S3016AH0 [AMCC]

ATM Network Interface, 1-Func, PDSO52, PQFP, TEP, 52 PIN;
S3016AH0
型号: S3016AH0
厂家: APPLIED MICRO CIRCUITS CORPORATION    APPLIED MICRO CIRCUITS CORPORATION
描述:

ATM Network Interface, 1-Func, PDSO52, PQFP, TEP, 52 PIN

ATM 异步传输模式 电信 光电二极管 电信集成电路
文件: 总23页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
DEVICE SPECIFICATION  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
FEATURES  
GENERAL DESCRIPTION  
• Complies with ANSI, Bellcore, and ITU-T  
specifications  
• On-chip high-frequency PLL for clock  
generation and clock recovery  
• On-chip analog circuitry for transformer driver  
and equalization  
The S3015 transmitter and S3016 receiver derive high  
speed timing signals for SONET/SDH or PDH–based  
equipment. These circuits are implemented using  
AMCC’s proven Phase Locked Loop (PLL) technology.  
Figures 1a and 1b show typical network applications.  
The S3015 and S3016 each have an on-chip VCO  
whichcanbesynchronizeddirectlytotheincomingdata  
stream. The chipset can be used with a 19.44 MHz  
referenceclockwhenoperatedintheSONET/SDHOC-  
3 mode. In E4 mode the chipset can be operated with a  
17.408 MHz reference clock in support of existing  
system clocking schemes. On-chip coded-mark-inver-  
sion (CMI) encoding and decoding is provided for  
139.264 Mbit/s and 155.52 Mbit/s interfaces.  
• Supports 139.264 Mbit/s (E4) and 155.52 Mbit/s  
(OC-3) transmission rates  
• Supports 139.264 Mbit/s and 155.52 Mbit/s  
Coded Mark Inversion (CMI) interfaces  
• Reference frequencies of 19.44 (OC-3) or  
17.408 MHz (E4)  
• Interface to both PECL and TTL logic  
• Lock detect on clock recovery device  
• Low jitter PECL interface  
• 1.6W total typ power  
• +5V only power supply  
• Small 52 PQFP TEP package  
• Supports both electrical and optical interfaces  
The low jitter PECL interface guarantees compliance  
with the bit-error rate requirements of the Bellcore,  
ANSI, and ITU-T standards. The S3015/S3016 chipset  
is packaged in a .65mm pitch, compact 52-pin PQFP,  
offering designers a small package outline.  
APPLICATIONS  
The S3015 and S3016 provide the major components  
on-chip for a coaxial cable interface, including analog  
transformer driver circuitry and equalization interface  
circuitry.  
ATM over SONET  
OC-3/STM-1 or E4-based transmission systems  
OC-3/STM-1 or E4 modules  
OC-3/STM-1 or E4 test equipment  
Section repeaters  
Add drop multiplexors  
Broadband cross-connects  
• Fiber optic terminators  
• Fiber optic test equipment  
Figure 1a. Electrical Interface  
COAX  
139/155 Mb/s NRZ  
139/155 Mb/s CMI  
139/155 Mb/s CMI  
S3015  
S3016  
E4/STM-1/OC-3  
OVERHEAD  
PROCESSOR  
XFMR  
XFMR  
139/155 Mb/s NRZ  
17.408/19.44 Mhz  
COAX  
OSC  
Figure 1b. Optical Interface  
155 Mb/s NRZ  
E4/STM-1/OC-3  
OTX  
OVERHEAD  
PROCESSOR  
155 Mb/s NRZ  
155 MHz  
155 Mb/s NRZ  
ORX  
S3015  
S3016  
OSC  
1
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
handles the conversion from electrical to optical and  
back with no overhead. It is responsible for transmitting  
the electrical signals in optical form over the physical  
media. The section layer handles the transport of the  
framed electrical signals across the optical cable from  
one end to the next. Key functions of this layer are  
framing, scrambling, and error monitoring. The line  
layer is responsible for the reliable transmission of the  
path layer information stream carrying voice, data, and  
video signals. Its main functions are synchronization,  
multiplexing, and reliable transport. The path layer is  
responsible for the actual transport of services at the  
appropriate signaling rates.  
SONET/SDH OVERVIEW  
Synchronous Optical Network (SONET) is a standard  
for connecting one fiber system to another at the optical  
level. SONET, together with the Synchronous Digital  
Hierarchy (SDH) administered by the ITU-T, form a  
single international standard for fiber interconnect be-  
tweentelephonenetworksofdifferentcountries.SONET  
is capable of accommodating a variety of transmission  
rates and applications.  
The SONET standard is a layered protocol with four  
separate layers defined. These are:  
• Photonic  
• Section  
• Line  
Data Rates and Signal Hierarchy  
• Path  
Table 1 contains the data rates and signal designations  
of the SONET hierarchy. The lowest level is the basic  
SONET signal referred to as the synchronous transport  
signal level-1 (STS-1). An STS-N signal is made up of  
N byte-interleaved STS-1 signals. The optical counter-  
part of each STS-N signal is an optical carrier level-N  
signal(OC-N). TheS3015/S3016chipsetsupportsOC-  
3 rates (155.52 Mbit/s).  
Figure 2 shows the layers and their functions. Each of  
thelayershasoverheadbandwidthdedicatedtoadmin-  
istration and maintenance. The photonic layer simply  
Table 1. SONET Signal Hierarchy  
Elec.  
STS-1  
ITU-T Optical Data Rate (Mbit/s)  
Frame and Byte Boundary Detection  
OC-1  
51.84  
The SONET/SDH fundamental frame format for STS-3  
consists of nine transport overhead bytes followed by  
Synchronous Payload Envelope (SPE) bytes. This pat-  
tern of 9 overhead and 261 SPE bytes is repeated  
nine times in each frame. Frame and byte boundaries  
are detected using the A1 and A2 bytes found in the  
transport overhead. (See Figure 3.)  
STS-3  
STM-1  
STM-4  
OC-3  
155.52  
STS-12  
STS-24  
STS-48  
OC-12  
OC-24  
OC-48  
622.08  
1244.16  
2488.32  
STM-16  
For more details on SONET operations, refer to the  
ANSI SONET standard document.  
Figure 3. SONET Structure  
Functions  
Figure 3. STS-3 Frame Format  
Payload to  
SPE mapping  
Path layer  
Path layer  
9 x 261 =  
2349 bytes  
9
Rows  
Maintenance,  
protection,  
switching  
Line layer  
Line layer  
Scrambling,  
framing  
Section layer  
Section layer  
Transport Overhead  
9 Columns  
Synchronous  
Optical  
transmission  
Photonic layer  
Photonic layer  
Payload  
Envelope  
Fiber Cable  
End Equipment  
End Equipment  
125µsec  
2
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016 OVERVIEW  
S3015/S3016  
S3015 TRANSMITTER  
FUNCTIONAL DESCRIPTION  
The S3015 transmitter and the S3016 receiver can be  
used to implement the front end of STS-3, OC-3 or E4  
equipment. The block diagrams in Figures 4 and 10  
show the basic operation of both chips.  
The S3015 transmitter chip performs the last stage of  
digital processing of a transmit SONET STS-3 or ITU-  
T E4 bit serial data stream. A Coded Mark Inversion  
(CMI) encoder can be enabled for encoding STS-3  
electrical and E4 signals.  
Whenserialdataispresentattheinputofthetransmitter,  
theS3015VCOsynchronizesdirectlytotheincomingdata,  
which is retimed for the purpose of optional CMI encod-  
ing. In the absence of incoming serial data, the S3015  
operates as a clock synthesizer. In this mode, a crystal  
oscillator is connected to the TTL reference input and  
synthesized up to the 155 MHz output frequency. The  
S3016 receiver performs clock recovery by synchroniz-  
ingitson-chipVCOdirectlytotheincomingdatastream.  
Clock Recovery  
If serial data is present on the SERDATIP/N inputs, the  
clock is recovered from the serial data stream at 139.264  
MHz or 155.52 MHz and synthesized to 278.528 MHz  
or 311.04 MHz to CMI encode the incoming data.  
Optical and Electrical Interfaces  
The S3015 provides a PECL output for an optical  
interface and two transformer driver outputs for an  
electrical interface. One of these drivers is a monitor  
output. The S3016 provides a PECL input for an optical  
interface and an analog input for an electrical interface.  
The digital data outputs (SERDATOP/N) are the PECL  
outputs for an optical interface and are to be connected  
to an electrical to optical converter, as shown in Figure  
18. This data is also routed to two on-chip transformer  
drivers and sent out on XFRMDRVA and XFRMDRVB  
to drive the transformers of the electrical interface, as  
showninFigure20.Theseoutputsareshutoffwhenthe  
reset is active, XFRMEN is active, or when the chip is  
in NRZ mode and the data inputs are in the logic zero  
state. The electrical characteristics for the transformer  
drivers are shown in Table 5.  
When the chipset is used in an electrical interface, the  
PECL output of the transmitter can be connected to the  
PECL input of the receiver to implement a diagnostic  
loopback mode for test. When the chipset is used in an  
optical interface, a transformer driver output of the  
transmitter can be connected to the analog input of the  
receiver to implement the loopback mode.  
Figure 4. S3015 OC3/STM-1/E4 Transmitter Functional Block Diagram  
CAP1  
LOOP  
VCO  
FILTER  
CAP2  
REFCKIN  
REFCKOUT  
2
TSTCLKEN  
SERCLKOP/N  
CLOCK  
C
M
I
DIVIDER  
CMISEL  
DLCV  
TRANSFORMER  
DRIVERS  
XFRMDRVA  
RSTB  
XFRMDRVB  
PHASE DETECTOR  
SERDATOP/N  
2
SERDATIP/N  
XFRMEN  
SERDATEN  
3
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
CMI Encoding  
Figure 5. CMI Encoded Data  
Coded Mark Inversion format (CMI) ensures at least  
one data transition per 1.5 bit periods, thus aiding  
the clock recovery process. Zeros are represented  
by a Low state for one half a bit period, followed by  
a High state for the rest of that bit period. Ones are  
represented by a steady Low or High state for a full  
bit period. The state of the ones bit period alternates  
at each occurrence of a one. Figure 5 shows an  
example of CMI-encoded data. The STS-3 electrical  
interface and the E4 interface are specified to have  
CMI-encoded data.  
Figure 6. Jitter Generation Specifications  
Compliant to G.823 and G.825  
The CMI encoder on the S3015 accepts serial data  
from SERDATIP/N at 139.264 or 155.52 Mb/s. The  
data is then encoded into CMI format, and the result  
is shifted out with transitions at twice the basic data  
rate. The CMISEL input controls whether the CMI en-  
coder is in the data path. A CMI code violation can be  
inserted for diagnostic purposes by activating the  
DLCV input. The DLCV input is sampled on every  
cycle of the serial clock to allow a single or multiple  
line code violations to be inserted. This violation is  
either an inverted zero code or an inversion of the  
alternating ones logic level, depending on the state of  
the data. Subsequent one codes take into account  
the induced violation to avoid error multiplication.  
A1  
A2  
f1  
f2  
f3  
f1(Hz)  
A2  
f2(KHz) f3(MHz) A1  
.01(1)  
.15(2)  
.075(2)  
65  
10  
.01(1)  
1.5(2)  
1.5(2)  
OC-3  
STM-1 500  
1.3  
3.5  
E4  
200  
1. UI rms  
2. UI p–p  
Jitter Generation  
Jitter Generation is defined as the amount of jitter at the  
OC-3 or E-4 output of equipment. Jitter generation for  
OC-3 shall not exceed 0.01 UI rms when measured  
using a highpass filter with a 12 kHz cutoff frequency.  
Figure 7. S3015 Maximum Allowable Input Jitter  
A1  
ForSTM-1andE4, thejittergeneratedshallnotexceed  
the specifications shown in Figure 6.  
Slope = +20 dB/decade  
In order to meet the SONET, STM-1 E4 jitter specifica-  
tionsasshowninFigure6,theSERDATIP/Nserialdata  
input must meet the jitter characteristics as shown in  
Figure 7.  
A2  
500Hz  
OC-3  
f2  
225 KHz 1.3 MHz  
f2(KHz)  
A1  
A2  
.005(1) .005(1)  
1.45(2) .10(2)  
1.45(2) .025(2)  
STM-1 65  
E4  
10  
1. UI rms  
2. UI p–p  
4
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
Figure 8. Mask of a pulse corresponding to a binary 0 Compliant to G.703  
T= 7.18 ns for E4  
6.43 ns for 155 CMI  
Figure 9. Mask of a pulse corresponding to a binary 1 Compliant to G.703  
t= 1.35 ns for E4  
1.20 ns for 155 CMI  
T= 7.18 ns for E4  
6.43 ns for 155 CMI  
Notes:  
1. The maximum “steady state” amplitude should not exceed the 0.55 V limit. Overshoots and other transients are  
permitted to fall into the dotted area, bounded by the amplitude levels 0.55 V and 0.6 V, provided that they do not  
exceed the steady state level by more than 0.05 V. The possibility of relaxing the amount by which the overshoot may  
exceed the steady state level is under study.  
2. For the purpose of these masks, the rise time and decay time should be measured between -0.4 V and 0.4 V, and  
should not exceed 2 ns.  
3. The inverse pulse in Figure 9 will have the same characteristics, noting that the timing tolerances at the zero level of the  
negative and positive transitions are ±0.1 ns and ±0.5 ns respectively.  
5
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
trolled Oscillator (VCO), which generates the recov-  
ered clock. Frequency stability without incoming data  
is guaranteed by an alternate reference input  
(REFCKIN) to which the PLL locks when data is lost.  
S3016 RECEIVER FUNCTIONAL  
DESCRIPTION  
The S3016 receiver provides the first stage of digital  
processing of a receive SONET STS-3 or ITU-T E4 serial  
bit stream. A Coded Mark Inversion (CMI) decoder can  
be enabled for decoding STS-3 electrical and E4 signals.  
When the test clock enable (TSTCLKEN) input is set  
high, the clock recovery block is disabled. The refer-  
ence clock (REFCKIN) is used as the bit rate clock  
input in place of the recovered clock. This feature is  
used for functional testing of the device.  
Clock recovery is performed on the incoming  
scrambled NRZ or CMI–coded data stream. A reference  
clock is required for phase locked loop start-up and  
proper operation under loss of signal conditions. An  
integral prescaler and phase locked loop circuit is used  
to multiply this reference frequency to the nominal bit rate.  
The loop filter transfer function is optimized to enable  
the PLL to track the jitter, yet tolerate the minimum  
transition density expected in a received SONET or  
E4 data signal. This transfer function yields a typical  
capture time of 16 µs for random incoming NRZ data.  
Clock Recovery  
The total loop dynamics of the clock recovery PLL yield  
a jitter tolerance which exceeds the minimum tolerance  
proposed for OC-3/STM-1/E4 equipment by the Bellcore  
and ITU-T documents, shown in Figure 13.  
The Clock Recovery function, as shown in the block  
diagram in Figure 10, generates a clock that is fre-  
quency matched to the incoming data baud rate at  
the SERDATIP/N differential inputs. The clock is  
phase aligned by a PLL so that it samples the data  
in the center of the data eye pattern.  
Optical and Electrical Interfaces  
The digital data inputs (SERDATIP/N) are the PECL  
inputs from an optical to electrical converter, as shown  
in Figure 16. The data input for the coaxial interface is  
ANDATIN, which is the serial data input from the equal-  
izer circuit and should be connected as shown in Figure  
17. The EQUALSEL input is used to select either  
SERDATIP/N or ANDATIN.  
The phase relationship between the edge transitions  
of the data and those of the generated clock are  
compared by a phase/frequency discriminator. Output  
pulses from the discriminator indicate the required  
direction of phase corrections. These pulses are  
smoothed by an integral loop filter. The output of the  
loop filter controls the frequency of the Voltage Con-  
Figure 10. S3016 OC-3/STM-1/E4 Receiver Functional Block Diagram  
CAP1  
LOOP  
VCO  
FILTER  
CAP2  
REFCKIN  
TSTCLKEN  
CMISEL  
REFCKOUT  
2
SERCLKOP/N  
LCV  
CLOCK  
DIVIDER  
C
M
I
LOCK  
LOSOUT  
DETECTOR  
RSTB  
2
BUFINA, BUFINB  
BUFOUT  
PHASE DETECTOR  
2
SERDATOP/N  
LOSOPT  
2:1  
MUX  
LOSIN  
LOSREF  
2
SERDATIP/N  
2:1  
MUX  
ANDATIN  
EQUALSEL  
6
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
CMI Decoding  
Serial Clock Output to Data Output Timing  
The CMI decoder block on the S3016 accepts serial  
data from the SERDATIP/N input at the rate of 139.264  
or 155.52 Mb/s. The incoming CMI data, which has  
transitions that represent this data rate (the clock asso-  
ciated with this data would be running at twice this rate),  
is then decoded from CMI to NRZ format.  
The serial data is clocked out on the falling edge of  
SERCLKOP. (See Figure 12.) This timing is valid in  
both NRZ and CMI modes.  
Input Jitter Tolerance  
Input jitter tolerance is defined as the peak to peak  
amplitude of sinusoidal jitter applied on the input signal  
that causes an equivalent 1 dB optical/electrical power  
penalty. OC-3 and E-4 input jitter tolerance require-  
ments are shown in Figure 13.  
Loss of Signal  
The clock recovery circuit monitors the incoming data  
stream for loss of signal. If the incoming encoded data  
streamhashadnotransitionscontinuouslyfor96to224  
recovered clock cycles, loss of signal is declared and  
the PLL will switch from locking onto the incoming data  
tolockingontothereferenceclockpertherequirements  
of G.775. Alternatively, the loss-of signal (LOSIN) input  
can force a loss-of-signal condition. This signal is com-  
pared internally against the LOSREF input reference  
voltage. This input can be set to meet the conditions  
showninFigure11. Ifthezerotopeaksignalleveldrops  
below the LOSREF/20 voltage level for more than 96 to  
224 bit intervals, a loss of signal condition will be  
indicated on the LOSOUT pin and the PLL will change  
itsreferencefromtheserialdatastreamtothereference  
clock. When the peak input voltage is greater than  
LOSREF/10, the loss of signal condition will be  
deasserted and the PLL will recover the clock from the  
serial data inputs.  
The S3016 PLL complies with the minimum jitter toler-  
ance for clock recovery proposed for SONET/SDH  
equipment defined by the Bellcore TA-NWT-000253  
standard when used as shown in Figure 13. The S3016  
PLL also complies with the minimum jitter tolerance for  
clock recovery as defined in the ITU-T E4 specification  
when used as shown in Figure 17.  
Figure 12. S3016 Clock to Data Timing  
SERCLKOP  
SERDATOP/N  
tP  
SER  
InNRZmode, alogiclowlevelontheLOSOPTinputwill  
cause the PLL to change its reference to the reference  
clock. This pin should be driven by a PECL compatible  
level signal detect signal from the fiber optic receiver.  
Figure 13. Clock Recovery Jitter Tolerance  
Compliant to G.823 and G.825  
Figure 11. Criteria for determination of transition  
conditions. Compliant to G.775.  
nominal value  
maximum  
Sinusoidal  
Input Jitter  
Amplitude  
(UI p-p)  
A2  
A3  
A4  
cable loss  
3 dB  
“transition condition”  
must be declared  
17  
35  
Tolerance range  
f9  
f0 f1  
f2 f3  
f4  
f4  
“no transition condition” or “transition  
condition” may be declared  
f9  
(Hz)  
f2  
A3 A4  
f0  
f1  
f3  
A2  
“no transition condition”  
must be declared  
(KHz)  
(Hz) (Hz)  
(KHz) (MHz)  
Level below Nominal  
OC-3  
10  
6.5  
6.5  
1.5 .15  
1.5 0.15  
1.5 0.075  
30 300  
65  
65  
65  
15  
391  
391  
The signal level 17 is (maximum cable loss +3)  
dB below nominal.  
STM-1 (Optical) 0.125  
STM-1 (Electrical) 0.125  
19.3 500  
19.3 500  
1.3  
1.3  
3.25  
The signal level 35 is greater than the maximum  
expected cross-talk level.  
E4  
TBD  
0.5  
1.5 0.075  
TBD 200  
65  
1.3  
15  
Note:  
1. Only tested to 20 due to test equipment limitation.  
7
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Test Mode  
Reference Clock Input  
The Test Clock Enable (TSTCLKEN) inputs on both  
chips provide access to the PLL.  
The reference clock input seen in Figure 10 provides  
backup reference clock signals to the clock recovery  
block when the clock recovery block detects a loss of  
signal condition. It contains a counter that divides the  
clock output from the clock recovery block down to the  
same frequency as the reference clock REFCKIN.  
The PLL-generated clock source on both the S3015  
and S3016 can be bypassed by setting TSTCLKEN  
high.Inthismode,anexternallygeneratedclocksource  
must be applied at the REFCLKIN input.  
OTHER OPERATING MODES  
Clock Synthesis  
Diagnostic Loopback  
In the Clock Synthesis mode, the S3015 synthesizes  
the E4 (139.264 MHz) clock from a 17.408 MHz crystal  
oscillator or the STS-3/STM-1 (155.52 MHz) clock from  
a 19.44 MHz crystal oscillator. In this mode, a crystal  
oscillator is connected to the TTL reference input and  
synthesized up to the output frequency.  
When the chipset is used in an electrical interface, the  
serial data output (SERDATOP/N) of the transmitter  
can be connected the serial data input (SERDATIP/N)  
ofthereceivertoimplementaloopbacktestfordiagnos-  
tic purposes, as shown in Figure 14. In this mode,  
SERDATEN on the transmitter and EQUALSEL on the  
receiver are both held low. LOSOPT on the receiver is  
held high or not connected.  
The S3015 PLL complies with jitter generation for clock  
synthesis proposed for SONET/SDH equipment de-  
fined by the Bellcore TA-NWT-000253 standard, when  
usedwithacrystalreferencesourceasdefinedinTable4.  
Figure 14. Loopback Diagram  
S3015  
S3016  
Control  
CLK  
S3016  
S3015  
CLK  
Control  
8
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
S3015 Pin Assignment and Descriptions  
Pin Name  
Level I/O  
Pin # Description  
REFCKIN  
TTL  
I
10  
Reference clock. Input used as the reference for the internal bit  
clock frequency synthesizer.  
TSTCLKEN  
TTL  
I
35  
Test clock enable signal, active high, that enables the reference  
clock to be used in place of the VCO for testing. Allows a means  
of testing the functions of the chip without the use of the PLL.  
Set low for normal operation.  
DLCV  
Single--  
ended  
PECL  
I
I
I
I
34  
33  
24  
Diagnostic line code violation, set high to force a CMI line code  
violation. DLCV is only active in CMI mode. DLCV is sampled on  
the falling edge of SERCLKOP.  
CMISEL  
RSTB  
TTL  
TTL  
CMI select, used to select CMI or NRZ. A logic high selects CMI  
mode. A logic low selects NRZ mode. Both the SERDATOP/N  
and the XFRMDRV outputs are controlled by CMISEL.  
Reset input for the device, active low. Initializes the device to a  
known state. When active, all data outputs are held low. Clock  
outputs are still active during reset.  
CAP1  
CAP2  
1
52  
The loop filter capacitor is connected to these pins. The  
capacitor value should be 0.1µf ±10% tolerance, X7R dielectric.  
50 V is recommended (16 V is acceptable).  
SERDATIP  
SERDATIN  
Diff.  
I
I
45  
46  
Serial data in. The clock is recovered from transitions on these  
inputs. No phase relationship to REFCKIN is required.  
PECL  
XFRMEN  
TTL  
TTL  
23  
Transformer driver enable used to enable the transformer driver  
outputs. A logic low enables XFRMDRVA and XFRMDRVB. A  
logic high turns off the transformer driver outputs.  
SERDATEN  
I
5
Serial data enable, used to enable the serial data outputs. A  
logic low enables SERDATOP/N. A logic high turns off the serial  
data outputs.  
SERDATOP  
SERDATON  
Diff.  
PECL  
O
7
6
Serial data out signal. In NRZ mode, this signal is the delayed  
version of the incoming data stream (SERDATIP/N) updated on  
the falling edge of Serial Clock Out (SERCLKOP). In CMI mode,  
this signal is the CMI-encoded version of SERDATIP/N.  
SERCLKOP  
SERCLKON  
Diff.  
O
O
29  
30  
Serial clock out signal that is a 155 MHz clock that is phase-  
aligned with Serial Data Out (SERDATO) in NRZ mode. In CMI  
mode, SERCLKOP/N cannot be used.  
PECL  
REFCKOUT  
TTL  
11  
Single-ended TTL reference clock output.  
9
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015 Pin Assignment and Descriptions (Continued)  
Pin Name  
Level I/O  
Pin # Description  
XFRMDRVA  
Analog  
Analog  
O
O
20  
21  
Transformer driver A, used to drive the transformer of the  
electrical interface. For E4 operation, this output should be  
connected per Figure 19 to provide the correct G.703 compatible  
output levels from the transformer when connected to the  
specified 75cable.  
XFRMDRVB  
Transformer driver B, used to drive the monitor transformer of  
the electrical interface. This output should be connected per  
Figure 20 to provide the correct output levels from the  
transformer when connected to the specified 75cable.  
AVEE  
0V  
2, 22, 39, Analog 0V  
42, 43  
AVCC  
+5V  
3, 19, 38, Analog +5V  
40, 48  
ECLVCC  
4, 9, 12,  
15, 25,  
28, 31,37  
ECLVEE  
TTLGND  
TTLVCC  
NC  
0V  
GND  
+5V  
8, 32, 36 Digital 0V  
13, 27  
14, 26  
TTL Power Supply (+5V if TTL)  
No Connection  
16, 17,  
18, 41,  
44, 47,  
49, 50,  
51  
10  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
S3016 Pin Assignment and Descriptions  
Pin Name  
Level I/O  
Pin # Description  
BUFINA  
BUFINB  
Analog  
Analog  
TTL  
I
I
22  
23  
Buffer inputs to the equalizer network buffer circuit. This circuit  
provides a high impedance load to the transformer termination  
network in order to comply with the required return loss  
specifications. These pins should be connected as shown in  
Figure 17. These pins are electrically equivalent.  
ANDATIN  
16  
Analog serial data input from the equalizer circuit. It must be  
connected to the output of the equalizer circuit as shown in  
Figure 17. When the S3016 is used with a fiber optic receiver,  
this input should be left open and the SERDATIP/N inputs  
should be used.  
EQUALSEL  
REFCKIN  
I
I
I
I
I
I
33  
10  
Equalization select used to select SERDATIP/N or ANDATIN. A  
logic high selects ANDATIN.  
Single-  
ended  
TTL  
Input used as the reference for the VCO when the input data  
signal is lost.  
SERDATIP  
SERDATIN  
Diff.  
PECL  
45  
46  
Serial data in. Clock is recovered from transitions on these  
inputs when selected by EQUALSEL.  
TSTCLKEN  
CMISEL  
RSTB  
TTL  
TTL  
TTL  
35  
32  
34  
Test clock enable signal, active high, that enables the reference  
clock to be used in place of the VCO for testing. Allows a means  
of testing the functions of the chip without the use of the PLL.  
CMI Select used to select CMI or NRZ. A logic high selects CMI  
mode. Either ANDATIN or SERDATIN may be used as inputs to  
the CMI decoder.  
Reset input for the device, active low. Initializes the device to a  
known state, shuts off SERCLKOP/N, and forces the PLL to  
acquire to the reference clock. A reset of at least 16 ms should  
be applied at power-up and whenever it is necessary to  
reacquire to the reference clock. The S3016 will also reacquire  
to the reference clock if the serial data is held quiescent  
(constant ones or constant zeros) or LOSIN or LOSOPT are  
activated for at least 224 bit intervals.  
11  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3016 Pin Assignment and Descriptions (Continued)  
Pin Name  
Level I/O  
Pin # Description  
LOSIN  
Analog  
I
18  
Loss of signal in. A single-ended input that indicates a loss of  
received signal. When the signal level at LOSIN drops below the  
voltage level set by LOSREF for greater than 96 to 224 bit  
intervals, the data on Serial Data Out (SERDATOP/N) will be  
forced to a constant low, and the PLL will change its reference  
from the serial data stream to the reference clock. This input is  
to be driven by the external bandpass filter and peak detect  
circuit as shown in Figure 17. This signal must be used to  
assure correct automatic reacquisition to serial data following an  
interruption and subsequent reconnection of the data path. This  
will assure that the PLL does not "wander" out of reacquisition  
range when no signal is applied. When LOSIN is inactive, data  
on the SERDATIP/N pins will be processed normally.  
LOSOPT  
LOSREF  
PECL  
I
I
4
Loss of optical signal input, active low. It has the same  
functionality as LOSIN, except that it is used in optical mode  
instead of electrical. It should be driven by the external optical  
receiver module to indicate a loss of received optical power.  
Analog  
19  
Loss of signal reference that sets the comparator levels for  
LOSIN. (See Table 6.)  
CAP1  
CAP2  
I
1
52  
The loop filter capacitor is connected to these pins. The  
capacitor value should be 0.1µf ±10% tolerance, X7R dielectric.  
50 V is recommended.  
LOSOUT  
TTL  
O
5
Loss of signal out, active low. Clock recovery indicator. Set high  
when the internal clock recovery has locked onto the incoming  
datastream. LOSOUT is an asynchronous output. This output is  
deasserted when there is no incoming serial data input or when  
the received signal has dropped below the reference voltage set  
by LOSREF for more than 96 to 224 bit intervals. In this case,  
the PLL locks to the reference clock.  
SERDATOP  
SERDATON  
Diff.  
PECL  
O
6
7
Serial NRZ data out signal. It can be either a delayed version of  
the NRZ data input (NRZ mode) or the decoded CMI data (CMI  
mode). SERDATOP/N is updated on the falling edge of  
SERCLKOP/N per Figure 12.  
SERCLKOP  
SERCLKON  
Diff.  
O
O
28  
29  
Serial clock out signal that is phase-aligned with Serial Data Out  
(SERDATOP). (See Figure 12 and Table 3 for timing.)  
PECL  
LCV  
Single-  
ended  
PECL  
31  
Line code violation that is set high to indicate that the current bit  
contains a CMI line code violation in CMI mode. LCV is updated  
on the falling edge of SERCLKOP/N per Figure 12. In NRZ  
mode, this is a test output.  
12  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
S3016 Pin Assignment and Descriptions (Continued)  
Pin Name  
Level I/O  
Pin # Description  
BUFOUT  
Analog  
O
20  
Buffer output of the equalizer network buffer circuit. This circuit  
provides a low impedance driver to the equalizer circuit. This pin  
should be connected as shown in Figure 17 to drive the  
equalizer network.  
REFCKOUT  
AVEE  
TTL  
0V  
O
11  
Single-ended TTL reference clock output (19.44 MHz).  
2, 17, 21, Analog 0V  
39, 42,  
43  
AVCC  
+5V  
3, 15, 24, Analog +5V  
38, 40,  
48  
ECLVEE  
ECLVCC  
0V  
8, 36  
Digital 0V  
+5V  
9, 12, 25, Digital +5V  
30, 37  
TTLGND  
TTLVCC  
NC  
GND  
+5V  
13, 27  
14, 26  
TTL Ground  
TTL Power Supply (+5V if TTL)  
41, 44, No Connection  
47, 49,  
50, 51  
13  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Figure 15. 52-Pin PQFP Package and Heatsink  
51  
49  
47  
45  
43  
41 40  
DW0045-29  
1
2
39  
38  
4
6
36  
34  
32  
30  
28  
Embedded  
Heatsink  
8
10  
12  
TOP VIEW  
10.0  
12.0  
10˚  
.64  
1.40  
.64  
0.65  
All dimensions nominal in mm.  
14  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
Absolute Maximum Ratings  
PARAMETER  
MIN TYP MAX UNIT  
Case Temperature under Bias  
Junction Temperature under Bias  
Storage Temperature  
–55  
–55  
125 °C  
150 °C  
150 °C  
–65  
Voltage on VCC with Respect to GND  
Voltage on Any TTL Input Pin  
Voltage on Any PECL Input Pin  
TTL Output Sink Current  
–0.5  
–0.5  
VCC-3  
+7.0  
+5.5  
VCC  
V
V
V
20 mA  
10 mA  
TTL Output Source Current  
High Speed PECL Output Source  
Current  
50 mA  
V
Static Discharge Voltage  
500  
Recommended Operating Conditions  
PARAMETER  
MIN TYP MAX UNIT  
Ambient Temperature under Bias  
Junction Temperature under Bias  
Voltage on VCC with Respect to GND  
Voltage on Any TTL Input Pin  
Voltage on Any PECL Input Pin  
S3015 ICC  
-40  
-10  
85  
°C  
+125 °C  
4.75 5.0 5.25  
V
V
V
0
VCC  
VCC  
VCC-2  
141 240 mA  
180 240 mA  
S3016 ICC  
15  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Table 2. S3015/S3016 Clock Recovery Mode Performance Specifications  
Parameter  
Min  
Typ  
Max  
Units  
Condition  
Nominal VCO  
Center Frequency  
622.08  
MHz  
Given REFCKIN = VCO ÷ 32  
OC–3/STS–3  
Lock Range  
+8, -12  
%
With respect to fixed reference  
frequency  
With device already powered up  
and valid REFCLK  
1
Acquisition Lock Time  
64  
70  
µsec  
Reference Clock  
Input Duty Cycle  
30  
% of UI  
Reference Clock Rise &  
Fall Times  
5.0  
ns  
10% to 90% of amplitude  
PECL Output Rise & Fall  
Times  
10% to 90%, 50load,  
5 pf cap  
850  
100  
ps  
Reference Clock  
Frequency Tolerance  
-100  
100  
ppm  
tP  
SER  
SERCLKOP Falling to  
SERDATO Valid Prop  
Delay  
500  
ps  
See Figure 13  
1. Specification based on design values. Not tested.  
Table 3. S3015 Clock Synthesis Mode Performance Specifications  
Parameter  
Min  
Typ  
Max  
Units  
Condition  
PECL Data Output Jitter  
(S3015 SERDATOP/N)  
OC–3/STS–3  
In CSU mode, given  
64  
32  
ps (rms)  
• 56 ps rms jitter on  
REFCKIN in 12KHz to  
1 MHz band  
• 28 ps rms jitter on  
REFCKIN in 12KHz to  
1 MHz band  
E4–STS–3 CMI  
Reference Clock  
Frequency Tolerance  
Clock Synthesis  
Required to meet SONET output  
jitter generation specification  
-20  
+20  
ppm  
(1)  
Table 4. Electrical Characteristics for Transformer Driver  
(VCC = +5V, TA = +25°C, input AC coupled unless otherwise noted.)  
Parameter  
Min  
Typ  
155  
Max  
Units  
Condition  
270 || 3pF load  
Operating Frequency  
MHz  
(2)  
VSWR  
1.3:1  
1.5:1  
75 A.C. Coupled Termination  
1. For output waveform characteristics, see Figures 8 and 9.  
2. Up to 250 MHz.  
16  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
Table 5. Electrical Characteristics for ANDATIN Input  
(VCC = +5V, TA = +25°C, input AC coupled unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN TYP MAX  
UNITS  
V
Peak to Peak Input Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
Input Sensitivity  
1.3  
V
dB  
dB  
mV  
V
iptp  
CMRR(1)  
PSRR(1)  
40  
40  
S
110  
T
= MIN to MAX  
IN  
A
DC offset at input (2)  
V
- 1V  
CC  
1. Up to 300 KHz  
2. Signal is undefined if left floating  
Table 6. Electrical Characteristics for LOSIN Input  
(VCC = +5V, TA = +25°C, input AC coupled unless otherwise noted.)  
PARAMETER  
SYMBOL CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Peak to Peak Input Voltage Range  
Common-Mode Rejection Ratio  
Power-Supply Rejection Ratio  
1.1  
V
iptp  
(1)  
CMRR  
40  
dB  
dB  
(1)  
35  
PSRR  
LOS-  
LOS-  
LOS-  
Signal Level for LOS detected (3)  
V/V  
V/V  
dB  
T
T
= MIN to MAX  
= MIN to MAX  
A
A
REF/30 REF/20 REF/10  
LOS-  
REF/15 REF/10  
LOS-  
LOS-  
REF/5  
Signal Level for LOS cleared (3)  
Hysterisis between "trans. cond."  
4
6
(2)  
and "no trans. cond."  
1. Up to 300 KHz  
2. LOSREF >0.5 volts  
3. LOS detected and LOS cleared will maintain 2:1 ratio ±5%.  
Below are typical operating conditions:  
Voltage Applied at  
Compare Voltage #1  
Compare Voltage #2  
Hysterisis  
LOSREF  
1.4 Volts  
0.7 Volts  
0.3 Volts  
140 mV ± 0.6dB  
70 mV ± 1dB  
30 mV ± 1.6dB  
70 mV ± 1dB  
35 mV ± 1.6dB  
15 mV ± 3.5dB  
6dB +1.6 -1.4dB  
6dB +2.7 -2.0dB  
6dB +6.0 -3.7dB  
17  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Table 7. Electrical Characteristics for BUFIN, BUFOUT  
At VCC = +5VDC, RLOAD = 75a.c. coupled and TA = 25˚C unless otherwise noted.  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OUTPUT CHARACTERISTICS (BUFOUT)  
Voltage Output  
± 0.6  
1
± 0.8  
3
V
Output Resistance  
8
TRANSFER CHARACTERISTICS  
Gain (BUFIN to BUFOUT)(1)  
.85  
.93  
1.1  
V/V  
With 75 ohm AC coupled  
termination  
VSWR(2)  
VSWR  
HD  
1.3:1  
1.5:1  
Input = 0.3V p-p  
Input = 0.6V p-p  
Input = 1.2V p-p  
35  
30  
25  
40  
35  
30  
Harmonic Distortion(2)  
dBc  
DC Input Bias  
Input externally AC coupled  
Output externally AC coupled  
Vcc - 0.85  
Vcc - 2.5  
V
V
DC Output Bias  
1. Up to 300 MHz  
2. Up to 250 MHz  
Thermal Management  
Θja Still Air  
w/DW0045-29  
Max Still Air1  
w/DW0045-29  
Device  
Power  
S3015/S3016  
1.25W  
37.5˚C/W  
85˚C  
1. Max ambient temperature permitted in still air to maintain T <130˚C.  
j
18  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
TTL Input/Output DC Characteristics  
(TA = -40°C to +85°C, VCC = 5 V ±5%)  
Symbol  
Parameter  
Input LOW Voltage  
Input HIGH Voltage  
Input LOW Current  
Input HIGH Current  
Min  
Typ  
Max  
0.8  
Unit  
Volts  
Volts  
µA  
Conditions  
Guaranteed Input LOW Voltage  
1
V
V
I
IL  
1
2.0  
Guaranteed Input HIGH Voltage  
IH  
-400.0  
V
V
V
= MAX, V = 0.5V  
IN  
CC  
CC  
CC  
IL  
50.0  
1.0  
µA  
= MAX, V = 2.7V  
IN  
I
I
IH  
mA  
= MAX, V = 5.5V  
IN  
Input HIGH current at  
Max. VCC  
I
-100.0  
-1.2  
-25.0  
0.5  
mA  
V
CC  
V
CC  
V
CC  
V
CC  
= MAX, V  
= 0.5V  
I
Output Short Circuit Current  
Input Clamp Diode Voltage  
Output LOW Voltage  
OUT  
= MIN, I = -18 ma  
OS  
V
V
Volts  
Volts  
IK  
IN  
= MIN, I  
= MIN, I  
= 8 ma  
OL  
OL  
= -1 ma  
Output HIGH Voltage  
Volts  
V
2.7  
OH  
OH  
1. These input levels provide zero noise immunity and should only be tested in a static, noise-free environment.  
PECL Input/Output DC Characteristics  
(TA = -40°C to +85°C, VCC = 5 V ±5%)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Guaranteed Input LOW Voltage  
for single-ended inputs  
Input LOW Voltage  
V
V
V
V
V
V
-2.000  
V
V
-1.441  
Volts  
IL  
CC  
CC  
Guaranteed Input HIGH Voltage  
for single-ended inputs  
Volts  
Input HIGH Voltage  
-1.225  
-0.570  
IH  
IL  
CC  
CC  
Guaranteed Input LOW Voltage  
for differential inputs  
Input LOW Voltage  
Input HIGH Voltage  
V
V
-2.000  
-1.750  
V
V
-0.700  
-0.450  
Volts  
Volts  
CC  
CC  
CC  
CC  
Guaranteed Input HIGH Voltage  
for differential inputs  
IH  
ID  
0.250  
0.500  
1.400  
Volts  
µA  
V
I
Input Diff. Voltage  
Input High Current  
Input Low Current  
Differential Input Voltage  
20.000  
20.000  
-0.500  
-0.500  
V
V
= 500mV  
= 500mV  
IH  
ID  
ID  
µA  
I
IL  
V
50 ohm termination to V  
-2V  
-2V  
V
V
-2.000  
V
V
-1.500  
Volts  
Output LOW Voltage  
OL  
CC  
CC  
CC  
CC  
V
V
Output HIGH Voltage  
Output Diff. Voltage  
50 ohm termination to V  
-1.110  
-0.670  
Volts  
Volts  
OH  
OD  
CC  
CC  
0.390  
1.330  
Differential Output Voltage  
1. These conditions will be met with no airflow.  
2. When not used, tie the positive differential PECL pin to VCC and the negative  
differential ECL pin to ground via a 3.9K resistor.  
19  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Figure 16. Differential ECL Input and Output Applications  
SERDATIP  
SERDATIN  
Fiber Optic  
Receiver  
100  
330 Ω  
GND  
330 Ω  
ECL driver to  
SERDATIP/N input  
Figure 17. S3016 Transformer Input Application  
S3016  
27pF 470  
TRANSFORMER  
BUFINA  
BUFINB  
75Ω  
GND  
GND  
Cable Input  
BUFOUT  
ANDATIN  
EQUALIZER  
LOSIN  
LOSIN  
COMPENSATOR  
+5V  
LOSREF  
.01µF  
GND  
GND  
Figure 18. S3015 Differential ECL Output Application  
SERDATOP/N  
Electrical  
to  
100  
Optical  
330 Ω  
330 Ω  
GND  
Figure 19. S3015 Transformer Output Application  
XFRMDRVA  
24  
30Ω  
.01uf  
Cable Output  
XFRMDRVB GND  
24Ω  
30Ω  
.01uf  
Monitor Output  
220Ω  
220Ω  
GND  
GND  
20  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
Figure 20. OC3 Application  
19.44 MHz  
S3026  
REFCKIN  
2
2
155 MHZ  
TX_CLK_+/–  
SERCLKOP/N  
2
SUNI  
IGT  
TX_DATA_+/–  
E/O  
SYN155  
S3016  
REFCKIN  
2
2
155 MHZ  
SERCLKOP/N  
RX_CLK_+/–  
SERDATOP/N  
LOS  
RX_DATA_+/–  
2
O/E  
SERDATIP/N  
Figure 21. STM-1 CMI, E4 Application  
19.44 MHz  
S3015  
REFCKIN  
SERDATIP/N  
REFCKIN  
2
TX_DATA_+/–  
XFRMDRVA  
Cable  
Output  
GND  
GND  
XFRMDRVB  
Monitor  
Output  
SUNI-LITE  
SUNI-PLUS  
SABRE  
SERDAT0P/N  
2
S3016  
SERDATIP/N  
BUFIN  
S3011/12  
REFCKIN  
Cable  
Input  
2
RX_CLK_+/–  
SERCLKOP/N  
SERDATOP/N  
2
RX_DATA_+/–  
GND  
BUFOUT  
Equalizer  
ANDATIN  
LOSIN  
+5V  
EQUALSEL  
LOSREF  
LOSIN  
Compensator  
.01µF  
GND  
21  
S3015/S3016  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
Table 8. Suggested Interface Devices  
Processor Interface  
PMC PM5345  
SUNI  
Saturn User Network Interface  
Saturn User Network Interface  
Saturn User Network Interface  
SONET LAN ATM Processor  
155 Mbit/s Synchronizer  
PMC PM5346  
SUNI-Lite  
SUNI-Plus  
PMC PM5347  
IGT WAC-013-A  
TRANSWITCH SYN155  
TI SABRE TDC 1500  
AMCC S3011/12  
Electrical Interface  
Mini-Circuits  
155 Mbit/s Processor  
SONET/SDH/ATM 0C3 Transmitter & Receiver  
MCL TXI-R5  
MCL TO-75  
Wideband RF Transformer (Surface Mount)  
Wideband RF Transformer (Through-Hole)  
Mini-Circuits  
Optical Interface  
HP HFBR-520x  
CTS ODL-1408X  
155 Mbit/s  
155 Mbit/s  
Fiber Optic Transceiver  
Fiber Optic Transceiver  
Fiber Optic Transceiver  
Fiber Optic Transceiver  
Sumitomo SDM4123-XC 155 Mbit/s  
AMP 269039-1 155 Mbit/s  
Ordering Information  
GRADE  
TRANSMITTER  
S – Industrial/  
commercial  
A – 52 TQFP TEP  
w/DW0045-29 heatsink unattached  
H0 – No Heatsink  
H0 – No Heatsink  
3015  
GRADE  
RECEIVER  
A – 52 TQFP TEP  
S – Industrial/  
commercial  
3016  
w/DW0045-29 heatsink unattached  
X XXXX  
X / XX  
Grade Part number  
Package H0 for no heatsink (identifier not marked on part)  
22  
E4/STM-1/OC-3 ATM INTERFACE CIRCUITS  
S3015/S3016  
Applied Micro Circuits Corporation • 6290 Sequence Dr., San Diego, CA 92121  
Phone: (619) 450-9333 • (800)755-2622 • Fax: (619) 450-9885  
http://www.amcc.com  
AMCC reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and  
advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied  
on is current.  
AMCC does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it  
convey any license under its patent rights nor the rights of others.  
AMCC reserves the right to ship devices of higher grade in place of those of lower grade.  
AMCC SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR  
USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.  
AMCC is a registered trademark of Applied Micro Circuits Corporation.  
Copyright ® 1997 Applied Micro Circuits Corporation  
June 2, 1997  

相关型号:

S3016NH

30A, 800V, SCR, TO-220AB
STMICROELECTR

S3016PH

30A, 1000V, SCR, TO-220AB
STMICROELECTR

S3016VH

30A, 1200V, SCR, TO-220AB
STMICROELECTR

S3017-O

DESOLDERING BRAID
ETC

S3017A

ATM/SONET/SDH Transmitter, PQFP52,
AMCC

S3017A/H1

Transmitter, 1-Func, PQFP52, PLASTIC, QFP-52
AMCC

S3017A/H2

Transmitter, 1-Func, PQFP52, PLASTIC, QFP-52
AMCC

S3017C/H1

Transmitter, 1-Func,
AMCC

S3017C/H2

Transmitter, 1-Func,
AMCC

S3018A

ATM/SONET/SDH Receiver, PQFP52,
AMCC

S3018A/H1

Receiver, 1-Func, PQFP52, PLASTIC, QFP-52
AMCC

S3018A/H2

Receiver, 1-Func, PQFP52, PLASTIC, QFP-52
AMCC