AS9C25512M2018L-250FC [ALSC]

2.5V 512/256K x 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface; 2.5V 512 / 256K ×18同步双端口SRAM与3.3V或2.5V的接口
AS9C25512M2018L-250FC
型号: AS9C25512M2018L-250FC
厂家: ALLIANCE SEMICONDUCTOR CORPORATION    ALLIANCE SEMICONDUCTOR CORPORATION
描述:

2.5V 512/256K x 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface
2.5V 512 / 256K ×18同步双端口SRAM与3.3V或2.5V的接口

存储 内存集成电路 静态存储器
文件: 总30页 (文件大小:1101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 2004  
Preliminary Information  
AS9C25512M2018L  
AS9C25256M2018L  
®
2.5V 512/256K X 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface  
Features  
Dual Chip enables on both ports for easy  
depth expansion  
True Dual-Port memory cells that allow simulta-  
neous access of the same memory location  
Interrupt and Collision Detection Features  
2.5 V power supply for the core  
LVTTL compatible, selectable 3.3V or  
2.5V power supply for I/Os, addresses,  
clock and control signals on each port  
Snooze modes for each port for standby  
operation  
15mA typical standby current in power  
down mode  
Available in 256-pin Ball Grid Array  
(BGA), 144-pin Thin Quad Flatpack  
(TQFP) and 208-pin fine pitch Ball Grid  
Array (fpBGA)  
[1]  
Organisation: 524,288/262,144 × 18  
Fully Synchronous, independent operation on  
both ports  
Selectable Pipeline or Flow-Through output  
mode  
Fast clock speeds in Pipeline output mode: 250  
MHz operation (9Gbps bandwidth)  
Fast clock to data access: 2.8ns for Pipeline out-  
put mode  
Asynchronous output enable control  
Fast OE access times: 2.8ns  
Double Cycle Deselect (DCD) for Pipeline Out-  
put Mode  
Supports JTAG features compliant with  
IEEE 1149.1  
[1]  
19/18 -bit counter with Increment, Hold and  
Repeat features on each port  
Note:  
1. AS9C25512M2018L/AS9C25256M2018L  
Selection guide  
Feature  
-250  
4
-200  
5
-166  
6
-133  
7.5  
133  
4.2  
83  
Units  
ns  
Minimum cycle time  
Maximum Pipeline clock frequency  
Maximum Pipeline clock access time  
Maximum flow-through clock frequency  
Maximum flow-through clock access time  
Maximum operating current  
250  
2.8  
150  
6.5  
TBD  
18  
200  
3.4  
133  
7.5  
350  
18  
166  
3.6  
100  
10  
MHz  
ns  
MHz  
ns  
12  
300  
18  
260  
18  
mA  
mA  
Maximum snooze mode current  
9/24/04; v.1.2  
Alliance Semiconductor  
P. 1 of 30  
Copyright © Alliance Semiconductor. All rights reserved.  
AS9C25512M2018L  
AS9C25256M2018L  
®
Dual port logic block diagram  
R/W Control  
R/W Control  
BE1 -BE0  
BE1 -BE0  
B B  
A
A
REGISTER BANK  
REGISTER BANK  
REGISTER BANK  
REGISTER BANK  
D
D
D
D
Q
Q
Q
Q
CE0  
CE0  
A
B
CE1  
CE1  
A
B
R/W  
R/W  
B
A
O/P Control  
O/P Control  
O/P Control  
O/P Control  
PL/FT  
PL/FT  
PL/FT  
PL/FT  
B
A
Qout <17:0>  
B
Qout <17:0>  
A
OE  
OE  
B
A
0
1
0
1
REGISTER BANK  
REGISTER BANK  
D
D
Q
Q
True Dual Port  
Memory Array  
512/256K X 18  
REGISTER BANK  
REGISTER BANK  
DQ17 -DQ0  
DQ17 -DQ0  
B B  
D
D
A
A
Q
Din <17:0>  
A
Q
Din <17:0>  
B
RPT  
RPT  
B
A
A
A
ADS  
INC  
ADS  
B
INC  
B
Address  
Address  
Decoding  
Decoding  
[1]  
[1]  
-A0  
B
A18  
-A0  
A18  
A
A
B
REGISTER BANK  
REGISTER BANK  
Increment  
Logic  
Increment  
Logic  
D
D
Q
Q
Mirror  
Mirror  
Register  
Register  
Address Counter A  
Address Counter B  
CE0  
CE1  
CE0  
CE1  
A
A
B
OPT  
OPT  
B
Interrupt/Collision  
A
B
Detection  
R/W  
R/W  
B
CLK  
A
CLK  
B
A
PL/FT  
Logic/Registers  
PL/FT  
B
A
CLK  
CLK  
A
B
B
OPT  
OPT  
A
INT  
INT  
B
A
COL  
COL  
B
A
Snooze  
Logic  
Snooze  
Logic  
ZZ  
ZZ  
B
A
TCK  
TMS  
TRST  
TDI  
JTAG  
TDO  
Note:  
1. Address A18 is a NC for AS9C25256M2018L  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 2 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
General Description  
The AS9C25512M2018L/AS9C25256M2018L is a high-speed CMOS 9/4.5-Mbit synchronous Dual-Port Static Random Access Memory  
device, organized as 524,288/262,144 × 18 bits. It incorporates a selectable Flow-Through/Pipeline output feature for user flexibility. Clock-  
to-data valid time is 2.8ns at 250 MHz for “Pipeline output” mode of operation.  
Each port contains a 19/18 bit linear burst counter on the input address register that can loop through the whole address sequence. After  
externally loading the counter with the initial address, it can be Incremented or Held for the next cycle. A new address can also be Loaded or  
the “Previous Loaded” address can be re-accessed (Repeated) using counter controls (More description to follow). The Registers on control,  
data, and address inputs provide minimal setup and hold times.  
The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. A particular port can write  
to a certain location while another port is reading from the same location, but the validity of read data is not guaranteed. However, the  
reading port is informed about the possible collision through its collision alert signal. The result of writing to the same location by more than  
one port at the same time is undefined.  
The Asynchronous Output Enable input pin allows asynchronous disabling of output buffers at any given time. The Byte Enable inputs  
allow individual byte read/write operations (refer Byte Control Truth Table). An automatic power down feature, controlled by CE0 and CE1,  
permits the on-chip circuitry of each port to enter a very low standby power mode.  
AS9C25512M2018L/AS9C25256M2018L can support an operating voltage of either 3.3V or 2.5V on either or both ports, which is  
controlled by the OPT pins. The power supply for the core of the device (VDD) is at 2.5V. This device is available in 256-pin Ball Grid  
Array (BGA), 208-pin fine pitch Ball Grid Array (fpBGA) and 144-pin Thin Quad Flatpack (TQFP)  
Address Counter  
The AS9C25512M2018L/AS9C25256M2018L carries an internal 19/18 bit address counter for each port which can loop through the entire  
memory array. The Address counter features are discussed below:  
Load: Any required external address can be loaded on to the counter. This feature is similar to normal address load in conventional  
memories.  
Increment: The address counter has the capability to internally increment the address value, potentially covering the entire memory array.  
Once the whole address space is completed, the counter will wrap around. The address counter is not initailized on Power-up, hence a known  
location has to be loaded before Increment operation.  
Hold: The value of the counter register can be held for an unlimited number of clock cycles by de-asserting ADS, INC, and RPT inputs.  
Repeat: The previously loaded address (loaded using a valid Load operation) can be re-accessed by asserting RPT input. A separate 19/18  
bit register called “Mirror register” is used to hold the last loaded address.This register is not initialized on Power-up, hence a known  
location has to be loaded before Repeat operation (Refer Counter control truth table for details).  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 3 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Ball Assignment - 256-ball BGA  
AS9C25512M2018L/AS9C25256M2018L  
B - 256  
Top view  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
NC  
TDI  
NC  
A17  
A14  
A11  
A8  
NC  
CE1  
OE  
INC  
A5  
A4  
A6  
A2  
A1  
A3  
A0  
A
NC  
NC  
A
B
C
D
E
F
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
[1]  
INT  
NC  
TDO  
VSS  
NC  
A15  
A13  
A12  
A10  
A9  
A7  
BE1  
CE0  
BE0  
R/W  
RPT  
A
VDD  
NC  
NC  
NC  
DQ8  
DQ8  
DQ7  
DQ6  
NC  
A
A18  
A
A
A
COL  
NC  
DQ9  
A16  
NC  
CLK  
ADS  
OPT  
A
A
A
B
A
A
A
A
B
B
A
DQ9  
PL/FT VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ  
B
VDD  
NC  
NC  
NC  
A
A
A
B
B
A
A
B
DQ10 DQ10  
NC VDDQ  
VDD  
VDD  
VSS  
VSS  
VDD  
NC  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD VDDQ  
VDD VDDQ  
VSS VDDQ  
VSS VDDQ  
DQ7  
B
A
A
A
B
B
A
A
B
B
B
B
A
A
B
B
A
A
A
DQ11  
NC  
NC  
NC  
DQ11 VDDQ  
DQ6  
DQ5  
NC  
NC  
A
B
B
G
H
J
DQ12 VDDQ  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
NC  
NC  
G
H
J
A
A
NC  
DQ12  
NC  
VDDQ  
NC  
DQ5  
DQ4  
DQ3  
DQ2  
NC  
B
B
A
A
B
DQ13 DQ14 DQ13 VDDQ  
ZZ  
ZZ  
VDDQ  
DQ4  
NC  
DQ3  
NC  
A
B
B
B
A
B
B
K
L
M
N
P
NC  
NC  
NC  
DQ14 VDDQ  
VSS  
VDD  
VDD  
VSS VDDQ  
VDD VDDQ  
VDD VDDQ  
K
L
M
N
P
A
DQ15  
DQ15 VDDQ  
DQ2  
DQ1  
NC  
NC  
A
B
A
DQ16 DQ16  
NC  
NC  
VDDQ  
VDD  
NC  
DQ1  
DQ0  
NC  
B
A
B
A
B
A
NC  
DQ17  
DQ17  
NC  
PL/FT VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ  
A
VDD  
NC  
B
B
B
A
A
B
B
A
B
COL  
TMS  
TRST  
NC  
A16  
A13  
A15  
A14  
A10  
A12  
A11  
A7  
A9  
A8  
NC  
BE0  
CE0  
CE1  
CLK  
ADS  
A6  
A4  
A5  
A3  
A1  
A2  
NC  
DQ0  
NC  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
[1]  
R
T
INT  
BE1  
R/W  
RPT  
INC  
OPT  
NC  
R
T
B
A18  
B
B
B
B
B
B
NC  
1
TCK  
2
A17  
NC  
8
OE  
A0  
B
NC  
NC  
B
B
3
4
5
6
7
9
10  
11  
12  
13  
14  
15  
16  
Note:  
1. Address A18 is a NC for AS9C25256M2018L  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 4 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Ball Assignment - 208-ball fpBGA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
A
B
C
D
E
F
DQ9  
INT  
VSS  
TDO  
NC  
A16  
A12  
A8  
NC  
VDD CLK  
INC  
A4  
A1  
A2  
A0  
OPT  
A
NC  
VSS  
A
B
C
D
E
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
NC  
VSS  
COL  
TDI  
A17  
A13  
A14  
A11  
A9  
NC  
CE0  
CE1  
VSS  
VSS  
ADS  
A5  
A6  
A3  
NC VDDQ DQ8  
NC  
A
A
A
A
A
B
A
[1]  
VDDQ DQ9 VDDQ PL/FT  
A10  
BE1  
BE0  
R/W  
VDD DQ8  
B
NC  
VSS  
A
B
B
A A18  
A
A
A
A
A
A
NC  
VSS DQ10  
NC  
A15  
A7  
VDD  
OE  
RPT  
VDD  
NC VDDQ DQ7  
DQ7  
NC  
A
A
A
A
A
A
A
A
B
DQ11  
NC VDDQ DQ10  
DQ6  
A
NC  
VSS  
A
B
B
VDDQ DQ11  
NC  
VSS  
NC  
VSS  
DQ6  
NC VDDQ  
F
A
B
B
B
B
B
B
G
H
J
NC  
VSS DQ12  
NC VDDQ DQ5  
A
NC  
G
H
J
A
A
VDD  
NC VDDQ DQ12  
VDD  
NC  
VSS  
DQ5  
B
B
B
AS9C25512M2018L/AS9C25256M2018L  
VDDQ VDD  
VSS  
ZZ  
ZZ  
A
VDD  
VSS VDDQ  
A
B
F - 208  
Top view  
K
L
M
N
P
DQ14  
NC  
VSS DQ13  
VSS  
DQ3 VDDQ DQ4  
B
VSS  
K
L
B
B
B
A
DQ14 VDDQ DQ13  
NC  
DQ3  
NC  
VSS  
DQ4  
A
A
B
A
A
A
VDDQ  
NC  
NC  
DQ15  
NC  
VSS  
VSS  
DQ2 VDDQ  
M
N
P
A
B
B
VSS  
DQ15  
DQ1 VDDQ  
NC  
DQ2  
NC  
B
A
A
DQ16 DQ16 VDDQ COL  
TRST A16  
A12  
A8  
NC  
VDD CLK  
INC  
A4  
A1  
A2  
A0  
NC  
DQ1  
A
VSS  
B
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
R
T
U
VSS  
NC  
NC  
DQ17  
TCK  
A17  
A13  
A14  
A11  
A9  
NC  
CE0  
CE1  
VSS  
VSS  
ADS  
A5  
A6  
NC VDDQ DQ0 VDDQ  
R
T
B
B
B
B
B
B
A
B
[1]  
DQ17 VDDQ  
TMS  
NC  
A10  
BE1  
BE0  
R/W  
VSS  
NC  
VSS  
NC  
A
A
B
A18  
B
B
B
B
VSS  
INT  
PL/FT  
3
A15  
A7  
7
VDD  
9
OE  
RPT  
11  
A3B  
12  
VDD OPT  
NC  
16  
DQ0  
A
U
B
B
B
B
B
1
2
4
5
6
8
10  
13  
14  
15  
17  
Note:  
1. Address A18 is a NC for AS9C25256M2018L  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 5 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Pin Assignment - 144-pin TQFP  
VSS  
VDDQB  
VSS  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
OPTA  
VDDQB  
VSS  
DQ8A  
DQ8B  
DQ7A  
DQ7B  
DQ6A  
DQ6B  
VSS  
VDDQA  
DQ5A  
DQ5B  
VSS  
VDDQB  
VDD  
DQ9A  
DQ9B  
DQ10A  
DQ10B  
DQ11A  
DQ11B  
VDDQA  
VSS  
DQ12A  
DQ12B  
VDDQB  
ZZB  
VDD  
VDD  
VSS  
VSS  
VDDQA  
VSS  
DQ13B  
DQ13A  
DQ14B  
DQ14A  
VDDQB  
VSS  
DQ15B  
DQ15A  
DQ16B  
DQ16A  
DQ17B  
DQ17A  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VDD  
VSS  
VSS  
ZZA  
AS9C25512M2018L/AS9C25256M2018L  
T - 144  
Top view  
VDDQA  
DQ4B  
DQ4A  
DQ3B  
DQ3A  
VSS  
VDDQB  
DQ2B  
DQ2A  
DQ1B  
DQ1A  
DQ0B  
DQ0A  
VSS  
VDDQA  
NC  
74  
73  
VDDQA  
OPTB  
Note:  
1. Address A18 is a NC for AS9C25256M2018L  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 6 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Signal description  
Signal  
Port A  
CLKA  
Port B  
CLKB  
I/O Properties  
Description  
Notes  
Clock. Each port has an independent Clock input that can be of different frequencies. All  
I
CLOCK  
1
6
inputs except OE and ZZx are synchronous to the corresponding port’s clock and must meet  
x
setup and hold time about the rising edge of the clock.  
A0A - A18A  
DQ0A - DQ17A DQ0B - DQ17B I/O  
A0B - A18B  
I
SYNC  
SYNC  
External Address. Sampled on the rising edge of corresponding port clock  
Bidirectional data pins  
Chip enable inputs. Active low and high, respectively. Sampled on the rising edge of  
corresponding port clock.  
CE0A, CE1A  
R/WA  
CE0B, CE1B  
R/WB  
I
I
I
SYNC  
SYNC  
SYNC  
Read/Write enable. Drive this pin LOW to write to, or HIGH to Read from the memory array.  
Byte Enable Inputs. Active low. Asserting these signals enables Read and Write operations to  
the corresponding bytes of the memory array. (Refer Byte Control Truth Table)  
Address Strobe Enable.Active low. Loads external address onto the counter. (Refer Counter  
Control Truth Table)  
BE0A - BE1A BE0B - BE1B  
ADSA  
INCA  
RPTA  
OEA  
ADSB  
INCB  
RPTB  
OEB  
I
I
I
I
I
SYNC  
SYNC  
Address Counter Increment. Active low. Increments the counter value. (Refer Counter Control  
Truth Table)  
Address Counter Repeat. Active low. Reloads the counter with the previously loaded external  
address.(Refer Counter Control Truth Table)  
SYNC  
Asynchronous output enable. I/O pins are driven when the OE is low and the chip is in Read  
mode. A high on OE tristates the I/O pins.  
ASYNC  
ASYNC  
Snooze Mode Input. Places the device in low power mode. Data is retained. This pin has an  
internal pull-down and can be floating.  
ZZA  
ZZB  
Pipeline/Flow-Through Select. When low, enables single register flow-through mode. When  
PL/FTA  
PL/FTB  
I
I
STATIC high, enables double register Pipeline mode. This pin has an internal pull-up and can be left  
floating to operate in pipeline mode.  
VDDQx Option. OPTx selects the operating voltage levels for the I/Os, addresses, clock, and  
STATIC controls on that port. This pin has an internal pull-up and can be left floating to operate in 3.3V 1,2,3  
OPTA  
INTA  
OPTB  
INTB  
mode.  
Interrupt Flag. Used for message passing between two ports. (Refer Interrupt Logic Truth  
Table)  
O
O
SYNC  
SYNC  
5
5
Collision Alert Flag. Used to indicate collision during simultaneous memory access to the  
same location by both the ports (Refer Collision Detection Truth Table)  
COLA  
COLB  
VDDQA  
VDDQB  
I
I
I
POWER Power to I/O bus. Can be 3.3V or 2.5V depending on OPTx input.  
POWER Power Inputs (To be connected to 2.5V Power supply)  
GROUND Ground Inputs (To be connected to Ground supply)  
1,2,3  
2
VDD  
VSS  
CLOCK  
TCK  
TDI  
I
I
JTAG Test Clock Input. All JTAG signals except TRST are synchronous to this clock.  
(JTAG)  
4,5  
4,5  
5
SYNC  
JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers.  
(JTAG)  
SYNC  
(JTAG)  
SYNC  
(JTAG)  
ASYNC  
(JTAG)  
JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO is normally  
tristated except when the captured data is shifted out of the JTAG TAP.  
JTAG Test Mode Select Input. It controls the JTAG TAP state machine. State machine  
transitions occur on the rising edge of TCK.  
TDO  
TMS  
TRST  
O
I
4,5  
4,5  
I
JTAG Test Reset Input. Asynchronous input used to initialize TAP controller.  
Notes:  
1. Subscript 'x' represents 'A' for Port A and 'B' for Port B.  
2. OPT ,VDDQ and VDD must be set to appropriate operating levels before applying inputs on the I/Os and controls for that port.  
x
x
3. OPT = VDD (2.5V) implies that corresponding port's I/Os, addresses, clock, and controls will operate at 3.3V level and VDDQ must be supplied at 3.3V.  
x
x
OPT = VSS (0V) implies that corresponding port's I/Os, addresses, clock, and controls will operate at 2.5V level and VDDQ must be supplied at 2.5V.  
x
x
Each port can independently operate on either of the VDDQ levels.  
4. If unused JTAG inputs may be left unconnected.  
5. JTAG, Collision Detection & Interrupt features are not supported in TQFP package.  
6. Address A18 is a NC for AS9C25256M2018L.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 7 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Byte control truth table[1,2,3,4,5]  
BE1  
H
BE0  
H
CLK  
L to H  
L to H  
L to H  
Mode  
All Bytes Deselected - NOP  
H
L
Read or Write Byte 0  
Read or Write Byte 1  
L
H
Notes:  
1. L = low, H = high  
2. CE0 = L, CE1 = H (Chip in Select mode)  
3. R/W = H for a Read operation, R/W = L for a Write operation  
4. Byte 1 - DQ[17:9], Byte 0 - DQ[8:0]  
5. More than one byte enable may be simultaneously asserted  
[1,4]  
Read/write control truth table  
[2]  
[3]  
[3,7]  
CE  
R/W  
X
BE  
CLK  
L to H  
L to H  
L to H  
L to H  
Operation  
DQn[0:8]  
n
[5,9]  
H
L
L
L
X
H
L
L
Chip Deselect  
Byte Deselect  
Byte Write  
Hi-Z  
Hi-Z  
Din  
[5,9]  
X
[6]  
L
[5,8]  
H
Byte Read  
Qout  
Notes:  
1. L = low, H = high, X = don't care  
2. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H)  
3. BE refers to any one of the 2 byte controls [n = 1 or 0] and DQ refers to the corresponding Byte  
n
n
4. Snooze de-asserted (ZZ=L)  
5. True in flow-through mode. For Pipeline mode there will be a 1 cycle latency [refer timing diagrams]  
6. For a write command issued before the completion of a read command, OE must be HIGH before the input data setup time and held HIGH throughout the input data hold time.  
7. All DQs are tristated on power-up  
8. OE should be asserted (OE = L) (Refer Read timing waveform)  
9. In pipeline mode the DQs are HighZ-ed in the same cycle if R/W=L  
[1,2,5,6]  
Counter control truth table  
Previous  
Address  
Accessed  
Mirror  
External  
Address  
Register  
Address  
Accessed  
[3]  
[3]  
[3]  
[4]  
CLK  
L to H  
L to H  
L to H  
L to H  
ADS  
L
INC  
X
RPT  
H
Content  
Operation  
[4]  
An  
X
X
An  
An  
X
An  
An  
An + 1  
An  
Load  
H
L
H
Am  
Increment  
Hold  
H
H
H
X
Am  
X
X
L
X
Am  
Am  
Repeat  
Notes:  
1. L = low, H = high, X = don't care  
2. Cycle can be Read, Write or Deselect (Controlled by appropriate setting of R/W, CE0, CE1 and BE )  
n
3. ADS, INC, RPT are independent of all other memory controls including R/W, CE0,CE1 and BE (i.e Counter works independent of R/W, CE0,CE1 and BE )  
n
n
4. The 'Mirror register' used for the Repeat operation is loaded with External address during every valid ADS access. “Am” refers to the mirror register content.  
5. Clock to the counter is disabled during Snooze mode (True for both ports).  
6. The counter and the mirror registers are not initialized on Power-up (refer Counter description).  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 8 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Package Thermal Resistance  
Description  
Conditions  
Symbol  
Typical  
Units  
BGA  
fpBGA  
TQFP  
θ
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
JA  
Thermal Resistance (junction to  
ambient)  
θ
Test conditions follow standard test  
methods and procedures for measuring  
thermal impedance, per EIA/JESD51  
[1]  
JA  
θ
JA  
Thermal Resistance (junction to  
θ
TBD  
°C/W  
[1]  
JC  
top of case)  
Notes:  
1. This parameter is sampled.  
[1]  
[2]  
Capacitance (T = +25 °C, F = 1.0 Mhz)  
A
BGA  
(Max)  
f p B G A  
(Max)  
TQFP  
(Max)  
[3]  
Parameter  
Symbol  
Signals  
Test Condition  
= L to H or H to L  
IN  
Unit  
Address and  
Control pins  
Input Capacitance  
C
V
TBD  
TBD  
TBD  
pF  
IN  
Output Capacitance  
I/O Capacitance  
C
Flag Output pins  
I/O pins  
V
= L to H or H to L  
= L to H or H to L  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
pF  
pF  
OUT  
OUT  
C
V
I/O  
I/O  
Notes:  
1. Sampled, not 100% tested  
2. T stands for 'Ambient temperature'.  
A
3. L = 0V; H = 3V  
[1]  
Absolute maximum ratings  
Rating  
Parameter  
Symbol  
VDD  
Min  
-0.5  
-0.3  
-0.3  
-
Max  
3.6  
Unit  
Core supply voltage relative to VSS  
I/O supply voltage relative to VSS  
Input and I/O voltage relative to VSS  
Power Dissipation  
V
V
VDDQ  
3.9  
V
VDDQ + 0.3  
TBD  
V
IN  
P
W
mA  
°C  
°C  
°C  
D
Short circuit output current  
Storage Temperature  
I
-
TBD  
OUT  
T
-65  
-55  
-
150  
STG  
Storage Temperature under Bias  
Junction Temperature  
T
125  
BIAS  
T
TBD  
JN  
Notes:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating for extended  
periods may affect reliability.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 9 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Recommended operating Temperature  
Grade  
Commercial  
Industrial  
Ambient Temperature (T )  
A
0°C to 70°C  
-40°C to 85°C  
Recommended operating conditions  
[1]  
[2]  
VDDQ = 2.5V  
VDDQ = 3.3V  
Typ  
Parameter  
Core Supply Voltage  
I/O supply Voltage  
Ground  
Symbol  
VDD  
Min  
2.4  
2.4  
0
Typ  
2.5  
2.5  
0
Max  
2.6  
2.6  
0
Min  
2.4  
3.15  
0
Max  
2.6  
3.45  
0
Unit  
V
2.5  
3.3  
0
VDDQ  
VSS  
V
V
Notes:  
1. OPT pin for a given port must be set to VSS(0V) to operate at VDDQ = 2.5V levels on the I/Os, addresses, clock and controls of that port.  
2. OPT pin for a given port must be set to VDD(2.5V) to operate at VDDQ = 3.3V levels on the I/Os, addresses, clock and controls of that port.  
DC Electrical Characteristics (VDD = 2.5 V ± 100 mV)  
VDDQ = 2.5V  
VDDQ = 3.3V  
Min  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Test Conditions  
VDDQ = Max;  
Max  
Units  
VDDQ = Max;  
Input Leakage  
Current  
|ILI  
|ILI  
|
|
-
2
-
-
-
2
2
2
µA  
µA  
µA  
0V < VIN < VDDQ  
VDD = Max;  
0V < VIN < VDDQ  
VDD = Max;  
PL/FT and ZZ Input  
Leakage Current  
-
-
2
2
0V < VIN < VDD  
OE>=VIH;  
0V < VIN < VDD  
OE>=VIH;  
Output Leakage  
Current[1]  
|ILO  
|
0V < VOUT < VDDQ  
0V < VOUT < VDDQ  
Input high (logic 1)  
voltage  
(Address, Control,  
Clock & Data Inputs)  
VIH  
VIH  
VIL  
-
-
1.7  
VDDQ + 0.1V  
-
-
2
VDDQ + 0.15V  
VDD + 0.1V  
0.8  
V
V
V
Input high voltage  
(ZZ,OPT,PL/FT)  
VDD - 0.2V VDD + 0.1V  
VDD - 0.2V  
-0.3  
Input low (logic 0)  
voltage (Address,  
Control, Clock &  
Data Inputs)  
-
-
-0.3  
0.7  
-
-
Input low voltage  
(ZZ,OPT,PL/FT)  
VIL  
-0.3  
-
0.2  
0.4  
-0.3  
-
0.2  
0.4  
V
V
IOL = +2mA;  
VDDQ = Min  
IOH = -2mA;  
VDDQ = Min  
IOL = +4mA;  
VDDQ = Min  
IOH = -4mA;  
VDDQ = Min  
Output low voltage  
VOL  
Output high voltage  
Notes:  
VOH  
2.0  
-
2.4  
-
V
1. Outputs disabled (High-Z condition).  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 10 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[4]  
I
operating conditions and maximum limits (VDD = 2.5 V ± 100 mV)  
DD  
Parameter  
Symbol  
Test Conditions  
-250  
-200  
-166  
-133  
Units  
Typ Max Typ Max Typ Max Typ Max  
Operating current  
(Both ports active)  
TBD TBD TBD 350 TBD 300 TBD 260  
mA  
Both ports enabled (CEA = CEB = L[3]),  
Pipeline mode --  
(PL/FT > VIH  
)
ICC  
Outputs disabled (IOUT = 0mA), ZZA = ZZB < VIL,  
Operating current  
(Both ports active)  
[1]  
f=fMax  
TBD TBD TBD TBD TBD TBD TBD TBD  
mA  
Flow-through mode  
(PL/FT < VIL)  
Both ports disabled (CEA = CEB = H),  
Standby current  
(Both ports)  
TBD TBD TBD 105 TBD  
90  
TBD  
80  
ISB1 ZZA = ZZB < VIL,  
mA  
mA  
mA  
[1]  
f=fMax  
One port enabled (CEA = L and CEB = H)[5]  
,
Standby current  
(One port)  
TBD TBD TBD 265 TBD 225 TBD 190  
ISB2 Active port's outputs disabled, ZZA = ZZB < VIL,  
[1]  
f=fMax  
Both ports disabled (CEA = CEB = H),  
Full standby current  
(Both ports)  
20  
25  
20  
25  
20  
25  
20  
25  
ISB3 ZZA = ZZB < VIL,  
f=0[2]  
One port in Snooze (ZZA > VIH, ZZB < VIL, and  
CEB = L)[5]  
,
Full standby current  
(One port)  
TBD TBD TBD 265 TBD 225 TBD 190  
ISB4  
mA  
mA  
Active port's outputs disabled,  
[1]  
f=fMax  
Both ports in Snooze (ZZA = ZZB > VIH),  
Snooze mode  
current  
15  
18  
15  
18  
15  
18  
15  
18  
IZZ  
[1]  
f=fMax  
Notes:  
1. f=fMax implies address and controls (except OE) are cycling at maximum clock frequency using AC test conditions (Refer AC test conditions).  
2. f = 0 implies address and controls are static. Corresponding current numbers indicated are true for both CMOS (V > VDDQ - 0.2V or V < 0.2V)  
IN  
IN  
and TTL (V > V or V < V ) level inputs.  
IN  
IH  
IN  
IL  
3. CE and CE are internal signals (CE = L implies CE0 < V and CE1 > V , CE = H implies CE0 > V or CE1 < V ).  
A
B
x
x
IL  
x
IH  
x
x
IH  
x
IL  
4. Subscript 'x' represents 'A' for Port A and 'B' for Port B.  
5. “A” and “B” are interchangeable.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 11 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[1,2,5,6]  
AC timing characteristics  
(VDD = 2.5 ± 100mV)  
Parameter  
Symbol  
-250  
-200  
-166  
-133  
Unit Notes  
Min. Max. Min. Max. Min. Max. Min. Max.  
Clock  
tCYCP  
tCHP  
tCLP  
4
5
2
6
7.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
3
3
Cycle Time (Pipeline)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.7  
1.7  
6.5  
1.7  
1.7  
2.4  
2.4  
10  
Clock High Pulse Width (Pipeline)  
Clock Low Pulse Width (Pipeline)  
Cycle Time (Flow-Through)  
Clock High Pulse Width (Flow-Through)  
Clock Low Pulse Width (Flow-Through)  
Output  
2
3
tCYCF  
tCHF  
tCLF  
7.5  
2
12  
3
2.4  
2.4  
2
3
tCDP  
tOHP  
2.8  
-
-
2.8  
6.5  
-
3.4  
-
-
3.4  
7.5  
-
3.6  
-
-
3.6  
10  
-
4.2  
-
-
4.2  
12  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
Clock access time (Pipeline)  
Output Data Hold from Clock High (Pipeline)  
Clock High to Output Low-Z (Pipeline)  
Clock High to Output High-Z (Pipeline)  
Clock access time (Flow-Through)  
Output Data Hold from Clock High (Flow-Through)  
Clock High to Output Low-Z (Flow-Through)  
Clock High to Output High-Z (Flow-Through)  
Output Enable to Data Valid  
Output Enable Low to Output Low-Z  
Output Enable High to Output High-Z  
Setup  
-
1
1
1
-
1
1
1
-
-
1
1
1
-
1
1
1
-
-
1
1
1
-
1
1
1
-
-
1
1
1
-
1
1
1
-
tLZCP  
tHZCP  
tCDF  
3,8  
3,8  
3
tOHF  
tLZCF  
tHZCF  
tOE  
3,8  
3,8  
4
-
-
-
-
2.8  
2.8  
-
3.4  
3.4  
-
3.6  
3.6  
-
4.2  
4.2  
-
tLZOE  
tHZOE  
1
1
1
1
4
1
2.8  
1
3.4  
1
3.6  
1
4.2  
4
tAS  
tCES  
tBS  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Setup to Clock High  
Chip Enable Setup to Clock High  
Byte Enable Setup to Clock High  
R/W Setup to Clock High  
Input Data Setup to Clock High  
ADS Setup to Clock High  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tWS  
tDS  
tADSS  
tINCS  
tRPTS  
-
-
-
INC Setup to Clock High  
RPT Setup to Clock High  
Hold  
tAH  
tCEH  
tBH  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Hold from Clock High  
Chip Enable Hold from Clock High  
Byte Enable Hold from Clock High  
R/W Hold from Clock High  
Input Data Hold from Clock High  
ADS Hold from Clock High  
INC Hold from Clock High  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
tWH  
tDH  
tADSH  
tINCH  
tRPTH  
RPT Hold from Clock High  
Flag  
tSINT  
tRINT  
tSCOL  
tRCOL  
6
6
6
7
ns  
ns  
ns  
ns  
Interrupt Flag Set Time  
Interrupt Flag Reset Time  
Collision Flag Set Time  
Collision Flag Reset Time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
7
2.8  
2.8  
3.4  
3.4  
3.6  
3.6  
4.2  
4.2  
Port-to-Port Delay  
tCCO  
3.0  
3.5  
4
5
ns  
7
Clock-to-Clock Delay  
-
-
-
-
Notes:  
1. All timings are same for both ports.  
2. These values are valid for either level of VDDQ (2.5V/3.3V)  
3. A particular port will operate in Pipeline output mode if PL/FT = VDD and in flow-through output mode if PL/FT = 0V. Each port can independently operate in any of these  
modes.  
4. Output Enable (OE) is an asynchronous input.  
5. PL/FT and OPT should be treated as DC signals and should reach steady state before normal operation.  
6. Refer AC Test Conditions to view the test conditions used for these measurements.  
7. This parameter has to be taken care to avoid collision during simultaneous memory access of the same location.  
8. To avoid bus contention, at a given voltage and temperature t  
is more than t  
(True in both Pipeline and flow-through output mode).  
LZC  
HZC  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 12 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[7]  
Timing waveform of read cycle  
Don’t care  
Undefined  
[2]  
tCYC  
tCL  
tCH  
CLK  
tCES  
tCEH  
CE[3]  
tBS  
tBH  
BEn[4]  
R/W  
tWH  
tWS  
tAS  
tAH  
[5]  
ADDRESS  
A6  
A11  
A12  
A13  
A2  
A3  
A4  
A5  
A7  
A10  
A8  
A9  
A1  
tLZOE  
OE[6]  
[Pipeline Mode]  
tOHP  
tHZCP  
tHZOE  
tOE  
tLZCP  
DATA OUT[1]  
[Pipeline Mode]  
Q1  
Q10  
Q2  
Q6  
Q8  
tLZOE  
tCDP  
tLZOE  
OE[6]  
[Flow-through Mode]  
tOHF  
tHZCF  
tHZOE  
tOE  
tLZCF  
DATA OUT[1]  
Q12  
Q1  
Q10  
Q2  
Q8  
Q6  
[Flow-through Mode]  
tLZOE  
tCDF  
Read[8] Dsel  
(A4)  
Read  
(A10)  
Read  
(A12)  
Read  
(A1)  
Read  
(A2)  
Read  
(A6)  
Read  
(A7)  
Read  
(A8)  
Dsel  
Dsel  
Dsel  
Notes:  
1. Both Flow-through and Pipeline Outputs indicated. A particular port is configured in Flow-through mode if PL/FT for that port is driven low,  
and in Pipeline mode if PL/FT is driven high or left unconnected.  
2. Parameters t  
, t and t are different in Flow-through and Pipeline modes of operation (Refer AC Timing characteristics).  
CYC CH  
CL  
3. CE is an internal signal.CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H).  
Timings indicated for CE hold good for CE0 and CE1  
4. BEn refers to any one of the 2 byte controls [n = 1 or 0] and DATA OUT refers to the corresponding Byte.  
5. Counter set in “Load” mode (ADS = L,INC = X,RPT = H).  
6. OE is an asynchronous input.  
7. All timings are similar for both ports.  
8. Read with Byte disabled. Data is not read out.Bus in High-Z condition.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 13 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[7]  
Timing wave form read/write cycle  
[2]  
Don’t care  
tCYC  
tCL  
Undefined  
tCH  
CLK  
tCES  
tCEH  
CE[3]  
tBS  
tBH  
BEn[4]  
R/W  
tWH  
tWS  
tAS  
tAH  
[5]  
ADDRESS  
A5  
A10  
A11  
A12  
A2  
A3  
A3  
D3  
A4  
A6  
D6  
A9  
A7  
A8  
D8  
A1  
OE[6]  
[Pipeline Mode]  
tDS  
tDH  
[1]  
DATA IN  
[Pipeline Mode]  
tCDP  
tHZCP  
tHZOE  
[1]  
DATA OUT  
Q9  
Q1  
[Pipeline Mode]  
tLZCP  
OE[6]  
[Flow-through Mode]  
[1]  
DATA IN  
D3  
D6  
D11  
[Flow-through Mode]  
tHZCF  
tOHF  
tCDF  
tHZOE  
tDS  
tDH  
[1]  
DATA OUT  
Q9  
Q4  
Q7  
Q2  
Q1  
[Flow-through Mode]  
tLZCF  
Write[8] Write  
(A3)  
Read  
(A4)  
Read  
(A5)  
Write  
(A6)  
Read  
(A7)  
Write[9] Read  
(A9)  
(A8)  
Write[9]  
(A11)  
Read  
(A1)  
Read  
(A2)  
Dsel  
Notes:  
1. Both Flow-through and Pipeline Inputs/Outputs indicated.A particular port is configured in Flow-through mode if PL/FT for that port is driven low,  
and in Pipeline mode if PL/FT is driven high or left unconnected.  
2. Parameters t  
,t and t are different in Flow-through and Pipeline modes of operation.(Refer AC Timing characteristics)  
CYC CH  
CL  
3. CE is an internal signal.CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H).  
Timings indicated for CE hold good for CE0 and CE1  
4. BEn refers to any one of the 2 byte controls [n = 1 or 0] and DATA OUT refers to the corresponding Byte.  
5. Counter set in “Load” mode (ADS = L,INC = X,RPT = H).  
6. OE is an asynchronous input.  
7. All timings are similar for both ports.  
8. Invalid write. Memory Content of the selected location may get corrupted and should be re-written before future readback.  
9. Write (A11) is invalid in Pipeline mode and Write (A8) is invalid in Flow-through mode. Memory Content of the selected location may get corrupted and should be re-written  
before future readback.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 14 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[6]  
Timing waveform of address counter  
[2]  
tCYC  
tCL  
Don’t care  
Undefined  
tCH  
CLK  
CE[3]  
tCES  
tCEH  
[4]  
R/W  
tWH  
tWS  
tAS  
tAH  
ADDRESS  
A2  
A1  
INTERNAL  
ADDRESS  
A2+1  
A1+1  
A1+2  
A2  
A2  
A1+2  
A1  
A1+2  
A2+1  
A1+2  
A1+1  
A1  
tADSS  
tADSH  
ADS  
INC  
tINCS  
tINCH  
tRPTS  
tRPTH  
RPT  
tDS  
tDH  
DATA IN  
D1  
D1+2  
D1+2  
D1+1  
tCDP  
tOHP  
tHZCP  
[5]  
DATA OUT[1]  
[Pipeline Mode]  
Q1  
Q1+2  
Q1+1  
tLZCP  
tHZCF  
tOHF  
tCDF  
[5]  
DATA OUT[1]  
[Flow-through Mode]  
Q1+1  
Q1+2  
Q1  
tLZCF  
Write  
Load  
(A1)  
Write  
Incr  
Write  
Incr  
Write  
Hold  
Dsel  
Rept  
Read  
Rept  
Read  
Incr  
Read  
Hold  
Dsel  
Incr  
Read  
Incr  
Dsel  
Dsel  
Hold  
Load  
(A2)  
Notes:  
1. Both Flow-through and Pipeline Outputs indicated. A particular port is configured in Flow-through mode if PL/FT for that port is driven low,  
and in Pipeline mode if PL/FT is driven high or left unconnected.  
2. Parameters t  
,t and t are different in Flow-through and Pipeline modes of operation (Refer AC Timing characteristics).  
CYC CH  
CL  
3. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H).  
Timings indicated for CE hold good for CE0 and CE1.  
4. These cycles indicate that Counter works independent of all memory controls including R/W,CE and BEn.  
5. If a Hold operation is performed for a Read access, the Data-out is held valid for the subsequent clock cycle also.  
6. All timings are similar for both ports.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 15 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Mailbox Interrupts  
The AS9C25512M2018L/AS9C25256M2018L has an Inbuilt Mailbox Logic that can be used for communication between the two ports.  
One memory location is assigned as mail box (message center) for each port. The location 7FFFE (HEX) is assigned as the message center  
for Port A and 7FFFF (HEX) for Port B (3FFFE and 3FFFF for AS9C25256M2018L). The port A interrupt flag (INTA) is asserted when the  
port B writes to memory location 7FFFE (HEX) (3FFFE for AS9C25256M2018L). The port A clears the interrupt flag by reading the  
address location 7FFFE (HEX) (3FFFE for AS9C25256M2018L). Likewise, the port B interrupt flag (INTB) is asserted when the port A  
writes to memory location 7FFFF (HEX) (3FFFF for AS9C25256M2018L) and to clear the interrupt flag (INTB), the port B must read the  
memory location 7FFFF (3FFFF for AS9C25256M2018L).(Refer Interrupt Logic Truth Table).  
The interrupt flag is asserted in a flow-through mode (i.e., it follows the clock edge of the writing port). Also, the flag is reset in a flow-  
through mode (i.e., it follows the clock edge of the reading port). Each port can read the other port’s mailbox without de-asserting the  
interrupt and each port can write to its own mailbox without asserting the interrupt. If an application does not require message passing, INT  
pins can be ignored.  
[1,4,5]  
Interrupt logic truth table  
[2]  
[3,6]  
[2]  
[3,6]  
Function  
CLKA R/WA CEA  
A18A-A0A  
CLKB R/WB CEB  
A18B-A0B  
INTA INTB  
L to H  
L to H  
L to H  
L to H  
Notes:  
L
X
X
H
L
X
X
L
7FFFF  
L to H  
L to H  
L to H  
L to H  
X
H
L
X
L
L
X
X
X
X
L
L
H
X
X
Assert Port B Interrupt Flag  
De-assert Port B Interrupt Flag  
Assert Port A Interrupt Flag  
De-assert Port A Interrupt Flag  
X
X
7FFFF  
7FFFE  
X
7FFFE  
X
H
1. L = low, H = high, X = don't care  
2. CE is an internal signal ('x' = 'A' or 'B'). CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H)  
x
x
x
x
x
x
x
3. Address specified here is the internal address (refer Counter control truth table).  
4. Both Interrupt Flags are De-asserted on power-up.  
5. Interrupt feature is not supported in TQFP package.  
6. Address A18 is a NC for AS9C25256M2018L, hence Interrupt addresses are 3FFFF and 3FFFE  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 16 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[2]  
Interrupt timing wave form  
[1]  
t
Don’t care  
CYC  
CLKA  
[1]  
CL  
[1]  
CH  
t
t
t
WS  
t
WH  
[2]  
R/WA  
t
AS  
t
AH  
[4]  
7FFFF  
[5]  
Aa  
[3]  
ADDRESSA  
Aa  
Aa  
Aa  
7FFFF  
Aa  
7FFFE  
t
t
SINT  
RINT  
INTA  
[1]  
CYC  
t
CLKB  
[1]  
t
CL  
[1]  
CH  
t
t
WS  
t
WH  
[2]  
R/WB  
t
AS  
t
AH  
[5]  
Ab  
[4]  
7FFFE  
[3]  
ADDRESSB  
Ab  
7FFFF  
Ab  
Ab  
Ab  
7FFFE  
t
t
SINT  
RINT  
INTB  
Notes:  
1. Parameters t  
,t and t are different in Flow-through and Pipeline mode of operation and can be different for different ports (Refer AC Timing characteristics).  
CYC CH  
CL  
2. Chip Selected (CE0 = L and CE1 =H). True for both ports.  
3. Address indicated is the Internal Address used and is dependent on the Address counter control inputs for that cycle.  
4. 7FFFF (3FFFF for AS9C25256M2018L) is the Mailbox for port B and 7FFFE (3FFFE for AS9C25256M2018L) is the Mailbox for port A.  
5. “Aa” and “Ab” refer to any other valid address other than 7FFFF or 7FFFE (3FFFF or 3FFFE for AS9C25256M2018L).  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 17 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Collision detection  
Three different cases of collisions can be listed depending on the type of access from two ports:  
Simultaneous Read: A true dual-ported memory cell allows data to be read simultaneously from both ports of the device. Hence no data is  
corrupted, lost, or incorrectly output, and none of the collision alert flags is asserted.  
Simultaneous Write: When both ports are writing simultaneously to the same location, both write operations would fail. Therefore, the  
collision flag is asserted on both ports.  
Simultaneous Read and Write: When one port is writing and the other port is reading from the same location in the memory, the data  
written will be valid. However, the read operation would fail and hence the reading port's collision flag is asserted.  
The alert flag (COLx) is asserted on the 3rd (for both pipe-lined and flow-through output mode) rising clock edge of the affected port  
following the collision, and remains low for one cycle. On continuous collisions (one or both ports writing during each access), the collision  
alert flag will be asserted and de-asserted every alternate cycle.  
[1,2,4,5]  
Collision detection truth table  
Port address[3]  
COLA  
COLB  
Function  
CLKA  
R/WA  
CLKB  
R/WB  
Both ports reading. Not a valid collision. No  
collision flag asserted on either port.  
L to H  
H
L to H  
H
MATCH  
H
H
Port A reading, Port B writing. Valid collision.  
Collision flag asserted on port A.  
L to H  
L to H  
L to H  
L to H  
H
L
L
L
L to H  
L to H  
L to H  
L to H  
L
H
L
MATCH  
MATCH  
L
H
L
H
L
L
H
Port B reading, Port A writing. Valid collision.  
Collision flag asserted on port B.  
Both ports writing. Valid collision. Collision  
flag asserted on both ports.  
MATCH  
No match. No collision flag asserted on either  
port.  
H
NO MATCH  
H
Notes:  
1. L = low, H = high, X = don't care  
2. Chip Selected (CE0 = L and CE1 =H). True for both ports. Collision flag is not affected if any one or both ports are deselected.  
3. “MATCH” indicates that internal addresses of both the ports are the same (refer Counter control truth table).  
4. Both Collision Flags are De-asserted on power-up.  
5. Collision detection feature is not supported in TQFP package.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 18 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[2]  
Collision timing waveform  
Don’t care  
[1]  
tCYC  
CLKA  
[1]  
[1]  
tCH  
[5]  
tCL  
tWS  
tWH  
tCCO  
R/WA  
tAS  
tAH  
[4]  
Am  
[3]  
ADDRESSA  
Am  
Am  
Aa  
Aa  
Aa  
Aa  
Aa  
Am  
Am  
Am  
Am  
tSCOL tRCOL  
COLA  
[1]  
tCYC  
CLKB  
R/WB  
[1]  
[1]  
tCL  
tCH  
tWS  
tWH  
tAS  
tAH  
[4]  
[3]  
ADDRESSB  
Am  
Am  
Ab  
Ab  
Am  
Ab  
Ab  
Ab  
Am  
Am  
Am  
Am  
tSCOL  
tRCOL  
COLB  
Notes:  
1. Parameters t  
,t and t are different in Flow-through and Pipeline mode of operation and can be different for different ports (Refer AC Timing characteristics).  
CL  
CYC CH  
2. Chip Selected (CE0 = L and CE1 =H). True for both ports.  
3. Address indicated is the Internal Address used and is dependent on the Address counter control inputs for that cycle.  
4. “Am” refers to matched address. “Aa” and “Ab” refer to any other valid address.  
5. During address collision the data validity is guaranteed only if t  
is greater than the minimum specified (Refer AC timing characteristics).  
CCO  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 19 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Depth and Width expansion  
AS9C25512M2018L/AS9C25256M2018L has two chipselects (one active high and other active low) for simple depth expansion. This  
permits easy upgrade from 512/256K depth to 1M/512K depth without extra logic. Two such parts can also be combined to obtain an  
expanded width of 36 bits or wider.  
DQ<0:35>  
Data  
Address  
[2]  
A<0:19>  
Microprocessor  
Clock  
CE0  
CE1  
CE0  
CE1  
Clock  
CLK  
R/W  
BE<0:1>  
OE  
CLK  
R/W  
BE<0:1>  
OE  
512/256Kx18  
DPSRAM  
512/256Kx18  
DPSRAM  
Controller  
ADS  
ADS  
INC  
RPT  
INC  
RPT  
BANK 1  
BANK 0  
Notes:  
1. A<0:18> for AS9C25512M2018L, A<0:17> for AS9C25256M2018L  
2. A<0:19> for AS9C25512M2018L, A<0:18> for AS9C25256M2018L  
3. A<19> for AS9C25512M2018L, A<18> for AS9C25256M2018L  
[4,5,6]  
Timing waveform of multi device read  
[1]  
tCYC  
tCL  
Don’t care  
Undefined  
tCH  
CLK  
tWS  
tWH  
R/W  
tAS  
tAH  
A[0:18][2]  
A1  
A2  
A5  
A4  
A6  
A8  
A3  
Q1  
A7  
A[19][3]  
tCDP  
tOHP  
tHZCP  
DATA OUT [0:35]  
Q2  
Q4  
(BANK 0)  
[Pipeline Mode]  
tOHP  
tHZCP  
tCDP  
tLZCP  
DATA OUT [0:35]  
Q6  
Q5  
Q3  
(BANK 1)  
[Pipeline Mode]  
tOHF  
tHZCF  
tCDF  
tLZCP  
DATA OUT [0:35]  
(BANK 0)  
Q1  
Q2  
Q4  
[Flow-through Mode]  
tHZCF  
tCDF  
tOHF  
tLZCF  
DATA OUT [0:35]  
(BANK 1)  
Q3  
Q5  
Q6  
[Flow-through Mode]  
tLZCF  
Read  
(Bank1)  
Read  
(Bank0)  
Read  
(Bank1)  
Read  
(Bank1)  
Read  
(Bank0)  
Read  
(Bank0)  
Read  
(Bank0)  
Notes:  
1. Parameters t  
, t and t are different in Flow-through and Pipeline mode of operation (Refer AC Timing characteristics).  
CYC CH  
CL  
2. A<0:18> for AS9C25512M2018L, A<0:17> for AS9C25256M2018L  
3. A<19> for AS9C25512M2018L, A<18> for AS9C25256M2018L  
4. Refer to the above block diagram for the assumed setup.  
5. One Bank is assumed to have two AS9C25512M2018L/AS9C25256M2018Ls combined to have an expanded width of 36 bits. Two such Banks are used for depth expansion.  
6. All BEn's = L, Counter set in “Load” mode (ADS = L, INC = X, RPT = H), OE =L.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 20 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Snooze mode  
Snooze mode is a low-current, power-down mode in which the corresponding port is deselected and its current is reduced to a  
very low value. Both ports are equipped with independent SNOOZE inputs (ZZ). During Snooze mode, all inputs of the port  
except ZZ are internally disabled and all its Outputs go to High-Z.  
ZZ is an asynchronous, active HIGH input that causes the selected port to enter Snooze mode. If both ports go into Snooze mode,  
the device is deselected and current is reduced to IZZ. When ZZA and ZZB become a logic HIGH, IZZ is guaranteed after the  
setup time tSCZZ is met.  
Any READ or WRITE operation pending when the port enters Snooze mode is not guaranteed to complete. Therefore, Snooze  
mode must not be initiated until valid pending operations are completed. Similarly during the time tRCZZ, when the port is  
transitioning out of snooze mode, only DESELECT cycles should be given.  
Snooze mode electrical characteristics  
Description  
Conditions  
Symbol  
Min  
Max  
Units  
mA  
SNOOZE MODE Current  
ZZ = ZZ >= V  
I
ZZ  
15  
-
18  
2
-
A
B
IH  
ZZ active to input ignored  
t
cycle  
cycle  
cycle  
cycle  
SCZZ  
RCZZ  
ZZ inactive to input sampled  
ZZ active to enter Snooze Current  
ZZ inactive to exit Snooze Current  
t
2
-
t
2
-
SIZZ  
RIZZ  
t
0
[1,3]  
Snooze mode timing waveform  
Don’t care  
Undefined  
tCYC  
CLK  
tCES  
tCH  
tCL  
tCEH  
CE[2,4]  
ZZ  
tSIZZ  
tRIZZ  
ISupply  
IZZ  
tRCZZ  
tSCZZ  
ZZ recovery cycles  
ZZ setup cycles  
INPUTS  
Valid  
Valid  
tLZC  
(Except ZZ)  
tHZC  
OUTPUTS[5]  
(Qout)  
High-Z  
Notes:  
1. During Snooze mode, all dynamic inputs are disabled (except JTAG inputs). During JTAG operations, ZZ must be held Low in order to capture the parallel inputs of the bound-  
x
ary scan register. All static inputs (i.e. PL/FT ,OPT ) and ZZ themselves are not affected during snooze mode.  
x
x
x
2. CE is an internal signal. CE = H implies 'Chip is Deselected' (CE0 = H or CE1 =L), CE = L implies 'Chip is Selected' (CE0 = L and CE1 =H).  
3. All timings are same for Port A and Port B.  
4. Minimum of two deselect cycles should be given before asserting snooze and minimum of two deselect cycles should be given after de-asserting snooze to guarantee data  
integrity.  
5. Select cycles indicated before and after Snooze are Read cycles. They can also be Write cycles.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 21 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
AC test conditions  
Input Pulse Level (Address and Controls)  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2V/ns  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference levels  
1.5V/1.25V  
1.5V/1.25V  
Output Load (for t  
, t  
, t  
, t  
)
Fig. C  
LZC HZC LZOE HZOE  
Output Load (for all other measurements)  
Fig. B  
Thevenin equivalent:  
+3.3/2.5 V;  
+3.0/2.4 V  
90%  
10%  
Figure A: Input Waveform  
90%  
Z0 = 50Ω  
50 Ω  
319Ω / 1667  
10%  
D
OUT  
GND  
VL = 1.5/1.25 V  
10 pF*  
5 pF*  
353Ω / 1538  
Figure B: Output Load (A)  
GND  
Figure C: Output Load (B)  
* Including scope and jig capacitance  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 22 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
IEEE 1149.1 Serial boundary scan (JTAG)  
The SRAM incorporates a serial boundary scan Test Access Port (TAP). All JTAG pins operate using JEDEC standard 2.5V I/O logic levels.  
In order to operate the device without using the JTAG feature, all JTAG pins may be left unconnected. On power-up, the device will start in  
a reset state which will not interfere with normal device operation.  
TAP Controller block diagram  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1 0  
3
Instruction Register  
TDI  
TDO  
3130 29 .  
. .  
2 1 0  
Identification Register  
[1]  
.
. . . .  
2
1 0  
x
1
Boundary Scan Register  
TCK  
TMS  
TAP Controller  
Note:  
1. x = 111  
JTAG timing waveform  
tJCYC  
Don’t care  
Undefined  
tJCH  
tJCL  
TEST CLK  
TCK  
tJIH  
tJIS  
TMS/TDI  
tJCD  
TDO  
tJOH  
tJRS  
tJRR  
TRST  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 23 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
[2]  
TAP AC electrical characteristics  
Description  
Symbol  
Min  
Max  
Units  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
Output Times  
TCK low to TDO unknown  
TCK low to TDO valid  
Setup Times  
t
100  
-
-
10  
-
ns  
MHz  
ns  
JCYC  
f
JTAG  
t
40  
40  
JCH  
t
-
ns  
JCL  
t
0
-
-
ns  
ns  
JOH  
t
20  
JCD  
TMS/TDI setup  
Capture setup  
t
10  
10  
-
-
ns  
ns  
JIS  
[1]  
t
JCS  
Hold Times  
TMS/TDI hold  
Capture hold  
t
10  
10  
-
-
ns  
ns  
JIH  
[1]  
t
JCH  
Reset Times  
JTAG Reset  
t
50  
50  
-
-
ns  
ns  
JRS  
JTAG Reset Recovery  
Notes:  
t
JRR  
1. t  
and t  
refer to the setup and hold time requirements of latching data from the boundary scan register.  
JCS  
JCH  
2. Test conditions are specified using the load in the figure TAP AC output load equivalent.  
TAP AC test conditions & output load equivalent  
Input pulse levels  
Vss to 2.5V  
1V/ns  
1.25V  
50Ω  
20pF  
Input rise and fall times  
Input timing reference levels  
Output reference levels  
1.25V  
TDO  
1.25V  
ZO=50Ω  
Test load termination supply voltage  
1.25V  
TAP DC electrical characteristics and operating conditions (VDD=2.5V ± 100 mV)  
Description  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
Output leakage current  
Output low voltage  
Symbol  
Conditions  
Min  
Max  
Units  
V
V
1.7 VDD + 0.3  
IH  
V
-0.3  
0
0.7  
10  
V
IL  
|I |  
VDD = Max; 0V < V < VDD  
µA  
µA  
V
LI  
IN  
|I  
|
Outputs disabled, 0V < V  
< VDDQ (DQ )  
0
10  
LO  
OUT  
x
V
I
= 100µA  
0.2  
0.7  
OLC  
OLC  
Output low voltage  
V
I
= 2mA  
OLT  
V
OLT  
OHC  
OHT  
Output high voltage  
Output high voltage  
V
V
I
= -100µA  
2.1  
1.7  
V
OHC  
I
= -2mA  
V
OHT  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 24 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Identification register definitions  
Instruction field  
Value  
TBD  
TBD  
Description  
Version Number  
ALSC part number  
Revision number (31:28)  
Device depth (27:12)  
Manufacturer Identity Code  
(ALSC)  
JEDEC ID code (11:1)  
Indicator Bit (0)  
00001010010  
1
ID Register presence indicator  
Scan register sizes  
Register name  
Bit size  
Instruction Register (IR)  
Bypass Register (BYR)  
4
1
Identification Register (IDR)  
Boundary Scan Register (BSR)  
32  
112  
Instruction codes  
Instruction  
Code  
Description  
Selected Reg  
EXTEST  
0000  
Forces contents of the BSR onto the device outputs.  
BSR  
Samples the I/O ring contents. Preloads test data into the  
BSR.  
SAMPLE/PRELOAD  
IDCODE  
0001  
BSR  
IDR  
Loads the IDR with the vendor ID code and places the  
register between TDI and TDO.  
0010  
CLAMP  
0011  
0100  
Forces contents of the BSR onto the device outputs.  
Forces all device 2-state and 3-state outputs to High-Z.  
BYR  
BYR  
BYR  
BYR  
HIGHZ  
RESERVED  
BYPASS  
0101 - 1110 Reserved states. Do not use.  
1111 Places the BYR between TDI and TDO.  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 25 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Package Diagram: 256-ball Ball Grid Array (BGA)  
All measurements are in  
mm.  
Min Typ Max  
A
B
C
D
E
F
G
H
I
1.00  
16.95 17.00 17.05  
15.00  
16.95 17.00 17.05  
15.00  
0.36  
0.35  
0.50  
1.60  
0.40 0.50 0.60  
0.70  
J
Top View  
Bottom View  
A1 corner index  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
16 15 14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
oooooooooooooooo  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
+
oooooooooooooooo  
A
B
oooooooooooooooo  
+
oooooooooooooooo  
+
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
oooooooooooooooo  
C
oooooooooooooooo  
+
+ +  
+
A
D
E
D
J
0.35 Z  
oooooooooooooooo  
o
o
I
G
0.20 Z  
H
F
/ 0.50±0.10 (256X)  
o o  
M
M
Ø 0.25 Z X Y  
Ø 0.15  
Z
Side View  
Detail of Solder Ball  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 26 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Package Diagram: 208-ball fine pitch Ball Grid Array (fpBGA)  
All measurements are in  
mm.  
Min Typ Max  
A
B
C
D
E
F
G
H
I
0.80  
14.95 15.00 15.05  
12.80  
14.95 15.00 15.05  
12.80  
0.26  
0.25  
0.40  
1.40  
0.40 0.45 0.50  
0.70  
J
Bottom View  
Top View  
A1 corner index  
17 16 15 14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
ooooooooooooooooo  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
+
ooooooooooooooooo  
ooooooooooooooooo  
A
B
+
ooooooooooooooooo  
+
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
oooo  
C
ooooooooooooooooo  
ooooooooooooooooo  
ooooooooooooooooo  
ooooooooooooooooo  
+
+ +  
+
A
D
E
J
D
0.20 Z  
ooooooooooooooooo  
o
o
I
G
0.15 Z  
H
F
/ 0.45±0.05 (208X)  
o o  
M
M
Ø 0.15 Z X Y  
Ø 0.08  
Z
Detail of Solder Ball  
Side View  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 27 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Package Diagram: 144-pin Thin Quad Flat Pack (TQFP)  
TQFP  
Min  
0.05  
1.35  
0.17  
0.09  
Typ  
Max  
0.15  
1.45  
0.27  
0.20  
A1  
A2  
b
1.40  
0.20  
c
D
20.00 nominal  
20.00 nominal  
0.50 nominal  
22.00 nominal  
22.00 nominal  
Hd  
D
E
e
Hd  
He  
L
b
e
0.45  
0.60  
1.00 nominal  
3.5°  
0.75  
L1  
α
0°  
7°  
Dimensions in millimeters  
He  
E
c
α
L1  
L
A1 A2  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 28 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
Ordering Information  
Package & Width  
512K X 18  
-250  
-200  
-166  
-133  
AS9C25512M2018L - 250BC AS9C25512M2018L - 200BC AS9C25512M2018L -166BC AS9C25512M2018L - 133BC  
AS9C25512M2018L - 250BI AS9C25512M2018L - 200BI AS9C25512M2018L - 166BI AS9C25512M2018L - 133BI  
AS9C25512M2018L - 250FC AS9C25512M2018L - 200FC AS9C25512M2018L - 166FC AS9C25512M2018L - 133FC  
AS9C25512M2018L - 250FI AS9C25512M2018L - 200FI AS9C25512M2018L - 166FI AS9C25512M2018L - 133FI  
AS9C25512M2018L - 250TC AS9C25512M2018L - 200TC AS9C25512M2018L - 166TC AS9C25512M2018L - 133TC  
AS9C25512M2018L - 250TI AS9C25512M2018L - 200TI AS9C25512M2018L - 166TI AS9C25512M2018L - 133TI  
BGA X 18  
fpBGA X 18  
TQFP X 18  
256K X 18  
AS9C25256M2018L - 250BC AS9C25256M2018L - 200BC AS9C25256M2018L -166BC AS9C25256M2018L - 133BC  
AS9C25256M2018L - 250BI AS9C25256M2018L - 200BI AS9C25256M2018L - 166BI AS9C25256M2018L - 133BI  
AS9C25256M2018L - 250FC AS9C25256M2018L - 200FC AS9C25256M2018L - 166FC AS9C25256M2018L - 133FC  
AS9C25256M2018L - 250FI AS9C25256M2018L - 200FI AS9C25256M2018L - 166FI AS9C25256M2018L - 133FI  
AS9C25256M2018L - 250TC AS9C25256M2018L - 200TC AS9C25256M2018L - 166TC AS9C25256M2018L - 133TC  
BGA X 18  
fpBGA X 18  
TQFP X 18  
AS9C25256M2018L - 250TI  
AS9C25256M2018L - 200TI  
AS9C25256M2018L - 166TI  
AS9C25256M2018L - 133TI  
Part Numbering Guide  
AS  
9C  
25  
512/256  
M20  
18  
L
-XXX  
T or B or F  
C/I  
1
2
3
4
5
6
7
8
9
10  
1. Alliance Semiconductor prefix  
2. Speciality Memory  
3. Operating Voltage: 25 - VDD = 2.5V  
4. Device depth: 512 - 512K; 256 - 256K  
5. M20 - Multiport - 2port, SSRAM, DCD  
6. I/O width - 18  
7. I/O interface: L - LVTTL  
8. Clock speed (MHz)  
9. Package Type: T - TQFP, B - BGA, F - fpBGA  
10. Operating Temperature: C - Commercial (00C to 700C); I -Industrial (-400C to 850C)  
9/24/04, v.1.2  
Alliance Semiconductor  
P. 29 of 30  
AS9C25512M2018L  
AS9C25256M2018L  
®
®
Alliance Semiconductor Corporation  
2575, Augustine Drive,  
Santa Clara, CA 95054  
Tel: 408 - 855 - 4900  
Copyright © Alliance Semiconductor  
All Rights Reserved  
Preliminary Information  
Part Number: AS9C25512M2018L/  
AS9C25256M2018L  
Fax: 408 - 855 - 4999  
Document Version: v.1.2  
www.alsc.com  
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered  
trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make  
changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document.  
The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at  
any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in  
this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any  
guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product  
described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related  
to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and  
Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of  
Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other  
intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems  
where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-  
supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.  

相关型号:

AS9C25512M2018L-250FI

2.5V 512/256K x 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface
ALSC

AS9C25512M2018L-250TC

2.5V 512/256K x 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface
ALSC

AS9C25512M2018L-250TI

2.5V 512/256K x 18 Synchronous Dual-port SRAM with 3.3V or 2.5V interface
ALSC

ASA

HCMOS SURFACE-MOUNT CRYSTAL CLOCK OSCILLATOR
ABRACON

ASA

ASA 6W Series
EMERSON-NETWO
ABRACON
ABRACON
ABRACON
ABRACON
ABRACON
ABRACON

ASA-1.000MHZ-E-R

HCMOS/TTL Output Clock Oscillator, 1MHz Nom, ROHS COMPLIANT PACKAGE-4
ABRACON