Clock  
CAS Latency = 3  
_
5
8
_
5.4  
8
ns  
ns  
CAS Latency = 2  
4
5
6
tCH  
tCL  
tT  
Clock High Pulse Width  
Clock Low Pulse Width  
Transition Tim  
2.5  
2.5  
0.3  
2.5  
2.5  
0.3  
ns  
ns  
ns  
1.2  
1.2  
9
Setup and Hold Times  
7
tCKH  
tCKS  
tDH  
CKE hold time  
1
1.5  
1
1
1.5  
1
ns  
ns  
8
CKE setup time  
9
Data-in hold time  
ns  
10  
11  
12  
13  
14  
15  
tDS  
Data-in setup time  
1.5  
1
1.5  
1
ns  
tAH  
Address hold time  
ns  
tAS  
Address setup time  
1.5  
1.5  
0.5  
2
1.5  
1.5  
0.5  
2
ns  
tCMH  
tCMS  
tMRD  
/CS, /RAS, /CAS, /WE, DQM hold time  
/CS, /RAS, /CAS, /WE, DQM setup time  
Mode Register Set to Command delay  
ns  
ns  
CLK  
Common Parameters  
16  
17  
18  
19  
tRCD  
tRP  
tRAS  
tRC  
Row to Column Delay Time  
Row Precharge Time  
Row Active Time  
18  
18  
42  
60  
19.2  
19.2  
45  
ns  
ns  
ns  
ns  
100K  
100k  
ActivetoActive/Auto Refreshcommand  
period  
67.5  
20  
tRRD  
Activate(a) to Activate(b) Command  
Period  
2
2
CLK  
21  
22  
23  
tBDL  
tCCD  
tCDL  
Last data-in to burst STOP command  
CAS(a) to CAS(b) Command Period  
1
1
1
1
1
1
CLK  
CLK  
CLK  
12  
12  
13  
Last data-in to new READ/WRITE com-  
mand  
Confidential  
- 14/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
AC Characteristics (Cont’d)  
Limit Values  
-7  
-6  
#
Symbol Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
Note  
24  
tCKED  
CKE to clock disable or power-down  
1
1
CLK  
13  
entry mode  
25  
tPED  
CKE to clock enable or power-down  
exit mode  
1
1
CLK  
13  
Refresh Cycle  
64  
64  
ms  
ns  
ns  
8
26  
27  
tREF  
tXSR  
Refresh Period (8192 cycles)  
Exit SELF REFRESH to first valid  
command  
112  
97.5  
112.5  
97.5  
11  
28  
tRFC  
Row Refresh Cycle Time  
Read Cycle  
29  
30  
31  
32  
tOH  
tOHN  
tLZ  
Data Out Hold Time(load)  
2.5  
1.8  
1
2.5  
1.8  
1
ns  
ns  
ns  
Data Out Hold Time(no load)  
Data Out to Low Impedance Time  
7
tHZ  
Data Out to High Impedance Time  
CAS Latency = 3  
_
5
8
_
5.4  
8
ns  
ns  
CAS Latency = 2  
33  
tROH  
Data-out High-Z from PRECHARGE  
command  
CAS Latency = 3  
3
2
_
3
2
_
CLK  
CLK  
12  
CAS Latency = 2  
Write Cycle  
34  
35  
36  
37  
38  
39  
40  
41  
tWR  
tDAL  
tDPL  
tDQD  
tDQM  
tDQZ  
tDWD  
tRDL  
Write Recovery Time  
15  
5
15  
5
ns  
10  
14,16  
15,16  
12  
Data-in to ACTIVE command  
Data-in to PRECHARGE command  
DQM to input data delay  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
2
2
0
0
DQM to data mask during WRITEs  
DQM to data High-Z during READs  
WRITE command to input data delay  
Last data-in to PRECHARGE command  
0
0
12  
2
2
12  
0
0
12  
2
2
15,16  
Confidential  
- 15/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Note:  
1. A full initialization sequence is required before proper device operation is ensured.  
2. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature  
range (0oC< TA <+70oC standard temperature and -40oC < TA <+85oC industrial temperature) is ensured.  
3. In addition to meeting the transition rate specification, the clock and CKE must transit between VIH and VIL (or  
between VIL and VIH) in a monotonic manner.  
4. Outputs measured for 1.8V at 0.9V with equivalent load:  
Test loads with full DQ driver strength. Performance will vary with actual system DQ bus capacitive loading, termination,  
and programmed drive strength.  
5. AC timing tests have VIL and Vih with timing referenced to VIH/2 = crossover point. If the input transition time is  
longer than tT (MAX), then the timing is referenced at VIL (MAX) and VIH (MIN) and no longer at the VIH/2 crossover  
point.  
6. The clock frequency must remain constant (stable clock is defined as a signal cycling within timing constraints  
specified for the clock ball) during access or pre-charge states (READ, WRITE, including tWR, and PRE-CHARGE  
commands). CKE may be used to reduce the data rate.  
7. tHZ defines the time at which the output achieves the open circuit condition, it is not a reference to VOH or VOL. The  
last valid data element will meet tOH before going High-Z.  
8. The 512M Mobile SDRAM requires 8,192 AUTO REFRESH cycles every 64ms (tREF). Providing a distributed AUTO  
REFRESH command every 7.8125gs meets the refresh requirement and ensures that each row is refreshed. Alterna-  
tively, 8,192 AUTO REFRESH commands can be issued in a burst at the minimum cycle rate (tRFC), once every 64ms.  
9. AC characteristics assume tT = 1ns.  
10. Auto pre-charge mode only. The pre-charge timing budget (tRP) begins at x ns for -7 after the first clock delay  
and after the last WRITE is executed. May not exceed the limit set for pre-charge mode.  
11. CLK must be toggled a minimum of two times during this period.  
12. Required clocks are specified by JEDEC functionality and are not dependent on any timing parameter.  
13. Timing is specified by tCKS. Clock(s) specified as a reference only at minimum cycle rate.  
14. Timing is specified by tWR plus tRP. Clock(s) specified as a reference only at minimum cycle rate.  
15. Timing is specified by tWR. 16. Based on tCK (MIN), CL = 3.  
Confidential  
- 16/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Timing Diagrams  
1. Bank Activate Command Cycle  
2. Burst Read Operation  
3. Read Interrupted by a Read  
4. Read to Write Interval  
4.1 Read to Write Interval  
4.2 Minimum Read to Write Interval  
4.3 Non-Minimum Read to Write Interval  
5. Burst Write Operation  
6. Write and Read Interrupt  
6.1 Write Interrupted by a Write  
6.2 Write Interrupted by Read  
7. Burst Write & Read with Auto-Precharge  
7.1 Burst Write with Auto-Precharge  
7.2 Burst Read with Auto-Precharge  
8. Burst Termination  
8.1 Termination of a Burst Write Operation  
8.2 Termination of a Burst Write Operation  
9. AC- Parameters  
9.1 AC Parameters for a Write Timing  
9.2 AC Parameters for a Read Timing  
10. Mode Register Set  
11. Power on Sequence and Auto Refresh (CBR)  
12. Power Down Mode  
13. Self Refresh (Entry and Exit)  
14. Auto Refresh (CBR)  
Confidential  
- 17/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Timing Diagrams (Cont’d)  
15. Random Column Read ( Page within same Bank)  
15.1 CAS Latency = 2  
15.2 CAS Latency = 3  
16. Random Column Write ( Page within same Bank)  
16.1 CAS Latency = 2  
16.2 CAS Latency = 3  
17. Random Row Read ( Interleaving Banks) with Precharge  
17.1 CAS Latency = 2  
17.2 CAS Latency = 3  
18. Random Row Write ( Interleaving Banks) with Precharge  
18.1 CAS Latency = 2  
18.2 CAS Latency = 3  
19. Precharge Termination of a Burst  
19.1 CAS Latency = 2  
19.2 CAS Latency = 3  
20. Deep Power Down Entry/Exit  
20.1 Deep Power Down Entry  
20.2 Deep Power Down Exit  
Confidential  
- 18/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
1. Bank Activate Command Cycle  
(CAS latency = 3)  
T0  
T1  
T
T
T
T
T
CLK  
. . . . . . . . . .  
Bank A  
Row Addr.  
Bank A  
Col. Addr.  
Bank A  
Row Addr.  
Bank B  
Row Addr.  
. . . . . . . . . .  
ADDRESS  
tRCD  
tRRD  
Write A  
with Auto  
Precharge  
Bank B  
Activate  
Bank A  
Activate  
Bank A  
Activate  
. . . . . . . . . .  
NOP  
NOP  
NOP  
COMMAND  
: “H” or “L”  
tRC  
2. Burst Read Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
tCK2, I/O’s  
CAS latency = 3  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
tCK3, I/O’s  
Confidential  
- 19/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
3. Read Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
READ A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
DOUT A  
DOUT B  
0
DOUT B  
DOUT B  
DOUT B  
3
0
1
2
tCK2, I/O’s  
CAS latency = 3  
DOUT A  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
3
0
0
1
2
tCK3, I/O’s  
4.1 Read to Write Interval  
(Burst Length = 4, CAS latency = 3)  
T0 T1 T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Minimum delay between the Read and Write Commands = 4+1 = 5 cycles  
tDQW  
DQM  
tDQZ  
NOP  
READ A  
NOP  
NOP  
NOP  
NOP  
WRITE B  
NOP  
NOP  
COMMAND  
I/O’s  
DIN B  
DIN B  
DIN B  
2
DOUT A  
0
1
0
Must be Hi-Z before  
the Write Command  
: “H” or “L”  
Confidential  
- 20/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
4.2 Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
1 Clk Interval  
READ A  
BANK A  
ACTIVATE  
NOP  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Must be Hi-Z before  
the Write Command  
CAS latency = 2  
DIN A  
DIN A  
DIN A  
DIN A  
3
0
1
2
tCK2, I/O’s  
: “H” or “L”  
4.3 Non-Minimum Read to Write Interval  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
tDQW  
DQM  
tDQZ  
NOP  
READ A  
NOP  
NOP  
READ A  
NOP  
WRITE B  
NOP  
NOP  
COMMAND  
CAS latency = 2  
DOUT A  
DOUT A  
DOUT A  
DIN B  
DIN B  
DIN B  
DIN B  
DIN B  
DIN B  
0
1
0
1
2
tCK1, I/O’s  
Must be Hi-Z before  
the Write Command  
CAS latency = 3  
0
0
1
2
tCK2, I/O’s  
: “H” or “L”  
Confidential  
- 21/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
5. Burst Write Operation  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
I/O’s  
DIN A  
0
don’t care  
DIN A  
DIN A  
DIN A  
3
1
2
The first data element and the Write  
are registered on the same clock edge.  
Extra data is ignored after  
termination of a Burst.  
6.1 Write Interrupted by a Write  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
WRITE B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
I/O’s  
1 Clk Interval  
DIN A  
0
DIN B  
0
DIN B  
DIN B  
DIN B  
3
1
2
Confidential  
- 22/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
6.2 Write Interrupted by a Read  
(Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
WRITE A  
READ B  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
don’t care  
don’t care  
DIN A  
0
DOUT B  
0
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
DOUT B  
1
2
3
t
CK2, I/O’s  
CAS latency = 3  
DIN A  
0
don’t care  
DOUT B  
3
0
1
2
tCK3, I/O’s  
Input data must be removed from the I/O’s at least one clock  
cycle before the Read data appears on the outputs to avoid  
data contention.  
7. Burst Write with Auto-Precharge  
Burst Length = 2, CAS latency = 2, 3)  
T2  
T3  
T7  
T8  
T0  
T1  
T5  
T6  
T4  
CLK  
Bank  
Activate  
WRITEA  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
Command  
NOP  
Auto-Precharge  
tWR  
tRP  
CAS latency = 2  
DIN A  
DIN A  
DIN A  
0
1
t
CK2, I/O’s  
*
tRP  
tWR  
CAS latency = 3  
DIN A  
1
0
t
CK2, I/O’s  
Begin Autoprecharge  
*
Bank can be reactivated after t  
RP  
Confidential  
- 23/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
7.2 Burst Read with Auto-Precharge  
Burst Length = 4, CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
READ A  
COMMAND  
t
RP  
CAS latency = 2  
*
DOUT A  
DOUT A  
DOUT A  
DOUT A  
t
0
1
2
3
t
CK2, I/O’s  
RP  
CAS latency = 3  
*
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
tCK3, I/O’s  
Begin Autoprecharge  
*
Bank can be reactivated after t  
RP  
Confidential  
- 24/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
8.1 Termination of a Burst Read Operation  
(CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
READ A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
t
CK2, I/O’s  
CAS latency = 3  
DOUT A  
DOUT A  
DOUT A  
DOUT A  
3
0
1
2
t
CK3, I/O’s  
8.2 Termination of a Burst Write Operation  
(CAS latency = 2, 3)  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
CLK  
Burst  
Stop  
NOP  
WRITE A  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
CAS latency = 2,3  
don’t care  
DIN A  
0
DIN A  
DIN A  
2
1
I/O’s  
Input data for the Write is masked.  
Confidential  
- 25/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 26/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
\
Confidential  
- 27/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 28/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
\
11. Power on Sequence and Auto Refresh (CBR)  
Confidential  
- 29/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 30/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 31/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 32/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 33/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 34/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 35/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 36/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 37/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 38/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 39/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 40/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 41/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Confidential  
- 42/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
20.1 Deep Power Down Mode Entry  
CLK  
CKE  
CS  
WE  
CAS  
RAS  
Addr.  
DQM  
DQ  
input  
DQ  
output  
High-Z  
t RP  
Precharge Command  
Deep Power Down Entry  
Deep Power Down Mode  
Normal Mode  
The deep power down mode has to be maintained for a minimum of 100μs  
Confidential  
- 43/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
20.2 Deep Power Down Exit  
The deep power down mode is exited by asserting CKE high. After the exit, the following sequence is needed to  
enter a new command:  
1. Maintain NOP input conditions for a minimum of 200 μs  
2. Issue precharge commands for all banks of the device  
3. Issue eight or more autorefresh commands  
4. Issue a mode register set command to initialize the mode register  
5. Issue an extended mode register set command to initialize the extende mode register  
CLK  
CK E  
CS  
RAS  
CAS  
WE  
t
t
RC  
t
200 us  
RFC  
RP  
Deep Power Down  
exit  
All banks  
precharge  
Auto  
refresh  
Auto  
refresh  
Mode  
Register Mode  
Set  
Extended  
New  
Command  
Register Accepted  
Set  
Here  
Confidential  
- 44/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Mobile SDRAM State Diagram  
Power  
Applied  
Deep  
Power  
Down  
DPDSX  
Power  
On  
Precharge  
PREALL  
DPDS  
Self  
Refresh  
REFS  
REFSX  
MRS  
Auto  
MRS  
REFA  
Idle  
EMRS  
Refresh  
CKEL  
CKEH  
Active  
Power  
Down  
ACT  
Precharge  
Power  
Down  
CKEH  
CKEL  
Write  
Burst Stop  
Row  
Active  
Read  
Write  
Read  
Write A  
Read A  
Read  
Read  
Write  
Read A  
Write A  
Read  
A
PRE  
Write  
A
Read  
A
PRE  
PRE  
Precharge  
PREALL  
PRE  
Automatic Sequence  
Command Sequence  
Confidential  
- 45/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Package Diagram  
32Mx16 54-BALL 0.8mm pitch BGA  
Confidential  
- 46/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
Package Diagram  
16Mx32 90-BALL 0.8mm pitch BGA  
Confidential  
- 47/48 -  
Rev.1.0 June 2016  
AS4C32M16MS-7BCN / AS4C32M16MS-6BIN  
AS4C16M32MS-7BCN / AS4C16M32MS-6BIN  
PART NUMBERING SYSTEM  
B
AS4Cꢀ 32M16MS or 16M32MS
6/7ꢀ  
C / Iꢀ  
Nꢀ  
C=Commercialꢀ  
(-25°ꢀC~+85°ꢀC)  
I = Industrial  
Bꢀ=ꢀFBGA  
6=166MHz  
7=133MHzꢀ  
32M16=32Mx16  
DRAMꢀ  
IndicatesꢀPbꢀandꢀ  
HalogenꢀFreeꢀ  
16M32=16Mx32  
MS=Mobile SDRAM  
(-40° C~+85° C)  
Alliance Memory, Inc.  
511 Taylor Way,  
San Carlos, CA 94070  
Tel: 650-610-6800  
Fax: 650-620-9211  
www.alliancememory.com  
Copyright © Alliance Memory  
All Rights Reserved  
© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and  
Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names  
may be the trademarks of their respective companies. Alliance reserves the right to make changes  
to this document and its products at any time without notice. Alliance assumes no responsibility for  
any errors that may appear in this document. The data contained herein represents Alliance's best  
data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this  
data at any time, without notice. If the product described herein is under development, significant  
changes to these specifications are possible. The information in this product data sheet is intended  
to be general descriptive information for potential customers and users, and is not intended to  
operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not  
assume any responsibility or liability arising out of the application or use of any product described  
herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance  
products including liability or warranties related to fitness for a particular purpose, merchantability,  
or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms  
and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made  
exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from  
Alliance does not convey a license under any patent rights, copyrights; mask works rights,  
trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not  
authorize its products for use as critical components in life-supporting systems where a  
malfunction or failure may reasonably be expected to result in significant injury to the user, and the  
inclusion of Alliance products in such life-supporting systems implies that the manufacturer  
assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such  
use.  
Confidential  
- 48/48 -  
Rev.1.0 June 2016  

相关型号:

AS4C1M16E0-50JC

x16 EDO Page Mode DRAM
ETC

AS4C1M16E0-60JC

x16 EDO Page Mode DRAM
ETC

AS4C1M16E5

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-45JC

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-45TC

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-50JC

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-50JI

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-50TC

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-50TI

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-60JC

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-60JI

5V 1M×16 CMOS DRAM (EDO)
ALSC

AS4C1M16E5-60TC

5V 1M×16 CMOS DRAM (EDO)
ALSC