AS7C33128NTF32B-10TQC [ALSC]

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD; 3.3V 128K X 32/36流出液同步SRAM与NTD
AS7C33128NTF32B-10TQC
型号: AS7C33128NTF32B-10TQC
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
3.3V 128K X 32/36流出液同步SRAM与NTD

存储 内存集成电路 静态存储器
文件: 总18页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2005  
AS7C33128NTF32B  
AS7C33128NTF36B  
®
3.3V 128K × 32/36 Flowthrough Synchronous SRAM with NTDTM  
Features  
• Multiple chip enables for easy expansion  
• 3.3V core power supply  
• 2.5V or 3.3V I/O operation with separate V  
• Self-timed write cycles  
• Interleaved or linear burst modes  
• Snooze mode for standby operation  
• Organization: 131,072 words × 32 or 36 bits  
• NTD architecture for efficient bus operation  
DDQ  
• Fast clock to data access: 7.5/8.0/10.0 ns  
• Fast OE access time: 3.5/4.0 ns  
• Fully synchronous operation  
• Flow-through mode  
• Asynchronous output enable control  
• Available in 100-pin TQFP package  
• Byte write enables  
• Clock enable for operation hold  
Logic block diagram  
17  
17  
A[16:0]  
Q
D
Address  
register  
Burst logic  
CLK  
D
Q
CE0  
CE1  
CE2  
Write delay  
addr. registers  
CLK  
17  
R/W  
BWa  
Control  
logic  
CLK  
BWb  
BWc  
BWd  
ADV / LD  
LBO  
128K x 32/36  
SRAM  
ZZ  
CLK  
Array  
32/36  
32/36  
DQ[a,b,c,d]  
Data  
Input  
Register  
D
Q
32/36  
32/36  
CLK  
32/36  
CLK  
CEN  
Output  
Buffer  
OE  
32/36  
OE  
DQ[a,b,c,d]  
Selection guide  
-75  
-80  
10  
-10  
12  
Units  
ns  
Minimum cycle time  
8.5  
7.5  
260  
110  
30  
Maximum clock access time  
Maximum operating current  
Maximum standby current  
8.0  
230  
100  
30  
10  
ns  
200  
90  
mA  
mA  
mA  
Maximum CMOS standby current (DC)  
30  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 1 of 18  
Copyright © Alliance Semiconductor. All rights reserved.  
AS7C33128NTF32B/36B  
®
4 Mb Synchronous SRAM products list1,2  
Org  
Part Number  
Mode  
PL-SCD  
PL-SCD  
PL-SCD  
PL-DCD  
PL-DCD  
PL-DCD  
FT  
Speed  
256KX18  
128KX32  
128KX36  
256KX18  
128KX32  
128KX36  
256KX18  
128KX32  
128KX36  
256KX18  
128KX32  
128KX36  
256KX18  
128KX32  
128KX36  
AS7C33256PFS18B  
AS7C33128PFS32B  
AS7C33128PFS36B  
AS7C33256PFD18B  
AS7C33128PFD32B  
AS7C33128PFD36B  
AS7C33256FT18B  
AS7C33128FT32B  
AS7C33128FT36B  
AS7C33256NTD18B  
AS7C33128NTD32B  
AS7C33128NTD36B  
AS7C33256NTF18B  
AS7C33128NTF32B  
AS7C33128NTF36B  
200/166/133 MHz  
200/166/133 MHz  
200/166/133 MHz  
200/166/133 MHz  
200/166/133 MHz  
200/166/133 MHz  
7.5/8.0/10 ns  
FT  
7.5/8.0/10 ns  
FT  
7.5/8.0/10 ns  
NTD-PL  
NTD-PL  
NTD-PL  
NTD-FT  
NTD-FT  
NTD-FT  
200/166/133 MHz  
200/166/133 MHz  
200/166/133 MHz  
7.5/8.0/10 ns  
7.5/8.0/10 ns  
7.5/8.0/10 ns  
1 Core Power Supply: VDD = 3.3V + 0.165V  
2 I/O Supply Voltage: VDDQ = 3.3V + 0.165V for 3.3V I/O  
VDDQ = 2.5V + 0.125V for 2.5V I/O  
PL-SCD  
PL-DCD  
FT  
:
:
:
Pipelined Burst Synchronous SRAM - Single Cycle Deselect  
Pipelined Burst Synchronous SRAM - Double Cycle Deselect  
Flow-through Burst Synchronous SRAM  
1
TM  
NTD -PL  
:
:
Pipelined Burst Synchronous SRAM with NTD  
TM  
NTD-FT  
Flow-through Burst Synchronous SRAM with NTD  
1. NTD: No Turnaround Delay. NTDTM is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this document are the property  
of their respective owners.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 2 of 18  
AS7C33128NTF32B/36B  
®
100-pin TQFP - top view  
NC/DQPc  
DQc0  
DQc1  
1
2
3
4
5
6
7
8
9
DQPb/NC  
DQb7  
DQb6  
V
DDQ  
V
SSQ  
DQb5  
DQb4  
DQb3  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
DDQ  
SSQ  
DQc2  
DQc3  
DQc4  
DQc5  
DQb2  
V
V
10  
11  
12  
SSQ  
SSQ  
DDQ  
V
V
DDQ  
DQc6  
DQc7  
NC  
V
DD  
NC  
TQFP 14 x 20mm  
DQb1  
DQb0  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
V
NC  
SS  
V
ZZ  
DD  
V
SS  
DQd0  
DQd1  
DQa7  
DQa6  
V
V
V
DDQ  
DDQ  
SSQ  
V
SSQ  
DQd2  
DQd3  
DQd4  
DQd5  
DQa5  
DQa4  
DQa3  
DQa2  
V
V
V
DQa1  
SSQ  
DDQ  
SSQ  
DDQ  
V
27  
28  
29  
30  
DQd6  
DQd7  
NC/DQPd  
DQa0  
DQPa/NC  
Note: For pins 1, 30, 51, and 80, NC applies to the x32 configuration. DQPn applies to the x36  
configuration.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 3 of 18  
AS7C33128NTF32B/36B  
®
Functional Description  
The AS7C33128NTF32B/36B family is a high performance CMOS 4 Mbit synchronous Static Random Access Memory  
(SRAM) organized as 131,072 words × 32 or 36 bits and incorporates a LATE Write.  
This variation of the 4Mb+ synchronous SRAM uses the No Turnaround Delay (NTD ) architecture, featuring an enhanced  
write operation that improves bandwidth over flowthrough burst devices. In a normal flowthrough burst device, the write data,  
command, and address are all applied to the device on the same clock edge. If a read command follows this write command,  
the system must wait for one dead cycle for valid data to become available. This dead cycle can significantly reduce overall  
bandwidth for applications requiring random access or read-modify-write operations.  
NTD devices use the memory bus more efficiently by introducing a write latency which matches the one-cycle flow-  
through read latency. Write data is applied one cycle after the write command and address, allowing the read pipeline to clear.  
With NTD , write and read operations can be used in any order without producing dead bus cycles.  
Assert R/W low to perform write cycles. Byte write enable controls write access to specific bytes, or can be tied low for full 36  
bit writes. Write enable signals, along with the write address, are registered on a rising edge of the clock. Write data is applied  
to the device one clock cycle later. Unlike some asynchronous SRAMs, output enable OE does not need to be toggled for write  
operations; it can be tied low for normal operations. Outputs go to a high impedance state when the device is de-selected by  
any of the three chip enable inputs.  
Use the ADV (burst advance) input to perform burst read, write and deselect operations. When ADV is high, external addresses, chip  
select, R/W pins are ignored, and internal address counters increment in the count sequence specified by the LBO control. Any  
device operations, including burst, can be stalled using the CEN=1, the clock enable input.  
The AS7C33128NTF32B/36B operates with a 3.3V ± 5% power supply for the device core (V ). DQ circuits use a separate  
DD  
power supply (V  
) that operates across 2.5V or 3.3V ranges. These devices are available in a 100-pin TQFP package.  
DDQ  
TQFP Capacitance  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
Test conditions  
V = 0V  
Min  
Max  
Unit  
pF  
*
C
-
-
5
7
IN  
in  
*
C
V = V = 0V  
pF  
I/O  
in  
out  
*Guranteed not tested  
TQFP thermal resistance  
Description  
Conditions  
Symbol  
Typical  
40  
Units  
°C/W  
°C/W  
1–layer  
4–layer  
θJA  
θJA  
Thermal resistance  
(junction to ambient)1  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance,  
per EIA/JESD51  
22  
Thermal resistance  
θJC  
8
°C/W  
(junction to top of case)1  
1 This parameter is sampled  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 4 of 18  
AS7C33128NTF32B/36B  
®
Signal descriptions  
Signal  
CLK  
I/O Properties  
Description  
I
I
I
CLOCK Clock. All inputs except OE, LBO, and ZZ are synchronous to this clock.  
CEN  
SYNC  
SYNC  
SYNC  
Clock enable. When de-asserted high, the clock input signal is masked.  
Address. Sampled when all chip enables are active and ADV/LD is asserted.  
Data. Driven as output when the chip is enabled and OE is active.  
A, A0, A1  
DQ[a,b,c,d] I/O  
CE0, CE1,  
CE2  
Synchronous chip enables. Sampled at the rising edge of CLK, when ADV/LD is asserted.  
Are ignored when ADV/LD is high.  
I
SYNC  
SYNC  
SYNC  
SYNC  
Advance or Load. When sampled high, the internal burst address counter will increment in  
the order defined by the LBO input value. When low, a new address is loaded.  
ADV/LD  
R/W  
I
I
A high during LOAD initiates a READ operation. A low during LOAD initiates a WRITE  
operation. Is ignored when ADV/LD is high.  
Byte write enables. Used to control write on individual bytes. Sampled along with WRITE  
command and BURST WRITE.  
BW[a,b,c,d]  
OE  
I
I
I
ASYNC Asynchronous output enable. I/O pins are not driven when OE is inactive.  
Selects Burst mode. When tied to VDD or left floating, device follows interleaved Burst order. When  
STATIC  
LBO  
driven Low, device follows linear Burst order. This signal is internally pulled High.  
ZZ  
I
-
ASYNC Snooze. Places device in low power mode; data is retained. Connect to GND if unused.  
NC  
-
No connect  
Snooze Mode  
SNOOZE MODE is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of  
SNOOZE MODE is dictated by the length of time the ZZ is in a High state.  
The ZZ pin is an asynchronous, active high input that causes the device to enter SNOOZE MODE.  
When the ZZ pin becomes a logic High, ISB2 is guaranteed after the time tZZI is met. After entering SNOOZE MODE, all inputs except ZZ  
is disabled and all outputs go to High-Z. Any operation pending when entering SNOOZE MODE is not guaranteed to successfully complete.  
Therefore, SNOOZE MODE (READ or WRITE) must not be initiated until valid pending operations are completed. Similarly, when exiting  
SNOOZE MODE during tPUS, only a DESELECT or READ cycle should be given while the SRAM is transitioning out of SNOOZE MODE.  
Burst order  
Interleaved burst order LBO = 1  
A1 A0 A1 A0 A1 A0 A1 A0  
Linear burst order LBO = 0  
A1 A0 A1 A0 A1 A0 A1 A0  
Starting address  
First increment  
Second increment  
Third increment  
0 0  
0 1  
1 0  
1 1  
0 1  
0 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
1 0  
0 1  
0 0  
Starting Address  
First increment  
Second increment  
Third increment  
0 0  
0 1  
1 0  
1 1  
0 1  
1 0  
1 1  
0 0  
1 0  
1 1  
0 0  
0 1  
1 1  
0 0  
0 1  
1 0  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 5 of 18  
AS7C33128NTF32B/36B  
®
Synchronous truth table[5,6,7,8,9,11]  
Address  
source  
CE0 CE1 CE2 ADV/LD R/W  
BWn  
OE CEN  
CLK  
Operation  
DQ  
Notes  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
H
L
H
L
H
L
H
L
X
X
X
X
H
X
H
X
L
X
X
X
X
X
X
X
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
NA  
NA  
NA  
NA  
L to H  
L to H  
L to H  
L to H  
DESELECT Cycle  
DESELECT Cycle  
High-Z  
High-Z  
High-Z  
High-Z  
Q
DESELECT Cycle  
X
H
X
H
X
H
X
H
CONTINUE DESELECT Cycle  
READ Cycle (Begin Burst)  
READ Cycle (Continue Burst)  
1
External L to H  
Next L to H  
X
L
X
L
L
Q
1,10  
2
H
H
X
X
X
External L to H NOP/DUMMY READ (Begin Burst) High-Z  
X
L
X
L
Next L to H DUMMY READ (Continue Burst) High-Z 1,2,10  
External L to H  
WRITE CYCLE (Begin Burst)  
D
D
3
X
L
X
L
X
L
L
Next L to H WRITE CYCLE (Continue Burst)  
1,3,10  
H
External L to H NOP/WRITE ABORT (Begin Burst) High-Z 2,3  
1,2,3,  
10  
4
X
X
X
H
X
H
X
L
Next L to H WRITE ABORT (Continue Burst)  
High-Z  
-
X
X
X
X
X
X
X
H
Current L to H  
INHIBIT CLOCK  
Key: X = Don’t Care, H = HIGH, L = LOW. BWn = H means all byte write signals (BWa, BWb, BWc, and BWd) are HIGH. BWn = L means one or more byte write signals are  
LOW.  
Notes:  
1 CONTINUE BURST cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ or WRITE) is chosen in the initial BEGIN BURST  
cycle. A CONINUE DESELECT cycle can only be entered if a DESELECT CYCLE is executed first.  
2 DUMMY READ and WRITE ABORT cycles can be considered NOPs because the device performs no external operation. A WRITE ABORT means a WRITE command is given,  
but no operation is performed.  
3 OE may be wired LOW to minimize the number of control signal to the SRAM. The device will automatically turn off the output drivers during a WRITE cycle. OE may be used  
when the bus turn-on and turn-off times do not meet an application’s requirements.  
4 If an INHIBIT CLOCK command occurs during a READ operation, the DQ bus will remain active (Low-Z). If it occurs during a WRITE cycle, the bus will remain in High-Z. No  
WRITE operations will be performed during the INHIBIT CLOCK cycle.  
5 BWa enables WRITEs to byte “a” (DQa pins); BWb enables WRITEs to byte “b” (DQb pins); BWc enables WRITEs to byte “c” (DQc pins); BWd enables WRITEs to byte “d”  
(DQd pins).  
6 All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
7 Wait states are inserted by setting CEN HIGH.  
8 This device contains circuitry that will ensure that the outputs will be in High-Z during power-up.  
9 The device incorporates a 2-bit burst counter. Address wraps to the initial address every fourth BURST CYCLE.  
10 The address counter is incremented for all CONTINUE BURST cycles.  
11 ZZ pin is always Low.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 6 of 18  
AS7C33128NTF32B/36B  
®
State diagram for NTD SRAM  
Burst  
Read  
Burs  
Read  
Burst  
Dsel  
Read  
Dsel  
Burst  
Burst  
Write  
Burst  
Burst  
Write  
Writ  
Absolute maximum ratings  
Parameter  
Power supply voltage relative to GND  
Input voltage relative to GND (input pins)  
Input voltage relative to GND (I/O pins)  
Power dissipation  
Symbol  
DD, VDDQ  
VIN  
Min  
–0.5  
–0.5  
–0.5  
Max  
+4.6  
Unit  
V
V
VDD + 0.5  
VDDQ + 0.5  
1.8  
V
VIN  
V
Pd  
W
Short circuit output current  
IOUT  
Tstg  
20  
mA  
oC  
oC  
Storage temperature  
–65  
–65  
+150  
Temperature under bias  
Tbias  
+135  
Stresses greater than those listed under “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions may affect reliability.  
Recommended operating conditions at 3.3V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
Min  
3.135  
3.135  
0
Nominal  
Max  
3.465  
VDD  
0
Unit  
V
VDD  
3.3  
3.3  
0
*
VDDQ  
V
Vss  
V
*
VDDQ cannot be greater than VDD  
Recommended operating conditions at 2.5V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
Min  
3.135  
2.375  
0
Nominal  
Max  
3.465  
VDD  
0
Unit  
V
VDD  
3.3  
2.5  
0
*
VDDQ  
V
Vss  
V
*
VDDQ cannot be greater than VDD  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 7 of 18  
AS7C33128NTF32B/36B  
®
DC electrical characteristics for 3.3V I/O operation  
Parameter  
Input leakage current†  
Output leakage current  
Sym  
Conditions  
Min  
-2  
Max  
Unit  
µA  
|ILI|  
VDD = Max, 0V < VIN < VDD  
OE VIH, VDD = Max, 0V < VOUT < VDDQ  
Address and control pins  
I/O pins  
2
2
|ILO  
|
-2  
µA  
2*  
VDD+0.3  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VIH  
VIL  
V
V
2*  
V
DDQ+0.3  
Address and control pins  
I/O pins  
-0.3**  
-0.5**  
2.4  
0.8  
0.8  
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –4 mA, VDDQ = 3.135V  
IOL = 8 mA, VDDQ = 3.465V  
V
V
0.4  
DC electrical characteristics for 2.5V I/O operation  
Parameter  
Input leakage current†  
Output leakage current  
Sym  
Conditions  
Min  
-2  
Max  
Unit  
µA  
µA  
V
|ILI|  
VDD = Max, 0V < VIN < VDD  
2
2
|ILO  
|
OE VIH, VDD = Max, 0V < VOUT < VDDQ  
Address and control pins  
I/O pins  
-2  
1.7*  
1.7*  
-0.3**  
-0.3**  
1.7  
VDD+0.3  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Output high voltage  
VIH  
VIL  
V
DDQ+0.3  
V
Address and control pins  
I/O pins  
0.7  
0.7  
V
V
IOH = –4 mA, VDDQ = 2.375V  
VOH  
VOL  
V
V
I
OH = –1 mA, VDDQ = 2.375V  
2.0  
IOL = 8 mA, VDDQ = 2.625V  
0.7  
0.4  
Output low voltage  
I
OL = 1 mA, VDDQ = 2.625V  
† LBO pin has an internal pull-up and input leakage = -10 µA.  
*
V
max < VDD +1.5V for pulse width less than 0.2 X t  
CYC  
IH  
**  
V
min = -1.5 for pulse width less than 0.2 X t  
CYC  
IL  
IDD operating conditions and maximum limits  
Parameter  
Sym  
Conditions  
-75  
-80  
-10  
Unit  
CE0 < VIL, CE1 > VIH, CE2 < VIL, f = fMax  
,
Operating power supply current1  
ICC  
260  
230  
200  
mA  
IOUT = 0 mA, ZZ < VIL  
All VIN 0.2V or >  
V
– 0.2V, Deselected,  
DD  
ISB  
110  
100  
90  
f = fMax, ZZ < VIL  
Deselected, f = 0, ZZ < 0.2V,  
all VIN 0.2V or VDD – 0.2V  
Standby power supply current  
mA  
ISB1  
ISB2  
30  
30  
30  
30  
30  
30  
Deselected, f = f , ZZ  
V
– 0.2V,  
Max  
DD  
all VIN VIL or VIH  
1 I given with no output loading. I increases with faster cycle times and greater output loading.  
CC  
CC  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 8 of 18  
AS7C33128NTF32B/36B  
®
Timing characteristics over operating range  
-75  
-80  
-10  
1
Parameter  
Sym  
Min  
8.5  
Max  
Min  
10  
Max  
Min  
12  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle time  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CYC  
Clock access time  
7.5  
3.5  
8.0  
4.0  
10  
4.0  
CD  
Output enable low to data valid  
Clock high to output low Z  
Data Output invalid from clock high  
Output enable low to output low Z  
Output enable high to output high Z  
Clock high to output high Z  
Clock high pulse width  
OE  
2.5  
2.5  
0
2.5  
2.5  
0
2.5  
2.5  
0
2,3,4  
2
LZC  
OH  
2,3,4  
2,3,4  
2,3,4  
5
LZOE  
HZOE  
HZC  
CH  
3.5  
3.5  
4.0  
4.0  
4.0  
4.0  
3.0  
3.0  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
0.5  
2.0  
0.5  
4.0  
4.0  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
0.5  
2.0  
0.5  
4.0  
4.0  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
0.5  
2.0  
0.5  
Clock low pulse width  
5
CL  
Address and Control setup to clock high  
Data setup to clock high  
6
AS  
6
DS  
Write setup to clock high  
6, 7  
6, 8  
6
WS  
Chip select setup to clock high  
Address hold from clock high  
Data hold from clock high  
CSS  
AH  
6
DH  
Write hold from clock high  
Chip select hold from clock high  
Clock enable setup to clock high  
Clock enable hold from clock high  
ADV setup to clock high  
6, 7  
6, 8  
6
WH  
CSH  
CENS  
CENH  
ADVS  
ADVH  
6
6
ADV hold from clock high  
6
1 See “Notes” on page 15.  
Snooze Mode Electrical Characteristics  
Description  
Conditions  
ZZ > V  
Symbol  
Min  
Max  
Units  
mA  
Current during Snooze Mode  
ZZ active to input ignored  
I
30  
IH  
SB2  
PDS  
PUS  
t
t
2
2
cycle  
cycle  
cycle  
cycle  
ZZ inactive to input sampled  
ZZ active to SNOOZE current  
ZZ inactive to exit SNOOZE current  
t
2
ZZI  
t
0
RZZI  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 9 of 18  
AS7C33128NTF32B/36B  
®
Key to switching waveforms  
don’t care  
Undefined  
Rising input  
Falling input  
Timing waveform of read cycle  
tCH tCL  
tCYC  
CLK  
tCENH  
tCENS  
CEN  
tAS  
tAH  
A1  
A2  
A3  
Address  
R/W  
tWS tWH  
tCSS tCSH  
CE0,CE2  
CE1  
tADVS  
tADVH  
ADV/LD  
OE  
tHZOE  
tOE  
tLZOE  
Q(A2Y‘11)  
Q(A3)  
Q(A1)  
Q(A2)  
Dout  
Q(A3Y‘01)  
Q(A2Y‘01) Q(A2Y‘10)  
BURST  
READ  
Q(A2Ý11)  
BURST  
READ  
Q(A2Ý01)  
READ  
Q(A1)  
DSEL  
READ  
Q(A2)  
STALL  
READ BURST  
BURST  
Command  
Q(A3)  
READ  
READ  
Q(A2Ý10)  
Q(A3Ý01)  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 10 of 18  
AS7C33128NTF32B/36B  
®
Timing waveform of write cycle  
tCH tCL  
tCYC  
CLK  
tCENS tCENH  
CEN  
tAS  
tAH  
A1  
A2  
A3  
Address  
R/W  
BWn  
tCSS  
tCSH  
CE0,CE2  
CE1  
tADVS  
tADVH  
ADV/LD  
OE  
tDS  
tDH  
D(A3)  
D(A1)  
D(A2)  
Din  
tHZOE  
D(A2Y‘10)  
D(A2Y‘11)  
D(A3Y‘01)  
D(A2Y‘01)  
Dout  
Q(n-1)  
BURST  
WRITE  
D(A2Ý10) D(A2Ý11)  
BURST  
WRITE  
BURST  
WRITE  
D(A2Ý01)  
WRITE  
D(A1)  
DSEL  
WRITE  
D(A2)  
STALL  
WRITE  
D(A3)  
BURST  
WRITE  
D(A3Ý01)  
Command  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 11 of 18  
AS7C33128NTF32B/36B  
®
Timing waveform of read/write cycle  
tCH tCL  
tCYC  
CLK  
tCENS  
tCENH  
CEN  
tAS  
tAH  
A3  
A4  
A5  
A6  
A7  
A1  
A2  
ADDRESS  
tWS  
tWH  
R/W  
tWH  
tWS  
BWn  
tCSH  
tCSS  
CE0, CE2  
CE1  
tADVH  
tADVS  
ADV/LD  
OE  
tCD  
tLZC  
tHZOE  
tOE  
tDS tDH  
tOH  
tHZC  
D(A5)  
Q(A6)  
D(A7)  
D(A1)  
D(A2)  
Q(A3)  
Q(A4)  
Q(A4  
Ý
01  
)
D(A2Ý01)  
D/Q  
tLZOE  
BURST  
WRITE  
BURST  
READ  
READ  
Q(A3)  
DSEL  
WRITE  
D(A1)  
WRITE  
D(A2)  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
READ  
Q(A4)  
Command  
D(A2Ý01)  
Q(A4Ý01)  
Note: Ý = XOR when LBO = high/no connect. Ý = ADD when LBO = low.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 12 of 18  
AS7C33128NTF32B/36B  
®
NOP, stall and deselect cycles  
CLK  
CEN  
CE1  
CE0, CE2  
ADV/LD  
R/W  
BWn  
A1  
A2  
A3  
Address  
Q(A1Ý  
10)  
D(A2)  
Q(A1)  
Q(A1Ý01)  
D/Q  
BURST  
NOP  
WRITE  
NOP  
READ  
Q(A1)  
STALL  
DSEL  
BURST  
Q(A1 01  
BURST  
Q(A1 10)  
BURST WRITE  
BURST  
D(A2Ý10)  
Command  
Ý
)
Ý
DSEL  
D(A2)  
D(A2  
Ý01  
)
D(A3)  
Note: Ý = XOR when LBO = high/no connect; Ý = ADD when LBO = low. OE is low.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 13 of 18  
AS7C33128NTF32B/36B  
®
Timing waveform of snooze mode  
CLK  
tPUS  
ZZ recovery cycle  
ZZ setup cycle  
ZZ  
tZZI  
Isupply  
ISB2  
tRZZI  
All inputs  
Deselect or Read Only  
(except ZZ)  
Deselect or Read Only  
Normal  
operation  
Cycle  
High-Z  
Dout  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 14 of 18  
AS7C33128NTF32B/36B  
®
AC test conditions  
• Output load: For tLZC, tLZOE, tHZOE, and tHZC, see Figure C. For all others, see Figure B.  
• Input pulse level: GND to 3V. See Figure A.  
Thevenin equivalent:  
• Input rise and fall time (measured at 0.3V and 2.7V): 1.0V/ns. See Figure A.  
• Input and output timing reference levels: 1.5V  
+3.3V for 3.3V I/O;  
/+2.5V for 2.5V I/O  
319  
/1667  
50  
DOUT  
353 /1538  
+3.0V  
VL = 1.5V  
for 3.3V I/O;  
= VDDQ/2  
DOUT  
5 pF*  
90%  
10%  
GND  
Figure A: Input waveform  
90%  
30 pF*  
10%  
GND  
*including scope  
and jig capacitance  
for 2.5V I/O  
Figure B: Output load (A)  
Figure C: Output load(B)  
Notes  
1) For test conditions, see “AC test conditions”, Figures A, B, and C  
2) This parameter measured with output load condition in Figure C.  
3) This parameter is sampled, but not 100% tested.  
4) tHZOE is less than tLZOE, and tHZC is less than tLZC at any given temperature and voltage.  
5) tCH is measured high above VIH, and tCL is measured low below VIL  
6) This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must  
meet the setup and hold times with stable logic levels for all rising edges of CLK when chip is enabled.  
7) Write refers to R/  
W
and BW[a,b,c,d]  
.
8) Chip select refers to CE0  
,
CE1, and CE2.  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 15 of 18  
AS7C33128NTF32B/36B  
®
Package dimensions  
100-pin quad flat pack (TQFP)  
Hd  
D
TQFP  
Min  
A1 0.05  
A2 1.35  
Max  
0.15  
b
e
1.45  
b
c
0.22  
0.09  
0.38  
0.20  
D
E
e
13.90  
19.90  
14.10  
20.10  
He  
E
0.65 nominal  
Hd 15.90  
He 21.90  
16.10  
22.10  
0.75  
L
L1  
a
0.45  
1.00 nominal  
0° 7°  
α
Dimensions in  
millimeters  
c
L1  
L
A1 A2  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 16 of 18  
AS7C33128NTF32B/36B  
®
Ordering information  
Package Width  
-75  
–80  
–10  
TQFP  
TQFP  
TQFP  
TQFP  
x32  
x32  
x36  
x36  
AS7C33128NTF32B-75TQC  
AS7C33128NTF32B-75TQI  
AS7C33128NTF36B-75TQC  
AS7C33128NTF36B-75TQI  
AS7C33128NTF32B-80TQC  
AS7C33128NTF32B-80TQI  
AS7C33128NTF36B-80TQC  
AS7C33128NTF36B-80TQI  
AS7C33128NTF32B-10TQC  
AS7C33128NTF32B-10TQI  
AS7C33128NTF36B-80TQC  
AS7C33128NTF36B-10TQI  
Notes: Add suffix ‘N’ to the above part number for Lead Free Parts (Ex. AS7C33128NTF32B-75TQCN)  
Part numbering guide  
AS7C  
33  
128  
NTF  
32/36  
B
–XX  
TQ  
C/I  
X
1
2
3
4
5
6
7
8
9
10  
1. Alliance Semiconductor SRAM prefix  
2. Operating voltage: 33 = 3.3V  
3. Organization: 128 = 128k  
4. NTF= No Turn-Around Delay, Flow-through mode  
5. Organization: 32 = x32, 36 = x36  
6. Production version: B = Product revision  
7. Clock access time: [ -75 = 7.5 ns; -80 = 8.0 ns; -10 = 10.0]  
8. Package type: TQ = TQFP  
9. Operating temperature: C = commercial (0° C to 70° C); I = industrial (-40° C to 85° C)  
10. N = Lead free part  
4/13/05, v 1.3  
Alliance Semiconductor  
P. 17 of 18  
AS7C33128NTF32B/36B  
®
®
Alliance Semiconductor Corporation  
2575, Augustine Drive,  
Santa Clara, CA 95054  
Tel: 408 - 855 - 4900  
Copyright © Alliance Semiconductor  
All Rights Reserved  
Part Number: AS7C33128NTF32B  
AS7C33128NTF36B  
Fax: 408 - 855 - 4999  
www.alsc.com  
Document Version: v 1.3  
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered  
trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make  
changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this  
document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or  
correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are  
possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not  
intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising  
out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance  
products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights,  
except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made  
exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent  
rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its  
products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant  
injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and  
agrees to indemnify Alliance against all claims arising from such use.  

相关型号:

AS7C33128NTF32B-10TQCN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-10TQI

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-10TQIN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-75TQC

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-75TQCN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-75TQCN

ZBT SRAM, 128KX32, 7.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100
ISSI

AS7C33128NTF32B-75TQI

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-75TQIN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-80TQC

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-80TQCN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-80TQI

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC

AS7C33128NTF32B-80TQIN

3.3V 128K x 32/36 Flowthrough Synchronous SRAM with NTD
ALSC