EP324PC-30 [ALTERA]

OT PLD, 30ns, PAL-Type, CMOS, PDIP40, PLASTIC, DIP-40;
EP324PC-30
型号: EP324PC-30
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

OT PLD, 30ns, PAL-Type, CMOS, PDIP40, PLASTIC, DIP-40

时钟 输入元件 光电二极管 可编程逻辑
文件: 总18页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EP312 & EP324  
Classic EPLDs  
®
April 1995, ver. 1  
Data Sheet  
High-performance EPLDs with 12 macrocells (EP312) or 24  
macrocells (EP324)  
Features  
Combinatorial speeds as fast as 25 ns  
Counter frequencies of up to 33.3 MHz  
Pipelined data rates of up to 66 MHz  
Multiple 20-pin PAL and GAL replacement and integration  
Device erasure and reprogramming with advanced, nonvolatile  
EPROM configuration elements  
Programmable registers providing D, T, JK, and SR flipflops with  
individual Clear and Clock controls  
Dual feedback on all macrocells for implementing buried registers  
with bidirectional I/O  
Programmable-AND/allocatable-ORstructure allowing up to 16  
product terms per macrocell  
Two product terms on all macrocell control signals  
Programmable inputs (8 in EP312, 10 in EP324) configurable as  
latches, registers, or flow-through input  
Available in windowed ceramic and one-time-programmable (OTP)  
plastic packages with 24 to 44 pins:  
24-pin ceramic and plastic dual in-line package (CerDIP and  
PDIP)  
28-pin plastic J-lead chip carrier (PLCC)  
40-pin CerDIP and PDIP  
44-pin PLCC  
One global Clock pin; one global Input Latch Enable/Input  
Clock/Input (ILE/ICLK/INPUT) pin  
Programmable “standby” option for low-power operation  
Programmable Security Bit for total protection of proprietary designs  
100% generically testable to provide 100% programming yield  
Software design support with the Altera PLDshell Plus software and  
a wide range of third-party tools; programming support through  
third-party vendors  
The CMOS EPROM EP312 and EP324 devices have a versatile macrocell  
structure and I/O architecture, which allow them to implement high-  
performance logic functions effectively. The EP312 and EP324 input and  
macrocell features are a superset of features offered by PAL/GAL  
devices. Therefore, EP312 and EP324 devices can be used as an alternative  
to multiple PAL/GAL devices, SSI and MSI logic devices, or low-end gate  
arrays.  
General  
Description  
Altera Corporation  
1
A-DS-312/324.01  
EP312 & EP324 Classic EPLDs  
EP312 and EP324 devices operate in high-performance systems with  
low power consumption. The programmable standby function  
provides “zero” power consumption for applications where  
performance can be traded for power savings.  
The EP312 and EP324 architecture is based on a sum-of-products  
programmable-AND/allocatable-ORstructure. EP312 and EP324  
devices can implement combinatorial and sequential logic functions,  
as well as combinatorial-register and register-combinatorial-register  
logic forms, to easily accommodate state machine designs.  
Functional  
Description  
Figure 1 and Figure 2 show block diagrams of the EP312 and EP324  
architectures. The EP312 device contains 12 I/O macrocells and 8  
programmable input structures; the EP324 device contains 24 I/O  
macrocells and 10 programmable input structures. EP312 and EP324  
macrocells are divided into 2 rings for product-term allocation. Both  
devices have 2 additional inputs that can be programmed either as  
combinatorial inputs or Clock inputs. Each input structure can be  
individually configured as a latch, register, or flow-through input.  
Input latches and registers can be clocked synchronously or  
asynchronously.  
Figure 1. EP312 Block Diagram  
Global Clock  
Clock/Input 1  
Input/Register/Latch  
1
2
3
4
5
6
Macrocell 1  
Macrocell 2  
Macrocell 3  
Macrocell 4  
Macrocell 5  
Macrocell 6  
Input 1  
Input 2  
Input 3  
Input 4  
Input 5  
Input 6  
Input 7  
Input 8  
Ring 1  
Global  
Bus  
Global Clock  
7
Macrocell 7  
Macrocell 8  
Macrocell 9  
Macrocell 10  
Macrocell 11  
Macrocell 12  
8
9
Ring 2  
10  
11  
12  
Input Latch  
Enable/Input  
Clock/Input 2  
2
Altera Corporation  
 
EP312 & EP324 Classic EPLDs  
Figure 2. EP324 Block Diagram  
Input/Register/Latch  
Global Clock  
Clock/Input 1  
1
Macrocell 1  
Input 1  
Input 2  
Input 3  
Input 4  
Input 5  
Input 6  
Input 7  
Input 8  
Input 9  
Input 10  
2
Macrocell 2  
Macrocell 3  
Macrocell 4  
Macrocell 5  
Macrocell 6  
Macrocell 7  
Macrocell 8  
Macrocell 9  
Macrocell 10  
Macrocell 11  
Macrocell 12  
3
4
5
6
Ring 1  
7
8
9
10  
11  
12  
Global  
Bus  
Global Clock  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Macrocell 13  
Macrocell 14  
Macrocell 15  
Macrocell 16  
Macrocell 17  
Macrocell 18  
Macrocell 19  
Macrocell 20  
Macrocell 21  
Macrocell 22  
Macrocell 23  
Macrocell 24  
Ring 2  
Input Latch  
Enable/Input  
Clock/Input 2  
The EP312 and EP324 architectures include the following features:  
Macrocells  
Product-term allocation  
Programmable inputs  
Power-on characteristics  
Macrocells  
Each EP312 and EP324 macrocell contains 16 product terms (see Figure 3).  
Half of the product terms are available to support logic functions; half are  
dedicated to the macrocell control signals. The inputs to the ANDarray  
originate from the true and complement signals of the programmable  
input structure, the dedicated inputs, and the 2 feedback paths from each  
I/O macrocell to the global bus.  
Altera Corporation  
3
EP312 & EP324 Classic EPLDs  
Figure 3. EP312 & EP324 Macrocell  
to  
from  
Previous  
Logic Array  
Lower Half  
Global  
Clock  
Previous  
Macrocell Macrocell  
Product Terms 1 to 4  
Output Enable  
Output  
Multiplexer  
PRN  
D/T  
4
Allocation  
Control  
Q
CLR  
4
Invert  
Control  
Upper Half  
Product Terms 1 to 4  
Programmable  
Register  
ILE/ICLK  
Clock  
Multiplexer  
to Next  
from Next  
Macrocell Macrocell  
The eight product terms available for implementing logic functions are  
divided into two equal groups, and can be used in other macrocells. Each  
macrocell provides a dual feedback to the logic array.  
The eight product terms for control functions support the following four  
control signals, with two product terms each: Output Enable (OE), Preset,  
Clear, and asynchronous Clock. When the global Clock (CLK) signal  
synchronously clocks a macrocell register, it cannot function as an input  
to the logic array. However, the global Clock can simultaneously function  
as an input to the logic array and as an asynchronous, non-global Clock.  
4
Altera Corporation  
EP312 & EP324 Classic EPLDs  
To implement registered functions, each macrocell register can be  
individually programmed for D, T, JK, or SR operation. If necessary, the  
register can be bypassed for combinatorial operation. The XORgate can  
implement active-high or active-low logic, or use DeMorgan’s inversion  
to reduce the number of product terms required to implement a function.  
Registers are cleared automatically during power-up.  
The macrocell output can be fed back to the logic array via two paths. Pin  
feedback that is connected after the output buffer can be used to  
implement bidirectional I/O; if internal feedback is used for a buried  
register or logic function, the pin feedback can be used as an input.  
Product-Term Allocation  
In EP312 and EP324 devices, product-term resources can be taken from  
one macrocell and used in another. For product-term allocation,  
macrocells in both the EP312 and EP324 are divided into 2 rings. The  
EP312 has 6 macrocells per ring; the EP324 has 12 macrocells per ring.  
Product terms from one macrocell can be allocated to adjacent macrocells  
in the same ring. Product terms are allocated in groups of 4, and a  
macrocell can borrow up to 8 product terms (4 from each adjacent  
macrocell).  
Table 1 and Table 2 show the product-term allocation rings for the EP312  
and EP324 devices, respectively. The Altera PLDshell Plus design  
software automatically allocates product terms.  
Altera Corporation  
5
EP312 & EP324 Classic EPLDs  
Table 1. EP312 Product-Term Allocation Rings  
Ring 1  
Ring 2  
Next  
Current  
Next  
Previous  
Current  
Previous  
Macrocell Macrocell Macrocell Macrocell Macrocell Macrocell  
1
2
3
4
5
6
2
3
4
5
6
1
6
1
2
3
4
5
7
8
8
9
12  
7
9
10  
11  
12  
7
8
10  
11  
12  
9
10  
11  
Table 2. EP324 Product-Term Allocation Rings  
Ring 1  
Ring 2  
Next  
Current  
Next  
Previous  
Current  
Previous  
Macrocell Macrocell Macrocell Macrocell Macrocell Macrocell  
1
2
7
1
2
3
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
19  
13  
14  
15  
16  
17  
20  
21  
22  
23  
24  
18  
14  
15  
16  
17  
18  
24  
13  
19  
20  
21  
22  
23  
3
2
4
4
3
5
5
4
6
6
5
12  
1
7
8
8
9
7
9
10  
11  
12  
6
8
10  
11  
12  
9
10  
11  
Programmable Inputs  
Figure 4 shows a block diagram of the EP312 and EP324 input structure.  
The user-programmable inputs can be individually configured to operate  
in the following modes:  
Input D register, synchronously clocked  
Input D register, asynchronously clocked  
Input D latch, synchronously clocked  
Input D latch, asynchronously clocked  
Flow-through input  
6
Altera Corporation  
EP312 & EP324 Classic EPLDs  
Figure 4. EP312 & EP324 Input Structure  
Product Term  
from Logic Array  
to Logic Array  
INPUT  
D
Q
ILE/ICLK/INPUT  
Latch/Register  
Select  
Synchronous/  
Asynchronous  
Select  
The ILE/ICLK/INPUTpin is a dedicated input to the logic array. For  
synchronous operation, the ILE/ICLK/INPUTpin becomes a global  
ILE/ICLKinput to all latch/register/input structures; for asynchronous  
operation, a separate product term in the logic array is used to derive the  
ILE/ICLKsignal for each input structure. Because the Clock signal for  
each programmable input can be selected individually, a combination of  
asynchronously and synchronously clocked inputs is available. Flow-  
through operation occurs when the ILEproduct term is tied to V . Data  
CC  
is latched or clocked on the falling edge of ILE/ICLKin synchronous  
mode.  
Power-On Characteristics  
EP312 and EP324 inputs and outputs respond between 6 µs and 10 µs after  
power-up, or after a power-loss/power-up sequence. All macrocells  
programmed as registers are set to a logic low on power-up. Input  
registers are not reset on power-up and their values are indeterminate.  
Input latches reflect the state of the input pins on power-up.  
EP312 and EP324 devices contain a programmable Security Bit that  
controls access to the data programmed into the device. When this bit is  
programmed, a proprietary design implemented in the device cannot be  
copied or retrieved. This feature provides a high level of design security,  
since programmed data within EPROM configuration elements is  
invisible. The Security Bit that controls this function, as well as all other  
program data, is reset when a device is erased.  
Design Security  
Turbo Bit  
EP312 and EP324 devices contain a programmable Turbo Bit that controls  
the automatic power-down feature, which enables the low-standby-  
power mode (ICC1). When the Turbo Bit is turned on, the low-standby-  
power mode is disabled. All AC parameters are tested with the Turbo Bit  
turned on. When the device is operating with the Turbo Bit turned off  
(non-turbo mode), a non-turbo adder must be added to the appropriate  
AC parameter to determine worst-case timing. The non-turbo adder is  
specified in the “AC Operating Conditions” tables in this data sheet.  
Altera Corporation  
7
EP312 & EP324 Classic EPLDs  
EP312 and EP324 devices are fully functionally tested and guaranteed.  
Generic Testing  
Complete testing of each programmable EPROM configuration element  
and all internal logic elements ensures 100% programming yield. AC test  
measurements are taken under conditions equivalent to those shown in  
Figure 5.  
Figure 5. EP312 & EP324 AC Test Circuits  
Power-supply transients can affect AC  
measurements. Simultaneous transitions  
of multiple outputs should be avoided for  
accurate measurement. Threshold tests  
must not be performed under AC  
conditions. Large-amplitude, fast ground-  
current transients normally occur as the  
device outputs discharge the load  
capacitances. When these transients flow  
through the parasitic inductance between  
the device ground pin and the test-system  
ground, significant reductions in  
VCC  
460  
238 Ω  
Device  
Output  
To Test  
System  
C1 (includes  
JIG capacitance)  
observable noise immunity can result.  
Test programs are used and then erased during the early stages of a device  
production flow. EPROM-based devices in one-time-programmable  
packages also contain on-board logic test circuitry to allow verification of  
function and AC specifications during production flow.  
The EP312 and EP324 are supported by the Altera PLDshell Plus design  
software and other industry-standard logic compilers (e.g., ABEL, CUPL,  
PLDesigner, LOG/IC, and iPLS II). The EP312 and EP324 are supported  
by third-party programming hardware.  
Software &  
Programming  
Support  
For more information on software support with PLDshell Plus, go to the  
PLDshell Plus/PLDasm User’s Guide, which is available from the Altera  
Literature Department; refer to the Programming Hardware Manufacturers  
Data Sheet in the Altera Data Book for more information on third-party  
programming hardware support.  
f
8
Altera Corporation  
EP312 & EP324 Classic EPLDs  
Figure 6 shows the typical supply current (I ) versus frequency for  
CC  
EP312 and EP324 devices.  
Figure 6. EP312 & EP324 I vs. Frequency  
CC  
EP312 EPLDs  
EP324 EPLDs  
120  
240  
100  
200  
Turbo  
Turbo  
80  
60  
40  
20  
160  
120  
80  
VCC = 5.0 V  
TA = 25° C  
VCC = 5.0 V  
TA = 25° C  
Non-Turbo  
Non-Turbo  
40  
10  
20  
30  
40  
10  
20  
30  
40  
Frequency (MHz)  
Frequency (MHz)  
Altera Corporation  
9
EP312 & EP324 Classic EPLDs  
Figure 7 shows the maximum output drive characteristics of EP312 and  
EP324 I/O pins.  
Figure 7. EP312 & EP324 Output Drive Characteristics  
EP312 & EP324 EPLDs  
50  
40  
IOL  
30  
VCC = 5.0 V  
TA = 25° C  
20  
10  
IOH  
1
2
3
4
5
VO Output Voltage (V)  
10  
Altera Corporation  
EP312 & EP324 Classic EPLDs  
Absolute Maximum Ratings  
Note (1)  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
Supply voltage  
Note (2)  
–2.0  
–0.5  
–65  
–10  
7.0  
VCC + 0.5  
150  
V
V
VI  
DC input voltage  
Storage temperature  
Ambient temperature  
Notes (2), (3)  
Note (4)  
TSTG  
TAMB  
° C  
° C  
85  
Recommended Operating Conditions  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
Supply voltage  
Input voltage  
Output voltage  
4.75  
0
5.25  
VCC  
VCC  
70  
V
V
VIN  
VO  
TA  
TA  
tR  
0
V
Operating temperature  
Operating temperature  
Input rise time  
For commercial use  
For industrial use  
0
° C  
° C  
ns  
ns  
–40  
85  
500  
500  
tF  
Input fall time  
DC Operating Conditions  
Symbol  
Note (5)  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
VIL  
VOH  
VOH  
VOL  
II  
High-level input voltage  
Low-level input voltage  
Note (2)  
2.0  
–0.3  
2.4  
VCC + 0.3  
0.8  
V
V
Note (2)  
High-level TTL output voltage  
High-level CMOS output voltage  
Low-level output voltage  
IOH = –4.0 mA DC, VCC = min.  
IOH = –2 mA DC, VCC = min.  
IOL = 8 mA DC, VCC = min.  
VCC = max., GND < VIN < VCC  
VCC = max., GND < VOUT < VCC  
VCC = max., VOUT = 0.5 V, Note (6)  
V
3.84  
V
0.45  
10  
V
Input leakage current  
µA  
µA  
mA  
IOZ  
ISC  
Tri-state output leakage current  
Output short-circuit current  
10  
–30  
–90  
Capacitance  
Symbol  
Note (5)  
Parameter  
Conditions  
Min  
Max  
Unit  
CIN  
Input capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
Note (7), f = 1.0 MHz  
8
15  
12  
15  
25  
pF  
pF  
pF  
pF  
pF  
COUT  
CCLK  
CCLK  
CVPP  
I/O capacitance  
EP312 ILE/ICLK/INPUTpin capacitance  
EP324 ILE/ICLK/INPUTpin capacitance  
VPP pin capacitance  
Altera Corporation  
11  
EP312 & EP324 Classic EPLDs  
I
Supply Current  
Note (5)  
CC  
EP312  
EP324  
Symbol  
Parameter  
Conditions  
Min Typ Max Min Typ Max Unit  
ICC1  
Standby current  
VCC = max., VIN = VCC or GND, standby  
mode, Note (8), (9)  
100 300  
150  
500  
µA  
ICC3  
VCC supply current VCC = max., VIN = VCC or GND, no load,  
fIN = 1 MHz, Note (9)  
10  
20  
mA  
Notes to tables:  
(1) See Operating Requirements for Altera Devices in the current Altera Data Book.  
(2) Voltage with respect to ground; all over- and undershoots due to system or tester noise are included.  
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for  
periods of less than 20 ns under no-load conditions.  
(4) Under bias. Extended temperature versions are also available.  
(5) Operating conditions: VCC = 5 V ± 5%, TA = 0° C to 70° C for commercial use.  
V
CC = 5 V ± 10%, TA = –40° C to 80° C for industrial use.  
(6) Test one output at a time; test duration should not exceed one second.  
(7) For EP312 devices:  
DIP packages, VPP is on pin 1  
PLCC packages, VPP is on pin 2  
For EP324 devices: DIP packages, VPP is on pin 18  
PLCC packages, VPP is on pin 20  
(8) When the Turbo Bit is not set (non-turbo mode), an EP312 or EP324 device enters standby mode if no logic  
transitions occur for 100 ns after the last transition.  
(9) For EP312 devices: parameter measured with device configured as one 12-bit counter.  
For EP324 devices: parameter measured with device configured as two 12-bit counters.  
12  
Altera Corporation  
EP312 & EP324 Classic EPLDs  
AC Operating Conditions: EP312  
Combinatorial Mode  
Note (1)  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Symbol  
Parameter  
Conditions  
Min Max Min Max  
Note (2)  
Units  
tPD1  
Input to non-registered output  
I/O to non-registered output  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
25  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
tPD2  
tPZX  
Input or I/O to output enable, Note (3)  
Input or I/O to output disable, Note (3)  
Input or I/O to asynchronous reset  
Input or I/O to asynchronous set  
tPXZ  
tPCLR  
tPSET  
C1 = 35 pF  
C1 = 35 pF  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Synchronous Clock Mode (Macrocells)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fMAX  
fCNT1  
fCNT2  
tSU1  
tSU1  
tH  
Maximum frequency (pipelined), no feedback  
Maximum counter frequency, external feedback  
Maximum counter frequency, internal feedback  
Input or I/O setup time to global clock  
Input or I/O setup time to global clock  
Input or I/O hold time from global clock  
Global clock to output delay  
66  
33.3  
33.3  
15  
50  
26.3  
28.5  
20  
MHz  
MHz  
MHz  
ns  
20  
20  
0
15  
20  
ns  
0
0
ns  
tCO  
15  
30  
18  
35  
0
ns  
tCNT  
tCL  
Minimum global clock period  
20  
0
ns  
Clock low time  
7
7
9
9
ns  
tCH  
Clock high time  
0
ns  
tCP  
Clock period  
15  
20  
0
ns  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Synchronous Clock (Input Structure)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fMAXI  
tSUIR  
tESUI  
tCOI  
tEOI  
tHI  
Maximum frequency input structure  
Input register/latch setup time to ILE/ICLK  
Input latch setup time to ILE, Note (4)  
ICLKto combinatorial output  
ILEup to combinatorial output  
Input hold after falling edge of ILE/ICLK  
Input hold after falling edge of ILE  
ILE/ICLKhigh time  
66  
5
50  
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
5
5
35  
35  
40  
40  
20  
20  
0
7
7
10  
10  
9
tEHI  
tCHI  
tCLI  
0
7
0
ILE/ICLKlow time  
7
9
0
tCPI  
Minimum ICLKperiod  
15  
20  
0
Altera Corporation  
13  
EP312 & EP324 Classic EPLDs  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Asynchronous Clock Mode (Macrocells)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fAMAX  
fACNT1  
fACNT2  
tASU1  
tASU1  
tAH  
Maximum frequency (pipelined), no feedback  
Maximum counter frequency, external feedback  
Maximum counter frequency, internal feedback  
Input or I/O setup time to asynchronous clock  
Input or I/O setup time to asynchronous clock  
Input or I/O hold time from asynchronous clock  
Asynchronous clock to output delay  
66  
28.5  
33.3  
10  
50  
23.8  
30  
MHz  
MHz  
MHz  
ns  
12  
20  
20  
0
10  
12  
ns  
5
5
ns  
tACO  
25  
30  
30  
35  
20  
20  
20  
20  
20  
ns  
tACNT  
tACL  
Minimum global clock period  
ns  
Asynchronous clock low time  
7
7
9
9
ns  
tACH  
Asynchronous clock high time  
ns  
tACP  
Minimum asynchronous clock period  
15  
20  
ns  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Asynchronous Clock (Input Structure)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fAMAXI  
tASUIR  
tAESUI  
tACOI  
tAEOI  
tAHI  
Maximum frequency input structure  
66  
0
50  
0
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input register/latch setup time to asynchronous ILE/ICLK  
Input latch setup time to asynchronous ILE, Note (4)  
Asynchronous ICLKto combinatorial output  
Asynchronous ILEup to combinatorial output  
Input hold after falling edge of asynchronous ILE/ICLK  
Input hold after falling edge of asynchronous ILE  
Asynchronous ILE/ICLKhigh time  
0
0
0
0
48  
48  
55  
55  
20  
20  
20  
0
20  
20  
7
25  
25  
9
tAEHI  
tACHI  
tACLI  
tACPI  
20  
20  
20  
Asynchronous ILE/ICLKlow time  
7
9
Minimum ICLKperiod  
15  
20  
EP312-25  
EP312-30  
Non-Turbo  
Adder  
Input Clock to Macrocell Clock  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
tC1C2  
tC1C2  
tC1C2  
tC1C2  
Synchronous ILE/ICLKto synchronous macrocell CLK  
Synchronous ILE/ICLKto asynchronous macrocell CLK  
Asynchronous ILE/ICLKto synchronous macrocell CLK  
Asynchronous ILE/ICLKto asynchronous macrocell CLK  
25  
15  
35  
25  
30  
18  
40  
35  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
Notes to tables:  
(1) Operating conditions: VCC = 5 V ± 5%, TA = 0° C to 70° C for commercial use.  
CC = 5 V ± 10%, TA = –40° C to 85° C for industrial use.  
(2) If the device is operating in standby mode, increase the time by the amount shown.  
V
(3) The tPZX and tPXZ parameters are measured at ±0.5 V from steady-state voltage that is driven by the specified output  
load.  
(4) This specification must be met to guarantee tEOI. If ILEgoes high before data is valid, use tPD instead of tEOI  
.
14 Altera Corporation  
EP312 & EP324 Classic EPLDs  
AC Operating Conditions: EP324  
Combinatorial Mode  
Note (1)  
EP324-25  
EP324-30 Non-Turbo Adder  
Symbol  
Parameter  
Conditions Min Max Min Max  
Note (2)  
Units  
tPD1  
Input to non-registered output  
I/O to non-registered output,  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
25  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
tPD2  
tPZX  
Input or I/O to output enable, Note (3)  
Input or I/O to output disable, Note (3)  
Input or I/O to asynchronous reset  
Input or I/O to asynchronous set  
tPXZ  
tPCLR  
tPSET  
C1 = 35 pF  
C1 = 35 pF  
EP324-25  
EP324-30 Non-Turbo Adder  
Synchronous Clock Mode (Macrocells)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fMAX  
fCNT1  
fCNT2  
tSU1  
tSU1  
tH  
Maximum frequency (pipelined), no feedback  
Maximum counter frequency, external feedback  
Maximum counter frequency, internal feedback  
Input or I/O setup time to global clock  
Input or I/O setup time to global clock  
Input or I/O hold time from global clock  
Global clock to output delay  
66  
33.3  
33.3  
12.5  
12  
50  
25  
MHz  
MHz  
MHz  
ns  
28.5  
20  
20  
20  
0
20  
ns  
0
0
ns  
tCO  
17.8  
30  
20  
35  
0
ns  
tCNT  
tCL  
Minimum global clock period  
20  
0
ns  
Clock low time  
7
7
9
9
ns  
tCH  
Clock high time  
0
ns  
tCP  
Clock period  
15  
20  
0
ns  
EP324-25  
EP324-30 Non-Turbo Adder  
Synchronous Clock Mode (Input Structure)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fMAXI  
tSUIR  
tESUI  
tCOI  
tEOI  
tHI  
Maximum frequency input structure  
Input register/latch setup time to ILE/ICLK  
Input latch setup time to ILE, Note (4)  
ICLKto combinatorial output  
ILEup to combinatorial output  
Input hold after falling edge of ILE/ICLK  
Input hold after falling edge of ILE  
ILE/ICLKhigh time  
66  
1
50  
2.5  
2.5  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
1
30  
30  
35  
35  
20  
20  
0
8
7
9
8
tEHI  
tCHI  
tCLI  
0
7
9
0
ILE/ICLKlow time  
7
9
0
tCPI  
Minimum ICLKperiod  
15  
20  
0
Altera Corporation  
15  
EP312 & EP324 Classic EPLDs  
EP324-25  
EP324-30  
Non-Turbo  
Adder  
Asynchronous Clock Mode (Macrocells)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fAMAX  
fACNT1  
fACNT2  
tASU1  
tASU1  
tAH  
Maximum frequency (pipelined), no feedback  
Maximum counter frequency, external feedback  
Maximum counter frequency, internal feedback  
Input or I/O setup time to asynchronous clock  
Input or I/O setup time to asynchronous clock  
Input or I/O hold time from asynchronous clock  
Asynchronous clock to output delay  
66  
27.7  
33.3  
11  
50  
23.8  
28.5  
12  
MHz  
MHz  
MHz  
ns  
20  
20  
0
11  
12  
ns  
3
4
ns  
tACO  
25  
30  
30  
35  
20  
20  
20  
20  
20  
ns  
tACNT  
tACL  
Minimum global clock period  
ns  
Asynchronous clock low time  
7
7
9
9
ns  
tACH  
Asynchronous clock high time  
ns  
tACP  
Minimum asynchronous clock period  
15  
20  
ns  
EP324-25  
EP324-30  
Non-Turbo  
Adder  
Asynchronous Clock Mode (Input Structure)  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
fAMAXI  
tASUIR  
tAESUI  
tACOI  
tAEOI  
tAHI  
Maximum frequency input structure  
66  
50  
–5  
–5  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input register/latch setup time to asynchronous ILE/ICLK –5  
0
Input latch setup time to asynchronous ILE, Note (4)  
Asynchronous ICLKto combinatorial output  
Asynchronous ILEup to combinatorial output  
Input hold after falling edge of asynchronous ILE/ICLK  
Input hold after falling edge of asynchronous ILE  
Asynchronous ILE/ICLKhigh time  
–5  
0
30  
30  
35  
45  
20  
20  
20  
0
15  
14  
7
18  
17  
9
tAEHI  
tACHI  
tACLI  
tACPI  
20  
20  
20  
Asynchronous ILE/ICLKlow time  
7
9
Minimum ICLKperiod  
15  
20  
EP324-25  
EP324-30  
Non-Turbo  
Adder  
Input Clock to Macrocell Clock  
Symbol  
Parameter  
Min Max Min Max  
Note (2)  
Units  
tC1C2  
tC1C2  
tC1C2  
tC1C2  
Synchronous ILE/ICLKto synchronous macrocell CLK  
Synchronous ILE/ICLKto asynchronous macrocell CLK  
Asynchronous ILE/ICLKto synchronous macrocell CLK  
Asynchronous ILE/ICLKto asynchronous macrocell CLK  
20  
12.5  
40  
25  
15  
45  
25  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
20  
Notes to tables:  
(1) Operating conditions: VCC = 5 V ± 5%, TA = 0° C to 70° C for commercial use.  
(2) If the device is operating in standby mode, increase the time by the amount shown.  
(3) The tPZX and tPXZ parameters are measured at ±0.5 V from steady-state voltage that is driven by the specified output  
load.  
(4) This specification must be met to guarantee tEOI. If ILEgoes high before the data is valid, use tPD instead of tEOI  
.
16  
Altera Corporation  
EP312 & EP324 Classic EPLDs  
Figure 8 shows the package pin-outs for EP312 and EP324 devices.  
Figure 8. EP312 & EP324 Package Pin-Outs  
Package outlines not drawn to scale. Windows in ceramic packages only.  
4
3
2
1
28 27 26  
25  
CLK/INPUT  
I/O  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
2
I/O  
6
24  
23  
22  
21  
20  
19  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
I/O  
3
I/O  
7
4
I/O  
8
5
I/O  
6
I/O  
9
7
I/O  
10  
11  
EP312  
8
I/O  
9
I/O  
12 13 14 15 16 17 18  
10  
11  
12  
I/O  
I/O  
GND  
ILE/ICLK/INPUT  
24-Pin DIP  
28-Pin J-Lead  
6
5
4
3
2 1 44 43 42 41 40  
CLK/INPUT  
INPUT  
INPUT  
I/O  
INPUT  
INPUT  
INPUT  
I/O  
1
40  
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
I/O  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O  
3
I/O  
GND  
I/O  
8
I/O  
4
9
VCC  
I/O  
I/O  
I/O  
5
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
NC  
NC  
I/O  
GND  
I/O  
VCC  
I/O  
8
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VCC  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EP324  
VCC  
I/O  
GND  
I/O  
18 19 20 21 22 23 24 25 26 27 28  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
ILE/ICLK/INPUT  
40-Pin DIP  
44-Pin J-Lead  
Altera Corporation  
17  
EP312 & EP324 Classic EPLDs  
Refer to “Altera Device Package Outlines” in the Altera Data Book for  
detailed information on packages outlines.  
Package  
Outlines  
Table 3 gives the availability and ordering codes for EP312 and EP324  
devices. Altera will accept Intel product names and ordering codes for  
Intel devices until June 30, 1995, after which only Altera product names  
and ordering codes will be accepted.  
Product  
Availability  
Table 3. EP312 & EP324 Availability  
Device  
Temperature  
Grade  
Speed  
Grade  
Package  
Altera  
Ordering Code  
Former Intel  
Ordering Code  
EP312  
Commercial  
temperature  
(0° C to 70° C)  
-25  
-30  
-25  
-30  
-25  
24-pin CerDIP  
24-pin CerDIP  
24-pin PDIP  
24-pin PDIP  
28-pin PLCC  
EP312DC-25  
EP312DC-30  
EP312PC-25  
EP312PC-30  
EP312LC-25  
D5AC312-25  
D5AC312-30  
P5AC312-25  
P5AC312-30  
N5AC312-25  
Industrial  
-30  
28-pin PLCC  
EP312LI-30  
TNAC312-30  
temperature  
(–40° C to 85° C)  
EP324  
Commercial  
temperature  
(0° C to 70° C)  
-30  
-25  
-30  
-25  
-30  
40-pin CerDIP  
40-pin PDIP  
40-pin PDIP  
44-pin PLCC  
44-pin PLCC  
EP324DC-30  
EP324PC-25  
EP324PC-30  
EP324LC-25  
EP324LC-30  
D5AC324-30  
P5AC324-25  
P5AC324-30  
N5AC324-25  
N5AC324-30  
Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are  
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the  
trademarks of other organizations for their respective products or services mentioned in this document,  
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor  
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of  
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected  
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera  
warrants performance of its semiconductor products to current specifications in accordance with Altera’s  
standard warranty, but reserves the right to make changes to any products and services at any time without  
notice. Altera assumes no responsibility or liability arising out of the application or use of  
any information, product, or service described herein except as expressly agreed to in  
writing by Altera Corporation. Altera customers are advised to obtain the latest version of  
device specifications before relying on any published information and before placing  
orders for products or services.  
®
2610 Orchard Parkway  
San Jose, CA 95134-2020  
(408) 894-7000  
Applications Hotline:  
(800) 800-EPLD  
Customer Marketing:  
(408) 894-7104  
Literature Services:  
(408) 894-7144  
Copyright 1996 Altera Corporation. All rights reserved.  
18  
Altera Corporation  
Printed on Recycled Paper.  

相关型号:

EP33-12

Maintenance-Free Rechargeable Sealed Lead-Acid Battery
BB-BATTERY

EP330-12CFN

UV-Erasable/OTP PLD
ETC

EP330-12CN

UV-Erasable/OTP PLD
ETC

EP330-15CFN

UV-Erasable/OTP PLD
ETC

EP330-15CJ

UV-Erasable/OTP PLD
ETC

EP330-15CN

UV-Erasable/OTP PLD
ETC

EP330-20IFN

UV-Erasable/OTP PLD
ETC

EP330-20IJ

UV-Erasable/OTP PLD
ETC

EP330-20IN

UV-Erasable/OTP PLD
ETC

EP330-25IFN

UV-Erasable/OTP PLD
ETC

EP330-25IN

UV-Erasable/OTP PLD
ETC

EP330-25MJB

UV-Erasable/OTP PLD
ETC