AS7C3364PFS36A-150TQC [ALSC]

3.3V 64K X 32/36 pipeline burst synchronous SRAM; 3.3V 64K X 32/36管道爆裂的同步SRAM
AS7C3364PFS36A-150TQC
型号: AS7C3364PFS36A-150TQC
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

3.3V 64K X 32/36 pipeline burst synchronous SRAM
3.3V 64K X 32/36管道爆裂的同步SRAM

存储 静态存储器
文件: 总11页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2001  
Preliminary Information  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
3.3V 64K X 32/36 pipeline burst synchronous SRAM  
Features  
• Organization: 65,536 words × 32 or 36 bits  
• Fast clock speeds to 166 MHz in LVTTL/LVCMOS  
• Fast clock to data access: 3.5/3.8/4.0/5.0 ns  
• Fast OE access time: 3.5/3.8/4.0/5.0 ns  
• Fully synchronous register-to-register operation  
• Single register “Flow-through” mode  
• Single-cycle deselect  
• Asynchronous output enable control  
• Economical 100-pin TQFP package  
• Byte write enables  
• Multiple chip enables for easy expansion  
• 3.3 core power supply  
• 2.5V or 3.3V I/O operation with separate V  
• 30 mW typical standby power in power down mode  
DDQ  
*
• Pentium® compatible architecture and timing  
Pin arrangement  
Logic block diagram  
LBO  
CLK  
ADV  
ADSC  
ADSP  
CLK  
CE  
Burst logic  
CLR  
64K × 32/36  
Memory  
array  
DQP /NC  
b
DQP /NC  
c
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
16  
14  
16  
16  
DQ  
D
CE  
CLK  
Q
DQ  
2
c
b
A[15:0]  
Address  
DQ  
b
DQ  
c
3
register  
V
V
4
DDQ  
DDQ  
SSQ  
c
V
V
5
SSQ  
DQ  
DQ  
6
b
36/32  
36/32  
GWE  
BWE  
DQ  
b
DQ  
c
7
D
Q
Q
Q
Q
DQ  
d
DQ  
DQ  
8
b
c
Byte write  
BW  
DQ  
c
9
DQ  
b
d
registers  
V
V
10  
11  
12  
13  
14  
15  
SSQ  
SSQ  
CLK  
V
V
DQ  
DQ  
c
DDQ  
DDQ  
DQ  
b
D
c
DQ  
c
DQ  
b
BW  
BW  
c
Byte write  
V
FT  
DD  
SS  
registers  
NC  
VDD  
ZZ  
V
CLK  
D
TQFP 14 × 20 mm  
NC 16  
V
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DQ  
SS  
b
DQ  
DQ  
DQ  
b
d
d
a
Byte write  
DQ  
a
registers  
V
V
CLK  
DDQ  
DDQ  
SSQ  
d
d
d
d
V
V
SSQ  
D
DQ  
DQ  
a
DQ  
a
4
BW  
DQ  
a
DQ  
DQ  
DQ  
V
a
Byte write  
DQ  
registers  
a
CLK  
D
DQ  
a
V
SSQ  
SSQ  
CE0  
CE1  
CE2  
V
V
OE  
Output  
registers  
CLK  
Q
Q
DDQ  
DDQ  
DQ  
DQ  
DQ  
Input  
registers  
CLK  
a
d
d
Enable  
register  
DQ  
a
CE  
CLK  
DQP /NC  
DQP /NC  
a
d
D
Enable  
Power  
down  
delay  
ZZ  
register  
CLK  
Note: Pins 1,30,51,80 are NC for ×32  
OE  
DATA [35:0]  
DATA [31:0]  
FT  
Selection guide  
AS7C3364PFS32A AS7C3364PFS32A AS7C3364PFS32A AS7C3364PFS32A  
–166  
–150  
–133  
7.5  
133  
4
–100  
Units  
ns  
Minimum cycle time  
6
6.7  
10  
Maximum clock frequency  
166  
3.5  
475  
130  
30  
150  
3.8  
100  
5
MHz  
ns  
Maximum pipelined clock access time  
Maximum operating current  
450  
110  
30  
425  
100  
30  
325  
90  
mA  
mA  
mA  
Maximum standby current  
Maximum CMOS standby current (DC)  
30  
*
®
Pentium is a registered trademark of Intel Corporation. NTD™ is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this docu-  
ment are the property of their respective owners.  
2/1/01; V.0.9  
Alliance Semiconductor  
P. 1 of 11  
Copyright © Alliance Semiconductor. All rights reserved.  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Functional description  
The AS7C3364PFS32A and AS7C3364PFS36A are high-performance CMOS 2-Mbit synchronous Static Random Access Memory (SRAM)  
devices organized as 65,536 words × 32 or 36 bits, and incorporate a two-stage register-register pipeline for highest frequency on any given  
technology.  
Timing for these devices is compatible with existing Pentium® synchronous cache specifications. This architecture is suited for ASIC, DSP  
(TMS320C6X), and PowerPC*-based systems in computing, datacomm, instrumentation, and telecommunications systems.  
Fast cycle times of 6/6.7/7.5/10 ns with clock access times (tCD) of 3.5/3.8/4.0/5.0 ns enable 166, 150, 133 and 100 MHz bus frequencies.  
Three chip enable (CE) inputs permit easy memory expansion. Burst operation is initiated in one of two ways: the controller address strobe  
(ADSC), or the processor address strobe (ADSP). The burst advance pin (ADV) allows subsequent internally generated burst addresses.  
Read cycles are initiated with ADSP (regardless of WE and ADSC) using the new external address clocked into the on-chip address register  
when ADSP is sampled Low, the chip enables are sampled active, and the output buffer is enabled with OE. In a read operation the data accessed  
by the current address, registered in the address registers by the positive edge of CLK, are carried to the data-out registers and driven on the  
output pins on the next positive edge of CLK. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on all subsequent  
clock edges. Address is incremented internally for the next access of the burst when ADV is sampled Low, and both address strobes are High.  
Burst operation is selectable with the LBO input. With LBO unconnected or driven High, burst operations use a Pentium® count sequence. With  
LBO driven LOW, the device uses a linear count sequence suitable for PowerPCand many other applications.  
Write cycles are performed by disabling the output buffers with OE and asserting a write command. A global write enable GWE writes all 32/  
36 bits regardless of the state of individual BW[a:d] inputs. Alternately, when GWE is High, one or more bytes may be written by asserting  
BWE and the appropriate individual byte BWn signal(s).  
BWn is ignored on the clock edge that samples ADSP Low, but is sampled on all subsequent clock edges. Output buffers are disabled when BWn  
is sampled LOW (regardless of OE). Data is clocked into the data input register when BWn is sampled Low. Address is incremented internally to  
the next burst address if BWn and ADV are sampled Low.  
Read or write cycles may also be initiated with ADSC instead of ADSP. The differences between cycles initiated with ADSC and ADSP follow.  
• ADSP must be sampled HIGH when ADSC is sampled LOW to initiate a cycle with ADSC.  
• WE signals are sampled on the clock edge that samples ADSC LOW (and ADSP High).  
• Master chip enable CE0 blocks ADSP, but not ADSC.  
ASAS7C3364PFS32A and ASAS7C3364PFS36A family operates from a core 3.3V power supply. I/Os use a separate power supply that can  
operate at 2.5V or 3.3V. These devices are available in a 100-pin 14 × 20 mm TQFP package.  
*PowerPC is a tradenark International Business Machines Corporation.  
Capacitance  
Parameter  
Input capacitance  
I/O capacitance  
Symbol  
CIN  
Signals  
Address and control pins  
I/O pins  
Test conditions  
VIN = 0V  
Max  
5
Unit  
pF  
CI/O  
VIN = VOUT = 0V  
7
pF  
Write enable truth table (per byte)  
GWE  
BWE  
BWn  
WEn  
L
X
L
X
L
T
T
H
H
H
L
X
H
F*  
F*  
H
Key:  
X = Don’t Care, L = Low, H = High, T = True, F = False; *= Valid read; n = a, b, c, d; WE, WEn = internal write signal.  
2/1/01  
Alliance Semiconductor  
P. 2 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Signal descriptions  
I/  
Signal  
CLK  
O
Properties  
CLOCK  
Description  
I
Clock. All inputs except OE, FT, ZZ, LBO are synchronous to this clock.  
Address. Sampled when all chip enables are active and ADSC or ADSP are asserted.  
Data. Driven as output when the chip is enabled and OE is active.  
A0–A15  
I
SYNC  
DQ[a,b,c,d] I/O SYNC  
Master chip enable. Sampled on clock edges when ADSP or ADSC is active. When CE0 is  
inactive, ADSP is blocked. Refer to the Synchronous Truth Table for more information.  
CE0  
I
I
I
SYNC  
SYNC  
SYNC  
Synchronous chip enables. Active HIGH and active Low, respectively. Sampled on clock  
edges when ADSC is active or when CE0 and ADSP are active.  
CE1, CE2  
ADSP  
Address strobe processor. Asserted LOW to load a new bus address or to enter standby  
mode.  
ADSC  
ADV  
I
I
SYNC  
SYNC  
Address strobe controller. Asserted LOW to load a new address or to enter standby mode.  
Advance. Asserted LOW to continue burst read/write.  
Global write enable. Asserted LOW to write all 32/36 bits. When High, BWE and BW[a:d]  
control write enable.  
GWE  
BWE  
I
I
SYNC  
SYNC  
Byte write enable. Asserted LOW with GWE = HIGH to enable effect of BW[a:d] inputs.  
Write enables. Used to control write of individual bytes when GWE = HIGH and BWE =  
Low. If any of BW[a:d] is active with GWE = HIGH and BWE = LOW the cycle is a write  
cycle. If all BW[a:d] are inactive the cycle is a read cycle.  
BW[a,b,c,d] I  
SYNC  
Asynchronous output enable. I/O pins are driven when OE is active and the chip is in read  
mode.  
OE  
I
I
ASYNC  
STATIC  
default =  
HIGH  
Count mode. When driven High, count sequence follows Intel XOR convention. When  
LBO  
driven Low, count sequence follows linear convention. This signal is internally pulled High.18  
Flow-through mode.When low, enables single register flow-through mode. Connect to VDD  
if unused or for pipelined operation.  
FT  
ZZ  
I
I
STATIC  
ASYNC  
Sleep. Places device in low power mode; data is retained. Connect to GND if unused.  
Absolute maximum ratings  
Parameter  
Symbol  
DD, VDDQ  
Min  
–0.5  
–0.5  
–0.5  
Max  
Unit  
V
Power supply voltage relative to GND  
Input voltage relative to GND (input pins)  
Input voltage relative to GND (I/O pins)  
Power dissipation  
V
+4.6  
VIN  
VIN  
PD  
VDD + 0.5  
VDDQ + 0.5  
1.8  
V
V
W
mA  
oC  
oC  
DC output current  
IOUT  
Tstg  
Tbias  
50  
Storage temperature (plastic)  
Temperature under bias  
–65  
–65  
+150  
+135  
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions may affect reliability.  
2/1/01  
Alliance Semiconductor  
P. 3 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Synchronous truth table  
1
CE0  
H
L
CE1  
X
L
CE2 ADSP ADSC ADV WEn  
OE Address accessed  
CLK  
Operation  
Deselect  
DQ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ  
HiZ2  
HiZ  
HiZ2  
HiZ  
Q
X
X
X
H
H
L
X
L
L
X
L
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
F
X
X
X
X
X
L
NA  
NA  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Deselect  
L
L
H
L
NA  
Deselect  
L
X
X
H
H
H
H
X
X
X
X
X
X
X
X
H
X
X
X
X
X
L
NA  
Deselect  
L
H
L
NA  
Deselect  
L
X
X
L
External  
External  
External  
External  
Next  
Begin read  
Begin read  
Begin read  
Begin read  
Cont. read  
Cont. read  
Suspend read  
Suspend read  
Cont. read  
Cont. read  
Suspend read  
Suspend read  
Begin write  
Cont. write  
Cont. write  
Suspend write  
Suspend write  
L
L
L
H
L
L
L
H
H
H
H
H
H
X
X
X
X
H
H
X
H
X
L
L
L
F
H
L
X
X
X
X
H
H
H
H
L
X
X
X
X
X
X
X
X
L
H
H
H
H
H
H
H
H
L
F
L
F
H
L
Next  
HiZ  
Q
H
H
L
F
Current  
Current  
Next  
F
H
L
HiZ  
Q
F
L
F
H
L
Next  
HiZ  
Q
H
H
X
L
F
Current  
Current  
External  
Next  
F
H
X
X
X
X
X
HiZ  
D3  
T
T
T
T
T
X
H
X
H
X
X
X
X
H
H
H
H
D
L
Next  
D
H
H
Current  
Current  
D
D
Key: X = Don’t Care, L = Low, H = High.  
1
See “Write enable truth table”on page 2 for more information.  
Q in flow through mode.  
For write operation following a READ, OE must be HIGH before the input data set up time and held HIGH throughout the input hold time.  
2
3
Recommended operating conditions  
Parameter  
Symbol  
VDD  
VSS  
Min  
3.135  
0.0  
Nominal  
Max  
3.6  
Unit  
3.3  
0.0  
3.3  
0.0  
2.5  
0.0  
Supply voltage  
V
0.0  
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VIH  
3.135  
0.0  
3.6  
3.3V I/O supply  
voltage  
V
V
V
0.0  
2.35  
0.0  
2.9  
2.5V I/O supply  
voltage  
0.0  
2.0  
–0.5*  
VDD + 0.3  
0.8  
Address and  
control pins  
VIL  
Input voltages†  
VIH  
2.0  
VDDQ + 0.3  
0.8  
I/O pins  
V
VIL  
–0.5*  
0
Ambient operating temperature  
TA  
70  
°C  
* V min = –2.0V for pulse width less than 0.2 × t  
.
IL  
RC  
† Input voltage ranges apply to 3.3V I/O operation. For 2.5V I/O operation, contact factory for input specifications.  
2/1/01  
Alliance Semiconductor  
P. 4 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
TQFP thermal resistance  
Description  
Conditions  
Symbol  
Typical  
Units  
Thermal resistance  
θJA  
46  
°C/W  
Test conditions follow standard test methods and  
procedures for measuring thermal impedance, per EIA/  
JESD51  
(junction to ambient)*  
Thermal resistance  
θJC  
2.8  
°C/W  
(junction to top of case)*  
* This parameter is sampled.  
DC electrical characteristics  
–166  
–150  
–133  
–100  
Parameter  
Symbol  
Test conditions  
VDD = Max, VIN = GND to VDD  
OE VIH, VDD = Max,  
Min Max Min Max Min Max Min Max Unit  
Input leakage  
current*  
|ILI|  
2
2
2
2
2
2
2
2
µA  
µA  
Output leakage  
current  
|ILO  
|
VOUT = GND to VDD  
Operating power  
supply current  
CE0 = VIL, CE1 = VIH, CE2 = VIL,  
f = fMax, IOUT = 0 mA  
ICC  
ISB  
ISB1  
ISB2  
475  
130  
30  
450  
110  
30  
425  
100  
30  
325 mA  
90  
Deselected, f = fMax, ZZ VIL  
Deselected, f = 0, ZZ 0.2V  
all VIN 0.2V or VDD – 0.2V  
Standby power  
supply current  
30  
mA  
Deselected, f = f , ZZ  
V
– 0.2V  
Max  
DD  
30  
30  
30  
30  
All VIN VIL or VIH  
VOL  
IOL = 8 mA, VDDQ = 3.465V  
IOH = –4 mA, VDDQ = 3.135V  
0.4  
0.4  
0.4  
0.4  
V
Output voltage  
VOH  
2.4  
2.4  
2.4  
2.4  
* LBO pin has an internal pull-up and input leakage = 10 µa.  
Note: ICC given with no output loading. ICC increases with faster cycles times and greater output loading.  
DC electrical characteristics for 2.5V I/O operation  
–166  
–150  
–133  
–100  
Parameter  
Symbol  
|ILO  
Test conditions  
Min Max Min Max Min Max Min Max Unit  
Output leakage  
current  
OE VIH, VDD = Max,  
OUT = GND to VDD  
|
–1  
1
–1  
1
–1  
1
–1  
1
µA  
V
V
VOL  
IOL = 2 mA, VDDQ = 2.65V  
IOH = –2 mA, VDDQ = 2.35V  
0.7  
0.7  
0.7  
0.7  
Output voltage  
VOH  
1.7  
1.7  
1.7  
1.7  
2/1/01  
Alliance Semiconductor  
P. 5 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Timing characteristics over operating range  
–166  
–150  
–133  
–100  
Symbo  
Notes  
*
Parameter  
Clock frequency  
l
Min Max Min Max Min Max Min Max Unit  
fMax  
tCYC  
tCYCF  
tCD  
6
166  
6.7  
10  
150  
7.5  
12  
133  
10  
12  
100 MHz  
Cycle time (pipelined mode)  
ns  
ns  
ns  
Cycle time (flow-through mode)  
Clock access time (pipelined mode)  
10  
3.5  
3.8  
4.0  
5.0  
Clock access time (flow-through  
mode)  
tCDF  
9
10  
10  
12  
ns  
Output enable LOW to data valid  
Clock HIGH to output Low Z  
tOE  
tLZC  
tOH  
3.5  
3.8  
4.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
2,3,4  
2
Data output invalid from clock HIGH  
Output enable LOW to output Low Z  
1.5  
0
1.5  
0
1.5  
0
1.5  
0
tLZOE  
2,3,4  
2,3,4  
2,3,4  
Output enable HIGH to output High Z tHZOE  
Clock HIGH to output High Z tHZC  
Output enable HIGH to invalid output tOHOE  
3.5  
3.5  
3.8  
3.8  
4.0  
4.0  
4.5  
5.0  
0
0
0
0
Clock HIGH pulse width  
tCH  
tCL  
2.4  
2.4  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
3.5  
3.5  
2.0  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
0.5  
2.0  
2.0  
2.0  
0.5  
0.5  
0.5  
5
5
Clock LOW pulse width  
Address setup to clock HIGH  
Data setup to clock HIGH  
Write setup to clock HIGH  
Chip select setup to clock HIGH  
Address hold from clock HIGH  
Data hold from clock HIGH  
Write hold from clock HIGH  
Chip select hold from clock HIGH  
ADV setup to clock HIGH  
ADSP setup to clock HIGH  
ADSC setup to clock HIGH  
ADV hold from clock HIGH  
ADSP hold fromclock HIGH  
ADSC hold from clock HIGH  
tAS  
6
tDS  
6
tWS  
tCSS  
tAH  
tDH  
tWH  
tCSH  
tADVS  
6,7  
6,8  
6
6
6,7  
6,8  
6
tADSPS 1.5  
tADSCS 1.5  
6
6
tADVH  
0.5  
6
tADSPH 0.5  
tADSCH 0.5  
6
6
*See “Notes” on page 10.  
Key to switching waveforms  
Rising input  
Falling input  
Undefined/don’t care  
2/1/01  
Alliance Semiconductor  
P. 6 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Timing waveform of read cycle  
t
t
CYC  
CL  
t
CH  
CLK  
t
ADSPS  
t
ADSPH  
ADSP  
ADSC  
t
ADSCS  
t
ADSCH  
t
AS  
LOAD NEW ADDRESS  
A3  
t
AH  
A1  
A2  
Address  
t
WS  
t
WH  
GWE, BWE  
t
CSS  
t
CSH  
CE0, CE2  
CE1  
t
ADVS  
t
ADVH  
ADV  
OE  
t
CD  
t
HZOE  
t
OH  
ADV INSERTS WAIT STATES  
t
HZC  
Q(A1)  
Q(A2)  
Q(A2Ý01)  
Q(A2Ý10)  
Q(A2Ý11)  
Q(A3)  
Q(A3Ý01) Q(A3Ý10)  
D
OUT  
(pipelined mode)  
t
OE  
t
LZOE  
Q(A1)  
Q(A2Ý01)  
Q(A2Ý10)  
Q(A2Ý11) Q(A3) Q(A3Ý01) Q(A3Ý10) Q(A3Ý11)  
D
OUT  
(flow-through mode)  
t
HZC  
Note: Ý = XOR when MODE = HIGH/No Connect; Ý = ADD when MODE = LOW.  
BW[a:d] is don’t care.  
2/1/01  
Alliance Semiconductor  
P. 7 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Timing waveform of write cycle  
t
t
CYC  
CL  
t
CH  
CLK  
t
ADSPS  
t
ADSPH  
ADSP  
t
ADSCS  
t
ADSCH  
ADSC  
ADSC LOADS NEW ADDRESS  
A3  
t
AS  
t
AH  
A1  
A2  
Address  
t
WS  
t
WH  
BWE  
BW[a:d]  
t
CSS  
t
CSH  
CE0, CE2  
CE1  
t
ADV SUSPENDS BURST  
ADVS  
t
ADVH  
ADV  
OE  
t
DS  
t
DH  
D(A1)  
D(A2)  
D(A2Ý01)  
D(A2Ý01)  
D(A2Ý10) D(A2Ý11)  
D(A3)  
D(A3Ý01) D(A3Ý10)  
Data In  
Note: Ý = XOR when MODE = HIGH/No Connect; Ý = ADD when MODE = LOW.  
2/1/01  
Alliance Semiconductor  
P. 8 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Timing waveform of read/write cycle  
t
t
CYC  
CL  
t
CH  
CLK  
t
ADSPS  
t
ADSPH  
ADSP  
t
AS  
t
AH  
A2  
A3  
A1  
Address  
t
WS  
t
WH  
GWE  
CE0, CE2  
CE1  
t
ADVS  
t
ADVH  
ADV  
OE  
t
DS  
t
DH  
D(A2)  
D
IN  
t
t
t
t
LZOE  
HZOE  
OH  
LZC  
t
t
OE  
CD  
Q(A1)  
Q(A3)  
Q(A3Ý01)  
Q(A3Ý10)  
Q(A3Ý11)  
D
OUT  
(pipeline mode)  
t
CDF  
Q(A3Ý11)  
Q(A1)  
Q(A3Ý01)  
Q(A3Ý10)  
D
OUT  
(flow-through mode)  
Note: Ý = XOR when MODE = HIGH/No Connect; Ý = ADD when MODE = LOW.  
2/1/01  
Alliance Semiconductor  
P. 9 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
AC test conditions  
• Output load: see Figure B, except for tLZC, tLZOE, tHZOE, tHZC, see Figure C.  
Thevenin equivalent:  
• Input pulse level: GND to 3V. See Figure A.  
• Input rise and fall time (measured at 0.3V and 2.7V): 2 ns. See Figure A.  
• Input and output timing reference levels: 1.5V.  
+3.3V for 3.3V I/O;  
+2.5V for 2.5V I/O  
317  
Z = 50  
50  
0
D
V = 1.5V  
OUT  
+3.0V  
D
OUT  
L
90%  
10%  
90%  
10%  
5 pF*  
for 3.3V I/O;  
30 pF*  
351  
= V  
/2  
DDQ  
GND *including scope  
and jig capacitance  
GND  
for 2.5V I/O  
Figure A: Input waveform  
Figure B: Output load (A)  
Figure C: Output load(B)  
Notes  
1
2
3
4
5
6
For test conditions, see AC Test Conditions, Figures A, B, C.  
This parameter measured with output load condition in Figure C.  
This parameter is sampled, but not 100% tested.  
t
is less than t  
; and t  
is less than t  
at any given temperature and voltage.  
LZC  
HZOE  
LZOE  
HZC  
tCH measured as HIGH above VIH and tCL measured as LOW below VIL.  
This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must  
meet the setup and hold times for all rising edges of CLK when chip is enabled.  
7
8
Write refers to GWE  
Chip select refers to CE0  
,
BWE  
,
BW[a:d].  
CE2  
,
CE1  
,
.
Package Dimensions  
100-pin quad flat pack (TQFP)  
TQFP  
Hd  
D
Min  
0.05  
1.35  
0.22  
0.09  
13.90  
19.90  
Max  
0.15  
1.45  
0.38  
0.20  
14.10  
20.10  
A1  
A2  
b
b
e
c
D
E
e
0.65 nominal  
Hd  
He  
L
15.90  
21.90  
0.45  
16.10  
22.10  
0.75  
He  
E
L1  
α
1.00 nominal  
0°  
7°  
Dimensions in millimeters  
c
L1  
L
α
A1 A2  
2/1/01  
Alliance Semiconductor  
P. 10 of 11  
AS7C3364PFS32A  
AS7C3364PFS36A  
®
Ordering information  
–166 MHz  
–150 MHz  
–133 MHz  
–100 MHz  
AS7C3364PFS32A-166TQC  
AS7C3364PFS32A-166TQI  
AS7C3364PFS36A-166TQC  
AS7C3364PFS36A-166TQI  
AS7C3364PFS32A-150TQC  
AS7C3364PFS32A-150TQI  
AS7C3364PFS36A-150TQC  
AS7C3364PFS36A-150TQI  
AS7C3364PFS32A-133TQC  
AS7C3364PFS32A-133TQI  
AS7C3364PFS36A-133TQC  
AS7C3364PFS36A-133TQI  
AS7C3364PFS32A-100TQC  
AS7C3364PFS32A-100TQI  
AS7C3364PFS36A-100TQC  
AS7C3364PFS36A-100TQI  
Part numbering guide  
AS7C  
33  
64  
PF  
S
32/36  
A
–XXX  
TQ  
C/I  
1
2
3
4
5
6
7
8
9
10  
1.Alliance Semiconductor SRAM prefix  
2.Operating voltage: 33=3.3V  
3.Organization: 64=64K  
4.Pipeline-Flowthrough (each device works in both modes)  
5.Deselect: S=Single cycle deselect  
6.Organization: 32=x32; 36=x36  
7.Production version: A=first production version  
8.Clock speed (MHz)  
9.Package type: TQ=TQFP  
10.Operating temperature: C=Commercial (0° C to 70° C); I=Industrial (-40° C to 85° C)  
2/1/01; V.0.9  
Alliance Semiconductor  
P. 11 of 11  
© Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and  
product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no  
responsibility for any errors that may appear in this document. The data contained herein represents Alliance’s best data and/or estimates at the time of issuance. Alliance reserves the right to  
change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this  
product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or  
customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to  
the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as  
express agreed to in Alliance’s Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance’s Terms and  
Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights  
of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result  
in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance  
against all claims arising from such use.  

相关型号:

AS7C3364PFS36A-150TQI

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36A-166TQC

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36A-166TQI

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36A-183TQI

Standard SRAM, 64KX36, 9ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ALSC

AS7C3364PFS36A-200TQC

Standard SRAM, 64KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ALSC

AS7C3364PFS36A-200TQI

Standard SRAM, 64KX36, 8.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ALSC

AS7C3364PFS36B-133TQC

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36B-133TQCN

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36B-133TQI

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36B-133TQIN

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36B-166TQC

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC

AS7C3364PFS36B-166TQCN

3.3V 64K X 32/36 pipeline burst synchronous SRAM
ALSC