AM79C984 [AMD]

enhanced Integrated Multiport Repeater (eIMR⑩); 强化综合多端中继器( eIMR ™ )
AM79C984
型号: AM79C984
厂家: AMD    AMD
描述:

enhanced Integrated Multiport Repeater (eIMR⑩)
强化综合多端中继器( eIMR ™ )

中继器
文件: 总44页 (文件大小:221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
Am79C984A  
enhanced Integrated Multiport Repeater (eIMR™)  
DISTINCTIVE CHARACTERISTICS  
Repeater functions comply with IEEE 802.3  
Full LED support for individual port status LEDs  
Repeater Unit specifications  
and network utilization LEDs  
Four integral 10BASE-T transceivers with on-  
chip filtering that eliminate the need for external  
filter modules on the 10BASE-T transmit-data  
(TXD) and receive-data (RXD) lines  
Programmable extended distance mode on the  
RXD lines, allowing connection to cables longer  
than 100 meters  
Twisted Pair Link Test capability conforming to  
the 10BASE-T standard.The Link Test function  
and the transmission of LinkTest pulses can be  
optionally disabled through the control port to  
allowdevicesthatdonotimplementtheLinkTest  
function to work with the eIMR device.  
One Reversible Attachment Unit Interface  
(RAUI™) port that can be used either as a  
standard IEEE-compliant AUI port for  
connection to a Medium Attachment Unit (MAU),  
or as a reversed port for direct connection to a  
Media Access Controller (MAC)  
Programmable option of automatic polarity  
detection and correction permits automatic  
recovery due to wiring errors  
Low cost suitable for non-managed multiport  
repeater designs  
Expandable to increase number of repeater  
ports with support for up to seven eIMR devices  
without the need for an external arbiter  
Full amplitude and timing regeneration for  
retransmitted waveforms  
CMOS device with a single +5-V supply  
All ports can be individually isolated  
(partitioned) in response to excessive collision  
conditions or fault conditions.  
GENERAL DESCRIPTION  
The enhanced Integrated Multiport Repeater (eIMR)  
device is a VLSI integrated circuit that provides a sys-  
tem-level solution to designing non-managed multiport  
repeaters.The device integrates the repeater functions  
specified in Section 9 of the IEEE 802.3 standard and  
Twisted Pair Transceiver functions complying with the  
10BASE-T standard.  
The eIMR device provides four Twisted Pair (TP) ports  
and one RAUI port for direct connection to a MAC. The  
total number of ports per repeater unit can be in-  
creased by connecting multiple eIMR devices through  
their expansion ports, hence, minimizing the total cost  
per repeater port.  
The device is fabricated in CMOS technology and  
requires a single +5-V supply.  
This document contains information on a product under development at Advanced Micro Devices. The  
information is intended to help you evaluate this product. AMD reserves the right to change or discontinue  
work on this proposed product without notice.  
Publication# 20650 Rev: B Amendment/0  
Issue Date: January 1998  
P R E L I M I N A R Y  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges.The order number (Valid Combination) is formed  
by a combination of the elements below.  
Am79C984A  
J
C
\W  
ALTERNATE PACKAGING OPTION  
\W = Trimmed and formed in a tray  
TEMPERATURE RANGE  
C = Commercial (0˚C to +70˚C)  
PACKAGE TYPE  
J = 84-Pin Plastic Leaded Chip Carrier (PL 084)  
K = 100-Pin Plastic Quad Flat Pack (PQR100)  
SPEED OPTION  
Not Applicable  
DEVICE NUMBER/DESCRIPTION  
Am79C984A  
enhanced Integrated Multiport Repeater (eIMR)  
Valid Combinations  
Valid Combinations  
Am79C984A JC, KC\W  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability  
of specific valid combinations and to check on  
newly released combinations.  
2
Am79C984A  
P R E L I M I N A R Y  
BLOCK DIAGRAM  
Am79C984A  
3
P R E L I M I N A R Y  
RELATED AMD PRODUCTS  
Part No.  
Description  
Am7990  
Local Area Network Controller for Ethernet (LANCE)  
Serial Interface Adapter (SIA)  
Am7992B  
Am7996  
IEEE 802.3/Ethernet/Cheapernet Transceiver  
Am79C90  
CMOS Local Area Network Controller for Ethernet (C-LANCE)  
Twisted Pair Ethernet Transceiver (TPEX)  
Am79C98  
Am79C100  
Am79C981  
Am79C982  
Am79C987  
Am79C988  
Am79C900  
Am79C940  
Am79C960  
Am79C961  
Am79C961A  
Am79C965  
Am79C970  
Am79C970A  
Am79C974  
Am79C983  
Am79C985  
Twisted Pair Ethernet Transceiver Plus (TPEX+)  
Integrated Multiport Repeater Plus (IMR+™)  
basic Integrated Multiport Repeater (bIMR™)  
Hardware Implemented Management Information Base (HIMIB™)  
Quad Integrated Ethernet Transceiver (QuIET™)  
Integrated Local Area Communications Controller (ILACC™)  
Media Access Controller for Ethernet (MACE™)  
PCnet™-ISA Single-Chip Ethernet Controller (for ISA bus)  
PCnet™-ISA+ Single-Chip Ethernet Controller for ISA (with Microsoft® Plug nPlay® Support)  
PCnet™-ISA II Full Duplex Single-Chip Ethernet Controller for ISA  
PCnet™-32 Single-Chip 32-Bit Ethernet Controller  
PCnet™-PCI Single-Chip Ethernet Controller (for PCI bus)  
PCnet™-PCI II Full Duplex Single-Chip Ethernet Controller (for PCI bus)  
PCnet™-SCSI Combination Ethernet and SCSI Controller for PCI Systems  
Integrated Multiport Repeater 2 (IMR2™)  
enhanced Integrated Multiport Repeater Plus (eIMR+™)  
4
Am79C984A  
P R E L I M I N A R Y  
TABLE OF CONTENTS  
DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29  
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30  
STANDARD PRODUCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31  
RELATED AMD PRODUCTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32  
CONNECTION DIAGRAM (PL 084) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35  
CONNECTION DIAGRAM (PQR100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36  
LOGIC SYMBOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-37  
LOGIC DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-37  
PIN DESIGNATIONS (PL 084). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38  
Listed by Pin Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38  
PIN DESIGNATIONS (PQR100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39  
Listed by Pin Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-39  
PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40  
AUI Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40  
Twisted Pair Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40  
Expansion Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40  
Control Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41  
LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41  
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Basic Repeater Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Repeater Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Signal Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Jabber Lockup Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Collision Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Fragment Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Auto Partitioning/Reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-43  
Detailed Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
AUI Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
TP Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
Twisted Pair Transmitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
Twisted Pair Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-44  
Link Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45  
Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45  
Visual Status Monitoring (LED) Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-45  
Network Activity Display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46  
Expansion Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48  
Internal Arbitration Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48  
IMR+ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48  
Control Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-49  
Command/Response Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50  
Control Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-50  
SET (Write Commands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Chip Programmable Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Alternate AUI Partitioning Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Alternate TP Partitioning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
AUI Port Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
AUI Port Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
TP Port Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
TP Port Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Disable Link Test Function (Per TP port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Enable Link Test Function (Per TP port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Disable Link Pulse (Per TP Port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Am79C984A  
5
P R E L I M I N A R Y  
Enable Link Pulse (Per TP Port). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52  
Disable Automatic Receiver Polarity Reversal (Per TP Port). . . . . . . . . . . . . . . . . 1-53  
Enable Automatic Receiver Polarity Reversal (Per TP Port) . . . . . . . . . . . . . . . . . 1-53  
Disable Receiver Extended Distance Mode (Per TP Port). . . . . . . . . . . . . . . . . . . 1-53  
Enable Receiver Extended Distance Mode (Per TP Port) . . . . . . . . . . . . . . . . . . . 1-53  
Disable Software Override of LEDs 5  
(Per Port - AUI and TP, Global) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-53  
Enable Software Override of Bank A LEDs (Per Port - AUI and TP, Global) . . . . . 1-53  
Enable Software Override of Bank B LEDs (Per Port - AUI and TP, Global) . . . . . 1-54  
Software Override of LED Blink Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
GET (Read Commands). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
AUI Port(s) Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
Alternate AUI Port(s) Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
TP Port Partitioning Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
Bit Rate Error Status of TP Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-54  
Link Test Status of TP ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
Receive Polarity Status of TP Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
MJLP Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
SYSTEMS APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
eIMR to TP Port Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
Twisted Pair Transmitters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
Twisted Pair Receivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55  
MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57  
Internal Arbitration Mode Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57  
IMR+ Mode External Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57  
Visual Status Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-59  
ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60  
OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-60  
DC CHARACTERISTICS over operating ranges unless otherwise specified . . . . . . . . . . . . . . . . . 1-60  
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-62  
KEY TO SWITCHING WAVEFORMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-64  
SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-64  
SWITCHING TEST CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-69  
6
Am79C984A  
P R E L I M I N A R Y  
CONNECTION DIAGRAM (PL 084)  
8
4
3
84 83  
8180 78 7776 75  
79  
82  
1110 9  
12  
7 6 5  
2
1
74 LDC2  
73 LDC1  
REXT  
AVSS  
DI+  
DI–  
VDD  
CI+  
CI–  
AVSS  
DO+  
DO–  
13  
14  
15  
16  
17  
18  
19  
20  
21  
72  
71  
70  
LDC0  
VDD  
LDGB  
69 LDGA  
68  
67  
66  
LDB4  
DVSS  
LDA4  
65 LDB3  
eIMR  
Am79C984A  
64  
63  
62  
61  
60  
AMODE 22  
LDA3  
DVSS  
LDB2  
LDA2  
VDD  
23  
24  
VDD  
DVSS  
VDD  
VDD  
VDD  
RST  
25  
26  
27  
28  
29  
30  
31  
32  
59 LDB1  
58  
57  
56  
55  
54  
LDA1  
DVSS  
LDB0  
LDA0  
ACT7  
CLK  
DVSS  
SELI_0  
SELI_1  
33  
4142  
4546 47  
50 5152  
53  
48 49  
3536  
39 40  
3738  
43 44  
34  
20650B-2  
Am79C984A  
7
P R E L I M I N A R Y  
CONNECTION DIAGRAM (PQR100)  
RXD3–  
NC  
VDD  
NC  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
REXT  
AVSS  
DI+  
DI–  
VDD  
CI+  
NC  
LDC2  
LDC1  
LDC0  
VDD  
LDGB  
LDGA  
LDB4  
DVSS  
LDA4  
LDB3  
LDA3  
DVSS  
LDB2  
LDA2  
VDD  
LDB1  
LDA1  
NC  
DVSS  
LDB0  
LDA0  
ACT7  
NC  
NC  
NC  
ACT6  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CI–  
AVSS  
DO+  
DO–  
AMODE  
VDD  
DVSS  
VDD  
VDD  
VDD  
RST  
NC  
eIMR  
Am79C984A  
CLK  
DVSS  
SELI_0  
SELI_1  
NC  
NC  
NC  
SELO  
20650B-3  
8
Am79C984A  
P R E L I M I N A R Y  
LOGIC SYMBOL  
VDD  
DAT  
JAM  
ACK  
COL  
TXD+  
TXD–  
RXD+  
RXD–  
Twisted Pair  
Ports  
(4 Ports)  
Expansion  
Port  
SELO  
SELI[1:0]  
DO+  
DO–  
DI+  
AUI  
SI  
SO  
SCLK  
AMODE  
DI–  
CI+  
CI–  
Test and  
Control  
Port  
Am79C984  
LDA[4:0], LDB[4:0]  
LDGA, LDGB  
LDC[2:0]  
LED  
Interface  
ACT[7:0]  
CLK  
RST  
DVSS  
AVSS  
20650B-4  
LOGIC DIAGRAM  
AUI  
LED  
Port  
Repeater  
State  
Machine  
Control  
Port  
Expansion  
Port  
Twisted Pair  
Port 0  
Twisted Pair  
Port 3  
20650B-5  
Am79C984A  
9
P R E L I M I N A R Y  
PIN DESIGNATIONS (PL 084)  
Listed by Pin Number  
Pin No.  
1
Pin Name  
TXD3+  
TXD3-  
VDD  
Pin No.  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
Pin Name  
AMODE  
VDD  
Pin No.  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Pin Name  
SO  
Pin No.  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
Pin Name  
LDA3  
2
SCLK  
VDD  
LDB3  
LDA4  
3
DVSS  
VDD  
4
RXD0+  
RXD0-  
RXD1+  
RXD1-  
RXD2+  
RXD2-  
RXD3+  
RXD3-  
REXT  
AVSS  
DI+  
ACT0  
ACT1  
ACT2  
DVSS  
ACT3  
ACT4  
ACT5  
ACT6  
ACT7  
LDA0  
LDB0  
DVSS  
LDA1  
LDB1  
VDD  
DVSS  
LDB4  
LDGA  
LDGB  
VDD  
5
VDD  
6
VDD  
7
RST  
8
CLK  
9
DVSS  
SELI_0  
SELI_1  
SELO  
COL  
LDC0  
LDC1  
LDC2  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
TXD0+  
TXD0-  
AVSS  
TXD1+  
TXD1-  
VDD  
DVSS  
ACK  
DI-  
VDD  
DAT  
CI+  
VDD  
CI-  
JAM  
AVSS  
DO+  
NC  
LDA2  
LDB2  
DVSS  
TXD2+  
TXD2-  
AVSS  
DVSS  
SI  
DO-  
10  
Am79C984A  
P R E L I M I N A R Y  
PIN DESIGNATIONS (PQR100)  
Listed by Pin Number  
Pin No.  
1
Pin Name  
RXD3-  
NC  
Pin No.  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Pin Name  
SELI_1  
NC  
Pin No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
Pin Name  
ACT6  
NC  
Pin No.  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pin Name  
LDC2  
NC  
2
3
NC  
NC  
NC  
NC  
4
NC  
NC  
NC  
NC  
5
REXT  
AVSS  
DI+  
SELO  
COL  
DVSS  
NC  
ACT7  
LDA0  
LDB0  
DVSS  
NC  
VDD  
6
TXD0+  
TXD0-  
AVSS  
TXD1+  
TXD1-  
VDD  
7
8
DI-  
9
VDD  
CI+  
ACK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
DAT  
LDA1  
LDB1  
VDD  
CI-  
VDD  
JAM  
AVSS  
DO+  
DO-  
TXD2+  
TXD2-  
AVSS  
TXD3+  
TXD3-  
VDD  
NC  
LDA2  
LDB2  
DVSS  
LDA3  
LDB3  
LDA4  
DVSS  
LDB4  
LDGA  
LDGB  
VDD  
DVSS  
SI  
AMODE  
VDD  
DVSS  
VDD  
VDD  
VDD  
RST  
SO  
SCLK  
VDD  
ACT0  
ACT1  
ACT2  
DVSS  
ACT3  
ACT4  
ACT5  
RXD0+  
RXD0-  
RXD1+  
RXD1-  
RXD2+  
NC  
NC  
CLK  
DVSS  
SELI_0  
LDC0  
LDC1  
RXD2-  
RXD3+  
Notes:  
1. Pin 40 has a bonding option depending on internal device name.  
2. NC = No Connection.  
Am79C984A  
11  
P R E L I M I N A R Y  
state of the DAT pin is used in conjunction with JAM to  
PIN DESCRIPTION  
AUI Port  
indicate a single port (DAT =1) or multiport (DAT=0) col-  
lision. JAM is in the high-impedance state if neither the  
SEL nor ACK signal is asserted.It is recommended that  
JAM be pulled up or down via a high value resistor.  
DI+, DI–  
Data In  
Differential Input  
SELI  
0-1  
DI± are differential, Manchester receiver pins. The sig-  
nals comply with IEEE 802.3, Section 7.  
Select In  
Input, Active LOW  
DO+, DO–  
Data Out  
Differential Output  
When the expansion bus is configured for Internal Arbi-  
tration mode, these signals indicate that another eIMR  
device is active; SELI or SELI is driven by SELO from  
0
1
the upstream device. At reset, SELI selects between  
DO± are differential, Manchester output driver pins.The  
0
the Internal Arbitration mode and the IMR+ mode of the  
expansion bus; a HIGH selects the Internal Arbitration  
mode and a LOW selects the IMR+ mode.  
signals comply with IEEE 802.3, Section 7.  
CI+, CI–  
Collision Input  
Differential Input/Output  
Arbitration  
SELI_1  
SELI_0  
Mode  
CI± are differential, Manchester I/O signals.As an input,  
CI is a collision-receive indicator. As an output, CI gen-  
erates a 10-MHz signal if the eIMR device senses a  
collision.  
X
X
1
0
Internal  
IMR+  
SELO  
Select Out  
Output, Active LOW  
Twisted Pair Ports  
TXD+ ,TXD–  
0-3  
0-3  
Transmit Data  
Differential Output  
If the expansion bus is configured for Internal Arbitration  
mode, an eIMR device drives this pin LOW when it is  
TXD± are 10BASE-T port differential drivers (4 ports).  
active or when either of its SELI  
pins is LOW. An  
0-1  
active eIMR device is defined as having one or more  
ports receiving or colliding and/or is still transmitting  
data from the internal FIFO, or extending a packet to the  
minimum of 96 bit times. When the expansion bus is  
configured for IMR+ mode, SELO is active when the  
eIMR device is active (acquiring the functionality of the  
REQ pin on the Am79C971 IMR+ device).  
RXD+ , RXD–  
0-3  
0-3  
Receive Data  
Differential Input  
RXD± are 10BASE-T port differential receive inputs  
(4 ports).  
Expansion Bus  
ACK  
Acknowledge  
Input/Output, Active LOW, Open Drain  
DAT  
Data  
Input/Output/3-State  
This signal is asserted to indicate that an eIMR device  
is active. It also signals to the other eIMR devices the  
presence of a valid collision status on the JAM line and  
valid data on the DAT line. When the eIMR device is  
configured for Internal Arbitration mode, ACK is an I/O,  
and must be pulled to VDD via a minimum equivalent  
resistance of 1 kΩ. When the eIMR device is configured  
for IMR+ mode, ACK is an input driven by an external  
arbiter.  
If the SELO and ACK pins are asserted during non-  
collision conditions, the eIMR device drives NRZ data  
onto the DAT line, regenerating the preamble if neces-  
sary.During a collision, when JAM is HIGH, DAT is used  
to differentiate between single-port (DAT=1) and multi-  
port (DAT=0) collisions. DAT is an output when ACK is  
asserted and the eIMR device’s ports are active; DAT  
is an input when ACK is asserted and the ports are  
inactive. If ACK is not asserted, DAT is in the high-im-  
pedance state. It is recommended that DAT be pulled  
up or down via a high value resistor.  
COL  
Collision  
Input/Output, Active LOW, Open Drain  
JAM  
Jam  
Whenasserted, COLindicatesthatmorethanoneeIMR  
device is active. Each eIMR device generates the Col-  
lision Jam sequence independently.When the eIMR de-  
vice is configured for Internal Arbitration mode, COL is  
Input/Output/3-State  
The active eIMR device drives JAM HIGH, if it detects  
a collision condition on one or more of its ports. The  
12  
Am79C984A  
P R E L I M I N A R Y  
an I/O and must be pulled to VDD via a minimum equiv-  
multiple-eIMR configuration, LDGA from each of the  
eIMR devices can be tied together to drive a single glo-  
bal LED in Bank A.  
alent resistance of 1 kΩ. When the eIMR device expan-  
sion port is configured for IMR+ mode, COL is an input  
driven by an external arbiter.  
LDGB  
Global LED Driver, Bank B  
Output, Open Drain  
Control Port  
AMODE  
LDGB is the Global LED driver for LED Bank B. The  
signal represents global CRS or JAB conditions. In a  
multiple eIMR configuration, LDGB from each of the  
eIMR devices can be tied together to drive a single glo-  
bal LED in Bank B.  
AUI Mode  
Input  
At reset, this pin sets the AUI port to either normal or  
reversed mode. If AMODE is LOW at the rising edge of  
RST, the AUI port is set to the normal mode; if AMODE  
is HIGH, the AUI port is set to the reversed mode.  
LDC  
0-2  
LED Control  
Input  
SCLK  
Serial Clock In  
Input  
These pins select the attributes that will be displayed  
on LDA , LDB , LDGA, and LDGB. If an LED is pro-  
Serial data (input or output) is clocked (in or out) on the  
rising edge of the signal on this pin. SCLK is asynchro-  
nous to CLK and can operate at frequencies up to 10  
MHz.  
0-4  
0-4  
grammed to display two attributes, the attribute associ-  
ated with the periodic blink takes precedence.  
ACT  
0-7  
SI  
Activity Display  
Output  
Serial In  
Input  
These signals drive the activity LEDs, which indicate  
the percentage of network utilization.The display is up-  
dated every 250 ms.  
The SI pin is used as a test/control serial input port.  
Control commands are clocked in on this pin synchro-  
nous to SCLK input.  
Miscellaneous Pins  
At reset, SI sets the state of the Automatic Polarity Re-  
versal function. If SI is HIGH at the rising edge of RST,  
Automatic Polarity Reversal is disabled. If SI is LOW at  
the rising edge of RST, Automatic Polarity Reversal is  
enabled.  
RST  
Reset  
Input, Active LOW  
When RST is LOW, the eIMR device resets to its default  
state.On the rising (trailing) edge of RST, the eIMR also  
monitors the state of the SELI , SI, and AMODE pins,  
0-1  
SO  
Serial Out  
Output  
to configure the operating mode of the device. In multi-  
ple eIMR systems, the falling (leading) edge of the RST  
signal must be synchronized to CLK.  
The SO pin is used as a control command serial output  
port. Responses to control commands are clocked out  
on this pin synchronous to the SCLK input.  
CLK  
Master Clock In  
Input  
This pin is a 20-MHz clock input.  
LED Interface  
LDA , LDB  
0-4  
0-4  
REXT  
LED Drivers  
Output, Open Drain  
External Reference  
Input  
LDA and LDB drive LED Bank A and LED Bank B,  
This pin is used for an internal current reference.It must  
0-4  
0-4  
respectively. LDA and LDB indicate the status of the  
be tied to VDD via a 13-kresistor with 1% tolerance.  
0
0
AUI port; LDA and LDB indicate the status of the  
1-4  
1-4  
VDD  
four TP ports. The port attributes monitored by LDA  
0-4  
Power  
and LDB are programmed by three pins, LDC  
.
0-4  
0-2  
Power Pin  
LDGA  
This pin supplies power to the device.  
Global LED Driver, Bank A  
Output, Open Drain  
LDGA is the Global LED driver for LED Bank A. The  
signal represents global CRS or COL conditions. In a  
Am79C984A  
13  
P R E L I M I N A R Y  
DVSS  
AVSS  
Analog Ground  
Ground Pin  
Digital Ground  
Ground Pin  
This pin is the ground reference for the differential  
receivers and drivers.  
This pin is the ground reference for all the digital logic  
in the eIMR device.  
14  
Am79C984A  
P R E L I M I N A R Y  
times. This is referred to as MAU Jabber Lockup Pro-  
FUNCTIONAL DESCRIPTION  
tection (MJLP). The MJLP status for the eIMR device  
can be read through the Control Port, using the Get  
MJLP Status command.  
The Am79C984A eIMR device is a single-chip imple-  
mentation of an IEEE 802.3/Ethernet repeater (or hub).  
It is offered with four integral 10BASE-T ports plus one  
RAUI port comprising the basic repeater.The eIMR de-  
vice is also expandable, enabling the implementation of  
high port count repeaters based on several eIMR de-  
vices.  
Collision Handling  
The eIMR device will detect and respond to collision  
conditions as specified in the IEEE 802.3 specification.  
Repeater configurations consisting of multiple eIMR  
devices also comply with the IEEE 802.3 specification,  
using status signals provided by the expansion bus. In  
particular, a repeater based on one or more eIMR de-  
vices will handle the transmit collision and one-port-left  
collision conditions correctly, as specified in Section 9  
of the IEEE 802.3 specification.  
The eIMR chip complies with the full set of repeater  
basic functions as defined in Section 9 of ISO 8802.3  
(ANSI/IEEE 802.3c).The basic repeaters functions are  
summarized in the paragraphs below.  
Basic Repeater Functions  
The Am79C984A chip implements the basic repeater  
functions as defined by Section 9.5 of the ANSI/IEEE  
802.3 specification.  
Fragment Extension  
If the total packet length received is less than 96 bits,  
including preamble, the eIMR device will extend the re-  
peated packet length to 96 bits by appending a Jam se-  
quence to the original fragment.  
Repeater Function  
If any single network port senses the start of a valid  
packet on its receive lines, the eIMR device will retrans-  
mit the received data to all other enabled network ports  
(except when contention exists among any of the ports  
or when the receive port is partitioned). To allow multi-  
ple eIMR device configurations, the data will also be re-  
peated on the expansion bus data line (DAT).  
Auto Partitioning/Reconnection  
Any of the TP ports or the AUI port can be partitioned if  
the duration or frequency of collisions becomes exces-  
sive. The eIMR device will continue to transmit data  
packets to a partitioned port, but will not respond, as a  
repeater, to activity on the partitioned port’s receiver.  
The eIMR device will monitor the port and reconnect it  
once certain criteria are met. The criteria for reconnec-  
tion are specified by the IEEE 802.3 standard. In addi-  
tion to the standard reconnection algorithm, the eIMR  
device implements an alternative reconnection algo-  
rithm, which provides a more robust partitioning func-  
tion for the TP ports and/or AUI port. The eIMR device  
partitions each TP port and the AUI port separately and  
independently of other network ports.  
Signal Regeneration  
When retransmitting a packet, the eIMR device en-  
sures that the outgoing packet complies with the IEEE  
802.3 specification in terms of preamble structure and  
timing characteristics. Specifically, data packets re-  
peated by the eIMR device will contain a minimum of 56  
preamble bits before the Start-of-Frame Delimiter. In  
addition, the eIMR restores the voltage amplitude of  
the repeated waveform to levels specified in the IEEE  
802.3 specification. Finally, the eIMR device restores  
signal symmetry to repeated data packets, removing jit-  
ter and distortion caused by the network cabling. Jitter  
present at the output of the AUI port will be better than  
0.5 ns; jitter at the TP outputs will be better than 1.5 ns.  
The eIMR device will partition an enabled network port  
if either of the following conditions occurs at that port:  
a. A collision condition exists continuously for more  
than 2048 bit times. (AUI port—SQE signal active;  
TP port—simultaneous transmit and receive).  
b. A collision condition occurs during each of 32 con-  
secutive attempts to transmit to that port.  
The start-of-packet propagation delay for a repeater set  
is the time delay between the first edge transition of a  
data packet on its input port to the first edge transition  
of the repeated packet on its output ports. The start-of-  
packet propagation delay for the eIMR is within the  
specification given in Section 9.5.5.1 of the IEEE 802.3  
standard.  
In the AUI port, a collision condition is indicated by an  
active SQE signal. In a TP port, a collision condition is  
indicated when the port is simultaneously attempting to  
transmit and receive.  
Once a network port is partitioned, the eIMR device will  
reconnect that port, according to the selected recon-  
nection algorithm, as follows:  
Jabber Lockup Protection  
The eIMR device implements a built-in jabber protec-  
tion scheme to ensure that the network is not disabled  
by the transmission of excessively long data packets.  
This protection scheme causes the eIMR device to in-  
terrupt transmission for 96 bit-times if the device has  
been transmitting continuously for more than 65,536 bit  
a. Standard reconnection algorithm—A data packet  
longer than 512-bit times (nominal) is transmitted or  
received by the partitioned port without a collision.  
Am79C984A  
15  
P R E L I M I N A R Y  
b. Alternative reconnection algorithm—A data packet  
power is maintained to the eIMR device, a reset dura-  
tion of only 4 µs is required. This allows the eIMR de-  
vice to reset its internal logic. During reset, the eIMR  
registers are set to their default values. Also during re-  
set, the eIMR device sets the output signals to their in-  
active state; that is, all analog outputs are placed in  
their idle state, no bidirectional signals are driven, all  
active-HIGH signals are driven LOW and all active-  
LOW signals are driven HIGH. In a multiple eIMR sys-  
tem, the reset signal must be synchronized to CLK.  
See Figure 10 in the Systems Applications section.  
longer than 512-bit times (nominal) is transmitted by  
the partitioned port without a collision.  
A partitioned port can also be reconnected by disabling  
and re-enabling the port.  
All TP ports use the same reconnection algorithm; ei-  
ther they must all use the standard algorithm, or they  
must all use the alternative reconnection algorithm.  
However, the reconnection algorithm for the AUI port is  
programmed independently from that of the TP ports.  
The eIMR device also monitors the state of the SELI  
SI, and AMODE pins on the rising (trailing) edge of  
RST to configure the operating mode of the device.  
,
Detailed Functions  
0-1  
Reset  
The eIMR device enters the reset state when the reset  
(RST) pin is driven LOW. After the initial application of  
power, the RST pin must be held LOW for a minimum  
of 150 µs. If the RST pin is subsequently asserted while  
Table 1 summarizes the state of the eIMR chip following  
reset.  
Table 1. eIMR States after Reset  
State after Reset  
Function  
Pull Up/Pull Down  
Active-LOW Outputs  
HIGH  
No  
No  
Active-HIGH Outputs  
LOW  
SO Output  
HIGH  
No  
DAT, JAM  
HIGH IMPEDANCE  
IDLE  
Either  
No  
Transmitters (TP and AUI)  
Receivers (TP and AUI)  
AUI Partitioning/Reconnection Algorithm  
TP Partitioning/Reconnection Algorithm  
Link Test Functions for TP Ports  
ENABLED  
Terminated  
N/A  
STANDARD ALGORITHM  
STANDARD ALGORITHM  
ENABLED, TP PORTS IN LINK FAIL  
N/A  
N/A  
Automatic Receiver Polarity Reversal Function DISABLED IF SI PIN IS HIGH  
ENABLED IF SI PIN IS LOW  
N/A  
AUI Port  
TP Port Interface  
Twisted Pair Transmitters  
The AUI Port is fully compatible with the IEEE 802.3,  
Section 7 requirement for an AUI port. It has the signals  
associated with an AUI port: DO, DI, and CI.  
TXD is a differential twisted-pair driver. When properly  
terminated, TXD will meet the electrical requirements  
for 10BASE-T transmitters as specified in IEEE 802.3,  
Section 14.3.1.2.  
The AUI port has two modes of operation: normal and  
reverse. When configured for normal operation, the  
functionality is that of an AUI port on a MAC (CI is an  
input).When configured for reverse operation, the func-  
tionality is that of an AUI on a MAU (CI is an output).  
The mode of the AUI port is set during the trailing (ris-  
ing) edge of the reset pulse, by the state of the AMODE  
pin. A LOW sets the AUI port to its normal mode (CI In-  
put) and a HIGH sets the AUI port to its reversed (CI  
Output) mode.  
The TXD signal is filtered on the chip to reduce har-  
monic content per IEEE 802.3, Section 14.3.2.1  
(10BASE-T). Since filtering is performed in silicon, TXD  
can connect directly to a standard transformer, thereby,  
eliminating the need for external filtering modules.  
Proper termination is shown in the Systems Applica-  
tions section.  
Twisted Pair Receivers  
The eIMR device can be connected directly to a MAC  
through the AUI port.This requires that the AUI port be  
configured for reverse operation. Refer to the Systems  
Applications section for more details.  
RXD is a differential twisted-pair receiver. When prop-  
erly terminated, RXD will meet the electrical require-  
ments for 10BASE-T receivers as specified in IEEE  
802.3, Section 14.3.1.3. The receivers do not require  
16  
Am79C984A  
P R E L I M I N A R Y  
external filter modules. Proper termination is shown in  
Visual Status Monitoring (LED) Support  
the Systems Applications section.  
The eIMR status port can be connected to LEDs to fa-  
cilitate the visual monitoring of repeater port status.  
The receiver’s threshold voltage can be programmed to  
an extended-distance mode. In this mode, the differen-  
tial receiver’s threshold is reduced to allow a longer  
cable than the 100 meters specified in the IEEE 802.3  
standard. For programming details, refer to the Control  
Commands section.  
The status port has twelve output signals, LDA , and  
0-4  
LDB , LDGA, and LDGB. LDA and LDB repre-  
0-4  
0-4  
0-4  
sent the four TP ports and AUI port. LDGA and LDGB  
are global indicators. Attributes that may be monitored  
are Carrier Sense (CRS), Collision (COL), Partition  
(PAR), Link Status (LINK), Loopback (LB), Port Dis-  
abled (DIS), and Jabber (JAB). Three control bits,  
Link Test  
The integrated TP ports implement the Link Test func-  
tion, as specified in the IEEE 802.3 10BASE-T stan-  
dard. The eIMR device will transmit Link Test pulses to  
any TP port after that port’s transmitter has been inac-  
tive for more than 8 ms to 17 ms. Conversely, if a TP  
port does not receive any data packets or Link Test  
pulses for more than 65 ms to 132 ms and the Link Test  
function is enabled for that port, then that port will enter  
the link-fail state.The eIMR device will disable a port in  
link-fail state (i.e., disable repeater transmit and receive  
functions) until it receives either four consecutive Link  
Test pulses or a data packet.  
LDC , select the particular attributes to be displayed  
on the LEDs. Table 2 shows how the programming  
0-2  
combinations for LDC control the attributes that will  
0-2  
be monitored.  
Each LED drive pin (LDGA, LDGB, LDA , and LDB  
)
0-4  
0-4  
has two states: Off and LOW. When none of the se-  
lected attributes are true, the driver is off and the diode  
is unlit.When an attribute is true, the driver is LOW, and  
the corresponding LEDs in Bank A or Bank B will be lit.  
Some of the settings (LDC = 1) include a blink func-  
2
tion.This allows two attributes to be selected for a given  
state on the pin. As an example when LDC  
= 110,  
0-2  
The Link Test function can be disabled via the eIMR  
control port on a port-by-port basis, to allow the eIMR  
device to operate with pre-10BASE-T networks that do  
not implement the Link Test function. When the Link  
Test function is disabled, the eIMR device will not allow  
the TP port to enter link-fail state, even if no Link Test  
pulses or data packets are being received. Note, how-  
ever, that the eIMR device will always transmit Link Test  
pulses to all TP ports, regardless of whether or not the  
port is enabled, partitioned, in link-fail state, or has its  
Link Test function disabled. Separate control com-  
mands exist for enabling and disabling the transmission  
of Link Test pulses on a port-by-port basis.  
the LDA outputs relating to TP ports will be solidly lit  
when there is a link established at that port. However,  
whenever there is activity on a port, the corresponding  
LDA pin will switch on (LOW) and off at a period of 130  
ms. Note that a partition on that port will also cause the  
pin to go LOW.  
On LDC settings that have two attributes for a state on  
a pin (blink or solid-on), the attribute causing the output  
to blink has priority. (Those attributes are shown in  
Table 2 with a blink period specified next to it.) If an at-  
tribute has no blink period specified, the LED indicates  
the attribute by being solidly lit.  
Polarity Reversal  
The LEDs can also be controlled via the control port.  
The Enable Software Override commands turn the  
LEDs on regardless of the attributes selected for dis-  
play through the LDC setting. Enable Software Over-  
The TP ports can be programmed to receive data if a  
wiring error results in a data packet being received at a  
TP port with reversed polarity. This function will be en-  
abled upon reception of a negative EndTransmit Delim-  
iter (ETD) or negative pulses and allows subsequent  
packets to be received with the correct polarity.The po-  
larity-reversal function is executed once following reset  
or link-fail and can be programmed via the control port  
to be enabled or disabled on a port-by-port basis. The  
function may be enabled or disabled, following a reset,  
depending on the level of the SI signal on the rising  
edge of the RST pulse.  
ride of Bank A LEDs causes the LDA and LDGA pins  
0-4  
to be driven LOW, and Enable Software Override of  
Bank B LEDs causes the LDB and LDGB pins to be  
0-4  
driven LOW.The blink rate is set by the Software Over-  
ride LED Blink Rate command. The periods are off,  
512 ms, 1560 ms, or solid on.  
Am79C984A  
17  
P R E L I M I N A R Y  
Table 2. LED Attribute-Monitoring Program Options  
LED Control  
Global LEDs  
TP LEDs  
AUI LEDs  
LDC2  
LDC1  
LDC0  
LDGA  
CRS  
LDGB  
COL  
LDA  
LDB  
LDA  
LB  
LDB  
0
1-4  
1-4  
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
LINK (Note 2)  
LINK  
PAR  
CRS  
PAR  
CRS  
CRS  
COL  
LB  
Reserved (Note 5)  
Reserved (Note 5)  
LINK PAR  
PAR  
CRS 260-ms blk COL 260-ms blk CRS 260-ms blk COL 260-ms blk CRS 260-ms blk COL 260-ms blk  
1
1
0
1
1
0
COL  
JAB  
LINK (Note 3)  
CRS 512-ms blk  
LINK  
PAR (Note 3)  
PAR or DIS  
(Note 3)  
PAR (Note 3)  
PAR or DIS  
CRS 512-ms blk  
CRS  
COL  
CRS 130-ms blk  
CRS 130-ms blk  
1
1
1
CRS  
COL  
LINK (Note 4)  
PAR 1.56-s blk  
COL (Note 4)  
(Note 4)  
PAR (Note 4)  
PAR 1.56-s blk  
Notes:  
1. CRS = Carrier Sense, COL = Collision, JAB = Jabber, LINK = Link, LB = Loop Back, PAR = Partition, DIS = Port Disabled,  
blk = Blink (Number = period of Blink).  
2. For the LDC setting of 000: If the port is partitioned, the LINK LED is off.  
0-2  
3. All LEDs blink 16 times at 260 ms per blink after reset.  
4. All LEDs are on for approximately 4 seconds after reset.  
5. LDC = ‘010’ and ‘011’ are undefined.  
0-2  
LED software override is executed in two stages, by  
first issuing the blink rate (Software Override of LED  
Blink Rate) and then issuing the command to enable  
the particular port LEDs (Enable Software Override of  
Bank A/B LEDs). All port combinations selected for  
software override control will reference the blink rate  
last issued by the Software Override of the LED Blink  
Rate command.  
Figure 1 shows the recommended connection of LEDs.  
When LDA , LDB , LDGA, or LDGB are LOW, the  
LED lights.  
0-4  
0-4  
VDD  
eIMR  
LED  
Interface  
R
LDA , LDB , LDGA, and LDGB are open drain out-  
0-4  
0-4  
put drivers that sink 12 mA of current to turn on the  
LEDs. In a multiple eIMR configuration, the outputs  
from the global LED drivers (LDGA and LDGB) of each  
chip can be tied together to drive a single pair of global  
status LEDs.  
LDA[4:0]  
LDB[4:0]  
LDGA  
LDGB  
CRS and COL are extended to make it easier for visual  
recognition; that is, they will remain active for some  
time even if the corresponding condition has expired.  
Once carrier sense is active, CRS will remain active for  
a minimum of 4 ms. Once a collision is detected, COL  
is active for at least 4 ms. The exception to this rule is  
20650B-6  
Figure 1. Visual Monitoring Application—Direct  
LED Drive  
for selection LDC  
= 111. For this selection, COL is  
0-2  
stretched to 100 µs.  
Network Activity Display  
When LDC = 000 or LDC = 001, the loopback at-  
0-2  
0-2  
tribute (LB) for the AUI port is displayed on LDA . LB is  
0
The eIMR status port can drive up to eight LEDs to in-  
dicate the network-utilization level as a percentage of  
bandwidth. The status port uses eight dedicated out-  
true when DO on the MAU is successfully looped back  
to DI on the AUI port. LB is false (off) if a loopback error  
is detected, or if the AUI port is disabled or in the re-  
verse mode. Transmit carrier sense is sampled at the  
end of packet to determine the state of LB.The state of  
LB remains latched until carrier sense is sampled again  
for the next packet.The default/power-up state for LB is  
false (off).  
puts (ACT ) to drive a series of LEDs. The number of  
0-7  
LEDs in the series that will be lit increases as the  
amount of network activity increases. ACT represents  
0
the lowest level of activity; ACT represents the high-  
7
est. ACT  
are open-drain outputs that typically sink  
0-7  
12 mA of current to turn on the LEDs. See Figure 2.  
18  
Am79C984A  
P R E L I M I N A R Y  
VDD  
eIMR  
LED  
Interface  
ACT[0]  
ACT[1]  
ACT[2]  
ACT[3]  
ACT[4]  
ACT[5]  
ACT[6]  
ACT[7]  
20650A-7  
Figure 2. Network Activity Display  
Table 3 shows ACT as a function of the percentage  
0-7  
of network utilization. The table uses a scale that is  
more sensitive at low utilization levels. 100% utilization  
represents the maximum number of events that could  
occur in a given window of time.  
Table 3. Network Utilization  
Number of LEDs  
Percentage Utilization  
Lit by ACT  
7-0  
8
7
6
5
4
3
2
1
>80%  
>64%  
>32%  
>16%  
>8%  
The update rate and corresponding internal sampling  
window for ACT[7:0] is 250 ms. During this sampling  
window, a counter is used to count the number of times  
repeater transmit activity is TRUE. The counter uses a  
free-running clock which has the granularity to detect  
the minimum packet size of 96 bit times.  
>4%  
>2%  
Figure 3 shows the timing relationship between the  
sampling window, counting clock, and transmit activity.  
>1%  
latch data;  
update display;  
clear counter  
next counting cycle  
counter is active  
Sampling  
Window  
Counting  
Clock  
Xmit  
Activity  
20650B-8  
Figure 3. Activity Sampling  
Am79C984A  
19  
P R E L I M I N A R Y  
ACK and COL are mutually exclusive. If an eIMR driv-  
Expansion Bus Interface  
ing ACK senses COL LOW, the device will deassert  
ACK.  
The eIMR device expansion bus allows multiple eIMR  
devices to be interconnected.  
DAT and JAM are synchronized to CLK. DAT is the rep-  
etition of data from any connected port (either TP or  
AUI port) encoded in NRZ format. JAM is an internal  
collision indicator. If JAM is HIGH, the active eIMR de-  
vice has detected an internal collision across one or  
more of its ports. When this occurs, the DAT signal dis-  
tinguishes between single-port collisions and multiport  
collisions. DAT = 1 indicates a single port collision;  
DAT = 0 indicates a multiport collision.  
The expansion bus supports two modes of operation:  
internal arbitration mode and IMR+ mode. The internal  
arbitration mode uses a modified daisy-chain scheme  
to eliminate the need for any external arbitration cir-  
cuitry.The IMR+ mode maintains the full functionality of  
the IMR+ (Am79C981) expansion bus and benefits  
from minimum delays. In this mode, the eIMR device  
requires external circuitry to handle arbitration for con-  
trol of the bus.  
The drive capabilities of the I/O signals on the expan-  
sion bus (DAT, JAM, ACK, and COL) are sufficient to  
allow seven eIMR devices to be connected together  
without the use of external transceivers or buffers.  
The eIMR arbitration mode is determined at reset.This  
occurs on the trailing edge of RST according to the  
state of SELI , as illustrated in Figure 4.  
0-1  
Internal Arbitration Mode  
The maximum number of eIMR devices that can be  
daisy chained is limited by the propagation delay of the  
eIMR devices. In practice, the depth of the cascade is  
limited to three eIMR devices, thus allowing a maxi-  
mum of seven eIMR devices connected together via  
this expansion bus as shown in Figure 5.  
The internal arbitration mode uses a daisy-chain (cas-  
cade) configuration. SELI are arbitration inputs and  
0-1  
SELO is the arbitration output. SELO goes LOW when  
there is activity on one or more of the eIMR ports, or a  
SELI input is LOW. The SEL lines are connected as  
shown in Figure 5.This technique allows activity indica-  
tion to propagate down the chain to the end device. All  
unused SELI inputs must be tied to VDD.  
The active device will not drive the data line, DAT,  
until one bit time (100 ns) after SELO goes LOW. This  
is to avoid a situation where two devices drive DAT  
simultaneously.  
ACK and COL are global activity I/O pins. When the  
eIMR device senses activity, it drives ACK LOW.  
IMR+ Mode  
.
In IMR+ mode, the expansion bus requires an external  
arbiter.The arbiter allows only one eIMR device to con-  
trol the expansion bus. If more than one device at-  
tempts to take control, the arbiter terminates all access  
and signals a collision condition.  
RST  
SELI_0  
Mode Selection  
In IMR+ mode, DAT and JAM retain the same function-  
ality as in internal arbitration mode, but ACK and COL  
are inputs to the eIMR device, driven by the external ar-  
biter. The arbiter should drive ACK LOW when exactly  
one eIMR device is active. It should drive COL when  
more than one eIMR device is active. SELO is an out-  
put from the eIMR device. It indicates that the eIMR de-  
vice has an active port and is requesting access to the  
bus.  
Arbitration  
Mode  
SELI_1  
SELI_0  
X
X
1
0
Internal  
IMR+  
20650B-9  
Figure 4. Expansion Bus Mode Selection  
When ACK is HIGH, DAT and JAM are in the high-  
impedance state. DAT and JAM go active when ACK  
goes LOW. Refer to the Systems Applications section  
(Figure 13) for the configuration of IMR+ mode of  
operation.  
An eIMR device drives COL LOW when it senses more  
than one device is active; that is, if the device has an  
active port AND a SELI input is LOW, OR both SELI in-  
puts are LOW. In Boolean notation, the formula for COL  
is:  
Note: The IMR+ mode is recommended when arbitrating  
between multiple boards.  
COL = (Active port & (SELI + SELI ))+  
1
0
(SELI & SELI )  
1
0
.
where  
& represents the Boolean AND operation  
+ represents the Boolean OR operation  
20  
Am79C984A  
P R E L I M I N A R Y  
VDD  
1k  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
SELI_0  
SELI_1  
SELO  
20650B-10  
Figure 5. Internal Arbitration—eIMR Devices in Cascade  
a free-running clock synchronized to the input bit pat-  
terns, or a series of individual transitions meeting the  
setup-and-hold times with respect to the input bit pat-  
tern. If the latter method is used, 20 SCLK clock transi-  
tions are required for control commands that produce  
SO data, and 14 SCLK clock transitions are required  
for control commands that do not produce SO data.  
Control Functions  
The eIMR device receives control commands in the  
form of byte-length data on the serial input pin, SI. If the  
eIMR device is expected to provide data in response to  
the command, it will send byte-length data to the serial-  
output pin, SO. Both the input and output data streams  
are clocked with the rising edge of the SCLK signal.  
The byte-length data is in RS232 serial-data format;  
that is, one start bit followed by eight data bits. The ex-  
ternally generated clock at the SCLK pin may be either  
Am79C984A  
21  
P R E L I M I N A R Y  
end of a GET command, the eIMR device waits two  
Command/Response Timing  
SCLK cycles and then transmits the response on SO.  
Figure 6 shows the command/response timing. At the  
.
SCLK  
SI  
ST D0 D1 D2 D3 D4 D5 D6 D7  
SO  
ST D0 D1 D2 D3 D4 D5 D6 D7  
20650B-11  
Figure 6. Control Get Command/Response  
Control Commands  
Table 4. Summary of Default States after Reset  
The following section details the operation of each con-  
trol commands available in the eIMR device. In all  
cases, the individual bits in each command are shown  
with the most-significant bit (bit 7) on the left and the  
least-significant bit (bit 0) on the right.Table 4 and Table  
5 show a summary of default states and a summary of  
control commands, respectively.  
eIMR Programmable Option—S Off  
AUI Partitioning Algorithm  
TP Partitioning Algorithm  
AUI/TP Port  
Normal  
Normal  
Enabled  
Enabled  
Enabled  
Link Test  
Link Pulse  
Note: Data is transmitted and received on the serial  
data lines least-significant bit first and most-significant  
bit last.  
Automatic Receiver Polarity  
Reversal  
State of SI at reset  
Extended Distance Mode  
Blink Rate  
Disabled  
Off  
Software Override of LEDs  
Disabled  
22  
Am79C984A  
P R E L I M I N A R Y  
Table 5. Control Port Command Summary  
SI Data  
Commands  
SO Data  
Set (Write Commands)  
eIMR Chip Programmable Options  
0000 10S0  
Alternate AUI Partitioning Algorithm  
Alternate TP Partitioning Algorithm  
AUI Port Disable  
0001 1111  
0001 0000  
0010 1111  
0011 1111  
0010 00##  
0011 00##  
0100 00##  
0101 00##  
0100 10##  
0101 10##  
0110 00##  
AUI Port Enable  
TP Port Disable  
TP Port Enable  
Disable Link Test Function (per TP port)  
Enable Link Test Function (per TP port)  
Disable Link Pulse (per TP port)  
Enable Link Pulse (per TP port)  
Disable Automatic Receiver Polarity Reversal  
(per TP port)  
Enable Automatic Receiver Polarity Reversal  
(per TP port)  
0111 00##  
0110 10##  
0111 10##  
1001 ####  
1011 ####  
1100 ####  
1110 1###  
Disable Receiver Extended Distance Mode  
(per TP port)  
Enable Receiver Extended Distance Mode  
(per TP port)  
Disable Software Override of LEDs  
(per Port - AUI & TP)  
Enable Software Override of Bank A LEDs  
(per Port - AUI & TP, Global)  
Enable Software Override of Bank B LEDs  
(per Port - AUI & TP, Global)  
Software Override LED Blink Rate  
Get (Read Commands)  
AUI Port Status (B, S, and L Cleared)  
AUI Port Status (B Cleared)  
AUI Port Status (S, L, Cleared)  
AUI Port status (None Cleared)  
TP Port Partitioning Status  
Bit Rate Error Status of TP Ports  
Link Test Status of TP Ports  
Receive Polarity Status of TP Ports  
MJLP Status  
1000 1111  
1000 1101  
1000 1011  
1000 1001  
1000 0000  
1010 0000  
1101 0000  
1110 0000  
1111 0000  
1111 1111  
PBSL 0000  
PBSL 0000  
PBSL 0000  
PBSL 0000  
0000 C3..C0  
0000 E3..E0  
0000 L3..L0  
0000 P3..P0  
M000 0000  
0000 0011  
Version  
Am79C984A  
23  
P R E L I M I N A R Y  
AUI Port Enable  
SET (Write Commands)  
Chip Programmable Option  
SI  
0011 1111  
None  
SO Data  
SI Data  
SO Data  
0000 10S0  
None  
This command enables the AUI port.  
TP Port Disable  
The eIMR chip programmable option can be enabled  
(or disabled) by setting (or resetting) the S bit in the  
command string.  
SI Data  
SO Data  
0010 00##  
None  
S
AUI SQE Test Mask  
This command disables the TP port designated by the  
two least-significant bits of the command byte. Subse-  
quently, the eIMR chip will ignore all inputs to the des-  
ignated port and will not transmit a DAT or JAM pattern  
on that port. Disabling the TP port also sets the parti-  
tioning state machine of that port to the idle state.There-  
fore, a partitioned port can be reconnected by first  
disabling the port and then enabling it.  
Setting this bit allows the eIMR chip to ignore activity on  
the CI signal pair, during the SQE test window, following  
a transmission on the AUI port. Enabling this function  
does not prevent the reporting of this condition by the  
eIMR device.The two functions operate independently.  
The SQE Test Window, as defined in IEEE 802.3 (Sec-  
tion 7.2.2.2.4) is from 6 bit times to 34 bit times (0.6 µs  
to 3.4 µs). This includes the delay introduced by a 50-  
meter AUI. CI activity that occurs outside this window is  
not ignored and is treated as a true collision.  
TP Port Enable  
SI Data  
SO Data  
0011 00##  
None  
Alternate AUI Partitioning Algorithm  
This command enables the TP port designated by the  
two least-significant bits of the command byte.  
SI Data  
0001 1111  
None  
SO Data  
Disable Link Test Function (Per TP port)  
Invoking this command sets the partition/reconnection  
scheme for the AUI port to the alternate (transmit-only)  
reconnection algorithm. To return the AUI port to the  
standard (transmit or receive) reconnection algorithm,  
it is necessary to reset the eIMR device. The standard  
partitioning algorithm is selected on reset.  
SI Data  
SO Data  
0100 00##  
None  
This command disables the Link Test function of the TP  
port designated by the two least-significant bits of the  
command data. As a consequence of this, the port will  
no longer be disconnected if it fails the Link Test. If a  
port has the Link Test disabled, reading the Link Test  
Status indicates a ‘Link Pass’.  
Alternate TP Partitioning Algorithm  
SI Data  
SO Data  
0001 0000  
None  
Enable Link Test Function (Per TP port)  
Invoking this command sets the partition/reconnection  
scheme for the TP ports to the alternate (transmit-only)  
reconnection algorithm. To return the TP ports to the  
standard (transmit or receive) reconnection algorithm,  
it is necessary to reset the eIMR device. The standard  
partitioning algorithm is selected on reset.  
SI Data  
SO Data  
0101 00##  
None  
This command enables the Link Test function of the TP  
port designated by the two least-significant bits of the  
command data. As a consequence of this, the port is  
disconnected if it fails the Link Test.  
AUI Port Disable  
Disable Link Pulse (Per TP Port)  
SI  
0010 1111  
None  
SI Data  
SO Data  
0100 10##  
None  
SO Data  
This command disables the AUI port.Subsequently, the  
eIMR chip will ignore all inputs to this port and will not  
transmit a DAT or JAM pattern on the AUI port.Disabling  
the AUI port also sets the partitioning state machine of  
the AUI port to the idle state. Therefore, a partitioned  
port can be reconnected by first disabling the AUI port  
and then enabling the AUI port.  
This command disables the transmission of the Link  
pulse on the TP port designated by the two least-  
significant bits of the command byte.  
Enable Link Pulse (Per TP Port)  
SI Data  
SO Data  
0101 10##  
None  
This command enables the transmission of the Link  
pulse on the TP port designated by the two least-  
significant bits of the command byte.  
24  
Am79C984A  
P R E L I M I N A R Y  
Disable Automatic Receiver Polarity Reversal (Per TP  
Port)  
Disable Software Override of LEDs  
(Per Port - AUI and TP, Global)  
SI Data  
SO Data  
0110 00##  
None  
SI Data  
SO Data  
1001 ####  
None  
This command disables the Automatic Receiver Polarity  
Reversal function for the TP port designated by the two  
least-significant bits in the command byte. If this func-  
tion is disabled on a TP port receiving with reversed  
polarity (due to a wiring error), the TP port will fail the  
Link Test due to the incorrect polarity of the received  
Link pulses.  
This command disables Software Override of the Port  
LEDs.  
Individual LEDs and combinations of LEDs can be  
selected via the lower four bits of the command byte as  
follows:  
####  
Port(s) affected  
0000-0011 TP0 - TP3  
0100-0111 Reserved  
The state of Automatic Polarity Reversal function is set  
by SI on reset. If SI is HIGH at the rising edge of RST,  
the eIMR device disables Automatic Polarity Reversal.  
If SI is LOW at the rising edge of RST, the eIMR device  
enables Automatic Polarity Reversal.  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AUI port  
Reserved  
Reserved  
All TP ports  
All ports  
Global  
Reserved  
Reserved  
Enable Automatic Receiver Polarity Reversal (Per TP  
Port)  
SI Data  
SO Data  
0111 00##  
None  
Following command execution, the attributes displayed  
This command enables the Automatic Receiver Polarity  
Reversal function for the TP port designated by the two  
least-significant bits in the command byte. If enabled in  
a TP port, the eIMR chip will automatically invert the  
polarity of that port’s receiver circuitry if the TP port is  
detected as having reversed polarity (due to wiring er-  
ror). After reversing the receiver polarity, the TP port  
could then receive subsequent (reverse polarity)  
packets correctly.  
on the LEDs will be determined by LDC . Software  
0-2  
Override of LEDs is disabled after reset.  
Enable Software Override of Bank A LEDs (Per Port -  
AUI and TP, Global)  
SI Data  
SO Data  
1011 ####  
None  
This command forces the LEDs in Bank A to blink. In-  
dividual LEDs and combinations of LEDs can be select-  
edviathelowerfourbitsofthecommandbyteasfollows:  
Disable Receiver Extended Distance Mode (Per TP  
Port)  
####  
Port(s) affected  
SI Data  
SO Data  
0110 10##  
None  
0000-0011 TP0 - TP3  
0100-0111 Reserved  
This command disables the Receiver Extended  
DistanceModeandrestorestheRXDcircuitofthetrans-  
ceiver to normal squelch levels for the TP port driver  
designated by the two least-significant bits of the com-  
mand data.  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AUI port  
Reserved  
Reserved  
All TP ports  
All ports  
Global  
Reserved  
Reserved  
EnableReceiverExtendedDistanceMode(PerTPPort)  
SI Data  
SO Data  
0111 10##  
None  
The designated LED driver(s) will switch between LOW  
and ‘off’ at the rate set by the Software Override Blink  
Rate command. Enable Software Override of Bank A  
LEDs references the blink rate last issued and overrides  
This command modifies the RXD circuit of the trans-  
ceiver for theTP port driver designated by the two least-  
significant bits of the command data.The RXD squelch-  
threshold value is lowered to accommodate signal at-  
tenuation associated with lines longer than 100 meters.  
At reset, Receiver Extended Distance Mode is disabled  
and the RXD circuit defaults to normal squelch-thresh-  
old values.  
any other attribute specified by LDC . Software Over-  
0-2  
ride of LEDs is disabled after reset.  
Am79C984A  
25  
P R E L I M I N A R Y  
Enable Software Override of Bank B LEDs (Per Port -  
B
Bit Rate Error  
AUI and TP, Global)  
Thisbitissetto1ifthereisaninstanceofFIFOoverflow  
or underflow. The bit is cleared when the eIMR device  
is read.  
SI Data  
SO Data  
1100 ####  
None  
This command forces the LEDs in Bank B to blink. In-  
dividual LEDs and combinations of LEDs can be select-  
edviathelowerfourbitsofthecommandbyteasfollows:  
S
SQE Test Status  
This bit is set to ‘1’ if the SQE test error is detected by  
the eIMR chip.The bit is cleared when the status is read.  
####  
Port(s) affected  
L
Loopback Error  
0000-0011 TP0 - TP3  
0100-0111 Reserved  
The MAU attached to the AUI port is required to loop-  
back data transmitted to DO onto the DI circuit. If the  
loopback carrier is not detected by the eIMR device, this  
bit is set to1’.This bit is cleared when the status is read.  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AUI port  
Reserved  
Reserved  
All TP ports  
All ports  
Global  
Reserved  
Reserved  
Alternate AUI Port(s) Status  
There are three further variations of the AUI Port Status  
Command allowing selective clearing of a combination  
of B,S, and L bits. These are the following:  
The designated LED driver(s) will switch between LOW  
and ‘off’ at the rate set by the Software Override of LED  
Blink Rate command. Enable Software Override of  
Bank B LEDs references the blink rate last issued and  
Alternate 1: B is not cleared, S and L are Cleared  
SI Data  
1000 1011  
PBSL 0000  
SO Data  
overrides any other attribute specified by LDC . Soft-  
Alternate 2: S and L are not cleared, B is Cleared  
0-2  
ware Override of LEDs is disabled after reset.  
SI Data  
SO Data  
1000 1101  
PBSL 0000  
Software Override of LED Blink Rate  
SI Data  
SO Data  
1110 1###  
None  
Alternate 3: None of S, B, and L are Cleared  
SI Data  
SO Data  
1000 1001  
PBSL 0000  
This command sets the blink period of the LEDs with  
Software Override enabled.The duty cycle is 50%.This  
command defaults to ‘off’ at reset.  
TP Port Partitioning Status  
SI Data  
SO Data  
1000 0000  
0000 P3..P0  
Setting  
Blink Period  
Off  
512 ms  
1560 ms  
Solid On  
1110 1000  
1110 1001  
1110 1010  
1110 1011  
Pn = 0  
Pn = 1  
TP Port Partitioned  
TP port Connected  
where n is a port number in the range 0–3.  
These settings apply to the blink rate for both Bank A  
and Bank B. This command must precede the Enable  
Software Override of Bank A/B LEDs command.All LED  
combinations selected for Software Override will refer-  
ence the blink rate last issued.  
The response to this command gives the partitioning  
status of all four TP ports. If a port is disabled, reading  
its partitioning status will indicate that it is connected.  
Bit Rate Error Status of TP Ports  
SI Data  
1010 0000  
GET (Read Commands)  
SO Data  
0000 E3..E0  
AUI Port(s) Status  
En = 0  
En = 1  
No Error  
FIFO Overflow  
SI Data  
SO Data  
1000 1111  
PBSL 0000  
where n is a port number in the range 0–3.  
The combined AUI status of the eIMR device allows a  
single instruction to be used to monitor the AUI port.  
The four local status bits are:  
The response to this command gives the bit-rate-over-  
flow or underflow (data rate mismatch) condition of all  
theTP ports.A 1 indicates that the FIFO has overflowed  
or underflowed due to the amount of data received by  
the corresponding port.  
P
Partitioning Status  
This bit is ‘0’ if the AUI port is partitioned and ‘1’ if the  
AUI port is connected.  
26  
Am79C984A  
P R E L I M I N A R Y  
Link Test Status of TP ports  
SYSTEMS APPLICATIONS  
SI Data  
SO Data  
1101 0000  
0000 L3..L0  
eIMR to TP Port Connection  
The eIMR device provides a system solution to designing  
non-managed multiport repeaters.The eIMR device con-  
nects directly to AC coupling modules for a 10BASE-T  
hub. Figure 7 shows the simplified connection.  
Ln = 0  
Ln = 1  
TP Port n in Link Test Failed  
TP port n in Link Test Passed  
where n is a port number in the range 0–3.  
The response to this command gives the Link Test sta-  
tus of all theTP ports.A disabled port continues to report  
Link Test status. Re-enabling the port causes the port  
to be placed in the Link Test Fail state.  
Twisted Pair Transmitters  
TXD signals need to be properly terminated to meet the  
electrical requirement for 10BASE-T transmitters.Prop-  
er termination is shown in Figure 8 which consists of a  
110-resistor and a 1:1 transformer.The load is a twisted-  
pair cable that meets IEEE 802.3, Section 14.4 specifi-  
cations. The cable is terminated at the opposite end by  
100 .  
Receive Polarity Status of TP Ports  
SI Data  
1110 0000  
SO Data  
0000 P3......P0  
Pn = 0  
Pn = 1  
TP Port n Polarity Correct  
TP port n Polarity Reversed  
Twisted Pair Receivers  
where n is a port number in the range 0–3.  
RXD signals need to be properly terminated to meet the  
electrical requirements for 10BASE-T receivers. Proper  
termination is shown in Figure 9.Note that the receivers  
do not require external filter modules.  
The response to this command gives the Received Po-  
larity status of all the TP ports. If the polarity is detected  
as reversed for a TP port, then the eIMR device will set  
the appropriate bit in this command’s result only if the  
Polarity Reversal Function is enabled for that port.  
MJLP Status  
SI Data  
SO Data  
1111 0000  
M000 0000  
Each eIMR device contains an independent MAU Jab-  
ber Lock Up Protection timer. The timer is designed to  
inhibit the transmit function of the eIMR device if it has  
been transmitting continuously for more than 65536 bit  
times.This bit remains set and is only cleared when the  
MJLP status is read using this command.  
Version  
SI Data  
SO Data  
1111 1111  
0000 0011  
The response to this command gives the version of the  
eIMR device. 0011 was chosen to help distinguish the  
eIMR device from the IMR (Am79C980) and the IMR+  
(Am79C981) devices.  
Am79C984A  
27  
P R E L I M I N A R Y  
eIMR  
TP Connector  
TP Connector  
TP Connector  
TP Connector  
1:1  
TXD0+  
TXD0–  
110  
100 Ω  
1:1  
RXD0+  
RXD0–  
1:1  
1:1  
TXD1+  
TXD1–  
110 Ω  
100 Ω  
RXD1+  
RXD1–  
1:1  
1:1  
TXD2+  
TXD2–  
110 Ω  
100 Ω  
RXD2+  
RXD2–  
1:1  
1:1  
TXD3+  
TXD3–  
110 Ω  
100 Ω  
RXD3+  
RXD3–  
RST  
CLK  
20650A-12  
Figure 7. Simplified 10BASE-T Connection  
1:1  
TXD+  
TXD-  
Twisted Pair  
100  
110Ω  
20650B-13  
Figure 8. TXD Termination  
RXD+  
1:1  
Twisted Pair  
100  
100Ω  
RXD–  
20650B-14  
Figure 9. RXD Termination  
Am79C984A  
28  
P R E L I M I N A R Y  
of the MAC and DO is connected to DI of the MAC,  
MAC Interface  
because the reverse configuration only affects CI.  
Where CI is an input in the normal mode, in the reverse  
mode, CI is an output.Figure 10b shows the normal AUI  
configuration for reference.  
The eIMR device can be connected directly to a MAC  
through the AUI port.This requires that the AUI port be  
configured in the reverse mode and connected as  
shown in Figure 10a. Notice that DI is connected to DO  
Am79C940  
eIMR  
Am7996  
eIMR  
1:1  
DO+  
DO–  
DI+  
DI–  
DI+  
DI–  
DI+  
DI–  
40  
40 Ω  
40 Ω  
40 Ω  
1:1  
DI+  
DI–  
DO+  
DO–  
DO+  
DO–  
DO+  
DO–  
0.1 µF  
40 Ω  
40 Ω  
40 Ω  
40 Ω  
1:1  
CI+  
CI–  
CI+  
CI–  
CI+  
CI–  
CI+  
CI–  
40 Ω  
40 Ω  
40 Ω  
40 Ω  
0.1 µF  
39 – 150 Ω  
0.1 µF  
0.1 µF  
0.1 µF  
–9 V  
b) Normal Mode (with MAU)  
a) Reverse Mode (with MAC)  
20650B-15  
Figure 10. AUI Port Interconnections  
Internal Arbitration Mode Connection  
IMR+ Mode External Arbitration  
The internal arbitration mode uses a modified daisy-  
chain scheme to eliminate the need for any external  
arbiter. In this mode, ACK and COL need to be pulled  
up through a minimum resistance of 1 kΩ. The DAT and  
JAM pins also need to be pulled down via a high value  
resistor. Refer to Figure 11.  
The IMR+ mode maintains the full functionality of AMD’s  
IMR+ (Am79C981) device’s expansion bus. In this  
mode, the eIMR device requires external circuitry to  
handle arbitration for control of the bus.Figure 12 shows  
the configuration for the IMR+ mode of operation.  
Am79C984A  
29  
P R E L I M I N A R Y  
VDD  
eIMR  
SELI_0  
SELI_1  
RST  
(Note: In a multiple eIMR system, the reset  
signal must be synchronized to CLK.)  
SELO  
74LS74  
eIMR  
SELI_0  
SELI_1  
RST  
CLK  
RST  
D
Q
Q
D
Q
Q
SELO  
CLK  
P
C
P
C
VDD  
20 MHz  
OSC  
~1 k  
1 kΩ  
eIMR  
SELI_0  
SELI_1  
RST  
VDD  
~1 kΩ  
SELO  
CLK  
20650B-16  
Figure 11. eIMR Internal Arbitration Mode Connection  
eIMR  
eIMR  
SELI_0  
eIMR  
SELI_0  
SELI_0  
SELO  
SELO  
SELO  
SELI_1  
SELI_1  
DAT JAM ACK COL  
SELI_1  
DAT JAM ACK COL  
DAT JAM ACK COL  
1 k  
COL ACK SEL1 SEL2 SEL3  
Arbiter  
GCOL  
20650B-17  
Figure 12. IMR+ Mode External Arbitration  
30  
Am79C984A  
P R E L I M I N A R Y  
Visual Status Display  
VDD  
LDA/B[4:0] and LDGA/B provide visual status indicators  
for the eIMR. LDA/B[4:0] displays Link, Carrier Sense,  
Collision, and Partition information for the TP and AUI  
ports. LDGA/B display global Carrier Sense, Collision,  
and Jabber information.  
LDA[4:0]  
LDB[4:0]  
In a multiple eIMR configuration, the global LED drivers  
(LDGA/B) from each chip can be tied together to drive  
a single pair of global status LEDs.The open drain out-  
put of these drivers facilitate this configuration. Refer to  
Figure 13.  
LDGA  
LDGB  
LDA[4:0]  
LDB[4:0]  
LDGA  
LDGB  
20650B-18  
Figure 13. Visual Status Display Connection  
Am79C984A  
31  
P R E L I M I N A R Y  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . –65° C to +150° C  
Ambient Temperature Under Bias . . . . 0° C to +70° C  
Supply Voltage referenced to  
Commercial (C) Devices  
Temperature (T ) . . . . . . . . . . . . . . . . . 0° C to +70° C  
A
Supply Voltages (V ) . . . . . . . . . . . . . . . . . +5 V ±5%  
DD  
AV or DV (AV , DV ). . . . . . . 0.3 V to +6.0 V  
SS  
SS  
DD  
DD  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
Stresses above those listed under ABSOLUTE MAXI-  
MUM RATINGS may cause permanent device failure.  
Functionality at or above these limits is not implied. Ex-  
posure to Absolute Maximum Ratings for extended pe-  
riods may affect reliability.Programming conditions may  
differ.  
DC CHARACTERISTICS over operating ranges unless otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
Digital I/O  
V
Input LOW Voltage  
V
V
= 0.0 V  
= 0.0 V  
–0.5  
2.0  
0.8  
V
V
IL  
SS  
SS  
OL  
V
Input HIGH Voltage  
0.5 + V  
IH  
DD  
V
Output LOW Voltage  
I
= 4.0 mA  
2.4  
0.4  
V
V
OL  
V
Output HIGH Voltage  
I
= –0.4 mA  
OH  
OH  
I
Input Leakage Current  
V
V
<V <V  
10  
50  
0.4  
µA  
µA  
V
IL  
SS  
IN  
DD  
I
Input Leakage Current for STR pin  
Open Drain Output LOW Voltage (LED pins)  
<V <V  
ILSTR  
SS  
IN  
DD  
V
I
= 12 mA  
OLOD  
OLOD  
AUI Ports  
I
Input Current at DI± and CI± Pairs  
V
<V <V  
–500  
500  
µA  
V
IAXD  
SS  
IN  
DD  
V
DI±, CI± Open Circuit Input Voltage Range  
I
= 0  
V
– 3.0  
V
– 1.0  
AICM  
IN  
DD  
DD  
V
Differential Mode Input Voltage Range  
(DI, CI)  
V
= 5.0 V  
–2.5  
+2.5  
V
AIDV  
DD  
V
DI, CI Squelch Threshold  
–275  
-35  
–160  
+35  
mV  
mV  
mV  
mV  
ASQ  
V
DI Switching Threshold  
(Note 1)  
R = 78 Ω  
ATH  
V
Differential Output Voltage (DO+) – (DO)  
620  
620  
1100  
1100  
AOD  
L
V
Differential Output Voltage (CI+) – (CI–)  
(Reverse Mode)  
R = 78 Ω  
L
AOC  
V
DO Differential Output Voltage Imbalance  
R = 78 Ω  
–25  
–40  
–1.0  
2.5  
+25  
+40  
+1.0  
mV  
mV  
mA  
V
AODI  
L
V
OFF DO Differential Idle Output Voltage  
R = 78 Ω  
L
AOD  
I
OFF DO Differential Idle Output Current  
R = 78 (Note 1)  
L
AOD  
V
DO+, DO- Common Mode Output Voltage  
R = 78 Ω  
V
DD  
AOCM  
L
Twisted Pair Ports  
I
Input Current at RXD±  
and CI± Pairs  
AV <V <V  
DD  
–500  
10  
500  
µA  
IRXD  
SS  
IN  
R
RXD Differential Input  
(Note 1)  
kΩ  
RXD  
V
RXD+, RXD– Open Circuit  
Input Voltage (bias)  
V
– 3.0  
V
– 1.5  
V
TIVB  
DD  
DD  
V
Differential Mode Input  
Range (RXD)  
V
= 5.0 V  
–3.1  
+3.1  
V
TID  
DD  
32  
Am79C984A  
P R E L I M I N A R Y  
DC CHARACTERISTICS (continued)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Sinusoid  
Min  
Max  
Unit  
Twisted Pair Ports (Continued)  
V
V
V
RXD Positive Squelch Threshold  
(peak)  
300  
–520  
150  
520  
–300  
293  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
TSQ+  
TSQ–  
THS+  
5 MHz<f<10 MHz  
RXD Negative Squelch Threshold  
(peak)  
Sinusoid  
5 MHz<f<10 MHz  
RXD Post-Squelch Positive  
Threshold (peak)  
Sinusoid  
5 MHz<f<10 MHz  
V
RXD Post-Squelch Negative  
Threshold (peak)  
Sinusoid  
5 MHz<f<10 MHz  
–293  
180  
–150  
365  
THS–  
V
V
V
RXD Positive Squelch Threshold  
(peak) - Extended Distance Mode  
Sinusoid  
5 MHz<f<10 MHz  
LTSQ+  
LTSQ–  
LTHS+  
RXD Negative Squelch Threshold  
(peak) - Extended Distance Mode  
Sinusoid  
5 MHz<f<10 MHz  
–365  
90  
–180  
175  
RXD Post-Squelch Positive  
Threshold - Extended Distance Mode  
Sinusoid  
5 MHz<f<10 MHz  
V
RXD Post-Squelch Negative  
Threshold - Extended Distance Mode  
Sinusoid  
5 MHz<f<10 MHz  
–175  
–60  
–90  
LTHS–  
V
RXD Switching Threshold  
(Note 1)  
60  
RXDTH  
Power Supply Current  
I
Power Supply Current  
(Idle) (Note 2)  
CLK = 20 MHz  
100  
350  
mA  
mA  
DD  
V
= +5.25V  
DD  
Power Supply Current  
(Transmitting)  
CLK = 20 MHz  
= +5.25V  
V
DD  
Notes:  
1. Parameter not tested.  
2. LED current not included. Maximum current rating on LED drivers is 12 mA.  
Am79C984A  
33  
P R E L I M I N A R Y  
SWITCHING CHARACTERISTICS  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
Clock and Reset Timing  
t
CLK Clock Period  
CLK Clock High  
49.995  
20  
20  
50.005  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
CLK  
t
30  
30  
10  
10  
CLKH  
t
CLK Clock Low  
CLKL  
CLKR  
t
CLK Rise Time  
t
CLK Fall Time  
CLKF  
PRST  
t
Reset Pulse Width after Power On  
Reset Pulse Width  
150  
4
t
RST  
t
Reset HIGH Setup Time with respect to  
CLK  
15  
RSTSET  
t
Reset LOW Hold Time  
0
0
ns  
ns  
RSTHLD  
t
AMODE, SELI , and SI_D Setup Time  
XRS  
0
to Rising Edge of RST  
t
AMODE,SELI , and SI_D Hold Time  
400  
ns  
XRH  
0
from Rising Edge of RST  
AUI Port Timing  
t
t
CLK Rising Edge to DO Toggle  
30  
7.0  
7.0  
1.0  
375  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DOTD  
DOTR  
DO+, DO– Rise Time (10% to 90%)  
DO+, DO– Fall Time (90% to 10%)  
DO+, DO– Rise and Fall Time Mismatch  
DO± End of Transmission  
t
DOTF  
t
DORM  
t
275  
15  
136  
DOETD  
t
DI Pulse Width Accept/Reject Threshold  
|V |>|V  
| (Note 2)  
| (Note 3)  
PWODI  
IN  
ASQ  
t
DI Pulse Width Not to Turn-off Internal  
Carrier Sense  
|V |>|V  
200  
PWKDI  
IN  
ASQ  
t
CI Pulse Width Accept/Reject Threshold  
CI Pulse Width Not to Turn-off Threshold  
CI Rise Time (In Reverse Mode)  
|V |>|V  
| (Note 4)  
| (Note 5)  
10  
75  
26  
160  
7.0  
7.0  
1.0  
ns  
ns  
ns  
ns  
ns  
PWOCI  
IN  
ASQ  
t
|V |>|V  
IN  
PWKCI  
ASQ  
t
CITR  
t
CI Fall Time (In Reverse Mode)  
CITF  
t
CI+, CI– Rise and Fall Time Mismatch  
(AUI in Reverse Mode)  
CIRM  
Expansion Bus Timing  
t
CLK HIGH to SELO Driven LOW  
CLK HIGH to SELO Driven HIGH  
CLK HIGH to DAT/JAM Driven  
CLK HIGH to DAT/JAM Not Driven  
DAT/JAM Setup Time to CLK  
DAT/JAM Hold Time from CLK  
COL/ACK Setup Time to CLK  
COL/ACK Hold Time from CLK  
SI, SCLK Hold Time  
C = 50 pF  
15  
15  
14  
14  
10  
9
30  
30  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKHRL  
CLKHRH  
CLKHDR  
L
t
t
C = 50 pF  
L
C = 100 pF  
L
t
C = 100 pF  
CLKHDZ  
L
t
DJSET  
t
DJHOLD  
t
10  
9
CASET  
t
CAHLD  
t
50  
SCLKHLD  
34  
Am79C984A  
P R E L I M I N A R Y  
SWITCHING CHARACTERISTICS (continued)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
Twisted Pair Port Timing  
t
t
CLK Rising Edge to TXD± Transition Delay  
50  
ns  
ns  
ns  
TXTD  
TETD  
Transmit End of Transmission  
250  
136  
375  
200  
t
RXD Pulse Width Maintain/Turn-off  
Threshold  
|V |>|V  
| (Note 6)  
PWKRD  
IN  
THS  
t
Idle Signal Period  
8
24  
ms  
ns  
PERLP  
t
Idle Link Test Pulse Width  
75  
120  
PWLP  
Control Port Timing  
t
SCLK Clock Period  
100  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
t
SCLK Clock HIGH  
SCLKH  
t
SCLK Clock LOW  
SCLKL  
SCLKR  
t
SCLK Clock Rise Time  
10  
10  
t
SCLK Clock Fall Time  
SCLKF  
t
SI Input Setup Time to SCLK Rising Edge  
SI Input Hold Time from SCLK Rising Edge  
SO Output Delay from SCLK Rising Edge  
10  
10  
SISET  
SIHLD  
SODLY  
t
t
C = 100 pF  
40  
L
Notes:  
1. Parameter not tested.  
2. DI pulses narrower than t  
(min) will be rejected; pulses wider than t  
(max) will turn internal DI carrier sense on.  
PWODI  
PWODI  
3. DI pulses narrower than t  
carrier sense off.  
(min) will maintain internal DI carrier on; pulses wider than t  
(max) will turn internal DI  
PWKDI  
PWKDI  
4. CI pulses narrower than t  
(min) will be rejected; pulses wider than t  
(max) will turn internal CI carrier sense on.  
PWOCI  
PWOCI  
5. CI pulses narrower than t  
carrier sense off.  
(min) will maintain internal CI carrier on; pulses wider than t  
(max) will turn internal CI  
PWKCI  
PWKCI  
6. RXD pulses narrower than t  
RXD carrier sense off.  
(min) will maintain internal RXD carrier sense on; a pulse wider than t  
(max) will turn  
PWKRD  
PWKRD  
Am79C984A  
35  
P R E L I M I N A R Y  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
Steady  
Will be  
Steady  
May  
Change  
from H to L  
Will be  
Changing  
from H to L  
May  
Change  
from L to H  
Will be  
Changing  
from L to H  
Don’t Care,  
Any Change  
Permitted  
Changing,  
State  
Unknown  
Does Not  
Apply  
Center  
Line is High-  
Impedance  
“Off” State  
KS000010-PAL  
SWITCHING WAVEFORMS  
tCLK  
tCLKH  
tCLKL  
CLK  
tCLKF  
tCLKR  
20650B-19  
Figure 14. Clock Timing  
36  
Am79C984A  
P R E L I M I N A R Y  
SWITCHING WAVEFORMS (continued)  
tSCLKR  
tSCLK  
tSCLKF  
SCLK  
tSCLKH  
tSCLKL  
SI  
tSISET  
tSODLY  
tSIHLD  
SO  
20650B-20  
Figure 15. Control Port Timing  
CLK  
tRSTSET  
tRSTHLD  
RST  
tRST  
or tPRST  
TCLK  
Note: TCLK represents internal eIMR timing  
20650B-21  
Figure 16. Reset Timing  
AMODE, SELI_0  
tXRH  
tXRS  
RST  
20650B-22  
Figure 17. Mode Initialization  
Am79C984A  
37  
P R E L I M I N A R Y  
SWITCHING WAVEFORMS (continued)  
CLK  
TCLK  
SELO  
ACK  
COL  
tDJHOLD  
tDJSET  
DAT/JAM  
IN  
Note: TCLK represents internal eIMR timing  
20650B-23  
Figure 18. Expansion Bus Input Timing  
CLK  
TCLK  
tCLKHRH  
tCLKHRL  
SELO  
tCASET  
tCASET  
ACK  
COL  
tCAHLD  
tCLKHDZ  
tCLKHDR  
DAT/JAM  
OUT  
Note: TCLK represents internal eIMR timing  
Figure 19. Expansion Bus Output Timing  
20650B-24  
38  
Am79C984A  
P R E L I M I N A R Y  
SWITCHING WAVEFORMS (continued)  
CLK  
TCLK  
tCLKHRH  
SELO  
tCASET  
tCLKHRL  
ACK  
COL  
tCASET  
tCAHLD  
IN  
IN  
DAT/JAM  
20650B-25  
Note: TCLK represents internal eIMR timing  
Figure 20. Expansion Bus Collision Timing  
CLK  
DO+  
DO–  
tDOETD  
tDOTD  
tDOTR  
tDOTF  
20650B-26  
Figure 21. AUI Timing Diagram  
tPWKDI  
tPWKDI  
(tPWKCI  
)
(tPWKCI  
)
DI+  
(CI±)  
VASQ  
tPWODI  
(tPWOCI  
)
20650B-27  
Figure 22. AUI Receive Diagram  
Am79C984A  
39  
P R E L I M I N A R Y  
SWITCHING WAVEFORMS (continued)  
1
0
1
0
1
1
1
0
1
0
ETD  
CLK  
tTXETD  
tTXETD  
TXD+  
TXD–  
20650A-29  
Figure 23. TP Ports Output Timing Diagram  
tPWLP  
tPERLP  
Figure 24. TP Idle Link Test Pulse  
tPWKRD  
VTSQ+  
VTHS+  
VTHS–  
RXD+/–  
VTSQ–  
tPWKRD  
tPWKRD  
Figure 25. TP Receive Timing Diagram  
40  
Am79C984A  
P R E L I M I N A R Y  
SWITCHING TEST CIRCUIT  
VDD  
Pin  
Test Point  
VSS  
20650B-31  
Figure 26. Switching Test Circuit  
Am79C984A  
41  
P R E L I M I N A R Y  
PHYSICAL DIMENSIONS  
PL 084  
84-Pin Plastic LCC (measured in inches)  
.062  
.083  
1.185  
1.195  
.042  
.056  
1.150  
1.156  
1.090  
1.130  
1.000  
REF  
Pin 1 I.D.  
1.185  
1.195  
1.150  
1.156  
.013  
.021  
.007  
.013  
.026  
.032  
.090  
.130  
.165  
.180  
.050 REF  
SEATING PLANE  
16-038-SQ  
PL 084  
DF79  
8-1-95 ae  
TOP VIEW  
SIDE VIEW  
42  
Am79C984A  
P R E L I M I N A R Y  
PHYSICAL DIMENSIONS  
PQR100  
100-Pin Plastic Quad Flat Pack  
17.00  
17.40  
13.90  
14.10  
Pin 100  
12.35  
REF  
Pin 80  
Pin 1 I.D.  
18.85  
REF  
19.90  
20.10  
23.00  
23.40  
Pin 30  
Pin 50  
2.70  
2.90  
3.35  
MAX  
0.65 BASIC  
0.25  
MIN  
SEATING PLANE  
16-038-PQR-2  
PQR100  
DA92  
8-2-94 ae  
Am79C984A  
43  
Trademarks  
Copyright © 1998 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.  
Am186, Am386, Am486, Am29000, bIMR, eIMR, eIMR+, GigaPHY, HIMIB, ILACC, IMR, IMR+, IMR2, ISA-HUB, MACE, Magic Packet, PCnet,  
PCnet-FAST, PCnet-FAST+, PCnet-Mobile, QFEX, QFEXr, QuASI, QuEST, QuIET, TAXIchip, TPEX, andTPEX Plus are trademarks of Advanced  
Micro Devices, Inc.  
Microsoft is a registered trademark of Microsoft Corporation.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  

相关型号:

AM79C984A

enhanced Integrated Multiport Repeater (eIMR⑩)
AMD

AM79C984AJC

enhanced Integrated Multiport Repeater (eIMR⑩)
AMD

AM79C984AJC

CMOS LAN HUB CONTROLLER for non-managed multiport repeaters made from original AMD wafers
ROCHESTER

AM79C984AKCW

enhanced Integrated Multiport Repeater (eIMR⑩)
AMD

AM79C985

enhanced Integrated Multiport Repeater Plus (eIMR+⑩)
AMD

AM79C985JC

enhanced Integrated Multiport Repeater Plus (eIMR+⑩)
AMD

AM79C985KCW

enhanced Integrated Multiport Repeater Plus (eIMR+⑩)
AMD

AM79C987

Hardware Implemented Management Information Base (HIMIB) Device
AMD

AM79C987?

Am79C987? 183KB (PDF) Hardware Implemented Management Information Base HIMIB Device ?
AMD

AM79C987JC

Hardware Implemented Management Information Base (HIMIB) Device
AMD

AM79C987JCB

Hardware Implemented Management Information Base (HIMIB) Device
AMD

AM79C988

Quad Integrated Ethernet Transceiver (QuIET⑩)
AMD