EPC1064VTI32 [ALTERA]

Configuration Memory, 64KX1, MOS, PQFP32, PLASTIC, TQFP-32;
EPC1064VTI32
型号: EPC1064VTI32
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

Configuration Memory, 64KX1, MOS, PQFP32, PLASTIC, TQFP-32

OTP只读存储器 时钟 内存集成电路
文件: 总28页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Configuration Devices for  
ACEX, APEX, FLEX & Mercury Devices  
®
March 2001, ver. 11  
DataSheet  
Serial device family for configuring ACEXTM, APEXTM (including  
APEX 20K, APEX 20KC, and APEX 20KE), FLEX® (FLEX 10KE and  
FLEX 10KA), and MercuryTM devices  
Easy-to-use 4-pin interface to ACEX, APEX, FLEX, and Mercury  
devices  
Features  
Low current during configuration and near-zero standby current  
5.0-V and 3.3-V operation  
Software design support with the Altera® QuartusTM and  
MAX+PLUS® II development systems for Windows-based PCs as  
well as Sun SPARCstation, and HP 9000 Series 700/ 800  
Programming support with Alteras Master Programming Unit  
(MPU) and programming hardware from Data I/ O,  
BP Microsystems, and other manufacturers  
Available in compact plastic packages (see Figures 1 and 2)  
8-pin plastic dual in-line package (PDIP)  
20-pin plastic J-lead chip carrier (PLCC) package  
32-pin plastic thin quad flat pack (TQFP) package  
EPC2 device has reprogrammable Flash configuration memory  
5.0-V and 3.3-V in-system programmability (ISP) through the  
built-in IEEE Std. 1149.1 Joint Test Action Group (JTAG)  
interface  
Built-in JTAG boundary-scan test (BST) circuitry compliant with  
IEEE Std. 1149.1  
ISP circuitry is compatible with IEEE Std. 1532 for EPC2  
configuration device  
Supports programming through Serial Vector Format Files  
(.svf), JamTM Standard Test and Programming Language  
(STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), and the  
MAX+PLUS II software via the MasterBlasterTM  
,
ByteBlasterMVTM, or BitBlasterTM download cable  
nINIT_CONFpin allows a JTAG instruction to initiate APEX,  
FLEX, or Mercury device configuration  
Can be programmed with Programmer Object Files (.pof) for  
EPC1 and EPC1441 devices  
Available in 20-pin PLCC and 32-pin TQFP packages  
Altera Corporation  
1
A-DS-EPROM-11  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Figure 1. EPC1, EPC1441, EPC1213, EPC1064, & EPC1064V Package Pin-Out Diagrams  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
N.C.  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DCLK  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
24  
23  
22  
21  
20  
19  
18  
3
2
1
20 19  
18  
DCLK  
N.C.  
N.C.  
N.C.  
OE  
4
5
6
7
8
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
17  
16  
15  
14  
DATA  
DCLK  
OE  
1
2
3
4
8
7
6
5
VCC  
VCC  
nCASC (1)  
GND  
8
17  
16  
nCS  
N.C.  
9
10 11 12 13 14 15  
9
10 11 12 13  
1()  
32-Pin TQFP  
8-Pin PDIP  
20-Pin PLCC  
EPC1441  
EPC1064  
EPC1064V  
EPC1  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
Note:  
(1) The nCASCpin is available on EPC1 and EPC1213 devices. On the EPC1064, EPC1064V, and EPC1441 devices, it is  
a reserved pin and should not be connected.  
Figure 2. EPC2 Package Pin-Out Diagrams  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
N.C.  
DCLK  
VCCSEL  
N.C.  
24  
23  
22  
21  
20  
19  
18  
N.C.  
VPP  
N.C.  
N.C.  
3
2
1
20 19  
18  
DCLK  
VCCSEL  
N.C.  
4
5
6
7
8
VPP  
N.C.  
N.C.  
17  
16  
15  
14  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
OE  
N.C.  
VPPSEL  
VPPSEL  
8
17  
16  
N.C.  
OE  
9
10 11 12 13 14 15  
9
10 11 12 13  
32-Pin TQFP  
20-Pin PLCC  
2
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
With SRAM-based devices, configuration data must be reloaded each  
time the system initializes, or when new configuration data is needed.  
Altera configuration devices store configuration data for SRAM-based  
ACEX, APEX, FLEX, and Mercury devices. Table 1 lists Altera  
configuration devices.  
Functional  
Description  
Table 1. Configuration Devices  
Device  
Description  
EPC2  
1,695,680 × 1-bit device with 5.0-V or 3.3-V operation  
1,046,496 × 1-bit device with 5.0-V or 3.3-V operation  
440,800 × 1-bit device with 5.0-V or 3.3-V operation  
212,942 × 1-bit device with 5.0-V operation  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
65,536 × 1-bit device with 5.0-V operation  
65,536 × 1-bit device with 3.3-V operation  
Table 2 lists the configuration device used with each ACEX, APEX, FLEX  
and Mercury device.  
Table 2. Appropriate Configuration Device for Each ACEX, APEX, FLEX & Mercury Device (Part 1 of 2)  
ACEX, APEX, FLEX & Mercury Device  
Configuration Device  
EP20K30E  
EPC2, EPC1, or EPC1441  
EPC2 or EPC1  
EP20K60E  
EP20K100, EP20K100E  
EP20K160E  
EPC2 or EPC1  
EPC2  
EP20K200, EP20K200E  
EP20K300E  
Two EPC2 devices (1)  
Two EPC2 devices (1)  
Three EPC2 devices (1)  
Four EPC2 devices (1)  
Six EPC2 devices (1)  
Eight EPC2 devices (1)  
EPC2, EPC1, or EPC1441  
EPC2, EPC1, or EPC1441  
EPC2 or EPC1  
EP20K400, EP20K400E  
EP20K600E  
EP20K1000E  
EP20K1500E  
EP1K10  
EP1K30  
EP1K50  
EP1K100  
EPC2 or two EPC1 devices  
EPC2, EPC1, or EPC1441  
EPC2, EPC1, or EPC1441  
EPC2 or EPC1  
EPF10K10, EPF10K10A  
EPF10K20  
EPF10K30E  
EPF10K30, EPF10K30A  
EPF10K40  
EPC2, EPC1, or EPC1441  
EPC2 or EPC1  
Altera Corporation  
3
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 2. Appropriate Configuration Device for Each ACEX, APEX, FLEX & Mercury Device (Part 2 of 2)  
ACEX, APEX, FLEX & Mercury Device  
Configuration Device  
EPF10K50, EPF10K50V, EPF10K50E  
EPF10K70  
EPC2 or EPC1  
EPC2 or EPC1  
EPF10K100, EPF10K100A, EPF10K100B,  
EPF10K100E  
EPC2 or two EPC1 devices  
EPF10K130V  
EPF10K130E  
EPF10K200E  
EPF10K250A  
EPF8282A  
EPC2 or two EPC1 devices  
Two EPC2 or two EPC1 devices  
Two EPC2 or three EPC1 devices  
Two EPC2 or four EPC1 devices  
EPC1, EPC1441, or EPC1064  
EPC1, EPC1441, or EPC1064V  
EPC1, EPC1441, EPC1064, or EPC1213  
EPC1, EPC1441, or EPC1213  
EPC1, EPC1441, or EPC1213  
EPC1, EPC1441, or EPC1213  
EPC1 or EPC1441  
EPF8282AV  
EPF8452A  
EPF8636A  
EPF8820A  
EPF81188A  
EPF81500A  
EPF6010A  
EPC1 or EPC1441  
EPF6016, EPF6016A  
EPF6024A  
EPC1 or EPC1441  
EPC1 or EPC1441  
EP1M120  
EPC2 or EPC16  
EP1M350  
EPC16 or three EPC2 devices  
Note:  
(1) This device can be configured by a smaller number of EPC16 configuration devices. For more information, see the  
EPC16 Configuration Device Data Sheet.  
Table 3 shows which configuration devices can be used with each device  
family.  
Table 3. Configuration Device & PLD Compatibility  
PLD  
Configuration Device  
EPC2  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
ACEX 1K (1)  
APEX 20K (1)  
FLEX 10K (1)  
FLEX 10KE (1)  
v
v
v
v
v
v
v
v
v
v
v
4
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 3. Configuration Device & PLD Compatibility  
PLD  
Configuration Device  
EPC2  
EPC1  
EPC1441  
EPC1213  
EPC1064  
EPC1064V  
FLEX 8000  
FLEX 6000  
Mercury (1)  
v
v
v
v
v
v
v
v
Note to Table:  
(1) EPC16 configuration devices support this device. For more information, see the  
EPC16 Configuration Device Data Sheet.  
Figure 3 shows the configuration device block diagram.  
Altera Corporation  
5
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Figure 3. Configuration Device Block Diagram  
ACEX 1K, APEX 20K, FLEX 10K, & FLEX 6000 Device Configuration Using an EPC2, EPC1, or EPC1441 Device  
DCLK  
CLK  
ENA  
nRESET  
Oscillator  
Address  
Counter  
Oscillator  
Control  
Address  
Decode  
Logic  
nCS  
nCASC (1)  
Error  
Detection  
Circuitry  
EPROM  
Array  
OE (2)  
DATA  
Shift  
Register  
DATA  
FLEX 8000 Device Configuration Using an EPC1, EPC1441, EPC1213, EPC1064, or EPC1064V Device  
CLK  
ENA  
nRESET  
DCLK  
Address  
Counter  
Address  
Decode  
Logic  
nCASC (1)  
nCS  
OE  
EPROM  
Array  
DATA  
Shift  
Register  
DATA  
Notes:  
(1) The EPC1441, EPC1064, and EPC1064V devices do not support data cascading. The EPC2, EPC1, and EPC1213  
devices support data cascading.  
(2) The OEpin is a bidirectional open-drain pin.  
6
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
The control signals for configuration devicesnCS, OE, and DCLK—  
interface directly with ACEX, APEX, FLEX, and Mercury device control  
signals. All ACEX, APEX, FLEX, and Mercury devices can be configured  
by a configuration device without requiring an external intelligent  
controller.  
Device  
Configuration  
The configuration devices OEand nCSpins control the tri-state buffer on  
the DATAoutput pin, and enable the address counter (and the oscillator in  
EPC2, EPC1, and EPC1441 devices). When OEis driven low, the  
configuration device resets the address counter and tri-states its DATApin.  
The nCSpin controls the output of the configuration device. If nCSis held  
high after the OEreset pulse, the counter is disabled and the DATAoutput  
pin is tri-stated. When nCSis driven low, the counter and DATAoutput pin  
are enabled. When OEis driven low again, the address counter is reset and  
the DATAoutput pin is tri-stated, regardless of the state of nCS.  
1
The EPC2, EPC1, and EPC1441 devices determine the operation  
mode and whether the ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 8000, FLEX 6000, or Mercury protocols should be used  
when OEis driven high.  
When the configuration device has driven out all of its data and has  
driven nCASClow, the device tri-states the DATApin to avoid contention  
with other configuration devices.  
The EPC2 device allows the user to initiate configuration of the ACEX,  
APEX, FLEX, or Mercury device via an additional pin, nINIT_CONF, that  
can be tied to the nCONFIGpin of the ACEX, APEX, FLEX, or Mercury  
device(s) to be configured. A JTAG instruction causes the EPC2 device to  
drive nINIT_CONFlow, which in turn pulls nCONFIGlow. The EPC2  
device then drives nINIT_CONFhigh to start configuration. When the  
JTAG state machine exits this state, nINIT_CONFreleases nCONFIGand  
configuration is initiated.  
1
An EPC2 device can be programmed with a POF generated for  
an EPC1 or EPC1441 device, however, an EPC2 device cannot  
configure FLEX 6000 or FLEX 8000 devices. An EPC1 device can  
be programmed using a POF generated for an EPC1441 device.  
Altera Corporation  
7
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000 & Mercury Device  
Configuration  
ACEX 1K, APEX 20K, FLEX 10K, and Mercury devices can be configured  
with EPC2, EPC1, or EPC1441 devices. FLEX 6000 devices can be  
configured with EPC1 or EPC1441 devices. The EPC2, EPC1, or EPC1441  
device stores configuration data in its EPROM array and serially clocks  
data out with an internal oscillator. The OE, nCS, and DCLKpins supply  
the control signals for the address counter and the output tri-state buffer.  
The configuration device sends a serial bitstream of configuration data to  
its DATApin, which is routed to the DATA0or DATAinput pin on the  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury device. Figure 4  
shows an ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury device  
configured with a single EPC2, EPC1, or EPC1441 device.  
Figure 4. ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury Device  
Configured with an EPC2, EPC1, or EPC1441 Configuration Device  
VCC  
VCC  
(1)  
(1)  
ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000, or Mercury Device (2)  
Configuration  
Device  
(3)  
(3)  
DCLK  
DATA  
DCLK  
DATA0  
OE  
nSTATUS  
nCS  
nINIT_CONF (4)  
CONF_DONE  
nCONFIG  
MSEL0  
nCE  
MSEL1  
GND  
GND  
Notes:  
(1) The pull-up resistor should be connected to the same supply voltage as the  
configuration device.  
(2) The diagram shows an ACEX 1K, APEX 20K, FLEX 10K or Mercury device, which  
has MSEL0and MSEL1tied to ground. For FLEX 6000 devices, MSELis tied to  
ground, and the DATA0pin is named DATA. EPC2 cannot be used with FLEX 6000  
devices. All other connections are the same for ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000 and Mercury devices.  
(3) All pull-up resistors are 1 k¾. APEX 20KE pull up resistors are 10 k¾. The OE, nCS,  
and nINIT_CONFpins on EPC2 devices have internal, user-configurable 1-k¾  
pull-up resistors. If internal pull-up resistors are used, external pull-up resistors  
should not be used on these pins.  
(4) The nINIT_CONFpin is only available on EPC2 devices and has an internal pull up  
of 1 k¾ that is always active. If nINIT_CONFis not available or not used, nCONFIG  
must be pulled to V either directly or through a 1-k¾ resistor.  
CC  
Table 4 describes EPC2, EPC1, and EPC1441 pin functions during  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, and Mercury device  
configuration.  
8
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 4. EPC2, EPC1, & EPC1441 Pin Functions During ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000 &  
Mercury Configuration (Part 1 of 2)  
Pin Name  
Pin Number  
Pin  
Description  
Type  
8-Pin  
20-Pin 32-Pin  
PDIP (1) PLCC TQFP (2)  
DATA  
1
2
31  
Output Serial data output. The DATApin is tri-stated before  
configuration when the nCSpin is high, and after the  
configuration device finishes sending its configuration  
data. This operation is independent of the devices  
position in the cascade chain.  
DCLK  
2
4
2
I/O  
DCLKis a clock output when configuring with a single  
configuration device or when the configuration device is  
the first device in a configuration device chain. DCLKis  
a clock input for subsequent configuration devices in a  
configuration device chain. Rising edges on DCLK  
increment the internal address counter and present the  
next bit of data to the DATApin. The counter is  
incremented only if the OEinput is held high, the nCS  
input is held low, and all configuration data has not  
been transferred to the target device. When configuring  
with the first EPC2 or EPC1 device in a configuration  
device chain or with a single EPC1441 device, the  
DCLKpin drives low after configuration is complete or  
when OEis low.  
OE(3)  
3
4
8
9
7
Open- Output enable (active high) and reset (active low). A  
Drain  
I/O  
low logic level resets the address counter. A high logic  
level enables DATAand permits the address counter to  
count. If this pin is low (reset) during configuration, the  
internal oscillator becomes inactive and DCLKdrives  
low. See Error Detection Circuitryon page 17.  
nCS(3)  
10  
Input  
Chip select input (active low). A low input allows DCLK  
to increment the address counter and enables DATAto  
drive out. If the EPC1 or EPC2 is reset with nCSlow, the  
device initializes as the first device in a configuration  
chain. If the EPC1 or EPC2 device is reset with nCS  
high, the device initializes as the subsequent device in  
the chain.  
nCASC(4)  
6
12  
15  
Output Cascade select output (active low). This output goes  
low when the address counter has reached its  
maximum value. In a chain of EPC1 or EPC2 devices,  
the nCASCpin of one device is connected to the nCSpin  
of the next device, which permits DCLKto clock data  
from the next EPC1 or EPC2 device in the chain.  
Altera Corporation  
9
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 4. EPC2, EPC1, & EPC1441 Pin Functions During ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000 &  
Mercury Configuration (Part 2 of 2)  
Pin Name  
Pin Number  
Pin  
Description  
Type  
8-Pin  
20-Pin 32-Pin  
PDIP (1) PLCC TQFP (2)  
nINIT_CONF  
13  
16  
Open- Allows the INIT_CONF JTAG instruction to initiate  
Drain configuration. This pin is connected to the nCONFIGpin  
(3), (5)  
Output of the ACEX, APEX, FLEX or Mercury device to initiate  
configuration from the EPC2 via a JTAG instruction. If  
multiple EPC2 devices are used to configure an ACEX,  
APEX, FLEX or Mercury device, only the first EPC2 has  
its nINIT_CONFpin tied to the devices nCONFIGpin.  
TDI(5)  
11  
1
13  
28  
25  
32  
3
Input  
JTAG data input pin. Connect this pin to V if the  
CC  
JTAG circuitry is not used.  
TDO(5)  
Output JTAG data output pin. Do not connect this pin if the  
JTAG circuitry is not used.  
TMS(5)  
19  
3
Input  
Input  
Input  
JTAG mode select pin. Connect this pin to V if the  
CC  
JTAG circuitry is not used.  
TCK(5)  
JTAG clock pin. Connect this pin to ground if the JTAG  
circuitry is not used.  
VCCSEL (5)  
5
Mode select for V supply. VCCSELmust be  
CC  
connected to ground if the device uses a 5.0-V power  
supply (i.e., V = 5.0 V). VCCSELmust be connected  
CC  
to V if the device uses a 3.3-V power supply (i.e.,  
CC  
V
= 3.3 V).  
CC  
VPPSEL (5)  
VPP (5)  
14  
18  
17  
23  
Input  
Mode select for VPP. VPPSELmust be connected to  
ground if VPPuses a 5.0-V power supply  
(i.e., VPP= 5.0 V). VPPSELmust be connected to V  
if VPPuses a 3.3-V power supply (i.e, VPP= 3.3 V).  
CC  
Power Programming power pin. For the EPC2 device, this pin  
is normally tied to V . If the EPC2 V is 3.3 V, VPP  
CC  
CC  
can be tied to 5.0 V to improve in-system programming  
times. For EPC1 and EPC1441 devices, VPPmust be  
tied to V  
.
CC  
VCC  
GND  
7, 8  
5
20  
10  
27  
12  
Power Power pin.  
Ground Ground pin. A 0.2-µF decoupling capacitor must be  
placed between the VCCand GNDpins.  
Notes:  
(1) This package is available for EPC1 and EPC1441 devices only.  
(2) This package is available for EPC2 and EPC1441 devices only.  
(3) The OE, nCS, and nINIT_CONFpins on EPC2 devices have internal, user-configurable 1-k¾ pull-up resistors. If  
internal pull-up resistors are used, external pull-up resistors should not be used on these pins.  
(4) The EPC1441 device does not support data cascading. EPC2 and EPC1 devices support data cascading.  
(5) This pin applies to the EPC2 device only.  
10  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000 & Mercury Device  
Configuration with Multiple EPC2 or EPC1 Configuration Devices  
When configuration data for ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000,  
or Mercury devices exceeds the capacity of a single EPC2 or EPC1 device,  
multiple EPC2 or EPC1 devices can be cascaded together. (The EPC1441  
device does not support data cascading.) If multiple EPC2 or EPC1  
devices are required, the nCASCand nCSpins provide handshaking  
between the devices.  
When configuring ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or  
Mercury devices with cascaded EPC2 or EPC1 devices, the position of the  
EPC2 or EPC1 device in the chain determines its operation. When the first  
or master device in a configuration device chain is powered-up or reset  
and the nCSpin is driven low, the master device controls configuration.  
The master device supplies all clock pulses to one or more ACEX, APEX,  
FLEX, or Mercury devices and to any subsequent slave devices during  
configuration. The master EPC2 or EPC1 device also provides the first  
stream of data to the ACEX, APEX, FLEX, or Mercury devices during  
multi-device configuration. After the master EPC2 or EPC1 device  
finishes sending configuration data, the master EPC2 or EPC1 device  
drives its nCASCpin low, which drives the nCSpin of the first slave EPC2  
or EPC1 device low. This action causes the slave EPC2 or EPC1 device to  
send configuration data to the ACEX, APEX, FLEX, or Mercury devices.  
The master EPC2 or EPC1 device clocks all subsequent slave devices until  
configuration is complete. Once all configuration data is transferred and  
the nCSpin on the master EPC2 or EPC1 device is driven high by the  
ACEX, APEX, FLEX, or Mercury devices CONF_DONEpin, the master  
EPC2 or EPC1 device clocks 16 additional cycles to initialize the ACEX,  
APEX, FLEX, or Mercury device(s). The master EPC2 or EPC1 device then  
goes into zero-power (idle) state. If nCSon the master EPC2 or EPC1  
device is driven high before all configuration data is transferred, or if nCS  
is not driven high after all configuration data is transferred, the master  
EPC2 or EPC1 device drives the ACEX, APEX, FLEX, or Mercury devices  
nSTATUSpin low, indicating a configuration error.  
Configuration automatically restarts if the project is compiled with the  
Auto-Restart Configuration on Frame Error option turned on in the  
MAX+PLUS II softwares Global Project Device Options dialog box  
(Assign menu).  
Figure 5 shows an ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or  
Mercury device configured with two EPC2 or EPC1 devices. Additional  
EPC2 or EPC1 devices can be added by connecting nCASCto nCSof the  
subsequent slave EPC2 or EPC1 device in the chain and connecting DCLK,  
DATA, and OEin parallel.  
Altera Corporation  
11  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
1
A mixture of ACEX 1K, APEX 20K, APEX 20KE, and Mercury  
devices can be configured in the same chain. A mixture of  
FLEX 10K, FLEX 10KA, FLEX 10KE, and 5.0-V and 3.3-V  
FLEX 6000 devices can be configured in the same chain. See  
Configuration Chain with Multiple Voltage Levelson page 19.  
Figure 5. ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury Device Configured with Two EPC2 or EPC1  
Configuration Devices  
VCC  
(1)  
VCC(1)  
(3)  
(3)  
Configuration  
Device 2  
ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000, or Mercury Device (2)  
Configuration  
Device 1  
DCLK  
DATA0  
nSTATUS  
DCLK  
DATA  
OE  
nCS  
nINIT_CONF (4)  
DCLK  
DATA  
nCS  
CONF_DONE  
nCONFIG  
nCASC  
OE  
MSEL0  
nCE  
MSEL1  
GND  
GND  
Notes:  
(1) The pull-up resistor should be connected to the same supply voltage as the configuration device.  
(2) The diagram shows an ACEX 1K, APEX 20K, FLEX 10K, or Mercury device, which has MSEL0and MSEL1tied to  
ground. For FLEX 6000 devices, MSELis tied to ground, and the DATA0pin is named DATA. EPC2 cannot be used  
with FLEX 6000 devices. All other connections are the same for ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, and  
Mercury devices.  
(3) All pull-up resistors are 1 k¾ (APEX 20KE pull-resistors are 10k¾). The OEand nCSpins on EPC2 devices have  
internal, user-configurable 1-k¾ pull-up resistors. If internal pull-up resistors are used, external pull-up resistors  
should not be used on these pins.  
(4) The nINIT_CONFpin is only available on EPC2 devices and has an internal pull up of 1 k¾ that is always active. If  
nINIT_CONFis not available or not used, nCONFIGmust be pulled to V either directly or through a 1-k¾ resistor.  
CC  
Figure 6 shows two ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or  
Mercury devices configured with two EPC2 or EPC1 devices.  
12  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Figure 6. Two ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury Devices Configured with Two EPC2 or  
EPC1 Configuration Devices  
VCC  
VCC  
(1)  
(1)  
(2)  
(2)  
ACEX 1K, APEX 20K  
FLEX 10K, FLEX 6000  
or Mercury Device (3)  
DCLK  
ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000 or Mercury Device (3)  
Configuration  
Device 1  
DCLK  
DATA  
OE  
Configuration  
Device 2  
DCLK  
DATA0  
MSEL0  
MSEL0  
DATA0  
DCLK  
DATA  
nCS  
MSEL1  
nSTATUS  
CONF_DONE  
nCONFIG  
MSEL1  
nSTATUS  
CONF_DONE  
nCONFIG  
nCS  
nCASC  
nINIT_CONF (4)  
OE  
GND  
GND  
nCE  
nCEO  
nCE  
GND  
Notes:  
(1) The pull-up resistor should be connected to the same supply voltage as the configuration device.  
(2) The diagram shows an ACEX 1K, APEX 20K, FLEX 10K, or Mercury device, which has MSEL0and MSEL1tied to  
ground. For FLEX 6000 devices, MSELis tied to ground, and the DATA0pin is named DATA. EPC2 cannot be used  
with FLEX 6000 devices. All other connections are the same for ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, and  
Mercury devices.  
(3) All pull-up resistors are 1 k¾ (APEX 20KE pull-resistors are 10k¾). The OEand nCSpins on EPC2 devices have  
internal, user-configurable 1-k¾ pull-up resistors. If internal pull-up resistors are used, external pull-up resistors  
should not be used on these pins.  
(4) The nINIT_CONFpin is only available on EPC2 devices and has an internal pull up of 1 k¾ that is always active. If  
nINIT_CONFis not available or not used, nCONFIGmust be pulled to V either directly or through a 1-k¾ resistor.  
CC  
For more information on ACEX 1K, APEX 20K, FLEX 10K, or FLEX 6000  
device configuration, see Application Note 116 (Configuring ACEX 1K,  
APEX 20K, FLEX 10K & FLEX 6000 Devices).  
f
FLEX 8000 Device Configuration  
FLEX 8000 devices differ from ACEX 1K, APEX 20K, FLEX 10K, and  
FLEX 6000 devices in that they have internal oscillators that can provide a  
DCLKsignal to the configuration device. The configuration device sends  
configuration data out as a serial bitstream on the DATAoutput pin. This  
data is routed into the FLEX 8000 device via the DATA0input pin. The  
EPC1, EPC1441, EPC1213, EPC1064, and EPC1064V configuration devices  
support this type of configuration.  
Altera Corporation  
13  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
EPC1 and EPC1441 devices can replace the EPC1213, EPC1064, and  
EPC1064V configuration devices. The EPC1 or EPC1441 device  
automatically emulates the EPC1213, EPC1064, or EPC1064V when it is  
programmed with the appropriate POF. When the EPC1 or EPC1441  
device is programmed with an EPC1213, EPC1064, or EPC1064V POF, the  
FLEX 8000 device drives the EPC1 or EPC1441 devices OEpin high and  
clocks the EPC1 or EPC1441 device. One EPC1 device can store more  
configuration data than the EPC1064, EPC1064V, EPC1213, or EPC1441  
device. Therefore, designers can use one type of configuration device for  
all FLEX devices. In addition, a single EPC1 or EPC1441 device can  
configure any FLEX 8000 device.  
For multi-device configuration of FLEX 8000 devices, the nCASCand nCS  
pins provide handshaking between multiple configuration devices,  
allowing several cascaded EPC1 or EPC1213 devices to serially configure  
multiple FLEX 8000 devices. The EPC1441, EPC1064, and EPC1064V do  
not support data cascading. Figure 7 shows a FLEX 8000 device  
configured with a single EPC1, EPC1441, EPC1213, EPC1064, or  
EPC1064V configuration device.  
Figure 7. FLEX 8000 Device Configured with an EPC1, EPC1441, EPC1213,  
EPC1064, or EPC1064V Configuration Device  
VCC(1)  
VCC(1)  
VCC (1)  
(2)  
(2)  
Configuration  
Device  
FLEX 8000 Device  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
DCLK  
nCS  
OE  
DCLK  
"0"  
"0"  
"0"  
DATA  
DATA0  
nCONFIG  
Notes:  
(1) The pull-up resistor should be connected to the same supply voltage as the  
configuration device.  
(2) All pull-up resistors are 1 k¾.  
14  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Figure 8 shows three FLEX 8000 devices configured with two EPC1 or  
EPC1213 configuration devices.  
Figure 8. FLEX 8000 Multi-Device Configuration with Two EPC1 or EPC1213 Configuration Devices  
VCC  
VCC  
VCC (1)  
(1)  
(1)  
(2)  
(2)  
VCC  
VCC  
(1)  
(1)  
Configuration  
Device 2  
Configuration  
Device 1  
(2)  
(2)  
FLEX 8000 Device 1  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
DCLK  
nCASC  
DATA  
"0"  
"0"  
"0"  
DATA  
nCS  
OE  
nCS  
OE  
DCLK  
DCLK  
DATA0  
nCONFIG  
VCC (1)  
(2)  
FLEX 8000 Device 2  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
"0"  
"1"  
"0"  
DCLK  
DATA0  
nCONFIG  
VCC (1)  
(2)  
FLEX 8000 Device 3  
nS/P  
MSEL1  
MSEL0  
CONF_DONE  
nSTATUS  
"0"  
"1"  
"0"  
DCLK  
DATA0  
nCONFIG  
Notes:  
(1) The pull-resistor should be connected to the same supply voltage as the confiuration device.  
(2) All pull-up resistors are 1 k¾.  
Altera Corporation  
15  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 5 describes the pin functions of all configuration devices during  
FLEX 8000 device configuration.  
Table 5. Configuration Device Pin Functions During FLEX 8000 Device Configuration  
Pin Name  
Pin Number  
Pin  
Description  
Type  
8-Pin  
20-Pin 32-Pin  
PDIP (1) PLCC TQFP (2)  
DATA  
1
2
Output  
Input  
31  
Serial data output. The DATApin is tri-stated before  
configuration when the nCSpin is high and after the  
configuration device finishes sending its configuration  
data. This operation is independent of the devices  
position in the cascade chain.  
DCLK  
2
4
DCLKis a clock input when using EPC1, EPC1213,  
EPC1064, and EPC1064V configuration devices. Rising  
edges on DCLKincrement the internal address counter  
and present the next bit of data to the DATApin. The  
counter is incremented only if the OEinput is held high,  
the nCSinput is held low, and all configuration data has  
not been transferred to the target device.  
2
OE  
3
8
Open-  
Drain  
I/O  
7
Output enable (active high) and reset (active low). A low  
logic level resets the address counter. A high logic level  
enables DATAand permits the address counter to count.  
nCS(3)  
4
6
9
10  
Input  
Chip-select input (active low). A low input allows DCLKto  
increment the address counter and enables DATA.  
nCASC  
12  
15  
Output Cascade-select output (active low). This output goes low  
when the address counter has reached its maximum  
value. The nCASCoutput is usually connected to the nCS  
input of the next device in a configuration chain, so the  
next DCLKclocks data out of the next device.  
VCC  
GND  
7, 8  
5
20  
10  
27  
12  
Power Power pin.  
Ground Ground pin. A 0.2-µF decoupling capacitor must be  
placed between the VCCand GNDpins.  
Notes:  
(1) This package is available for EPC1, EPC1441, EPC1213, EPC1064, and EPC1064V devices only.  
(2) This package is available for EPC1441, EPC1064, and EPC1064V devices only.  
(3) The EPC1441, EPC1064, and EPC1064V devices do not support data cascading. The EPC1 and EPC1213 devices  
support data cascading for FLEX 8000 devices.  
For more information on FLEX 8000 device configuration, see the  
following documents:  
f
Application Note 33 (Configuring FLEX 8000 Devices)  
Application Note 38 (Configuring Multiple FLEX 8000 Devices)  
16  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
This section describes Power-On Reset (POR) delay, error detection, and  
3.3-V and 5.0-V operation of Altera configuration devices.  
Power &  
Operation  
Power-On Reset  
During initial power-up, a POR delay occurs to permit voltage levels to  
stabilize. When configuring an ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000, or Mercury device with an EPC2, EPC1, or EPC1441 device,  
the POR delay occurs inside the configuration device, and the POR delay  
is a maximum of 100 ms. When configuring a FLEX 8000 device with an  
EPC1213, EPC1064, or EPC1064V device, the POR delay occurs inside the  
FLEX 8000 device, and the POR delay is typically 100 ms, with a  
maximum of 200 ms.  
Error Detection Circuitry  
The EPC2, EPC1, and EPC1441 configuration devices have built-in error  
detection circuitry for configuring ACEX 1K, APEX 20K, FLEX 10K,  
FLEX 6000, and Mercury devices only.  
Built-in error-detection circuitry uses the nCSpin of the configuration  
device, which monitors the CONF_DONEpin on the ACEX 1K, APEX 20K,  
FLEX 10K, FLEX 6000, or Mercury device. An error condition occurs if the  
CONF_DONEpin does not go high after all the configuration data has been  
sent, or if the CONF_DONEpin goes high before the configuration device  
has completed sending configuration data. When an error condition  
occurs, the configuration device drives its OEpin low, which drives the  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or Mercury devices  
nSTATUSpin low, indicating an error. After an error, configuration  
automatically restarts if the Auto-Restart Configuration on Frame Error  
option is turned on in the Global Project Device Options dialog box  
(Assign menu) in the MAX+PLUS II software. For APEX 20K and  
Mercury devices, the Quartus software provides a similar option.  
In addition, if the ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or  
Mercury device detects a cyclic redundancy code (CRC) error in the  
received data, it may also flag the error by driving nSTATUSlow. This low  
signal on nSTATUSresets the configuration device, allowing  
reconfiguration. CRC checking is performed when configuring all  
ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, and Mercury devices.  
Altera Corporation  
17  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
3.3-V or 5.0-V Operation  
EPC2, EPC1, and EPC1441 devices can configure 5.0-V, 3.3-V, or 2.5-V  
devices. For each configuration device, an option must be set for 5.0-V or  
3.3-V operation. For EPC1 and EPC1441 configuration devices, the Use  
Low-Voltage Configuration EPROM option in the Global Project Device  
Options dialog box (Assign menu) in the MAX+PLUS II software sets this  
parameter. (For APEX 20K and Mercury devices, the Quartus software  
provides a similar option.) For EPC2 devices, this option is set externally  
by the VCCSELpin. In addition, the EPC2 device has an externally  
controlled option, set by the VPPSELpin, to adjust the programming  
voltage to 5.0 V or 3.3 V.  
The functions of the VCCSELand VPPSELpins are described below.  
VCCSELpinFor EPC2 configuration devices, 5.0-V or 3.3-V  
operation is controlled by the VCCSELoption pin. The device  
functions in 5.0-V mode when VCCSELis connected to GND; the  
device functions in 3.3-V mode when VCCSELis connected to VCC  
.
VPPSELpinThe EPC2 VPPprogramming power pin is normally  
tied to VCC. For EPC2 devices operating with a 3.3-V supply, it is  
possible to improve EPC2 in-system programming times by  
providing VPPwith a 5.0-V supply. For all other devices, VPPmust be  
tied to VCC. The EPC2 devices VPPSELpin must be set in accordance  
with the EPC2 VPPpin. If the VPPpin is supplied by a 5.0-V supply,  
VPPSELmust be connected to GND; if the VPPpin is supplied by a  
3.3-V power supply, VPPSELmust be connected to VCC  
.
Table 6 describes the relationship between the VCC and VPP voltage levels  
and the required logic level for VCCSELand VPPSEL(i.e., high or low  
logic level).  
Table 6. VCCSEL & VPPSEL Pin Functions on the EPC2  
VCC Voltage Level VPP Voltage Level VCCSEL Pin Logic VPPSEL Pin Logic  
(V)  
(V)  
Level  
Level  
3.3  
3.3  
5.0  
3.3  
5.0  
5.0  
High  
High  
Low  
High  
Low  
Low  
18  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
For EPC1 and EPC1441 configuration devices, 3.3-V or 5.0-V operation is  
controlled by a programming bit in the POF. The programming bit value  
is determined by the core supply voltage of the targeted device during  
design compilation with the MAX+PLUS II software. For example, EPC1  
devices are programmed automatically to operate in 3.3-V mode when  
configuring FLEX 10KA devices, which have a VCC voltage of 3.3 V. In this  
example, the EPC1 devices VCCpin is connected to a 3.3-V power supply.  
Designers may choose to set the configuration device for low voltage  
when using the MultiVoltTM feature, which allows an ACEX, APEX, FLEX,  
or Mercury device to bridge between systems operating with different  
voltages. When compiling for 3.3-V FLEX 6000 devices, set the  
configuration device for low-voltage operation. To set the EPC1 and  
EPC1441 configuration devices for low-voltage operation, turn on the  
Low-Voltage I/O option in the Global Project Device Options dialog box  
(Assign menu) in the MAX+PLUS II software.  
Configuration Chain with Multiple Voltage Levels  
An EPC2 or EPC1 device can configure a device chain with multiple  
voltage levels. All 3.3-V and 2.5-V ACEX, APEX, FLEX, and Mercury  
devices can be driven by higher-voltage signals.  
When configuring a mixed-voltage device chain, the ACEX, APEX, FLEX  
and Mercury devicesVCCINTand VCCIOpins may be connected to 2.5 V,  
3.3 V, or 5.0 V, depending upon the device. The configuration device may  
be powered at 3.3 V or 5.0 V. If an EPC1, EPC1441, EPC1213, EPC1064, or  
EPC1064V configuration device is powered at 3.3 V, the nSTATUSand  
CONF_DONEpull-up resistors must be connected to 3.3 V. If these  
configuration devices are powered at 5.0 V, the nSTATUSand CONF_DONE  
pull-up resistors must be connected to 3.3 V or 5.0 V.  
At 3.3-V operation, all EPC2 inputs are 5.0-V tolerant, except DATA, DCLK,  
and nCASC. The DATA, DCLK, and nCEOpins are used only to interface  
between the EPC2 and the ACEX 1K, APEX 20K, FLEX 10K, FLEX 6000, or  
Mercury device it is configuring. The voltage tolerances of all EPC2 pins  
at 5.0 V and 3.3 V are listed in Table 7.  
Table 7. EPC2 Input & Bidirectional Pin Voltage Tolerance  
Pin  
5.0-V Operation  
3.3-V Operation  
5.0-V  
Tolerant  
3.3-V  
Tolerant  
5.0-V  
Tolerant  
3.3-V  
Tolerant  
DATA  
DCLK  
v
v
v
v
v
v
Altera Corporation  
19  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 7. EPC2 Input & Bidirectional Pin Voltage Tolerance  
Pin  
5.0-V Operation  
3.3-V Operation  
5.0-V  
3.3-V  
5.0-V  
3.3-V  
Tolerant  
Tolerant  
Tolerant  
Tolerant  
nCASC  
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
OE  
v
v
v
v
v
v
v
v
nCS  
VCCSEL  
VPPSEL  
nINIT_CONF  
TDI  
TMS  
TCK  
For more information on ACEX 1K, APEX 20K, FLEX 10K, FLEX 8000,  
FLEX 6000, and Mercury devices, see the following documents:  
f
ACEX 1K Programmable Logic Device Family Data Sheet  
APEX 20K Programmable Logic Device Family Data Sheet  
FLEX 10K Embedded Programmable Logic Family Data Sheet  
FLEX 10KE Embedded Programmable Logic Family Data Sheet  
FLEX 8000 Programmable Logic Device Family Data Sheet  
FLEX 6000 Programmable Logic Device Family Data Sheet  
Mercury Programmable Logic Device Family Data Sheet  
The Quartus and MAX+PLUS II development systems provide  
programming support for Altera configuration devices. The Quartus and  
MAX+PLUS II software automatically generates a POF to program each  
configuration device in a project. In a multi-device project, the software  
can combine the programming files for multiple ACEX, APEX, FLEX, or  
Mercury devices into one or more configuration devices. The software  
allows you to select the appropriate configuration device to most  
efficiently store the data for each ACEX, APEX, FLEX, and Mercury  
device. Moreover, when compiling for ACEX 1K, FLEX 10KA,  
FLEX 10KE, or Mercury devices, the MAX+PLUS II software  
automatically defaults to generate the EPC1 or EPC1441 POF with the  
programming bit set for 3.3-V operation.  
Programming  
&Configuration  
File Support  
All Altera configuration devices are programmable using Altera  
programming hardware in conjunction with the Quartus or  
MAX+PLUS II software. In addition, many manufacturers offer  
programming hardware that supports other Altera configuration devices.  
20  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
The EPC2 configuration device can be programmed in-system through its  
industry-standard 4-pin JTAG interface. ISP capability in the EPC2  
provides ease in prototyping and updating ACEX, APEX, FLEX, and  
Mercury device functionality. The EPC2 configuration device can be  
programmed in-system via test equipment using SVF Files, Jam STAPL  
Files (.jam), or Jam STAPL Byte-Code Files (.jbc), embedded processors  
using the Jam programming and test language, and the MAX+PLUS II  
software via the MasterBlaster, ByteBlasterMV, or BitBlaster download  
cables. When programming multiple EPC2 devices in a JTAG chain, the  
Quartus and MAX+PLUS II software and other programming methods  
employ concurrent programming to simultaneously program multiple  
devices and reduce programming time. EPC2 devices can be programmed  
and erased up to 100 times.  
After programming an EPC2 device in-system, ACEX, APEX, FLEX, or  
Mercury device configuration can be initiated by including the EPC2  
JTAG configuration instruction. See Table 8 on page 21.  
For more information on programming and configuration support, see the  
following documents:  
f
Altera Programming Hardware Data Sheet  
Programming Hardware Manufacturers  
MasterBlaster Serial/USB Communications Cable Data Sheet  
ByteBlasterMV Parallel Port Download Cable Data Sheet  
ByteBlaster Parallel Port Download Cable Data Sheet  
BitBlaster Serial Download Cable Data Sheet  
The EPC2 provides JTAG BST circuitry that complies with the IEEE Std.  
1149.1-1990 specification. JTAG boundary-scan testing can be performed  
before or after configuration, but not during configuration. The EPC2  
device supports the JTAG instructions shown in Table 8.  
IEEE Std.  
1149.1 (JTAG)  
Boundary-Scan  
Testing  
The ISP circuitry in EPC2 devices is compatible with tools that support the  
IEEE Std. 1532. The IEEE Std. 1532 is a standard developed to allow  
concurrent ISP between multiple PLD vendors.  
Table 8. EPC2 JTAG Instructions  
JTAG Instruction  
Description  
SAMPLE/PRELOAD  
Allows a snapshot of a signal at the device pins to be captured and examined during  
normal device operation, and permits an initial data pattern output at the device pins.  
EXTEST  
Allows the external circuitry and board-level interconnections to be tested by forcing a  
test pattern at the output pins and capturing results at the input pins.  
Altera Corporation  
21  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 8. EPC2 JTAG Instructions  
JTAG Instruction  
Description  
BYPASS  
Places the 1-bit bypass register between the TDIand TDOpins, which allows the BST  
data to pass synchronously through a selected device to adjacent devices during  
normal device operation.  
IDCODE  
Selects the device IDCODE register and places it between TDIand TDO, allowing the  
device IDCODE to be serially shifted out of TDO. The device IDCODE for the EPC2 is  
shown below:  
0000 0001000000000010 00001101110 1  
USERCODE  
Selects the USERCODE register and places it between TDIand TDO, allowing the  
USERCODE to be serially shifted out of TDO. The 32-bit USERCODE is a  
programmable user-defined pattern.  
ISP Instructions  
These instructions are used when programming an EPC2 device via JTAG ports with  
a MasterBlaster, ByteBlaster MV, ByteBlaster, or BitBlaster download cable, or using  
a Jam STAPL File (.jam), Jam STAPL Byte-Code File (.jbc), or SVF File via an  
embedded processor.  
INIT_CONF  
This function allows the user to initiate the APEX or FLEX configuration process by  
tying nINIT_CONFto the APEX or FLEX device(s) nCONFIGpin(s). After this  
instruction is updated, the nINIT_CONFpin is driven low. When the Initiate  
Configuration instruction is cleared, nINIT_CONFis released, which starts the APEX  
or FLEX device configuration. This instruction is used by the MAX+PLUS II software,  
Jam STAPL Files, and JBC Files.  
For more information, see Application Note 39 (IEEE 1149.1 (JTAG)  
Boundary-Scan Testing in Altera Devices).  
f
Figure 9 shows the timing requirements for the JTAG signals.  
22  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Figure 9. EPC2 JTAG Waveforms  
TMS  
TDI  
tJCP  
tJCH  
tJCL  
tJPH  
tJPSU  
TCK  
TDO  
tJPZX  
tJPXZ  
tJPCO  
tJSSU  
tJSH  
Signal  
to Be  
Captured  
tJSZX  
tJSCO  
tJSXZ  
Signal  
to Be  
Driven  
Table 9 shows the timing parameters and values for configuration  
devices.  
Table 9. JTAG Timing Parameters & Values  
Symbol  
Parameter  
Min Max Unit  
tJCP  
TCKclock period  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJCH  
TCKclock high time  
TCKclock low time  
JTAG port setup time  
JTAG port hold time  
tJCL  
50  
tJPSU  
tJPH  
20  
45  
tJPCO  
tJPZX  
tJPXZ  
tJSSU  
tJSH  
JTAG port clock to output  
25  
25  
25  
JTAG port high impedance to valid output  
JTAG port valid output to high impedance  
Capture register setup time  
20  
45  
Capture register hold time  
tJSCO  
tJSZX  
tJSXZ  
Update register clock to output  
25  
25  
25  
Update register high-impedance to valid output  
Update register valid output to high impedance  
Altera Corporation  
23  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Tables 10 through 17 provide information on absolute maximum ratings,  
recommended operating conditions, DC operating conditions, and  
capacitance for configuration devices.  
Operating  
Conditions  
Table 10. Absolute Maximum Ratings  
Note (1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
VI  
Supply voltage  
With respect to ground (2)  
With respect to ground (2)  
2.0  
2.0  
7.0  
7.0  
50  
V
DC input voltage  
V
IMAX  
IOUT  
PD  
DC VCC or ground current  
DC output current, per pin  
Power dissipation  
mA  
mA  
mW  
° C  
° C  
° C  
25  
25  
250  
150  
135  
135  
TSTG  
TAMB  
TJ  
Storage temperature  
Ambient temperature  
Junction temperature  
No bias  
65  
65  
Under bias  
Under bias  
Table 11. Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VCC  
Supply voltage for 5.0-V operation  
Supply voltage for 3.3-V operation  
Input voltage  
(3), (4)  
(3), (4)  
4.75 (4.50) 5.25 (5.50)  
V
V
V
3.0 (3.0)  
3.6 (3.6)  
VI  
With respect to ground  
0.3  
VCC + 0.3  
(5)  
VO  
TA  
Output voltage  
0
0
VCC  
70  
V
Operating temperature  
For commercial use  
For industrial use  
° C  
° C  
ns  
40  
85  
tR  
tF  
Input rise time  
Input fall time  
20  
20  
ns  
Table 12. DC Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
High-level input voltage  
2.0  
VCC + 0.3  
V
(5)  
VIL  
Low-level input voltage  
5.0-V mode high-level TTL output voltage IOH = 4 mA DC (6)  
0.3  
2.4  
0.8  
V
V
V
VOH  
3.3-V mode high-level CMOS output  
voltage  
IOH = 0.1 mA DC (6)  
VCC 0.2  
VOL  
II  
Low-level output voltage  
Input leakage current  
IOL = 4 mA DC (6)  
VI = VCC or ground  
VO = VCC or ground  
0.4  
10  
10  
V
10  
10  
µA  
µA  
IOZ  
Tri-state output off-state current  
24  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 13. EPC1213, EPC1064 & EPC1064V Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
100  
10  
200  
50  
µA  
VCC supply current  
mA  
(during configuration)  
Table 14. EPC2 Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Min  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
VCC = 5.0 V or 3.3 V  
50  
18  
100  
50  
µA  
VCC supply current (during configuration) VCC = 5.0 V or 3.3 V  
mA  
Table 15. EPC1 Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
ICC0  
ICC1  
VCC supply current (standby)  
50  
30  
10  
100  
50  
µA  
mA  
mA  
VCC supply current (during configuration) VCC = 5.0 V  
CC = 3.3 V  
V
16.5  
Table 16. EPC1441 Device ICC Supply Current Values  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ICC0  
ICC1  
ICC1  
VCC supply current (standby)  
30  
15  
5
60  
30  
10  
µA  
mA  
mA  
VCC supply current (during configuration) VCC = 5.0 V  
VCC supply current (during configuration) VCC = 3.3 V  
Table 17. Capacitance  
Note (7)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
CIN  
Input pin capacitance  
Output pin capacitance  
VIN = 0 V, f = 1.0 MHz  
VOUT = 0 V, f = 1.0 MHz  
10  
10  
pF  
pF  
COUT  
Notes to tables:  
(1) See the Operating Requirements for Altera Devices Data Sheet in this data book.  
(2) The minimum DC input is 0.3 V. During transitions, the inputs may undershoot to 2.0 V or overshoot to 7.0 V for  
input currents less than 100 mA and periods shorter than 20 ns under no-load conditions.  
(3) Numbers in parentheses are for industrial-temperature-range devices.  
(4) Maximum V rise time is 100 ms.  
CC  
(5) Certain EPC2 pins may be driven to 5.75 V when operated with a 3.3-V V . See Table 7 on page 19.  
CC  
(6) The I  
parameter refers to high-level TTL or CMOS output current; the I parameter refers to low-level TTL or  
OH  
OL  
CMOS output current.  
(7) Capacitance is sample-tested only.  
Altera Corporation  
25  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Tables 18 through 22 show the device configuration parameters for  
FLEX 10K, FLEX 8000, and FLEX 6000 devices.  
Table 18. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC2 Devices at 5.0-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
200  
50  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
20  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
30  
30  
50  
50  
10  
75  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
75  
ns  
fCK  
Clock frequency  
6.7  
30  
30  
16.7  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
20  
10  
20  
20  
25  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Table 19. ACEX 1K, APEX 20K, FLEX 10K & Mercury Device Configuration Parameters Using EPC2 Devices  
at 3.3-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
300  
80  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
30  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
40  
40  
65  
65  
100  
tMCL  
DCLKlow time for the first device in the  
100  
ns  
configuration chain  
fCK  
Clock frequency  
5
7.7  
12.5  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
40  
40  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
25  
15  
30  
30  
30  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
26  
Altera Corporation  
Configuration Devices for ACEX, APEX, FLEX & Mercury Devices Data Sheet  
Table 20. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC1 &  
EPC1441 Devices at 5.0-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
200  
50  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
20  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
30  
30  
50  
50  
10  
75  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
75  
ns  
fCK  
Clock frequency  
6.7  
30  
30  
16.7  
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
20  
10  
20  
20  
25  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Table 21. ACEX 1K, FLEX 10K & FLEX 6000 Device Configuration Parameters Using EPC1 &  
EPC1441 Devices at 3.3-V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tCE  
OEhigh to first clock delay  
OEhigh to data output enabled  
DCLKto data out delay  
300  
80  
ns  
ns  
ns  
ns  
tOEZX  
tCO  
30  
tMCH  
DCLKhigh time for the first device in the  
configuration chain  
50  
50  
125  
125  
4
250  
tMCL  
DCLKlow time for the first device in the  
configuration chain  
250  
10  
ns  
fCK  
Clock frequency  
2
MHz  
ns  
tSCH  
DCLKhigh time for subsequent devices  
DCLKlow time for subsequent devices  
CLKrising edge to nCASC  
50  
50  
tSCL  
ns  
tCASC  
tCCA  
fCDOE  
tOEC  
tNRCAS  
tNRR  
25  
15  
30  
30  
30  
ns  
nCSto nCASCcascade delay  
CLKto data enable/disable  
OElow to CLKdisable delay  
OElow (reset) to nCASCdelay  
OElow time (reset) minimum  
ns  
ns  
ns  
ns  
100  
ns  
Altera Corporation  
27  
Configuration Devices for APEX, ACEX, FLEX & Mercury Devices Data Sheet  
Table 22. FLEX 8000 Device Configuration Parameters Using EPC1, EPC1441, EPC1213, EPC1064 &  
EPC1064V Devices  
Symbol  
Parameter  
Conditions  
EPC1064V EPC1064 EPC1  
EPC1213 EPC1441  
Unit  
Min Max Min Max Min Max  
tOEZX  
tCSZX  
tCSXZ  
tCSS  
tCSH  
tDSU  
tDH  
OEhigh to DATAoutput enabled  
nCSlow to DATAoutput enabled  
nCShigh to DATAoutput disabled  
nCSlow setup time to first DCLKrising edge  
nCSlow hold time after DCLKrising edge  
Data setup time before rising edge on DCLK  
Data hold time after rising edge on DCLK  
DCLKto DATAout delay  
75  
75  
75  
50  
50  
50  
50  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
150  
0
100  
0
50  
0
75  
0
50  
0
50  
0
tCO  
100  
4
75  
6
75  
8
tCK  
Clock period  
240  
160  
100  
fCK  
Clock frequency  
tCL  
DCLKlow time  
120  
120  
80  
80  
50  
50  
tCH  
DCLKhigh time  
tXZ  
OElow or nCShigh to DATAoutput disabled  
OEpulse width to guarantee counter reset  
Last DCLK+ 1 to nCASClow delay  
Last DCLK+ 1 to DATAtri-state delay  
nCShigh to nCASChigh delay  
75  
50  
50  
tOEW  
tCASC  
tCKXZ  
tCEOUT  
150  
100  
100  
90  
75  
60  
50  
50  
50  
150  
100  
100  
®
101 Innovation Drive  
San Jose, CA 95134  
(408) 544-7000  
http://www.altera.com  
Applications Hotline:  
(800) 800-EPLD  
Customer Marketing:  
(408) 544-7104  
Literature Services:  
lit_req@altera.com  
Altera, ACEX, APEX, BitBlaster, ByteBlaster, FLEX, Jam, Master Blaster, MAX+PLUS II, Mercury, Quartus,  
and specific device designations, are trademarks and/ or service marks of Altera Corporation in the United  
States and other countries. Altera acknowledges the trademarks of other organizations for their respective  
products or services mentioned in this document. Altera products are protected under numerous U.S. and  
foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of  
its semiconductor products to current specifications in accordance with Alteras standard warranty, but  
reserves the right to make changes to any products and services at any time without notice.  
Altera assumes no responsibility or liability arising out of the application or use of any  
information, product, or service described herein except as expressly agreed to in writing by  
Altera Corporation. Altera customers are advised to obtain the latest version of device  
specifications before relying on any published information and before placing orders for  
products or services.  
28  
Altera Corporation  
Printed on Recycled Paper.  

相关型号:

EPC1065HE1-G

DC-DC Unregulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE-12
PCA

EPC1065HE8

Analog IC
ETC

EPC1065P

DC-DC Unregulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE
PCA

EPC1065PE1-G

DC-DC Unregulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE-12
PCA

EPC1065PE8

Analog IC
ETC

EPC1066H

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE
PCA

EPC1066HE1

Analog IC
ETC

EPC1066HE1-G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE-12
PCA

EPC1066PE

Analog IC
ETC

EPC1066PE1-G

DC-DC Regulated Power Supply Module, 1 Output, Hybrid, 1.300 X 0.585 INCH, 0.375 INCH HEIGHT, PACKAGE-12
PCA

EPC1067H

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, 1.300 X 0.800 INCH, 0.530 INCH HEIGHT, PACKAGE
PCA

EPC1067HA10

Analog IC
ETC