AM79R79-4JC [AMD]

Ringing Subscriber Line Interface Circuit; 振铃用户线接口电路
AM79R79-4JC
型号: AM79R79-4JC
厂家: AMD    AMD
描述:

Ringing Subscriber Line Interface Circuit
振铃用户线接口电路

电池 电信集成电路
文件: 总20页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am79R79  
Ringing Subscriber Line Interface Circuit  
DISTINCTIVE CHARACTERISTICS  
I Ideal for short-loop applications  
I Programmable constant-current feed  
I Programmable Open Circuit voltage  
I Programmable loop-detect threshold  
I Current gain = 1000  
I Ideal for ISDN terminal adaptor and fixed radio  
access applications  
I On-chip ringing with on-chip ring-trip detector  
I Low standby state power  
I Battery operation:  
I Ground-key detector  
I Tip Open state for ground-start lines  
I Polarity reversal option available  
— VBAT1: –40.5 V to –75 V  
— VBAT2: –19 V to VBAT1  
I Internal VEE regulator (no external –5 V power  
supply required)  
I On-chip battery switching and feed selection  
I On-hook transmission  
I Two on-chip relay drivers and snubber circuits  
(32 PLCC)  
I Two-wire impedance set by single external  
impedance  
BLOCK DIAGRAM  
Relay  
RYOUT2  
RYE  
Driver  
RTRIP1  
RTRIP2  
Relay  
Driver  
RYOUT1  
D1  
D2  
C1  
C2  
C3  
E1  
A(TIP)  
Ring-Trip  
Detector  
Input Decoder  
and Control  
Ground-Key  
Detector  
HPA  
Two-Wire  
Interface  
Off-Hook  
Detector  
DET  
HPB  
RD  
VTX  
RSN  
Signal  
Transmission  
B(RING)  
RINGIN  
RDC  
Power-Feed  
Controller  
RDCR  
VBAT2  
VBAT1  
RSGL  
RSGH  
B2EN  
Switch  
Driver  
VCC VNEG BGND AGND/DGND  
Publication# 19752 Rev: G Amendment: /0  
Issue Date: October 1999  
GENERAL DESCRIPTION  
The AMD family of subscriber line interface circuit  
(SLIC) products provide the telephone interface func-  
tions required throughout the worldwide market. AMD  
SLIC devices address all major telephony markets in-  
cluding central office (CO), private branch exchange  
(PBX), digital loop carrier (DLC), fiber-in-the-loop  
(FITL), radio-in-the-loop (RITL), hybrid fiber coax  
(HFC), and video telephony applications.  
would be ISDN terminal adaptors, fiber-in-the-loop, ra-  
dio-in-the-loop, hybrid fiber/coax and video telephony  
(home-side) boxes. The Am79R79 Ringing SLIC can  
provide sufficient voltage to meet the stringent LSSGR  
five-ringer equivalent specification. Using a CMOS-  
compatible input waveform and wave shaping R-C net-  
work, the Am79R79 Ringing SLIC can provide trapezoi-  
dal wave ringing to meet various design requirements.  
The AMD SLIC devices offer support of BORSHT (bat-  
tery feed, overvoltage protection, ringing, supervision,  
hybrid, and test) functions with features including cur-  
rent limiting, on-hook transmission, polarity reversal, Tip  
Open, and loop-current detection. These features allow  
reduction of linecard cost by minimizing component  
count, conserving board space, and supporting auto-  
mated manufacturing.  
In order to further enhance the suitability of this device  
in short-loop, distributed switching applications, AMD  
has maximized power savings by incorporating battery  
switching on chip. The Am79R79 Ringing SLIC device  
switches between two battery supplies such that in the  
off-hook (active) state, a low battery is used to save  
power. In order to meet the Open Circuit voltage require-  
ments of fax machines and maintenance termination  
units (MTU), the SLIC automatically switches to a higher  
voltage in the on-hook (standby) state.  
The AMD SLIC devices provide the two- to four-wire hy-  
brid function, DC-loop feed, and two-wire supervision.  
Two-wire termination is programmed by a scaled imped-  
ance network. Transhybrid balance can be achieved with  
an external balance circuit or simply programmed using  
a companion AMD codec device, the Am79C02/03/031  
DSLACdevice, the Am79Q02/021/03 Programmable  
QuadSLAC(QSLAC)device,ortheAm79Q5457/4457  
Nonprogrammable QSLAC device.  
Like all of the AMD SLIC devices, the Am79R79 Ringing  
SLIC device supports on-hook transmission, ring-trip  
detection, programmable loop-detect threshold, and is  
available with on-chip polarity reversal. The Am79R79  
Ringing SLIC device is a programmable constant-cur-  
rentfeeddevicewith twoon-chip relaydriverstooperate  
external relays. Several performance grades are avail-  
able to meet both CCITT and LSSGR requirements,  
including various longitudinal balance options. This  
unique device is available in the proven AMD 75 V bi-  
polar process in the 32-pin PLCC package.  
The Am79R79 Ringing SLIC device is a bipolar mono-  
lithic SLIC that offers on-chip ringing. Now designers  
can achieve significant cost reductions at the system  
level for short-loop applications by integrating the ring-  
ing function on chip. Examples of such applications  
2
Am79R79 Data Sheet  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Com-  
bination) is formed by a combination of the elements below  
Am79R79  
1  
J
C
TEMPERATURE RANGE  
C = Commercial (0°C to 70°C)*  
PACKAGE TYPE  
J = 32-pin Plastic Leaded Chip Carrier (PL 032)  
PERFORMANCE GRADE OPTION  
1 = 52 dB Longitudinal Balance, Polarity Reversal  
2 = 63 dB Longitudinal Balance, Polarity Reversal  
3 = 52 dB Longitudinal Balance, No Polarity Reversal  
4 = 63 dB Longitudinal Balance, No Polarity Reversal  
DEVICE NUMBER/DESCRIPTION  
Am79R79  
Ringing Subscriber Line Interface Circuit  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability of  
specific valid combinations, to check on newly  
released combinations, and to obtain additional  
data on AMDs standard military grade products.  
1  
2  
3  
Am79R79  
JC  
4  
Note:  
* Functionality of the device from 0°C to +70°C is guaranteed by production testing. Performance from –40°C to +85°C is  
guaranteed by characterization and periodic sampling of production units.  
SLIC Products  
3
CONNECTION DIAGRAM  
Top View  
32-Pin PLCC  
4
3
2
1
32 31 30  
RYE  
5
RTRIP1  
RTRIP2  
HPB  
29  
28  
27  
26  
25  
RYOUT1  
B2EN  
6
7
8
9
VBAT1  
HPA  
D1  
RINGIN  
E1  
C3  
RDCR  
VTX  
10  
11  
12  
13  
24  
23  
22  
21  
VNEG  
RSN  
C2  
DET  
14 15 16 17 18 19 20  
Notes:  
1. Pin 1 is marked for orientation.  
2. NC = No connect  
4
Am79R79 Data Sheet  
PIN DESCRIPTIONS  
Pin Names  
AGND/DGND  
A(TIP)  
Type  
Gnd  
Description  
Analog and Digital ground  
Output  
Input  
Output of A(TIP) power amplifier  
B2EN  
VBAT2 Enable. Logic Low enables operation from VBAT2. Logic High enables operation  
from VBAT1. TTL compatible.  
BGND  
B(RING)  
C3C1  
D1  
Gnd  
Battery (power) ground  
Output  
Input  
Input  
Input  
Output  
Output of B(RING) power amplifier  
Decoder. TTL compatible. C3 is MSB and C1 is LSB.  
Relay1 Control. TTL compatible. Logic Low activates the Relay1 relay driver.  
(Option) Relay2 Control. TTL compatible. Logic Low activates the Relay2 relay driver.  
D2  
DET  
Switchhook Detector. Logic Low indicates that the selected detector is tripped. Logic inputs  
C3C1 and E1 select the detector. Open-collector with a built-in 15 kpull-up resistor.  
E1  
Input  
(Option) Ground-Key Enable. A logic High selects the off-hook detector. A logic Low selects  
the ground-key detector. TTL compatible.  
HPA  
HPB  
RD  
Capacitor  
Capacitor  
Resistor  
Resistor  
High-pass filter capacitor. A(TIP) side of high-pass filter capacitor.  
High-pass filter capacitor. B(RING) side of high-pass filter capacitor.  
Detector resistor. Detector threshold set and filter pin.  
RDC  
DC feed resistor. Connection point for the DC feed current programming network, which  
also connects to the receiver summing node (RSN). VRDC is negative for normal polarity  
and positive for reverse polarity.  
RDCR  
Connection point for feedback during ringing.  
RINGIN  
Input  
Ring Signal Input. Pin for ring signal input. Square-wave shaped by external RC filter.  
Requires 50% duty cycle. CMOS-compatible input.  
RSGH  
RSGL  
RSN  
Input  
Input  
Input  
Saturation Guard High. Pin for resistor to adjust Open Circuit voltage when operating from  
VBAT1  
Saturation Guard Low. Pin for resistor to adjust the anti-saturation cut-in voltage when  
operating from both VBAT1 and VBAT2  
.
.
Receive Summing Node. The metallic current (AC and DC) between A(TIP) and B(RING)  
is equal to 1000 x the current into this pin. The networks that program receive gain, two-wire  
impedance, and feed resistance all connect to this node.  
RTRIP1  
RTRIP2  
Input  
Input  
Ring-trip detector. Ring-trip detector threshold set and filter pin.  
Ring-trip detector. Ring-trip detector threshold offset (switch to VBAT1). For power  
conservation in any nonringing state, this switch is open.  
RYE  
Output  
Common Emitter of RYOUT1/RYOUT2. Emitter output of RYOUT1 and RYOUT2. Normally  
connected to relay ground.  
RYOUT1  
RYOUT2  
VBAT1  
VBAT2  
VCC  
Output  
Output  
Battery  
Battery  
Power  
Power  
Output  
Relay/switch driver. Open-collector driver with emitter internally connected to RYE.  
(Option) Relay/switch driver. Open-collector driver emitter internally connected to RYE.  
Battery supply and connection to substrate.  
Power supply to output amplifiers. Connect to off-hook battery through a diode.  
Positive analog power supply.  
VNEG  
VTX  
Negative analog power supply. This pin is the return for the intern VEE regulator.  
Transmit Audio. This output is 0.5066 gain version of the A(TIP) and B(RING) metallic  
voltage. VTX also sources the two-wire input impedance programming network.  
SLIC Products  
5
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage temperature ......................... 55°C to +150°C  
Commercial (C) Devices  
V
CC with respect to AGND/DGND .......... 0.4 V to +7 V  
NEG with respect to AGND/DGND ...... 0.4 V to VBAT2  
Ambient temperature............................. 0°C to +70°C*  
V
VCC .....................................................4.75 V to 5.25 V  
VBAT2 ....................................................VBAT1 to GND  
VBAT1 with respect to AGND/DGND:  
V
NEG..................................................4.75 V to VBAT2  
VBAT1.................................................40.5 V to 75 V  
VBAT2....................................................19 V to VBAT1  
AGND/DGND.......................................................... 0 V  
Continuous..................................... +0.4 V to 80 V  
10 ms............................................. +0.4 V to 85 V  
BGND with respect to AGND/DGND........ +3 V to 3 V  
BGND with respect to  
A(TIP) or B(RING) to BGND:  
AGND/DGND ........................100 mV to +100 mV  
Continuous ...............................VBAT1 5 V to +1 V  
10 ms (f = 0.1 Hz) ..................VBAT1 10 V to +5 V  
1 µs (f = 0.1 Hz) .....................VBAT1 15 V to +8 V  
250 ns (f = 0.1 Hz) ...............VBAT1 20 V to +12 V  
Load resistance on VTX to ground.............. 20 kmin  
The Operating Ranges define those limits between which the  
functionality of the device is guaranteed.  
* Functionality of the device from 0°C to +70°C is guaranteed  
by production testing. Performance from 40°C to +85°C is  
guaranteed by characterization and periodic sampling of  
production units.  
Current from A(TIP) or B(RING)..................... 150 mA  
RYOUT1, RYOUT2 current................................75 mA  
RYOUT1, RYOUT2 voltage ..................... RYE to +7 V  
RYOUT1, RYOUT2 transient ................. RYE to +10 V  
RYE voltage ........................................ BGND to VBAT1  
C3C1, D2D1, E1, B2EN, and RINGIN  
Input voltage .........................0.4 V to VCC + 0.4 V  
Maximum power dissipation, continuous,  
TA = 85°C, No heat sink (See note):  
In 32-pin PLCC package..............................1.33 W  
Thermal data: ................................................................ θJA  
In 32-pin PLCC package.......................45°C/W typ  
Note: Thermal limiting circuitry on chip will shut down the  
circuit at a junction temperature of about 165°C. The device  
shouldneverseethistemperatureandoperationabove145°C  
junction temperature may degrade device reliability. See the  
SLIC Packaging Considerations for more information.  
Stressesabove thoselistedunderAbsoluteMaximumRatings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum  
Ratings for extended periods may affect device reliability.  
6
Am79R79 Data Sheet  
ELECTRICAL CHARACTERISTICS  
Description  
Transmission Performance  
2-wire return loss  
Test Conditions (See Note 1)  
Min  
Typ  
3
Max  
Unit  
Note  
200 Hz to 3.4 kHz (Test Circuit D)  
26  
dB  
1, 4, 6  
4
ZVTX, analog output impedance  
VVTX, analog output offset voltage  
20  
+35  
+40  
20  
0°C to +70°C  
35  
40  
mV  
40°C to +85°C  
4
ZRSN, analog input impedance  
1
Overload level, 2-wire and 4-wire,  
off hook  
Active state  
2.5  
Vpk  
2a  
Overload level, 2-wire  
On hook, RLAC = 600 Ω  
+3 dBm, BAT2 = 24 V  
0.88  
Vrms  
dB  
2b  
5
THD (Total Harmonic Distortion)  
THD, on hook, OHT state  
64  
50  
40  
0 dBm, RLAC = 600 Ω  
BAT1 = 75 V  
Longitudinal Performance (See Test Circuit C)  
Longitudinal to metallic  
L-T, L-4 balance  
200 Hz to 1 kHz  
1, 3*  
2, 4  
2  
52  
63  
54  
normal polarity  
reverse polarity  
normal polarity,  
40°C to +85°C  
2, 4  
1, 3*  
2, 4  
2  
58  
52  
58  
54  
4
1 kHz to 3.4 kHz  
normal polarity  
reverse polarity  
dB  
normal polarity,  
40°C to +85°C  
2, 4  
54  
42  
12  
4
4
Longitudinal signal generation 4-L  
Longitudinal current per pin (A or B)  
Longitudinal impedance at A or B  
Idle Channel Noise  
200 Hz to 800 Hz normal polarity  
Active or OHT state  
28  
25  
mArms  
0 to 100 Hz, TA = +25°C  
/pin  
C-message weighted noise  
0°C to +70°C  
40°C to +85°C  
0°C to +70°C  
+7  
+11  
+12  
79  
78  
dBrnC  
dBmp  
Psophometric weighted noise  
83  
4
3
40°C to +85°C  
Insertion Loss and Four- to Four-Wire Balance Return Signal (See Test Circuits A and B)  
Gain accuracy  
Gain accuracy  
4- to 2-wire  
2- to 4-wire and  
4- to 4-wire  
0 dBm, 1 kHz  
0 dBm, 1 kHz  
0.20  
0
+0.20  
6.22 6.02 5.82  
Gain accuracy  
Gain accuracy  
4- to 2-wire  
OHT state, on hook  
OHT state, on hook  
0.35  
0
+0.35  
2- to 4-wire and  
4- to 4-wire  
6.37 6.02 5.77  
Gain accuracy over frequency  
Gain tracking  
300 to 3400 Hz  
0°C to +70°C  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.35  
+0.10  
+0.15  
+0.10  
+0.15  
+0.10  
+0.15  
+0.35  
dB  
relative to 1 kHz 40°C to +85°C  
+3 dBm to 55 dBm 0°C to +70°C  
relative to 0 dBm 40°C to +85°C  
0 dBm to 37 dBm 0°C to +70°C  
40°C to +85°C  
3, 4  
Gain tracking  
OHT state, on hook  
+3 dBm to 0 dBm  
3
Group delay  
0 dBm, 1 kHz  
3
µs  
1, 4, 6  
Note:  
* Performance Grade  
SLIC Products  
7
ELECTRICAL CHARACTERISTICS (continued)  
Description  
Line Characteristics  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
IL, Loop-current accuracy  
IL, Long loops, Active state  
IL in constant-current region, B2EN = 0 0.915IL  
IL  
1.085IL  
RLDC = 600 , RSGL = open  
RLDC = 750 , RSGL = short  
20  
20  
21.7  
IL, Accuracy, Standby state  
0.8IL  
IL  
1.2IL  
VBAT1 – 10V  
IL = ------------------------------------  
RL + 400  
mA  
IL = constant-current region  
TA = 25°C  
18  
18  
27  
39  
40°C to +85°C  
Active, A and B to ground  
OHT, A and B to ground  
RL = 0  
27  
55  
55  
4
4
ILLIM  
110  
IL, Loop current, Open Circuit state  
IA, Pin A leakage, Tip Open state  
IB, Pin B current, Tip Open state  
VA, Standby, ground-start signaling  
100  
100  
µA  
RL = 0  
B to ground  
34  
mA  
A to 48 V = 7 k,  
B to ground = 100 Ω  
7.5  
5  
4
8
V
VAB, Open Circuit voltage  
42.8  
Power Supply Rejection Ratio (VRIPPLE = 100 mVrms), Active Normal State  
VCC  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
33  
30  
30  
30  
50  
40  
50  
50  
VNEG  
dB  
5
VBAT1  
VBAT2  
Power Dissipation  
On hook, Open Circuit state  
On hook, Standby state  
On hook, OHT state  
On hook, Active state  
Off hook, Standby state  
Off hook, OHT state  
Off hook, Active state  
Supply Currents  
VBAT1  
48  
55  
100  
80  
VBAT2  
10  
10  
VBAT1  
200  
220  
2000  
2000  
550  
300  
350  
2800  
2200  
750  
VBAT1  
mW  
VBAT1 or VBAT2  
VBAT1  
RL = 300 Ω  
RL = 300 Ω  
RL = 300 Ω  
VBAT2  
ICC  
,
Open Circuit state  
Standby state  
3.0  
3.2  
6.2  
6.5  
0.1  
0.1  
0.7  
0.7  
0.45  
0.6  
2.0  
2.7  
4.5  
5.5  
8.0  
9.0  
0.2  
0.2  
1.1  
1.1  
1.0  
1.5  
4.0  
5.0  
On-hook VCC supply current  
OHT state  
Active statenormal  
Open Circuit state  
Standby state  
INEG  
,
On-hook VNEG supply current  
mA  
OHT state  
Active statenormal  
Open Circuit state  
Standby state  
IBAT  
,
On-hook VBAT supply current  
OHT state  
Active statenormal  
8
Am79R79 Data Sheet  
ELECTRICAL CHARACTERISTICS (continued)  
Description  
Logic Inputs (C3C1, D2D1, E1, and B2EN)  
VIH, Input High voltage  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
2.0  
V
VIL, Input Low voltage  
0.8  
40  
IIH, Input High current  
75  
µA  
IIL, Input Low current  
400  
Logic Output DET  
VOL, Output Low voltage  
VOH, Output High voltage  
Ring-Trip Detector Input  
Ring detect accuracy  
IOUT = 0.8 mA, 15 kto VCC  
0.40  
+10  
V
IOUT = 0.1 mA, 15 kto VCC  
2.4  
10  
%
BAT1 – 1  
IRTD = --------------------------- + 24 µA 335  
RRT1  
Ring Signal  
VAB, Ringing  
Bat1 = 75 V, ringload = 1570 Ω  
VRINGIN = 2.5 V  
66  
69  
0
Vpk  
V
7
VAB Ringing offset  
10  
150  
10  
VAB/VRINGIN (RINGIN gain)  
Ground-Key Detector Thresholds  
Ground-key resistive threshold  
Ground-key current threshold  
Loop Detector  
180  
210  
B to ground  
B to ground  
2
5
10  
kΩ  
11  
mA  
RLTH, Loop-resistance detect threshold Active, VBAT1  
20  
20  
12  
20  
20  
12  
Active, VBAT2  
Standby  
%
9
4
Relay Driver Output (RELAY1 and 2)  
VOL, On voltage (each output)  
VOL, On voltage (each output)  
IOH, Off leakage (each output)  
Zener breakover (each output)  
Zener on voltage (each output)  
IOL = 30 mA  
IOL = 40 mA  
VOH = +5 V  
IZ = 100 µA  
IZ = 30 mA  
+0.25  
+0.30  
+0.4  
+0.8  
100  
V
µA  
V
6.6  
7.9  
11  
RELAY DRIVER SCHEMATIC  
RYOUT2  
RYOUT1  
RYE  
BGND  
BGND  
SLIC Products  
9
Notes:  
1. Unless otherwise noted, test conditions are BAT1 = 75 V, BAT2 = 24 V, VCC = +5 V, VNEG = 5 V, RL = 600 ,  
RDC1 = 80 k, RDC2 = 20 k, RD = 75 k, no fuse resistors, CHP = 0.018 µF, CDC = 1.2 µF, D1 = D2 = 1N400x,  
two-wire AC input impedance (ZSL) is a 600 resistance synthesized by the programming network shown below.  
RSGL = open, RSGH = open, RDCR = 2 k, RRT1 = 430 k, RRT2 = 12 k, CRT = 1.5 µF, RSLEW = 100 k, CSLEW = 0.33 µF.  
VTX  
RT1 = 150 kΩ  
CT1 = 60 pF  
RT2 = 150 kΩ  
RSN  
~
RRX = 300 kΩ  
VRX  
2. a. Overload level is defined when THD = 1%.  
b. Overload level is defined when THD = 1.5%.  
3. Balance return signal is the signal generated at VTX by VRX. This specification assumes that the two-wire AC load impedance  
matches the programmed impedance.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
6. Group delay can be greatly reduced by using a ZT network such as that shown in Note 1 above. The network reduces the  
groupdelaytolessthan2µsandincreases2WRL.Theeffectofgroupdelayonlinecardperformancemayalsobecompensated  
for by synthesizing complex impedance with the QSLAC or DSLAC device.  
7. 70 Vpk provides 50 Vrms with a crest factor of 1.25 to a load of 1400 with 2 Rf = 100, and Rline = 70 (1570 ).  
8. Open Circuit VAB can be modified using RSGH.  
9. RD must be greater than 56 k. Refer to Table 2 for typical value of RLTH  
.
10. Lower power is achieved by switching into low-battery state in standby. Standby loop current is returned to VBAT1 regardless  
of the battery selected.  
Table 1. SLIC Decoding  
(DET) Output  
State  
C3 C2 C1  
2-Wire Status  
Open Circuit  
E1 = 1  
Ring trip  
E1 = 0  
Ring trip  
Battery Selection  
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Ringing  
Ring trip  
Ring trip  
B2EN  
2
Active  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Ground key  
Ground key  
Ground key  
Ground key  
Ground key  
Ground key  
3
On-hook TX (OHT)  
Tip Open  
4
B2EN = 1**  
VBAT1  
5
Standby  
6*  
7*  
Active Polarity Reversal  
OHT Polarity Reversal  
B2EN  
Notes:  
* Only 1 and 2 performance grade devices support polarity reversal.  
** For correct ground-start operation using Tip Open, VBAT1 on-hook battery must be used.  
10  
Am79R79 Data Sheet  
Table 2. User-Programmable Components  
ZT is connected between the VTX and RSN pins. The fuse resistors are  
ZT = 500(Z2WIN 2RF)  
RF, and Z2WIN is the desired 2-wire AC input impedance. When com-  
puting ZT, the internal current amplifier pole and any external stray ca-  
pacitance between VTX and RSN must be taken into account.  
ZRX is connected from VRX to RSN. ZT is defined above, and G42L is the  
desired receive gain.  
ZL  
1000 ZT  
ZRX = ----------- --------------------------------------------------  
G42L ZT + 500(ZL + 2RF)  
RDC1, RDC2, and CDC form the network connected to the RDC pin.  
2500  
RDC1 + RDC2 = --------------  
ILOOP is the desired loop current in the constant-current region.  
ILOOP  
RDCR1, RDCR2, and CDCR form the network connected to the RDCR pin.  
See Applications Circuit for these components.  
3000  
RDCR1 + RDCR2 = ---------------------  
Iringlim  
RDC1 + RDC2  
CDC = 19 ms ---------------------------------  
R
DC1RDC2  
CDCR sets the ringing time constant, which can be between 15 µs and  
150 µs.  
RDCR1 + RDCR2  
CDCR = ---------------------------------------- 150 µs  
R
DCR1RDCR2  
RD is the resistor connected from the RD pin to GND and RLTH is the  
loop-resistance threshold between on-hook and off-hook detection. RD  
should be greater than 56 kto guarantee detection occurs in the  
Standby state. Choose the value of RD for high battery state; then use  
the equation for RLTH to find where the threshold is for low battery.  
RD = RLTH 12.67 for high battery state  
Loop-Threshold Detect Equations  
This is the same equation as for RD above, except solved for RLTH  
.
RD  
RLTH = ------------ for high battery  
12.67  
For low battery, the detect threshold is slightly higher, which avoids os-  
cillating between states.  
RD  
RLTH = ------------ for low battery  
11.37  
RLTH standby < RLTH active VBAT1 < RLTH active VBAT2, which guaran-  
tees no unstable states under all operating conditions. This equation  
shows at what resistance the standby threshold is; it is actually a cur-  
rent threshold rather than a resistance threshold, which is shown by the  
Vbat dependency.  
VBAT1 10  
RLTH = ----------------------------- R D400 2RF  
915  
SLIC Products  
11  
DC FEED CHARACTERISTICS  
50  
5) V  
APPH  
High Battery Anti-Sat  
4) V  
ASH  
40  
V
AB  
(Volts)  
30  
20  
1) Constant-Current Region  
3) V  
APPL  
Low Battery Anti-Sat  
2) V  
ASL  
10  
0
30  
I (mA)  
L
Figure 1. Typical VAB vs. IL DC Feed Characteristics  
RDC = RDC1 + RDC2 = 20 k+ 80 k= 100 kΩ  
(VBAT1 = 75 V,VBAT2 = 24 V)  
Notes:  
2500  
1. Constant-current region: VAB = ILRL = ------------RL; where RL= RL + 2RF,  
RDC  
1000 • (104 103 + RSGL  
)
2. Low battery  
VASL = ----------------------------------------------------------------- ; where RSGL = resistor to GND, B2EN = logic Low.  
6720 103 + (80 RSGL  
)
1000 • (RSGL 56 103)  
Anti-sat region:  
3.  
VASL = -------------------------------------------------------------- ; where RSGL = resistor to VCC, B2EN = logic Low.  
6720 103 + (80 RSGL  
)
RSGL to VCC must be greater than 100 k.  
VAPPL = 4.17 + VASL  
VAPPL  
ILOOPL = ------------------------------------------------------------------------------  
(RDC1 + RDC2  
)
-------------------------------------- + 2 R F + RLOOP  
600  
4. High battery  
Anti-sat region:  
VASH = VASHH + VASL  
1000 • (70 103 + RSGH  
)
VASHH = ---------------------------------------------------------------------- ; where RSGH = resistor to GND, B2EN = logic High.  
1934 103 + (31.75 RSGH  
)
1000 • (RSGH + 2.75 103)  
VASHH = ---------------------------------------------------------------------- ; where RSGH = resistor to VCC, B2EN = logic High.  
1934 103 + (31.75 RSGH  
)
RSGH to VCC must be greater than 100 k.  
5.  
VAPPH = 4.17 + VASH  
VAPPH  
ILOOPH = ------------------------------------------------------------------------------  
(RDC1 + RDC2  
)
-------------------------------------- + 2 R F + RLOOP  
600  
12  
Am79R79 Data Sheet  
RING-TRIP COMPONENTS  
RRT2 = 12 kΩ  
CRT = 1.5 µF  
VBAT1  
RRT1 = 320 CF ------------------------------------------------------------------------------------------------------------------------------------- • (RLRT + 150 + 2RF)  
Vbat 5 (24 µA 320 CF • (RLRT + 150 + 2RF))  
where RLRT = Loop-detection threshold resistance for ring trip and CF = Crest factor of ringing signal (1.25)  
RSLEW, CSLEW  
Ring waveform rise time 0.214 (RSLEW CSLEW) tr.  
For a 1.25 crest factor @ 20 Hz, tr 10 mS.  
(RSLEW = 150 k, CSLEW = 0.33 µF.)  
CSLEW should be changed if a different crest factor is desired.  
Ringing Reference  
(Input to RSLEW  
)
0
B(RING)  
A(TIP)  
Battery  
This is the best time for  
switching between Ringing  
and other states for minimizing  
detect switching transients.  
Figure 2. Ringing Waveforms  
A
a
b
RSN  
RL  
IL  
SLIC  
RDC2  
CDC  
RDC1  
B
RDC  
Feed current programmed by RDC1 and RDC2  
Figure 3. Feed Programming  
SLIC Products  
13  
TEST CIRCUITS  
A(TIP)  
VTX  
RL  
2
SLIC  
VAB  
VL  
RT  
AGND  
RL  
2
RRX  
B(RING)  
RSN  
IL2-4 = 20 log (VTX / VAB  
)
A. Two- to Four-Wire Insertion Loss  
A(TIP)  
VTX  
SLIC  
VAB  
RL  
RT  
AGND  
RRX  
B(RING)  
RSN  
VRX  
IL4-2 = 20 log (VAB / VRX  
)
BRS = 20 log (VTX / VRX  
)
B. Four- to Two-Wire Insertion Loss and Four- to Four-Wire Balance Return Signal  
A(TIP)  
1
VTX  
<< RL  
ωC  
RL  
SLIC  
2
S1  
VL  
C
VL  
RT  
VAB  
AGND  
RL  
RRX  
S2  
2
B(RING)  
RSN  
VRX  
S2 Open, S1 Closed  
S2 Closed, S1 Open  
4-L Long. Sig. Gen. = 20 log (VL / VRX  
L-T Long. Bal. = 20 log (VAB / VL)  
L-4 Long. Bal. = 20 log (VTX / VL)  
)
C. Longitudinal Balance  
Am79R79 Data Sheet  
14  
TEST CIRCUITS (continued)  
ZD  
A(TIP)  
VTX  
RT1  
R
SLIC  
VS  
VM  
AGND  
RSN  
R
ZIN  
CT1  
RT2  
B(RING)  
RRX  
: The desired impedance;  
ZD  
e.g., the characteristic impedance of the line  
Return loss = 20 log (2 VM / VS)  
D. Two-Wire Return Loss Test Circuit  
VCC  
6.2 kΩ  
A(TIP)  
A(TIP)  
DET  
B(RING)  
RL = 600 Ω  
15 pF  
RG  
E1  
B(RING)  
E. Loop-Detector Switching  
F. Ground-Key Switching  
RF1  
C1  
L1  
200 Ω  
200 Ω  
50 Ω  
A
CAX  
33 nF  
RF2  
50 Ω  
B
HF  
GEN  
CBX  
33 nF  
VTX  
C2  
L2  
50 Ω  
SLIC  
under test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
G. RFI Test Circuit  
SLIC Products  
15  
TEST CIRCUITS (continued)  
+5 V  
5 V  
VCC  
RTRIP1  
RTRIP2  
VNEG  
RRT2  
12 kΩ  
RRT1  
430 kΩ  
CRT  
1.5 µF  
RD  
75 kΩ  
RSGH  
open  
RSGL  
open  
RD  
CAX  
2.2 nF  
RSGH  
RSGL  
VTX  
A(TIP)  
A(TIP)  
HPA  
VTX  
RT  
RRX  
CHP  
18 nF  
300 kΩ  
300 kΩ  
HPB  
B(RING)  
VRX  
RSN  
B(RING)  
Note:  
RDC2  
80 kΩ  
RDC1  
20 kΩ  
CBX  
2.2 nF  
Refer to Applications Circuit for  
recommended configuration.  
RDC  
RDCR  
RYOUT1  
RYOUT2  
RYE  
RDCR  
2.0 kΩ  
CDC  
1.2 µF  
B2EN  
C1  
D1  
C2  
BAT1  
BAT2  
VBAT1  
VBAT2  
C3  
0.1 µF  
D2  
D1  
D2  
E1  
0.1 µF  
RSLEW  
100 kΩ  
DET  
BGND  
See note below.  
RINGIN  
CSLEW  
0.33 µF  
AGND/  
DGND  
BATTERY  
GROUND  
ANALOG  
GROUND  
Note:  
The input should be 50% duty cycle CMOS-compatible input.  
DIGITAL  
GROUND  
H. Am79R79 Test Circuit  
16  
Am79R79 Data Sheet  
APPLICATION CIRCUIT  
+5 V  
5 V  
VCC  
RTRIP1  
RTRIP2  
VNEG  
RRT2  
RRT1  
CRT  
12 kΩ  
1.5 µF  
RD  
66 kΩ  
RSGH  
open  
515 kΩ  
RD  
RSGL  
open  
CAX = 2.2 nF  
RSGH  
RSGL  
VTX  
RFA = 50 Ω  
TIP  
A(TIP)  
HPA  
VTX  
K1  
G
K1  
RT1  
125 kΩ  
125 kΩ  
RRX  
250 kΩ  
Bat1  
A
A
TISP  
CHP  
18 nF  
CT  
RT2  
61089  
VRX  
HPB  
RSN  
K2  
K2  
RDC2  
50 kΩ  
RDC1  
50 kΩ  
B(RING)  
RING  
RFB = 50 Ω  
CBX = 2.2 nF  
RDC  
RDCR2  
15 kΩ  
CDC  
820 nF  
CDCR  
RDCR1  
RYOUT1  
RYOUT2  
RYE  
RDCR  
15 kΩ  
10 nF  
B2EN  
C1  
D1  
C2  
BAT1  
BAT2  
VBAT1  
VBAT2  
C3  
0.1 µF  
D2  
D1  
D2  
E1  
0.1 µF  
RSLEW  
DET  
150 kΩ  
BGND  
See Note.  
RINGIN  
CSLEW  
0.33 µF  
BATTERY  
GROUND  
AGND/  
DGND  
ANALOG  
GROUND  
Assumptions:  
1. 1.25 CF  
2. 25 mA ILOOP  
4. 5.2 kHigh Battery Loop Threshold  
5. 925 Ringing Loop Threshold  
6. 600 Two-wire Impedance,  
600 ZL  
7. G42L = 1  
8. 70 V Vbat1, 24 V Vbat2  
3. 100 mA Ringing Current Limit  
DIGITAL  
GROUND  
Note:  
The input should be 50% duty cycle CMOS-compatible input.  
I. Application Circuit  
SLIC Products  
17  
PHYSICAL DIMENSION  
PL032  
.485  
.495  
.447  
.453  
.009  
.015  
.042  
.056  
.125  
.140  
.585  
.595  
Pin 1 I.D.  
.080  
.095  
.547  
.553  
SEATING  
PLANE  
.400  
REF.  
.490  
.530  
.013  
.021  
.050 REF.  
16-038FPO-5  
PL 032  
DA79  
.026  
.032  
TOP VIEW  
SIDE VIEW  
6-28-94 ae  
REVISION SUMMARY  
Revision B to Revision C  
Minor changes were made to the data sheet style and format to conform to AMD standards.  
Electrical Characteristics; Last row under Ring Signal, min changed from 130 to 150, typ changed from 160 to  
180, and max changed from 190 to 210.  
SLIC Decoding Table; Added B2EN reference to the Battery Selection column and its corresponding note to the  
notes section.  
Applications Circuit; Revised  
Revision C to Revision D  
Minor changes were made to the data sheet style and format to conform to AMD standards.  
Revision D to Revision E  
On pages 17 and 18, RDC1 and RDC2 were switched.  
Revision E to Revision F  
The physical dimension (PL032) was added to the Physical Dimension section.  
Deleted the Ceramic DIP and Plastic DIP packages and references to them.  
Updated the Pin Description table to correct inconsistencies.  
Revision F to Revision G  
The equation on page 13 was changed:  
VBAT1  
from:  
to:  
RRT1 = 300 CF ----------------------------------------------------------------------------------------------------------------------------------------- • (RLRT + 150 + 2RF)  
Vbat 3.5 (15 µA 300 CF • (RLRT + 150 + 2RF))  
VBAT1  
RRT1 = 320 CF ------------------------------------------------------------------------------------------------------------------------------------- • (RLRT + 150 + 2RF)  
Vbat 5 (24 µA 320 CF • (RLRT + 150 + 2RF))  
18  
Am79R79 Data Sheet  
The contents of this document are provided in connection with Ad-  
vanced Micro Devices, Inc. ("AMD") products. AMD makes no repre-  
sentations or warranties with respect to the accuracy or  
completeness of the contents of this publication and reserves the  
right to make changes to specifications and product descriptions at  
any time without notice. No license, whether express, implied, arising  
by estoppel or otherwise, to any intellectual property rights is granted  
by this publication. Except as set forth in AMDs Standard Terms and  
Conditions of Sale, AMD assumes no liability whatsoever, and dis-  
claims any express or implied warranty, relating to its products in-  
cluding, but not limited to, the implied warranty of merchantability,  
fitness for a particular purpose, or infringement of any intellectual  
property right.  
AMDs products are not designed, intended, authorized or warranted  
for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life,  
or in any other application in which the failure of AMDs product could  
create a situation where personal injury, death, or severe property or  
environmental damage may occur. AMD reserves the right to discon-  
tinue or make changes to its products at any time without notice.  
© 1999 Advanced Micro Devices, Inc.  
All rights reserved.  
Trademarks  
AMD, the AMD logo, and combinations thereof, and DSLAC and QSLAC are trademarks of Advanced Micro Devices, Inc.  
Other product names used in this publication are for identification  
purposes only and may be trademarks of their respective com-  
panies.  
20  
Am79R79 Data Sheet  

相关型号:

AM79R79JC

Ringing Subscriber Line Interface Circuit
AMD

AM8

30 mm Non-Illuminated Mushroom Momentary Metal Operator AMx
ALTECH

AM80188

Magnetic Disk Controller
AMD

AM80286

Intergrated Optical Disk Controller
AMD

AM8030ADC

Communications Controller
ETC

AM8030ADCB

Communications Controller
ETC

AM8030APC

Communications Controller
ETC

AM8030DC

Communications Controller
ETC

AM8030DCB

Communications Controller
ETC

AM8030PC

Communications Controller
ETC

AM8052-4JC

Non-VGA Video Controller
ETC

AM8052-4JC/40

Non-VGA Video Controller
ETC