EP910IDC40-12 [ALTERA]

UV PLD, 12ns, CMOS, CDIP40, WINDOWED, CERDIP-40;
EP910IDC40-12
型号: EP910IDC40-12
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

UV PLD, 12ns, CMOS, CDIP40, WINDOWED, CERDIP-40

CD
文件: 总42页 (文件大小:719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Classic  
EPLD Family  
®
May 1999, ver. 5  
Data Sheet  
Complete device family with logic densities of 300 to 900 usable gates  
(see Table 1)  
Device erasure and reprogramming with non-volatile EPROM  
configuration elements  
Fast pin-to-pin logic delays as low as 10 ns and counter frequencies  
as high as 100 MHz  
24 to 68 pins available in dual in-line package (DIP), plastic J-lead  
chip carrier (PLCC), pin-grid array (PGA), and small-outline  
integrated circuit (SOIC) packages  
Features  
Programmable security bit for protection of proprietary designs  
100% generically tested to provide 100% programming yield  
Programmable registers providing D, T, JK, and SR flipflops with  
individual clear and clock controls  
Software design support featuring the Altera® MAX+PLUS® II  
development system on Windows-based PCs, as well as  
Sun SPARCstation, HP 9000 Series 700/800, IBM RISC System/6000  
workstations, and third-party development systems  
Programming support with Altera’s Master Programming Unit  
(MPU); programming hardware from Data I/O, BP Microsystems,  
and other third-party programming vendors  
Additional design entry and simulation support provided by EDIF,  
library of parameterized modules (LPM), Verilog HDL, VHDL, and  
other interfaces to popular EDA tools from manufacturers such as  
Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys,  
Synplicity, and VeriBest  
Table 1. Classic Device Features  
Feature EP610  
EP910  
EP910I  
EP1810  
EP610I  
Usable gates  
300  
16  
450  
24  
900  
48  
64  
20  
50  
Macrocells  
Maximum user I/O pins  
22  
38  
t
f
(ns)  
10  
12  
PD  
(MHz)  
100  
76.9  
CNT  
Altera Corporation  
745  
A-DS-CLASSIC-05  
Classic EPLD Family Data Sheet  
The Altera ClassicTM device family offers a solution to high-speed, low-  
power logic integration. Fabricated on advanced CMOS technology,  
Classic devices also have a Turbo-only version, which is described in this  
data sheet.  
General  
Description  
Classic devices support 100% TTL emulation and can easily integrate  
multiple PAL- and GAL-type devices with densities ranging from 300 to  
900 usable gates. The Classic family provides pin-to-pin logic delays as  
low as 10 ns and counter frequencies as high as 100 MHz. Classic devices  
are available in a wide range of packages, including ceramic dual in-line  
package (CerDIP), plastic dual in-line package (PDIP), plastic J-lead chip  
carrier (PLCC), ceramic J-lead chip carrier (JLCC), pin-grid array (PGA),  
and small-outline integrated circuit (SOIC) packages.  
EPROM-based Classic devices can reduce active power consumption  
without sacrificing performance. This reduced power consumption  
makes the Classic family well suited for a wide range of low-power  
applications.  
Classic devices are 100% generically tested devices in windowed  
packages and can be erased with ultra-violet (UV) light, allowing design  
changes to be implemented quickly.  
Classic devices use sum-of-products logic and a programmable register.  
The sum-of-products logic provides a programmable-AND/fixed-OR  
structure that can implement logic with up to eight product terms. The  
programmable register can be individually programmed for D, T, SR, or  
JK flipflop operation or can be bypassed for combinatorial operation. In  
addition, macrocell registers can be individually clocked either by a global  
clock or by any input or feedback path to the ANDarray. Altera’s  
proprietary programmable I/O architecture allows the designer to  
program output and feedback paths for combinatorial or registered  
operation in both active-high and active-low modes. These features make  
it possible to implement a variety of logic functions simultaneously.  
Classic devices are supported by Altera’s MAX+PLUS II development  
system, a single, integrated package that offers schematic, text—including  
VHDL, Verilog HDL, and the Altera Hardware Description Language  
(AHDL)—and waveform design entry, compilation and logic synthesis,  
simulation and timing analysis, and device programming. The  
MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL,  
Verilog HDL, and other interfaces for additional design entry and  
simulation support from other industry-standard PC- and workstation-  
based EDA tools. The MAX+PLUS II software runs on Windows-based  
PCs, as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC  
System/6000 workstations. These devices also contain on-board logic test  
circuitry to allow verification of function and AC specifications during  
standard production flow.  
746  
Altera Corporation  
Classic EPLD Family Data Sheet  
For more information, see the MAX+PLUS II Programmable Logic  
Development System & Software Data Sheet.  
f
The Classic architecture includes the following elements:  
Functional  
Description  
Macrocells  
Programmable registers  
Output enable/clock select  
Feedback select  
Macrocells  
Classic macrocells, shown in Figure 1, can be individually configured for  
both sequential and combinatorial logic operation. Eight product terms  
form a programmable-ANDarray that feeds an ORgate for combinatorial  
logic implementation. An additional product term is used for  
asynchronous clear control of the internal register; another product term  
implements either an output enable or a logic-array-generated clock.  
Inputs to the programmable-ANDarray come from both the true and  
complement signals of the dedicated inputs, feedbacks from I/O pins that  
are configured as inputs, and feedbacks from macrocell outputs. Signals  
from dedicated inputs are globally routed and can feed the inputs of all  
device macrocells. The feedback multiplexer controls the routing of  
feedback signals from macrocells and from I/O pins. For additional  
information on feedback select configurations, see Figure 3 on page 749.  
Figure 1. Classic Device Macrocell  
VCC  
Logic Array  
Output Enable/Clock Select  
Global  
Clock  
OE  
CLK  
Q
CLR  
Programmable  
Register  
Feedback  
Select  
To Logic Array  
Input, I/O, and  
Macrocell  
Feedbacks  
Asynchronous Clear  
Altera Corporation  
747  
Classic EPLD Family Data Sheet  
The eight product terms of the programmable-ANDarray feed the 8-input  
ORgate, which then feeds one input to an XORgate. The other input to the  
XORgate is connected to a programmable bit that allows the array output  
to be inverted. Altera’s MAX+PLUS II software uses the XORgate to  
implement either active-high or active-low logic, or De Morgan’s  
inversion to reduce the number of product terms needed to implement a  
function.  
Programmable Registers  
To implement registered functions, each macrocell register can be  
individually programmed for D, T, JK, or SR operation. If necessary, the  
register can be bypassed for combinatorial operation. During design  
compilation, the MAX+PLUS II software selects the most efficient register  
operation for each registered function to minimize the logic resources  
needed by the design. Registers have an individual asynchronous clear  
function that is controlled by a dedicated product term. These registers  
are cleared automatically during power-up.  
In addition, macrocell registers can be individually clocked by either a  
global clock or any input or feedback path to the ANDarray. Altera’s  
proprietary programmable I/O architecture allows the designer to  
program output and feedback paths for combinatorial or registered  
operation in both active-high and active-low modes. These features make  
it possible to simultaneously implement a variety of logic functions.  
Output Enable/Clock Select  
Figure 2 shows the two operating modes (Modes 0 and 1) provided by the  
output enable/clock (OE/CLK) select. The OE/CLKselect, which is  
controlled by a single programmable bit, can be individually configured  
for each macrocell. In Mode 0, the tri-state output buffer is controlled by  
a single product term. If the output enable is high, the output buffer is  
enabled. If the output enable is low, the output has a high-impedance  
value. In Mode 0, the macrocell flipflop is clocked by its global clock input  
signal.  
In Mode 1, the output enable buffer is always enabled, and the macrocell  
register can be triggered by an array clock signal generated by a product  
term. This mode allows registers to be individually clocked by any signal  
on the ANDarray. With both true and complement signals in the ANDarray,  
the register can be configured to trigger on a rising or falling edge. This  
product-term-controlled clock configuration also supports gated clock  
structures.  
748  
Altera Corporation  
Classic EPLD Family Data Sheet  
Figure 2. Classic Output Enable/Clock Select  
Mode 0  
Output Enable/Clock  
Select  
VCC  
Global  
Clock  
In Mode 0, the register  
is clocked by the global  
clock signal. The  
OE  
AND  
Array  
CLK  
output is enabled by  
the logic from the  
product term.  
Data  
Q
OE = Product Term  
CLK = Global  
Macrocell  
CLR  
Output Buffer  
Mode 1  
Output Enable/Clock  
Select  
Global  
Clock  
VCC  
In Mode 1, the output  
is permanently enabled  
and the register is  
clocked by the product  
term, which allows  
gated clocks to be  
OE  
AND  
Array  
CLK  
Data  
Q
generated.  
OE = Enabled  
CLK = Product Term  
Macrocell  
CLR  
Output Buffer  
Feedback Select  
Each macrocell in a Classic device provides feedback selection that is  
controlled by the feedback multiplexer. This feedback selection allows the  
designer to feed either the macrocell output or the I/O pin input  
associated with the macrocell back into the ANDarray. The macrocell  
output can be either the Qoutput of the programmable register or the  
combinatorial output of the macrocell. Different devices have different  
feedback multiplexer configurations. See Figure 3.  
Figure 3. Classic Feedback Multiplexer Configurations  
Global Feedback Multiplexer  
Quadrant Feedback Multiplexer  
Dual Feedback Multiplexer  
Quadrant  
Global  
Q
Q
Q
Global  
Quadrant  
I/O  
I/O  
I/O  
EP610  
EP610I  
EP910  
EP910I  
EP1810  
EP1810  
Altera Corporation  
749  
Classic EPLD Family Data Sheet  
EP610, EP610I, EP910, and EP910I devices have a global feedback  
configuration; either the macrocell output (Q) or the I/O pin input (I/O)  
can feed back to the ANDarray so that it is accessible to all other  
macrocells.  
EP1810 macrocells can have either of two feedback configurations:  
quadrant or dual. Most macrocells in EP1810 devices have a quadrant  
feedback configuration; either the macrocell output or I/O pin input can  
feed back to other macrocells in the same quadrant. Selected macrocells in  
EP1810 devices have a dual feedback configuration: the output of the  
macrocell feeds back to other macrocells in the same quadrant, and the  
I/O pin input feeds back to all macrocells in the device. If the associated  
I/O pin is not used, the macrocell output can optionally feed all  
macrocells in the device. In this case, the output of the macrocell passes  
through the tri-state buffer and uses the feedback path between the buffer  
and the I/O pin.  
Classic devices contain a programmable security bit that controls access to  
the data programmed into the device. When this bit is programmed, a  
proprietary design implemented in the device cannot be copied or  
retrieved. This feature provides a high level of design security because  
data within configuration elements is invisible. The security bit that  
controls this function and other program data is reset only when the  
device is erased.  
Design Security  
Timing Model  
Device timing can be analyzed with the MAX+PLUS II software, with a  
variety of popular industry-standard EDA simulators and timing  
analyzers, or with the timing model shown in Figure 4. Devices have fixed  
internal delays that allow the user to determine the worst-case timing for  
any design. The MAX+PLUS II software provides timing simulation,  
point-to-point delay prediction, and detailed timing analysis for system-  
level performance evaluation.  
Figure 4. Classic Timing Model  
Global Clock  
Delay  
tICS  
Input  
Delay  
tIN  
Register  
tSU  
tH  
Output  
Delay  
tOD  
Array Clock  
Delay  
tIC  
tXZ  
tZX  
Logic Array  
Delay  
tLAD  
tCLR  
I/O  
Delay  
tIO  
Feedback  
Delay  
tFD  
750  
Altera Corporation  
Classic EPLD Family Data Sheet  
Timing information can be derived from the timing model and  
parameters for a particular device. External timing parameters represent  
pin-to-pin timing delays, and can be calculated from the sum of internal  
parameters. Figure 5 shows the internal timing relationship for internal  
and external delay parameters.  
For more information on device timing, refer to Application Note 78  
(Understanding MAX 5000 & Classic Timing) in this data book.  
f
Altera Corporation  
751  
Classic EPLD Family Data Sheet  
Figure 5. Classic Switching Waveforms  
Input Mode  
tPD1 = tIN + tLAD + tOD  
tPD2 = tIO + tIN + tLAD + tOD  
t
and t < 3 ns.  
F
R
tIO  
Inputs are driven at 3 V  
for a logic high and  
0 V for a logic low.  
I/O Pin  
tIN  
All timing characteristics  
are measured at 1.5 V.  
Input Pin  
tLAD  
tCLR  
tOD  
c Array Input  
Logic Array Output  
Output Pin  
Global Clock Mode  
tR  
tCH  
tCL  
tF  
Global Clock Pin  
Global Clock at Register  
Data from Logic Array  
tIN  
tICS  
tH  
tSU  
Array Clock Mode  
tR  
tACH  
tACL  
tF  
Clock Pin  
Clock into Logic Array  
tIN  
tIC  
Clock from Logic Array  
tASU  
tAH  
Data from Logic Array  
tFD  
Register Output to Logic Array  
Output Mode  
Clock from Logic Array  
Data from Logic Array  
Output Pin  
tOD  
tZX  
tXZ  
High-Impedance  
Tri-State  
752  
Altera Corporation  
Classic EPLD Family Data Sheet  
Many Classic devices contain a programmable Turbo BitTM option to  
control the automatic power-down feature that enables the low-standby-  
power mode. When the Turbo Bit option is turned on, the low-standby-  
power mode is disabled. All AC values are tested with the Turbo Bit  
option turned on. When the device is operating with the Turbo Bit option  
turned off (non-Turbo mode), a non-Turbo adder must be added to the  
appropriate AC parameter to determine worst-case timing. The non-  
Turbo adder is specified in the “AC Operating Conditions” tables for each  
Classic device that supports the Turbo mode.  
Turbo Bit  
Option  
Classic devices are fully functionally tested. Complete testing of each  
programmable EPROM configuration element and all internal logic  
elements before and after packaging ensures 100% programming yield.  
See Figure 6 for AC test measurement conditions. These devices also  
contain on-board logic test circuitry to allow verification of function and  
AC specifications during standard production flow.  
Generic Testing  
Figure 6. AC Test Conditions  
VCC  
Power-supply transients can affect AC  
measurements. Simultaneous transitions of  
multiple outputs should be avoided for  
accurate measurement. Threshold tests  
must not be performed under AC  
R1  
885  
To Test  
System  
Device  
Output  
conditions. Large-amplitude, fast ground-  
current transients normally occur as the  
device outputs discharge the load  
capacitances. When these transients flow  
R2  
340 Ω  
C1 (includes  
JIG capacitance)  
through the parasitic inductance between  
the device ground pin and the test system  
ground, significant reductions in observable  
noise immunity can result.  
Classic devices can be programmed on 486- and Pentium-based PCs with  
the MAX+PLUS II Programmer, an Altera Logic Programmer card, the  
MPU, and the appropriate device adapter. The MPU performs continuity  
checking to ensure adequate electrical contact between the adapter and  
the device.  
Device  
Programming  
Data I/O, BP Microsystems, and other programming hardware  
manufacturers also offer programming support for Altera devices. See  
Programming Hardware Manufacturers for more information.  
Altera Corporation  
753  
Notes:  
EP610 EPLD  
High-performance, 16-macrocell Classic EPLD  
Features  
Combinatorial speeds with tPD as fast as 10 ns  
Counter frequencies of up to 100 MHz  
Pipelined data rates of up to 125 MHz  
Programmable I/O architecture with up to 20 inputs or 16 outputs  
and 2 clock pins  
EP610 and EP610I devices are pin-, function-, and programming  
file-compatible  
Programmable clock option for independent clocking of all registers  
Macrocells individually programmable as D, T, JK, or SR flipflops, or  
for combinatorial operation  
Available in the following packages (see Figure 7):  
24-pin small-outline integrated circuit (plastic SOIC only)  
24-pin ceramic and plastic dual in-line package (CerDIP and  
PDIP)  
28-pin plastic J-lead chip carrier (PLCC)  
Figure 7. EP610 Package Pin-Out Diagrams  
Package outlines not drawn to scale. Windows in ceramic packages only.  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CLK1  
INPUT  
I/O  
VCC  
INPUT  
I/O  
2
3
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
INPUT  
I/O  
CLK1  
INPUT  
I/O  
4
3
2
1
28 27 26  
25  
2
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
3
5
I/O  
I/O  
6
24  
23  
22  
21  
20  
19  
4
I/O  
I/O  
6
I/O  
I/O  
5
I/O  
7
I/O  
7
I/O  
I/O  
6
I/O  
I/O  
8
8
I/O  
I/O  
7
I/O  
I/O  
EP610  
9
8
I/O  
I/O  
I/O  
9
I/O  
9
I/O  
I/O  
10  
11  
12  
I/O  
I/O  
10  
11  
10  
11  
12  
I/O  
I/O  
INPUT  
GND  
INPUT  
CLK2  
INPUT  
CLK2  
INPUT  
GND  
12 13 14 15 16 17 18  
24-Pin SOIC  
EP610  
24-Pin DIP  
28-Pin PLCC  
EP610  
EP610I  
EP610  
EP610I  
Altera Corporation  
755  
Classic EPLD Family Data Sheet  
EP610 devices have 16 macrocells, 4 dedicated input pins, 16 I/O pins,  
General  
Description  
and 2 global clock pins (see Figure 8). Each macrocell can access signals  
from the global bus, which consists of the true and complement forms of  
the dedicated inputs and the true and complement forms of either the  
output of the macrocell or the I/O input. The CLK1signal is a dedicated  
global clock input for the registers in macrocells 9 through 16. The CLK2  
signal is a dedicated global clock input for registers in macrocells 1  
through 8.  
Figure 8. EP610 Block Diagram  
Numbers without parentheses are for DIP and SOIC packages. Numbers in parentheses are for J-lead packages.  
2
1
(3)  
(2)  
INPUT  
CLK1  
INPUT (27) 23  
CLK2 (16) 13  
3
(4)  
(5)  
Macrocell 9  
Macrocell 10  
Macrocell 11  
Macrocell 12  
Macrocell 13  
Macrocell 14  
Macrocell 15  
Macrocell 16  
(26) 22  
(25) 21  
(24) 20  
(23) 19  
(22) 18  
(21) 17  
(20) 16  
(18) 15  
Macrocell 1  
Macrocell 2  
Macrocell 3  
Macrocell 4  
Macrocell 5  
Macrocell 6  
Macrocell 7  
Macrocell 8  
4
5
6
7
8
9
(6)  
Global  
Bus  
(7)  
(8)  
(9)  
(10)  
10 (12)  
INPUT (17) 14  
11 (13) INPUT  
Figure 9 shows the typical supply current (I ) versus frequency of EP610  
CC  
devices.  
Figure 9. I vs. Frequency of EP610 Devices  
CC  
100  
Turbo  
10  
Typical ICC  
Active (mA)  
V
CC = 5.0 V  
TA = 25° C  
1.0  
0.1  
Non-Turbo  
1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 80 MHz  
Frequency  
756  
Altera Corporation  
Classic EPLD Family Data Sheet  
Figure 10 shows the typical output drive characteristics of EP610 devices.  
Figure 10. Output Drive Characteristics of EP610 Devices  
Drive characteristics may exceed shown curves.  
EP610-15 & EP610-20 EPLDs  
EP610-25, EP610-30 & EP610-35 EPLDs  
200  
80  
IOL  
IOL  
150  
100  
50  
60  
Typical ICC  
Output  
Current (mA)  
Typical ICC  
Output  
Current (mA)  
VCC = 5.0 V  
TA = 25° C  
VCC = 5.0 V  
TA = 25° C  
40  
IOH  
20  
IOH  
1
2
3
4
5
0.45  
0.45  
1
2
3
4
5
VO Output Voltage (V)  
VO Output Voltage (V)  
EP610I EPLDs  
100  
80  
IOL  
60  
40  
20  
Typical ICC  
Output  
Current (mA)  
VCC = 5.0 V  
TA = 25° C  
IOH  
1
2
3
4
5
VO Output Voltage (V)  
Altera Corporation  
757  
Classic EPLD Family Data Sheet  
Tables 2 through 7 provide information on absolute maximum ratings,  
recommended operating conditions, operating conditions, and  
capacitance for EP610 and EP610I devices.  
Operating  
Conditions  
Table 2. EP610 & EP610I Device Absolute Maximum Ratings  
Notes (1), (2)  
Symbol  
Parameter  
Conditions  
EP610  
EP610I  
Unit  
Min  
Max  
Min  
Max  
VCC  
VI  
Supply voltage  
With respect to ground (3)  
–2.0  
–2.0  
–175  
–25  
7.0  
7.0  
–2.0  
–0.5  
7.0  
V
DC input voltage  
VCC + 0.5  
V
IMAX  
IOUT  
TSTG  
TAMB  
TJ  
DC VCC or ground current  
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
175  
25  
mA  
mA  
° C  
° C  
° C  
No bias  
–65  
150  
135  
150  
–65  
–65  
150  
135  
150  
Under bias  
–65  
Ceramic packages, under  
bias  
Plastic packages, under bias  
135  
135  
° C  
Table 3. EP610 & EP610I Device Recommended Operating Conditions  
Note (2)  
Symbol  
Parameter  
Conditions  
EP610  
Min Max  
EP610I  
Unit  
Min  
Max  
VCC  
VI  
Supply voltage  
(4)  
4.75 (4.5) 5.25 (5.5)  
4.75  
–0.3  
0
5.25  
VCC + 0.3  
VCC  
V
V
Input voltage  
–0.3  
0
VCC + 0.3  
VCC  
VO  
TA  
Output voltage  
V
Operating temperature  
For commercial use  
0
70  
0
70  
° C  
° C  
ns  
ns  
For industrial use  
–40  
85  
–40  
85  
tR  
tF  
Input rise time  
Input fall time  
(5)  
(5)  
100 (50)  
100 (50)  
500  
500  
Table 4. EP610 & EP610I Device DC Operating Conditions  
Note (6)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
VIL  
High-level input voltage  
2.0  
–0.3  
2.4  
VCC + 0.3  
0.8  
V
V
Low-level input voltage  
VOH  
High-level TTL output voltage  
High-level CMOS output voltage  
Low-level output voltage  
IOH = –4 mA DC (7)  
V
IOH = –0.6 mA DC (7), (8)  
IOL = 4 mA DC (7)  
3.84  
V
VOL  
II  
0.45  
10  
V
I/O pin leakage current of dedicated input VI = VCC or ground  
pins  
–10  
–10  
µA  
IOZ  
Tri-state output leakage current  
VO = VCC or ground  
10  
µA  
758  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 5. EP610 & EP610I Device Capacitance  
Note (9)  
Symbol  
Parameter  
Conditions  
EP610-15 EP610-25  
EP610-20 EP610-30  
EP610-35  
EP610I  
Unit  
Min Max Min Max Min Max  
CIN  
Input pin capacitance  
I/O pin capacitance  
CLK1pin capacitance  
CLK2pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
10  
12  
20  
20  
20  
20  
20  
50  
8
8
pF  
pF  
pF  
pF  
CI/O  
CCLK1  
CCLK2  
10  
12  
Table 6. EP610 Device I Supply Current  
Notes (2), (10)  
Conditions  
CC  
Symbol  
Parameter  
Speed  
Grade  
EP610  
Unit  
Min  
Typ  
Max  
ICC1  
ICC2  
ICC3  
VCC supply current  
VI = VCC or ground, no load  
(11), (12)  
20  
150  
µA  
(non-Turbo, standby)  
VCC supply current  
(non-Turbo, active)  
VI = VCC or ground, no load,  
f = 1.0 MHz (11), (12)  
5
10 (15)  
mA  
VCC supply current  
(Turbo, active)  
VI = VCC or ground, no load, -15, -20  
60  
45  
90 (115)  
60 (75)  
mA  
mA  
f = 1.0 MHz (12)  
-25, -30,  
-35  
Table 7. EP610I Device I Supply Current  
Note (10)  
CC  
Symbol  
Parameter  
Conditions  
EP610I  
Unit  
Min  
Typ  
Max  
ICC1  
ICC2  
ICC3  
VCC supply current  
VI = VCC or ground, no load,  
(11), (12)  
20  
150  
µA  
mA  
mA  
(non-Turbo, standby)  
VCC supply current  
(non-Turbo, active)  
VI = VCC or ground, no load,  
f = 1.0 MHz (11), (12)  
3
8
VCC supply current  
(Turbo, active)  
VI = VCC or ground, no load,  
f = 1.0 MHz (12)  
65  
105  
Altera Corporation  
759  
Classic EPLD Family Data Sheet  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.  
(2) Numbers in parentheses are for industrial-temperature-range devices.  
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V (EP610) or  
–0.5 V (EP610I) or overshoot to 7.0 V (EP610) or VCC + 0.5 V (EP610I) for input currents less than 100 mA and periods  
less than 20 ns.  
(4) For EP610 devices, maximum VCC rise time is 50 ms. For EP610I devices, maximum VCC rise time is unlimited with  
monotonic rise.  
(5) For EP610-15 and EP610-20 devices: tR and tF = 40 ns.  
For EP610-15 and EP610-20 clocks: tR and tF = 20 ns.  
(6) These values are specified in Table 3 on page 758.  
(7) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL  
output current.  
(8) This parameter does not apply to EP610I devices.  
(9) The device capacitance is measured at 25° C and is sample-tested only.  
(10) Typical values are for TA = 25° C and VCC = 5 V.  
(11) When the Turbo Bit option is not set (non-Turbo mode), EP610 devices enter standby mode if no logic transitions  
occur for 100 ns after the last transition. When the Turbo Bit option is not set, EP610I devices enter standby mode if  
no logic transitions occur for 75 ns after the last transition.  
(12) Measured with a device programmed as a 16-bit counter.  
760  
Altera Corporation  
Classic EPLD Family Data Sheet  
Tables 8 and 9 show the timing parameters for EP610-15 and EP610-20  
devices.  
Table 8. EP610-15 & EP610-20 External Timing Parameters  
Notes (1), (2)  
Symbol  
Parameter  
Conditions  
EP610-15 EP610-20 Non-Turbo Unit  
Adder  
(3)  
Min Max Min Max  
tPD1  
tPD2  
tPZX  
tPXZ  
tCLR  
fMAX  
tSU  
Input to non-registered output  
I/O input to non-registered output  
Input to output enable  
C1 = 35 pF  
15.0  
17.0  
15.0  
15.0  
15.0  
20.0  
22.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
0.0  
ns  
ns  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF (4)  
C1 = 35 pF  
(5)  
ns  
Input to output disable  
ns  
Asynchronous output clear time  
Maximum clock frequency  
Global clock input setup time  
Global clock input hold time  
Global clock high time  
ns  
83.3  
9.0  
0.0  
6.0  
6.0  
62.5  
11.0  
0.0  
MHz  
ns  
20.0  
0.0  
tH  
ns  
tCH  
8.0  
0.0  
ns  
tCL  
Global clock low time  
8.0  
0.0  
ns  
tCO1  
tCNT  
fCNT  
Global clock to output delay  
Global clock minimum period  
11.0  
12.0  
13.0  
16.0  
0.0  
ns  
0.0  
ns  
Maximum internal global clock  
frequency  
(6)  
83.3  
62.5  
0.0  
MHz  
tASU  
tAH  
Array clock input setup time  
Array clock input hold time  
Array clock high time  
6.0  
6.0  
7.0  
7.0  
1.0  
8.0  
8.0  
9.0  
9.0  
1.0  
20.0  
0.0  
ns  
ns  
tACH  
tACL  
tODH  
tACO1  
tACNT  
fACNT  
0.0  
ns  
Array clock low time  
0.0  
ns  
Output data hold time after clock  
Array clock to output delay  
Array clock minimum period  
C1 = 35 pF (7)  
1.0  
ns  
15.0  
14.0  
20.0  
18.0  
20.0  
0.0  
ns  
ns  
Array clock internal maximum  
frequency  
(6)  
71.4  
55.6  
0.0  
MHz  
Table 9. EP610-15 & EP610-20 Internal Timing Parameters (Part 1 of 2)  
Symbol  
Parameter  
Conditions  
EP610-15 EP610-20 Unit  
Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
4.0  
2.0  
6.0  
5.0  
5.0  
5.0  
4.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
11.0  
5.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
5.0  
5.0  
Altera Corporation  
761  
Classic EPLD Family Data Sheet  
Table 9. EP610-15 & EP610-20 Internal Timing Parameters (Part 2 of 2)  
Symbol  
Parameter  
Conditions  
EP610-15 EP610-20 Unit  
Min Max Min Max  
tSU  
tH  
Register setup time  
5.0  
4.0  
4.0  
7.0  
ns  
ns  
ns  
ns  
ns  
ns  
Register hold time  
Array clock delay  
Global clock delay  
Feedback delay  
tIC  
6.0  
2.0  
1.0  
6.0  
11.0  
4.0  
tICS  
tFD  
tCLR  
1.0  
Register clear time  
11.0  
Tables 10 and 11 show the timing parameters for EP610-25, EP610-30 and  
EP610-35 devices.  
Table 10. EP610-25, EP610-30 & EP610-35 External Timing Parameters  
Notes (1), (2)  
Symbol  
Parameter  
Conditions EP610-25 EP610-30 EP610-35 Non-Turbo Unit  
Adder  
Min Max Min Max Min Max  
(3)  
tPD1  
tPD2  
tPZX  
tPXZ  
tCLR  
fMAX  
tSU  
Input to non-registered output  
I/O input to non-registered output  
Input to output enable  
C1 = 35 pF  
25.0  
27.0  
25.0  
25.0  
27.0  
30.0  
32.0  
30.0  
30.0  
32.0  
35.0  
37.0  
35.0  
35.0  
37.0  
30.0  
30.0  
30.0  
30.0  
30.0  
0.0  
ns  
ns  
ns  
Input to output disable  
C1 = 5 pF (4)  
C1 = 35 pF  
(5)  
ns  
Asynchronous output clear time  
Maximum frequency  
ns  
47.6  
21.0  
0.0  
41.7  
24.0  
0.0  
37.0  
27.0  
0.0  
MHz  
ns  
Global clock input setup time  
Global clock input hold time  
Global clock high time  
30.0  
0.0  
tH  
ns  
tCH  
10.0  
10.0  
11.0  
11.0  
12.0  
12.0  
0.0  
ns  
tCL  
Global clock low time  
0.0  
ns  
tCO1  
tCNT  
fCNT  
Global clock to output delay  
Global clock minimum period  
15.0  
25.0  
17.0  
30.0  
20.0  
35.0  
0.0  
ns  
0.0  
ns  
Maximum internal global clock  
frequency  
(6)  
40.0  
33.3  
28.6  
0.0  
MHz  
tASU  
tAH  
Array clock input setup time  
Array clock input hold time  
Array clock high time  
8.0  
8.0  
12.0  
11.0  
11.0  
1.0  
8.0  
12.0  
12.0  
12.0  
1.0  
30.0  
0.0  
0.0  
0.0  
ns  
ns  
12.0  
10.0  
10.0  
tACH  
tACL  
tODH  
tACO1  
tACNT  
fACNT  
ns  
Array clock low time  
ns  
Output data hold time after clock  
Array clock to output delay  
Array clock minimum period  
C1 = 35 pF (7) 1.0  
ns  
27.0  
25.0  
32.0  
30.0  
37.0  
35.0  
30.0  
0.0  
ns  
ns  
Maximum internal global clock  
frequency  
(6)  
40.0  
33.3  
28.6  
0.0  
MHz  
762  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 11. EP610-25, EP610-30 & EP610-35 Internal Timing Parameters  
Unit  
Symbol  
Parameter  
Condition  
EP610-25  
EP610-30  
EP610-35  
Min Max Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
8.0  
2.0  
9.0  
2.0  
11.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
11.0  
6.0  
14.0  
7.0  
15.0  
9.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
6.0  
7.0  
9.0  
6.0  
7.0  
9.0  
11.0  
10.0  
11.0  
10.0  
12.0  
10.0  
Register hold time  
tIC  
Array clock delay  
13.0  
1.0  
16.0  
1.0  
17.0  
0.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
3.0  
5.0  
8.0  
Register clear time  
13.0  
16.0  
17.0  
Notes to tables:  
(1) These values are specified in Table 3 on page 758.  
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for information on internal  
timing parameters.  
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.  
(4) Sample-tested only for an output change of 500 mV.  
(5) The fMAX values represent the highest frequency for pipelined data.  
(6) Measured with a device programmed as a 16-bit counter.  
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter  
applies for both global and array clocking.  
Altera Corporation  
763  
 
Classic EPLD Family Data Sheet  
Tables 12 and 13 show the timing parameters for EP610I devices.  
Table 12. EP610I External Timing Parameters  
Notes (1), (2)  
Symbol  
Parameter  
Conditions EP610I-10 EP610I-12 EP610I-15 Non-Turbo Unit  
Adder  
Min Max Min Max Min Max  
(3)  
tPD1  
tPD2  
tPZX  
tPXZ  
tCLR  
fMAX  
Input to non-registered output  
I/O input to non-registered output  
Input to output enable  
C1 = 35 pF  
10.0  
10.0  
15.0  
13.0  
13.0  
12.0  
12.0  
15.0  
15.0  
15.0  
15.0  
15.0  
18.0  
18.0  
18.0  
25.0  
25.0  
25.0  
25.0  
25.0  
0.0  
ns  
ns  
ns  
Input to output disable  
C1 = 5 pF (4)  
ns  
Asynchronous output clear time C1 = 35 pF  
ns  
Maximum frequency  
(5)  
125.0  
100.  
0
83.3  
MHz  
tSU  
Global clock input setup time  
Global clock input hold time  
Global clock high time  
7.0  
0.0  
5.0  
5.0  
9.0  
0.0  
5.0  
5.0  
12.0  
0.0  
5.0  
5.0  
25  
0.0  
0.0  
0.0  
0.0  
25.0  
0.0  
ns  
ns  
tH  
tCH  
tCL  
ns  
Global clock low time  
ns  
tCO1  
tCNT  
fCNT  
Global clock to output delay  
Global clock minimum period  
6.5  
8.0  
8.0  
ns  
10.0  
12.0  
15.0  
ns  
Maximum internal global clock  
frequency  
(6)  
100.0  
83.3  
66.0  
MHz  
tASU  
tAH  
Array clock input setup time  
Array clock input hold time  
Array clock high time  
1.5  
5.5  
5.0  
5.0  
1.0  
3.0  
6.0  
5.0  
5.0  
1.0  
4.0  
6.0  
6.0  
6.0  
1.0  
25.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
ns  
tACH  
tACL  
tODH  
Array clock low time  
Output data hold time after clock C1 = 35 pF  
(7)  
tACO1  
tACNT  
fACNT  
Array clock to output delay  
Array clock minimum period  
12.0  
10.0  
14.0  
12.0  
16.0  
15.0  
25.0  
25.0  
0.0  
ns  
ns  
Maximum internal array clock  
frequency  
(6)  
100.0  
83.3  
66.0  
MHz  
764  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 13. EP610 Internal Timing Parameters  
Symbol  
Parameter  
Conditions  
EP610I-10  
EP610I-12  
EP610I-15 Unit  
Min Max Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
1.5  
0.0  
5.5  
3.0  
8.0  
6.0  
4.0  
0.0  
6.0  
2.0  
5.0  
5.0  
4.0  
0.0  
9.0  
2.0  
6.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
3.5  
3.5  
5.0  
4.0  
5.0  
7.0  
Register hold time  
tIC  
Array clock delay  
7.5  
2.0  
1.0  
8.5  
8.0  
2.0  
1.0  
9.0  
10.0  
2.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
1.0  
Register clear time  
12.0  
Notes to tables:  
(1) These values are specified in Table 3 on page 758.  
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for more information on Classic  
timing parameters.  
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.  
(4) Sample-tested only for an output change of 500 mV.  
(5) The fMAX values represent the highest frequency for pipelined data.  
(6) Measured with a device programmed as a 16-bit counter.  
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter  
applies for both global and array clocking.  
Altera Corporation  
765  
Notes:  
EP910 EPLD  
High-performance, 24-macrocell Classic EPLD  
Features  
Combinatorial speeds with tPD as fast as 12 ns  
Counter frequencies of up to 76.9 MHz  
Pipelined data rates of up to 125 MHz  
Programmable I/O architecture with up to 36 inputs or 24 outputs  
EP910 and EP910I devices are pin-, function-, and programming file-  
compatible  
Programmable clock option for independent clocking of all registers  
Macrocells individually programmable as D, T, JK, or SR flipflops, or  
for combinatorial operation  
Available in the following packages (see Figure 11)  
44-pin plastic J-lead chip carrier (PLCC)  
40-pin ceramic and plastic dual in-line packages (CerDIP and  
PDIP)  
Figure 11. EP910 Package Pin-Out Diagrams  
Package outlines are not drawn to scale. Windows in ceramic packages only.  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
INPUT  
INPUT  
INPUT  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLK1  
INPUT  
INPUT  
INPUT  
I/O  
2
3
4
5
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
5
4
3
2 1 44 43 42 41 40  
7
8
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
9
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
CLK2  
INPUT  
INPUT  
INPUT  
GND  
18 19 20 21 22 23 24 25 26 27 28  
40-Pin DIP  
44-Pin PLCC  
EP910  
EP910I  
EP910  
EP910I  
Altera Corporation  
767  
Classic EPLD Family Data Sheet  
Altera EP910 devices can implement up to 450 usable gates of SSI and MSI  
General  
Description  
logic functions. EP910 devices have 24 macrocells, 12 dedicated input  
pins, 24 I/O pins, and 2 global clock pins (see Figure 12). Each macrocell  
can access signals from the global bus, which consists of the true and  
complement forms of the dedicated inputs and the true and complement  
forms of either the output of the macrocell or the I/O input. The CLK1and  
CLK2signals are the dedicated clock inputs for the registers in macrocells  
13 through 24 and 1 through 12, respectively.  
Figure 12. EP910 Block Diagram  
Numbers without parentheses are for DIP packages. Numbers in parentheses are for J-lead packages.  
2
3
4
1
(3) INPUT  
(4) INPUT  
(5) INPUT  
(2) CLK1  
INPUT (43) 39  
INPUT (42) 38  
INPUT (41) 37  
(24) 21  
CLK2  
5
6
(6)  
(7)  
(40)  
(38)  
(37)  
(36)  
(35)  
(34)  
(33)  
(32)  
(31)  
(30)  
(29)  
(28)  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
Macrocell 1  
Macrocell 2  
Macrocell 3  
Macrocell 4  
Macrocell 5  
Macrocell 6  
Macrocell 7  
Macrocell 8  
Macrocell 9  
Macrocell 10  
Macrocell 11  
Macrocell 12  
Macrocell 13  
Macrocell 14  
Macrocell 15  
Macrocell 16  
Macrocell 17  
Macrocell 18  
Macrocell 19  
Macrocell 20  
Macrocell 21  
Macrocell 22  
Macrocell 23  
Macrocell 24  
7
(8)  
8
(9)  
9
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
(18)  
Global  
Bus  
10  
11  
12  
13  
14  
15  
16  
17 (19) INPUT  
18 (20) INPUT  
19 (21) INPUT  
INPUT (27) 24  
INPUT (26) 23  
INPUT (25) 22  
768  
Altera Corporation  
Classic EPLD Family Data Sheet  
Figure 13 shows the typical supply current (I ) versus frequency of  
CC  
EP910 devices.  
Figure 13. I vs. Frequency of EP910 Devices  
CC  
100  
Turbo  
10  
Typical ICC  
Active (mA)  
VCC = 5.0 V  
= 25° C  
T
A
1.0  
0.1  
Non-Turbo  
1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 40 MHz  
Frequency  
Figure 14 shows the typical output drive characteristics of EP910 devices.  
Figure 14. Output Drive Characteristics of EP910 Devices  
Drive characteristics may exceed shown curves.  
EP910 EPLDs  
EP910I EPLDs  
120  
100  
80  
60  
50  
40  
30  
20  
10  
0
IOL  
IOL  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
VCC = 5.0 V  
TA = 25° C  
60  
Current (mA)  
VCC = 5.0 V  
TA = 25° C  
40  
IOH  
20  
IOH  
0.45  
1
2
3
4
5
0.45  
1
2
3
4
5
V
O Output Voltage (V)  
VO Output Voltage (V)  
Altera Corporation  
769  
Classic EPLD Family Data Sheet  
Tables 14 through 18 provide information on absolute maximum ratings,  
recommended operating conditions, operating conditions, and  
capacitance for EP910 and EP910I devices.  
Operating  
Conditions  
Table 14. EP910 & EP910I Device Absolute Maximum Ratings  
Notes (1), (2)  
Symbol  
Parameter  
Conditions  
EP910  
EP910I  
Unit  
Min  
Max  
Min  
Max  
VCC  
VI  
Supply voltage  
With respect to ground (3)  
–2.0  
–2.0  
–250  
–25  
7.0  
7.0  
250  
25  
–2.0  
–0.5  
7.0  
V
DC input voltage  
VCC + 0.5  
V
IMAX  
IOUT  
TSTG  
TAMB  
TJ  
DC VCC or ground current  
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
mA  
mA  
° C  
° C  
° C  
No bias  
–65  
150  
135  
150  
–65  
–65  
150  
135  
150  
Under bias  
–65  
Ceramic packages, under  
bias  
Plastic packages, under  
bias  
135  
135  
° C  
Table 15. EP910 & EP910I Device Recommended Operating Conditions  
Note (2)  
Symbol  
Parameter  
Conditions  
EP910  
Min Max  
EP910I  
Unit  
Min  
Max  
VCC  
VI  
Supply voltage  
(4)  
4.75 (4.5) 5.25 (5.5)  
4.75  
–0.3  
0
5.25  
VCC + 0.3  
VCC  
V
V
Input voltage  
–0.3  
0
VCC + 0.3  
VCC  
VO  
TA  
Output voltage  
V
Operating temperature  
For commercial use  
0
70  
0
70  
° C  
° C  
ns  
ns  
For industrial use  
–40  
85  
tR  
tF  
Input rise time  
Input fall time  
(5)  
(5)  
100 (50)  
100 (50)  
500  
500  
Table 16. EP910 & EP910I Device DC Operating Conditions  
Notes (6), (7)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
VIL  
High-level input voltage  
2.0  
–0.3  
2.4  
VCC + 0.3  
0.8  
V
V
Low-level input voltage  
VOH  
High-level TTL output voltage  
High-level CMOS output voltage  
Low-level output voltage  
IOH = –4 mA DC (8)  
V
IOH = –0.6 mA DC (8), (9)  
IOL = 4 mA DC (8)  
3.84  
V
VOL  
II  
0.45  
10  
V
I/O leakage current of dedicated input pins VI = VCC or ground  
Tri-state output leakage current VO = VCC or ground  
–10  
–10  
µA  
µA  
IOZ  
10  
770  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 17. EP910 & EP910I Device Capacitance  
Note (6)  
Symbol  
Parameter  
Conditions  
EP910  
Max  
EP910I  
Min Max  
Unit  
Min  
CIN  
Input pin capacitance  
I/O pin capacitance  
CLK1pin capacitance  
CLK2pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
20  
20  
20  
60  
8
8
pF  
pF  
pF  
pF  
CI/O  
CCLK1  
CCLK2  
10  
12  
Table 18. EP910 & EP910I Device I Supply Current  
Notes (2), (6), (7)  
CC  
Symbol  
Parameter  
Conditions  
EP910  
EP910I  
Unit  
Min Typ Max Min Typ Max  
ICC1  
ICC2  
ICC3  
VCC supply current  
VI = VCC or ground, no load  
(10), (11)  
20  
150  
60  
150  
µA  
mA  
mA  
(non-Turbo, standby)  
VCC supply current  
(non-Turbo, active)  
VI = VCC or ground, no load,  
f = 1.0 MHz (10), (11)  
6
20  
4
12  
VCC supply current  
(Turbo, active)  
VI = VCC or ground, no load,  
f = 1.0 MHz (11)  
45  
80  
120  
150  
(100)  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.  
(2) Numbers in parentheses are for industrial-temperature-range devices.  
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V (EP910) or  
–0.5 V (EP910I) or overshoot to 7.0 V (EP910) or VCC + 0.5 V (EP910I) for input currents less than 100 mA and periods  
less than 20 ns.  
(4) Maximum VCC rise time for EP910 devices = 50 ms; for EP910I devices, maximum VCC rise time is unlimited with  
monotonic rise.  
(5) For all clocks: tR and tF = 100 ns (50 ns for the industrial-temperature-range version).  
(6) These values are specified in Table 15 on page 770.  
(7) The device capacitance is measured at 25° C and is sample-tested only.  
(8) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL  
output current.  
(9) This parameter does not apply to EP910I devices.  
(10) When the Turbo Bit option is not set (non-Turbo mode), an EP910 device will enter standby mode if no logic  
transitions occur for 100 ns after the last transition, and an EP910I device will enter standby mode if no logic  
transitions occur for 75 ns after the last transition.  
(11) Measured with a device programmed as a 24-bit counter.  
Altera Corporation  
771  
Classic EPLD Family Data Sheet  
Tables 19 and 20 show the timing parameters for EP910 devices.  
Table 19. EP910 External Timing Parameters  
Notes (1), (2)  
Symbol  
Parameter  
Conditions EP910-30 EP910-35 EP910-40  
Min Max Min Max Min Max  
Non-  
Turbo  
Adder (3)  
Unit  
tPD1  
tPD2  
tPZX  
tPXZ  
tCLR  
fMAX  
tSU  
Input to non-registered output  
I/O input to non-registered output  
Input to output enable  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF (4)  
C1 = 35 pF  
(5)  
30.0  
33.0  
30.0  
30.0  
33.0  
35.0  
38.0  
35.0  
35.0  
38.0  
40.0  
43.0  
40.0  
40.0  
43.0  
30.0  
30.0  
30.0  
30.0  
30.0  
0.0  
ns  
ns  
ns  
Input to output disable  
ns  
Asynchronous output clear time  
Maximum frequency  
ns  
41.7  
24.0  
0.0  
37.0  
27.0  
0.0  
32.3  
31.0  
0.0  
MHz  
ns  
Global clock input setup time  
Global clock input hold time  
Global clock high time  
30.0  
0.0  
tH  
ns  
tCH  
12.0  
12.0  
13.0  
13.0  
15.0  
15.0  
0.0  
ns  
tCL  
Global clock low time  
0.0  
ns  
tCO1  
tCNT  
fCNT  
Global clock to output delay  
C1 = 35 pF  
18  
21.0  
35.0  
24.0  
40.0  
0.0  
ns  
Global clock minimum clock period (6)  
30.0  
0.0  
ns  
Maximum internal global clock  
frequency  
(6)  
33.3  
28.6  
25.0  
0.0  
MHz  
tASU  
tAH  
Array clock input setup time  
Array clock input hold time  
Array clock high time  
10.0  
15.0  
15.0  
15.0  
10.0  
15.0  
16.0  
16.0  
1.0  
10.0  
15.0  
17.0  
17.0  
1.0  
30.0  
0.0  
0.0  
0.0  
ns  
ns  
tACH  
tACL  
tODH  
tACO1  
tACNT  
fACNT  
ns  
Array clock low time  
ns  
Output data hold time after clock  
Array clock to output delay  
Array clock minimum clock period  
C1 = 35 pF (7) 1.0  
C1 = 35 pF  
ns  
33.0  
30.0  
38.0  
35.0  
43.0  
40.0  
30.0  
0.0  
ns  
ns  
Maximum internal array clock  
frequency  
(6)  
33.3  
28.6  
25.0  
0.0  
MHz  
772  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 20. EP910 Internal Timing Parameters  
EP910-30  
EP910-35  
EP910-40 Unit  
Symbol  
Parameter  
Condition  
Min Max Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
9.0  
3.0  
10.0  
3.0  
13.0  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
14.0  
7.0  
16.0  
9.0  
17.0  
10.0  
10.0  
10.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
7.0  
9.0  
7.0  
9.0  
12.0  
12.0  
13.0  
12.0  
15.0  
12.0  
Register hold time  
tIC  
Array clock delay  
17.0  
2.0  
19.0  
2.0  
20.0  
1.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
4.0  
6.0  
8.0  
Register clear time  
17.0  
19.0  
20.0  
Notes to tables:  
(1) These values are specified in Table 15 on page 770.  
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for more information on Classic  
timing parameters.  
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.  
(4) Sample-tested only for an output change of 500 mV.  
(5) The fMAX values represent the highest frequency for pipelined data.  
(6) Measured with a device programmed as a 24-bit counter.  
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization and applies for both  
global and array clocking.  
Altera Corporation  
773  
Classic EPLD Family Data Sheet  
Tables 21 and 22 show the timing parameters for EP910I devices.  
Table 21. EP910I External Timing Parameters  
Notes (1), (2)  
Symbol  
Parameter  
Conditions EP910I-12 EP910I-15 EP910I-25 Non-Turbo Unit  
Adder  
(3)  
Min Max Min Max Min Max  
tPD1  
tPD2  
tPZX  
tPXZ  
Input to non-registered output  
I/O input to non-registered output  
Input to output enable  
C1 = 35 pF  
C1 = 35 pF  
C1 = 35 pF  
12.0  
12.0  
15.0  
15.0  
15.0  
15.0  
18.0  
18.0  
25.0  
25.0  
28.0  
28.0  
40.0  
40.0  
40.0  
40.0  
ns  
ns  
ns  
ns  
Input to output disable  
C1 = 35 pF  
(4)  
tCLR  
fMAX  
tSU  
Asynchronous output clear time  
Global clock maximum frequency  
Global clock input setup time  
Global clock input hold time  
Global clock high time  
C1 = 35 pF  
(5)  
15.0  
18.0  
28.0  
40.0  
0.0  
ns  
MHz  
ns  
125.0  
8.0  
100.0  
11.0  
0.0  
62.5  
16.0  
0.0  
40.0  
0.0  
tH  
0.0  
ns  
tCH  
5.0  
6.0  
10.0  
10.0  
0.0  
ns  
tCL  
Global clock low time  
5.0  
6.0  
0.0  
ns  
tCO1  
tCNT  
fCNT  
Global clock to output delay  
8.0  
9.0  
14.0  
25.0  
0.0  
ns  
Global clock minimum clock period C1 = 35 pF  
13.0  
15.0  
40.0  
0.0  
ns  
Maximum internal global clock  
frequency  
(6)  
76.9  
66.6  
40.0  
MHz  
tASU  
tAH  
Array clock input setup time  
Array clock input hold time  
Array clock high time  
3.0  
6.0  
6.0  
6.0  
1.0  
4.0  
7.0  
7.5  
7.5  
1.0  
8.0  
8.0  
40.0  
ns  
ns  
ns  
ns  
ns  
tACH  
tACL  
tODH  
12.5  
12.5  
1.0  
Array clock low time  
Output data hold time after clock  
C1 = 35 pF  
(7)  
tACO1  
tACNT  
fACNT  
Array clock to output delay  
C1 = 35 pF  
16.0  
13.0  
18.0  
15.0  
22.0  
25.0  
40.0  
40.0  
ns  
ns  
Array clock minimum clock period  
Maximum internal array clock  
frequency  
(6)  
76.9  
66.6  
40.0  
MHz  
774  
Altera Corporation  
Classic EPLD Family Data Sheet  
Table 22. EP910I Internal Timing Parameters  
Symbol  
Parameter  
Condition  
EP910I-12 EP910I-15 EP910I-25 Unit  
Min Max Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
2.0  
0.0  
8.0  
2.0  
5.0  
5.0  
3.0  
0.0  
9.0  
3.0  
6.0  
6.0  
2.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
17.0  
6.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
C1 = 5 pF  
9.0  
9.0  
4.0  
4.0  
5.0  
6.0  
5.0  
Register hold time  
11.0  
tIC  
Array clock delay  
12.0  
4.0  
12.0  
3.0  
14.0  
6.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
1.0  
1.0  
3.0  
Register clear time  
11.0  
12.0  
20.0  
Notes to tables:  
(1) These values are specified in Table 15 on page 770.  
(2) See Application Note 78 (Understanding MAX 5000 & Classic Timing) in this data book for information on internal  
timing parameters.  
(3) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.  
(4) Sample-tested only for an output change of 500 mV.  
(5) The fMAX values represent the highest frequency for pipelined data.  
(6) Measured with the device programmed as a 24-bit counter.  
(7) Sample-tested only. This parameter is a guideline based on extensive device characterization and applies for both  
global and array clocking.  
Altera Corporation  
775  
Notes:  
EP1810 EPLD  
High-performance, 48-macrocell Classic EPLD  
Features  
Combinatorial speeds with tPD as fast as 20 ns  
Counter frequencies of up to 50 MHz  
Pipelined data rates of up to 62.5 MHz  
Programmable I/O architecture with up to 64 inputs or 48 outputs  
Programmable clock option for independent clocking of all registers  
Macrocells individually programmable as D, T, JK, or SR flipflops, or  
for combinatorial operation  
Available in the following packages (see Figure 15)  
68-pin ceramic pin-grid array (PGA)  
68-pin plastic J-lead chip carrier (PLCC)  
Figure 15. EP1810 Package Pin-Out Diagrams  
Package outlines not drawn to scale. See Table 32 on page 785 of this data sheet for PGA package pin-out information.  
Windows in ceramic packages only.  
L
10  
11  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
I/O  
I/O  
I/O  
K
J
I/O  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O  
I/O  
I/O  
I/O  
INPUT  
INPUT  
INPUT  
CLK1/INPUT  
VCC  
INPUT  
INPUT  
INPUT  
CLK4/INPUT  
VCC  
H
G
F
Bottom  
View  
CLK2/INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
I/O  
CLK3/INPUT  
INPUT  
INPUT  
INPUT  
I/O  
E
D
C
B
A
I/O  
I/O  
I/O  
1
2
3
4
5
6
7
8
9
10 11  
68-Pin PGA  
EP1810  
68-Pin PLCC  
EP1810  
Altera Corporation  
777  
Classic EPLD Family Data Sheet  
Altera EP1810 devices offer LSI density, TTL-equivalent speed, and low-  
General  
Description  
power consumption. EP1810 devices have 48 macrocells, 16 dedicated  
input pins, and 48 I/O pins (see Figure 16). EP1810 devices are divided  
into four quadrants, each containing 12 macrocells. Of the 12 macrocells  
in each quadrant, 8 have quadrant feedback and are “local” macrocells  
(see “Feedback Select” on page 749 of this data sheet for more  
information). The remaining 4 macrocells in the quadrant are “global”  
macrocells. Both local and global macrocells can access signals from the  
global bus, which consists of the true and complement forms of the  
dedicated inputs and the true and complement forms of the feedbacks  
from the global macrocells.  
EP1810 devices also have four dedicated inputs (one in each quadrant)  
that can be used as quadrant clock inputs. If the dedicated input is used  
as a clock pin, the input feeds the clock input of all registers in that  
particular quadrant.  
778  
Altera Corporation  
Classic EPLD Family Data Sheet  
Figure 16. EP1810 Block Diagram  
Pin numbers are for J-lead packages. Pin numbers in parentheses are for PGA packages.  
Quadrant A  
Quadrant D  
Macrocell 48  
(F1)  
(G2)  
(G1)  
(E1) 68  
(E2) 67  
(D1) 66  
(D2) 65  
(C1) 64  
(C2) 63  
(B1) 62  
(B2) 61  
(A2) 60  
(A3) 59  
(B3) 58  
(A4) 57  
2
3
4
Macrocell 1  
Macrocell 2  
Macrocell 3  
Macrocell 4  
Macrocell 5  
Macrocell 6  
Macrocell 7  
Macrocell 8  
Macrocell 9  
Macrocell 10  
Macrocell 11  
Macrocell 12  
Macrocell 47  
Macrocell 46  
Macrocell 45  
Macrocell 44  
Macrocell 43  
Macrocell 42  
Macrocell 41  
Macrocell 40  
Macrocell 39  
Macrocell 38  
Macrocell 37  
5 (H2)  
6 (H1)  
7 (J2)  
8 (J1)  
9 (K1)  
10 (K2)  
11 (L2)  
12 (K3)  
13 (L3)  
(K4)  
14  
INPUT  
INPUT  
(B4) 56  
(A5) 55  
(B5) 54  
(A6) 53  
(A7) 51  
(B7) 50  
(A8) 49  
(B8) 48  
INPUT  
(L4)  
15  
16 (K5)  
INPUT  
INPUT  
INPUT  
17  
19  
20  
Global  
Bus  
(L5)  
(L6)  
(K7)  
INPUT/CLK1  
INPUT/CLK2  
INPUT  
INPUT/CLK4  
INPUT/CLK3  
INPUT  
21 (L7)  
(K8)  
INPUT  
INPUT  
INPUT  
22  
INPUT  
Quadrant B  
Quadrant C  
23 (L8)  
24 (K9)  
25 (L9)  
26(L10)  
27(K10)  
28(K1)  
29(J10)  
30 (J1)  
31(H10)  
32(H1)  
33(G10)  
34(G1)  
(A9) 47  
Macrocell 36  
Macrocell 35  
Macrocell 34  
Macrocell 33  
Macrocell 32  
Macrocell 31  
Macrocell 30  
Macrocell 29  
Macrocell 28  
Macrocell 27  
Macrocell 26  
Macrocell 25  
Macrocell 13  
Macrocell 14  
Macrocell 15  
Macrocell 16  
Macrocell 17  
Macrocell 18  
Macrocell 19  
Macrocell 20  
Macrocell 21  
Macrocell 22  
Macrocell 23  
Macrocell 24  
(B9) 46  
(A10) 45  
(B10) 44  
(B11) 43  
(C11) 42  
(C10) 41  
(D11) 40  
(D10) 39  
(E11) 38  
(E10) 37  
(F11) 36  
Global Macrocells  
Local Macrocells  
Altera Corporation  
779  
Classic EPLD Family Data Sheet  
Figure 17 shows the typical supply current (I ) versus frequency for  
CC  
EP1810 EPLDs.  
Figure 17. I vs. Frequency of EP1810 Devices  
CC  
EP1810  
100  
10  
Typical ICC  
Active (mA)  
VCC = 5.0 V  
= 25° C  
T
A
1.0  
0.1  
10 kHz 100 kHz  
1 MHz  
10 MHz 60 MHz  
Frequency  
Figure 18 shows the output drive characteristics of EP1810 devices.  
Figure 18. Output Drive Characteristics of EP1810 Devices  
Drive characteristics may exceed shown curves.  
EP1810-20 & EP1810-25 EPLDs  
EP1810-35 & EP1810-45 EPLDs  
200  
80  
IOL  
150  
60  
IOL  
Typical IO  
Output  
Current (mA)  
Typical IO  
Output  
Current (mA)  
VCC = 5.0 V  
TA = 25° C  
VCC = 5.0 V  
TA = 25° C  
100  
50  
40  
IOH  
20  
IOH  
1
2
3
4
5
1
2
3
4
5
VO Output Voltage (V)  
V
O Output Voltage (V)  
780  
Altera Corporation  
Classic EPLD Family Data Sheet  
Tables 23 through 27 provide information on absolute maximum ratings,  
recommended operating conditions, operating conditions, and  
capacitance for EP1810 devices.  
Operating  
Conditions  
Table 23. EP1810 Device Absolute Maximum Ratings  
Notes (1), (2)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
VI  
Supply voltage  
With respect to ground (3)  
With respect to ground (3)  
–2.0 (–0.5)  
–2.0 (–0.5)  
–300 (–400)  
–25  
7.0  
7.0  
V
DC input voltage  
V
IMAX  
IOUT  
TSTG  
TAMB  
TJ  
DC VCC or ground current  
DC output current, per pin  
Storage temperature  
Ambient temperature  
Junction temperature  
300 (400)  
25  
mA  
mA  
° C  
° C  
° C  
° C  
No bias  
–65  
150  
Under bias  
–65  
135  
Ceramic packages, under bias  
Plastic packages, under bias  
150  
135  
Table 24. EP1810 Device Recommended Operating Conditions  
Note (2)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
VI  
Supply voltage  
(4)  
4.75 (4.5)  
5.25 (5.5)  
V
V
Input voltage  
–0.3  
0
VCC + 0.3  
VO  
TA  
Output voltage  
VCC  
70  
V
Operating temperature  
For commercial use  
0
° C  
° C  
ns  
ns  
For industrial use  
–40  
85  
tR  
tF  
Input rise time  
Input fall time  
(5)  
(5)  
50  
50  
Table 25. EP1810 Device DC Operating Conditions  
Notes (6), (7)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
VIL  
High-level input voltage  
2.0  
–0.3  
2.4  
VCC + 0.3  
0.8  
V
V
Low-level input voltage  
VOH  
High-level TTL output voltage  
High-level CMOS output voltage  
Low-level output voltage  
IOH = –4 mA DC (8)  
V
IOH = –0.6 mA DC (8)  
IOL = 4 mA DC (8)  
3.84  
V
VOL  
II  
0.45  
10  
V
I/O pin leakage current of dedicated VI = VCC or ground  
input pins  
–10  
–10  
µA  
IOZ  
Tri-state output leakage current  
VO = VCC or ground  
10  
µA  
Altera Corporation  
781  
Classic EPLD Family Data Sheet  
Table 26. EP1810 Device Capacitance  
Note (9)  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
CIN  
Input pin capacitance  
I/O pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
VIN = 0 V, f = 1.0 MHz  
20  
20  
pF  
pF  
pF  
pF  
CIO  
CCLK1  
CCLK2  
CCLK1 pin capacitance  
CCLK2 pin capacitance  
25  
160  
Table 27. EP1810 Device I Supply Current  
Notes (2), (6), (7)  
CC  
Symbol  
Parameter  
Conditions  
Speed Min  
Grade  
Typ  
Max Unit  
ICC1  
ICC2  
ICC3  
VCC supply current  
VI = VCC or ground, no load, -20, -25  
(10)  
50  
35  
150  
150  
µA  
µA  
(non-Turbo, standby)  
VCC supply current  
(non-Turbo, active)  
-35, -45  
VI = VCC or ground, no load, -20, -25  
f = 1.0 MHz (10)  
20  
40  
mA  
mA  
-35, -45  
10  
30 (40)  
VCC supply current (Turbo, active) VI = VCC or ground, no load -20, -25  
f = 1.0 MHz (10)  
180  
100  
225 (250) mA  
180 (240) mA  
-35, -45  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.  
(2) Numbers in parentheses are for industrial-temperature-range devices.  
(3) The minimum DC input is –0.3 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 7.0 V for  
input currents less than 100 mA and periods less than 20 ns.  
(4) Maximum VCC rise time is 50 ms.  
(5) For EP1810 clocks: tR and tF = 100 ns (50 ns for industrial-temperature-range versions).  
(6) Typical values are for TA = 25° C and VCC = 5 V.  
(7) These values are specified in Table 24 on page 781.  
(8) The IOH parameter refers to high-level TTL or CMOS output current; the IOL parameter refers to low-level TTL  
output current.  
(9) The device capacitance is measured at 25° C and is sample-tested only.  
(10) Measured with a device programmed as four 12-bit counters.  
782  
Altera Corporation  
Classic EPLD Family Data Sheet  
Tables 28 through 31 show the timing parameters for EP1810-20,  
EP1810-25, EP1810-35, and EP1810-45 devices.  
Table 28. EP1810-20 & EP1810-25 External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
EP1810-20 EP1810-25 Non-Turbo Unit  
Adder  
(2)  
Min Max Min Max  
tPD1  
tPD2  
tSU  
Input to non-registered output  
I/O input to non-registered output  
Global clock setup time  
C1 = 35 pF  
20.0  
22.0  
25.0  
28.0  
25.0  
25.0  
25.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
C1 = 35 pF  
13.0  
0.0  
8.0  
8.0  
17.0  
0.0  
tH  
Global clock hold time  
tCH  
Global clock high time  
10.0  
10.0  
0.0  
tCL  
Global clock low time  
0.0  
tCO1  
tCNT  
fCNT  
tASU  
tAH  
Global clock to output delay  
Minimum global clock period  
Maximum internal frequency  
Array clock setup time  
C1 = 35 pF  
15.0  
20.0  
18.0  
25.0  
0.0  
(3)  
(3)  
0.0  
50.0  
8.0  
40.0  
10.0  
10.0  
0.0  
25.0  
0.0  
Array clock hold time  
8.0  
tACO1  
tODH  
tACNT  
fACNT  
Array clock to output delay  
Output data hold time after clock  
Array clock maximum clock period  
C1 = 35 pF  
20.0  
20.0  
25.0  
25.0  
25.0  
0.0  
C1 = 35 pF (4)  
1.0  
1.0  
(3)  
(3)  
0.0  
Maximum internal array clock  
frequency  
50.0  
62.5  
40.0  
50.0  
0.0  
fMAX  
Maximum clock frequency  
(5)  
0.0  
MHz  
Table 29. EP1810-20 and EP1810-25 Internal Timing Parameters  
Symbol  
Parameter  
Conditions  
EP1810-20 EP1810-25 Non-Turbo Unit  
Adder  
(2)  
Min Max Min Max  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
5.0  
2.0  
9.0  
6.0  
6.0  
6.0  
7.0  
3.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
0.0  
25.0  
0.0  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
12.0  
6.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
6.0  
0.0  
C1 = 5 pF (6)  
6.0  
0.0  
8.0  
5.0  
10.0  
10.0  
0.0  
Register hold time  
0.0  
tIC  
Array clock delay  
9.0  
4.0  
3.0  
9.0  
12.0  
5.0  
25.0  
0.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
3.0  
–25.0  
25.0  
Register clear time  
12.0  
Altera Corporation  
783  
Classic EPLD Family Data Sheet  
Table 30. EP1810-35 & EP1810-45 External Timing Parameters  
Note (1)  
Symbol  
Parameter  
Conditions  
EP1810-35 EP1810-45 Non-Turbo Unit  
Adder  
Min Max Min Max  
(2)  
tPD1  
tPD2  
tSU  
Input to non-registered output  
I/O input to non-registered output  
Global clock setup time  
C1 = 35 pF  
35.0  
40.0  
45.0  
50.0  
30.0  
30.0  
30.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
C1 = 35 pF  
25.0  
0.0  
30.0  
0.0  
tH  
Global clock hold time  
tCH  
Global clock high time  
12.0  
12.0  
15.0  
15.0  
0.0  
tCL  
Global clock low time  
0.0  
tCO1  
tCNT  
fCNT  
tASU  
tAH  
Global clock to output delay  
Minimum global clock period  
Maximum internal frequency  
Array clock setup time  
C1 = 35 pF  
20.0  
35.0  
25.0  
45.0  
0.0  
(3)  
(3)  
0.0  
28.6  
10.0  
15.0  
22.2  
11.0  
18.0  
0.0  
30.0  
0.0  
Array clock hold time  
tACO1  
tODH  
tACNT  
fACNT  
Array clock to output delay  
Output data hold time after clock  
Array clock maximum clock period  
C1 = 35 pF  
35.0  
35.0  
45.0  
45.0  
30.0  
C1 = 35 pF (4)  
1.0  
1.0  
(3)  
(3)  
0.0  
0.0  
Maximum internal array clock  
frequency  
28.6  
40  
22.2  
33.3  
fMAX  
Maximum clock frequency  
(5)  
0.0  
MHz  
Table 31. EP1810-35 & EP1810-45 Internal Timing Parameters  
Non-Turbo  
Adder  
Symbol  
Parameter  
Conditions  
EP1810-35 EP1810-45  
Min Max Min Max  
Unit  
(2)  
tIN  
Input pad and buffer delay  
I/O input pad and buffer delay  
Logic array delay  
7.0  
5.0  
6.0  
5.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIO  
tLAD  
tOD  
tZX  
tXZ  
tSU  
tH  
19.0  
9.0  
28.0  
11.0  
11.0  
11.0  
30.0  
0.0  
Output buffer and pad delay  
Output buffer enable delay  
Output buffer disable delay  
Register setup time  
C1 = 35 pF  
C1 = 35 pF  
9.0  
0.0  
C1 = 5 pF (6)  
9.0  
0.0  
10.0  
15.0  
10.0  
18.0  
0.0  
Register hold time  
0.0  
tIC  
Array clock delay  
19.0  
4.0  
28.0  
8.0  
30.0  
0.0  
tICS  
tFD  
tCLR  
Global clock delay  
Feedback delay  
6.0  
7.0  
–30.0  
30.0  
Register clear time  
24.0  
32.0  
784  
Altera Corporation  
Classic EPLD Family Data Sheet  
Notes to tables:  
(1) These values are specified in Table 24 on page 781.  
(2) The non-Turbo adder must be added to this parameter when the Turbo Bit option is off.  
(3) Measured with a device programmed as four 12-bit counters.  
(4) Sample-tested only. This parameter is a guideline based on extensive device characterization. This parameter  
applies for both global and array clocking.  
(5) The fMAX values represent the highest frequency for pipelined data.  
(6) Sample-tested only for an output change of 500 mV.  
Table 32 provides pin-out information for EP1810 devices in 68-pin PGA  
packages.  
Pin-Out  
Information  
Table 32. EP1810 PGA Pin-Outs  
Pin  
Function  
Pin Function Pin Function Pin  
Function  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
I/O  
B9  
B10  
B11  
C1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
F10  
F11  
G1  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K4 INPUT  
I/O  
K5 INPUT  
K6 VCC  
I/O  
INPUT  
G2  
K7 INPUT  
K8 INPUT  
K9 I/O  
CLK4/INPUT C2  
CLK3/INPUT C10  
G10  
G11  
H1  
INPUT  
I/O  
C11  
D1  
K10 I/O  
H2  
K11 I/O  
A10 I/O  
D2  
H10  
H11  
J1  
L2 I/O  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
I/O  
D10  
D11  
E1  
L3 I/O  
I/O  
L4 INPUT  
L5 CLK1/INPUT  
L6 CLK2/INPUT  
L7 INPUT  
L8 I/O  
I/O  
J2  
INPUT  
INPUT  
VCC  
E2  
J10  
J11  
K1  
E10  
E11  
F1  
INPUT  
INPUT  
K2  
L9 I/O  
F2  
K3  
L10 I/O  
Altera Corporation  
785  
Copyright © 1995, 1996, 1997, 1998, 1999 Altera Corporation, 101 Innovation Drive,  
San Jose, CA 95134, USA, all rights reserved.  
By accessing this information, you agree to be bound by the terms of Alteras  
Legal Notice.  

相关型号:

EP910IDI-25

UV PLD, 28ns, CMOS, CDIP40, WINDOWED, CERDIP-40
ALTERA

EP910ILC-12

HIGH PERFORMANCE EPLD with a 24-macrocell array design 40 pin DIP
ROCHESTER

EP910ILC-15

UV-Erasable/OTP PLD
ETC

EP910ILC-25

OT PLD, 28ns, PAL-Type, CMOS, PQCC44, PLASTIC, LCC-44
ALTERA

EP910ILC44-12

OT PLD, 12ns, PAL-Type, CMOS, PQCC44, PLASTIC, LCC-44
ALTERA

EP910ILC44-15

OT PLD, 15ns, PAL-Type, CMOS, PQCC44, PLASTIC, LCC-44
ALTERA

EP910ILC44-25

OT PLD, 25ns, CMOS, PQCC44, PLASTIC, LCC-44
ALTERA

EP910ILI-12

UV-Erasable/OTP PLD
ETC

EP910ILI-15

OT PLD, 18ns, PAL-Type, CMOS, PQCC44, PLASTIC, LCC-44
ALTERA

EP910ILI44-15

UV-Erasable/OTP PLD
ETC

EP910IPC-12

HIGH PERFORMANCE EPLD with a 24-macrocell array design 40 pin DIP
ROCHESTER

EP910IPC-25

UV-Erasable/OTP PLD
ETC