AM85C30-10BQA [AMD]

Enhanced Serial Communications Controller; 增强型串行通信控制器
AM85C30-10BQA
型号: AM85C30-10BQA
厂家: AMD    AMD
描述:

Enhanced Serial Communications Controller
增强型串行通信控制器

通信控制器
文件: 总68页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FINAL  
Advanced  
Micro  
Am85C30  
Enhanced Serial Communications Controller  
Devices  
— Programmable CRC generators and checkers  
DISTINCTIVE CHARACTERISTICS  
— SDLC/HDLC support includes frame control,  
zero insertion and deletion, abort, and residue  
handling  
Fastest data rate of any Am8530  
— 8.192 MHz / 2.048 Mb/s  
— 10 MHz / 2.5 Mb/s  
Enhanced SCC functions support high-speed  
— 16.384 MHz / 4.096 Mb/s  
Low-power CMOS technology  
frame reception using DMA  
— 14-bit byte counter  
Pin and function compatible with other NMOS  
— 10 × 19 SDLC/HDLC Frame Status FIFO  
— Independent Control on both channels  
and CMOS 8530s  
Easily interfaced with most CPUs  
— Compatible with non-multiplexed bus  
Many enhancements over NMOS Am8530H  
— Enhanced operation does not allow special  
receive conditions to lock the 3-byte DATA  
FIFO when the 10 × 19 FIFO is enabled  
Local Loopback and Auto Echo modes  
— Allows Am85C30 to be used more effectively in  
high-speed applications  
Internal or external character synchronization  
2-Mb/s FM encoding transmit and receive  
capability using internal DPLL for 16.384-MHz  
product  
— Improves interface capabilities  
Two independent full-duplex serial channels  
Asynchronous mode features  
Internal synchronization between RxC to PCLK  
— Programmable stop bits, clock factor, character  
length and parity  
and TxC to PCLK  
— This allows the user to eliminate external syn-  
chronization hardware required by the NMOS  
device when transmitting or receiving data at  
the maximum rate of 1/4 PCLK frequency  
— Break detection/generation  
— Error detection for framing, overrun, and parity  
Synchronous mode features  
— Supports IBM BISYNC, SDLC, SDLC Loop,  
HDLC, and ADCCP Protocols  
GENERAL DESCRIPTION  
AMD’s Am85C30 is an enhanced pin-compatible ver-  
sion of the popular Am8530H Serial Communications  
Controller. The Enhanced Serial Communications  
Controller (ESCC) is a high-speed, low-power, multi-  
protocol communications peripheral designed for use  
with 8- and 16-bit microprocessors. It has two independ-  
ent,full-duplex channels and functions as a serial-to-  
parallel, parallel-to-serial converter/controller. AMD’s  
proprietary enhancements make the Am85C30 easier  
to interface and more effective in high-speed applica-  
tionsduetoareductioninsoftwareburdenandtheelimi-  
nation of the need for some external glue logic.  
generators, digital phase-locked loops, and crystal  
oscillators, which dramatically reduce the need for ex-  
ternal logic. The device can generate and check CRC  
codes in any SYNC mode, and can be programmed to  
check data integrity in various modes. The ESCC also  
has facilities for modem controls in both channels. Inap-  
plications where these controls are not needed, the mo-  
dem controls can be used for general-purpose I/O.  
This versatile device supports virtually any serial data  
transfer application such as networks, modems, cas-  
settes, and tape drivers. The ESCC is designed for non-  
multiplexed buses and is easily interfaced with most  
CPUs, such as 80188, 80186, 80286, 8080, Z80, 6800,  
68000 and MULTIBUS .  
The Am85C30 is easy to use due to a variety of sophisti-  
cated internal functions, including on-chip baud rate  
Publication# 10216 Rev. F Amendment/0  
Issue Date: June 1993  
AMD  
Enhancements that allow the Am85C30 to be used  
more effectively in high-speed applications include:  
Other enhancements to improve the Am85C30 inter-  
face capabilities include:  
A 10 × 19 bit SDLC/HDLC frame status FIFO array  
A 14-bit SDLC/HDLC frame byte counter  
Write data valid setup time to falling edge of WR  
requirement eliminated  
Reduced INT response time  
Automatic SDLC/HDLC opening frame flag  
transmission  
Reduced access recovery time (tRC) to 3 PCLK  
best case (3 1/2 PCLK worst case)  
TxD pin forced High in SDLC NRZI mode after  
closing flag  
Improved Wait timing  
Automatic SDLC/HDLC Tx underrun/EOM flag  
Write Registers WR3, WR4, WR5, and WR10  
reset  
made readable  
Automatic SDLC/HDLC Tx CRC generator reset/  
Lower priority interrupt masking without INTACK  
Complete SDLC/HDLC CRC character reception  
preset  
RTS synchronization to closing SDLC/HDLC flag  
DTR/REQ deactivation delay significantly reduced  
External PCLK to RxC or TxC synchronization  
requirement eliminated for PCLK divide-by-four  
operation  
BLOCK DIAGRAM  
TxDA  
Baud  
Rate  
Generator  
RxDA  
Transmitter  
Receiver  
RTxCA  
TRxCA  
10×19 Bit  
Frame  
Status  
FIFO  
Internal  
Control  
Logic  
Channel  
A
Registers  
DTR/REQA  
SYNCA  
W/REQA  
RTSA  
Control  
Logic  
Data  
8
5
CPU  
Bus VO  
Channel A  
Internal Bus  
CTSA  
Control  
DCDA  
Channel  
B
Registers  
TxDB  
RxDB  
RTxCB  
TRxCB  
Interrupt  
Control  
Logic  
Interrupt  
Control Lines  
DTR/REQB  
Channel B  
SYNCB  
W/REQB  
RTSB  
+5 V GND PCLK  
CTSB  
DCDB  
10216F-1  
RELATED AMD PRODUCTS  
Part No.  
Description  
Part No.  
Description  
DMA Controller  
SCSI Bus Controller  
Highly Integrated 8-Bit  
Microprocessor  
Am7960  
80186  
Coded Data Transceiver  
Highly Integrated 16-Bit  
Microprocessor  
High-Performance 16-Bit  
Microprocessor  
Am9517A  
5380, 53C80  
80188  
80286, 80C286  
Am386  
High-Performance 32-Bit  
Microprocessor  
2
Am85C30  
AMD  
CONNECTION DIAGRAMS  
Top View  
DIP  
PLCC, LCC  
D1  
D3  
D0  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
3
4
5
6
7
8
9
D2  
40  
1 44 43 42 41  
6
5
4
3
2
D5  
D4  
A/B  
IEO  
IEI  
39  
7
8
D7  
D6  
CE  
38  
INT  
RD  
WR  
A/B  
D/C  
INTACK  
+5 V  
37  
36  
35  
34  
IEO  
IEI  
9
NC  
10  
11  
12  
INTACK  
GND  
W/REQB  
W/REQA  
SYNCA  
CE  
D/C  
+5 V  
W/REQA  
SYNCA  
RTxCA  
RxDA  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SYNCB  
RTxCB  
RTxCA  
33  
32  
13  
14  
Am85C30  
W/REQB  
SYNCB  
RTxCB  
RxDB  
RxDA  
RxDB  
TRxCB  
TxDB  
TRxCA  
TxDA  
NC  
31  
30  
29  
15  
16  
17  
TRxCA  
TxDA  
TRxCB  
TxDB  
28  
18 19 20 21 22 23 24 25 26 27  
DTR/REQA  
RTSA  
DTR/REQB  
RTSB  
CTSA  
DCDA  
CTSB  
PCLK  
DCDB  
Note:  
10216F-2  
10216F-3  
Pin 1 is marked for orientation.  
LOGIC SYMBOL  
Data  
Bus  
D7–D0  
8
TxDA  
RxDA  
Serial  
Data  
RD  
Bus Timing  
and Reset  
TRxCA  
RTxCA  
Channel  
Clocks  
WR  
SYNCA  
W/REQA  
DTR/REQA  
RTSA  
Channel  
Controls  
for  
Modem,  
DMA, or  
Other  
A/B  
CE  
Control  
CTSA  
DCDA  
D/C  
TxDB  
RxDB  
INT  
Serial  
Data  
INTACK  
Interrupt  
TRxCB  
RTxCB  
IEI  
Channel  
Clocks  
IE0  
SYNCB  
W/REQB  
DTR/REQB  
RTSB  
Channel  
Controls  
for  
Modem,  
DMA, or  
Other  
CTSB  
DCDB  
10216F-4  
+5 V GND  
PCLK  
Am85C30  
3
AMD  
ORDERING INFORMATION  
Commodity Products  
AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of:  
AM85C30  
-10  
P
C
OPTIONAL PROCESSING  
Blank = Standard Processing  
TEMPERATURE RANGE  
C = Commercial (0 to +70°C)  
PACKAGE TYPE  
P = 40-Pin Plastic DIP (PD 040)  
J = 44-Pin Plastic Leaded Chip Carrier (PL 044)  
SPEED OPTION  
-8 = 8.192 MHz  
-10 = 10 MHz  
-16 = 16.384 MHz  
DEVICE NUMBER/DESCRIPTION  
Am85C30  
Enhanced Serial Communications Controller  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability of  
specific valid combinations and check on newly  
released combinations.  
AM85C30-8  
AM85C30-10  
AM85C30-16  
PC, JC  
4
Am85C30  
AMD  
ORDERING INFORMATION  
Industrial Products  
AMD industrial products are available in several packages and operating ranges. The order number (Valid Combination) is  
formed by a combination of:  
AM85C30  
-10  
J
I
OPTIONAL PROCESSING  
Blank = Standard Processing  
TEMPERATURE RANGE  
I = Industrial (-40 to +85°C)  
PACKAGE TYPE  
J = 44-Pin Leadless Chip Carrier (PL 044)  
SPEED OPTION  
-10 = 10 MHz  
-16 = 16.384 MHz  
DEVICE NUMBER/DESCRIPTION  
Am85C30  
Enhanced Serial Communications Controller  
Valid Combinations  
Valid Combinations  
AM85C30-10  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability of  
specific valid combinations and check on newly  
released combinations.  
JI  
AM85C30-16  
Am85C30  
5
AMD  
MILITARY ORDERING INFORMATION  
APL Products  
AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved  
Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a  
combination of:  
AM85C30  
B
U
A
-10  
LEAD FINISH  
A = Hot Solder Dip  
PACKAGE TYPE  
U = 44-Pin Leadless Chip Carrier (CL 044)  
Q = 40-Pin Ceramic DIP (CD 040)  
DEVICE CLASS  
/B = Class B  
SPEED OPTION  
-8 = 8.192 MHz  
-10 = 10 MHz  
-16 = 16.384 MHz  
DEVICE NUMBER/DESCRIPTION  
Am85C30  
Enhanced Serial Communications Controller  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to  
be supported in volume for this device. Consult  
the local AMD sales office to confirm availability of  
specific valid combinations and check on newly  
released combinations.  
AM85C30-8  
AM85C30-10  
AM85C30-16  
BQA, BUA  
6
Am85C30  
AMD  
PIN DESCRIPTION  
used as general-purpose input pins. Both are Schmitt-  
trigger buffered to accommodate slow rise-time signals.  
TheSCCdetectspulsesonthesepinsandmayinterrupt  
the CPU on both logic level transitions.  
Bus Timing and Reset  
RD  
Read (Input; Active Low)  
This signal indicates a Read operation and, when the  
SCC is selected, enables the SCC’s bus drivers. During  
the Interrupt Acknowledge cycle, this signal gates the  
interrupt vector onto the bus if the SCC is the highestpri-  
ority device requesting an interrupt.  
DTR/REQA, DTR/REQB  
Data Terminal Ready/Request  
(Outputs; Active Low)  
These outputs follow the inverted state programmed  
into the DTR bit in WR5. They can also be used as  
general-purpose outputs or as Request Lines for a DMA  
controller.  
WR  
Write (Input; Active Low)  
When the SCC is selected, this signal indicates a Write  
operation. The coincidence of RDand WR is interpreted  
as a reset.  
RTSA, RTSB  
Request to Send (Outputs; Active Low)  
When the Request to Send (RTS) bit in Write Register 5  
is set, the RTS signal goes Low. When the RTS bit is re-  
set in the asynchronous mode and Auto Enable is on,  
the signal goes High after the transmitter is empty. In  
SYNC mode, or in asynchronous mode with Auto En-  
able off, the RTS pins strictly follow the inverted state of  
the RTS bit. Both pins can be used as general-purpose  
outputs.  
Channel Clocks  
RTxCA, RTxCB  
Receive/Transmit Clocks (Inputs; Active Low)  
These pins can be programmed in several different  
modes of operation. In each channel, RTxC may supply  
the receive clock, the transmit clock, the clock for the  
baud rate generator, or the clock of the digital phase-  
locked loop. These pins can also be programmed for  
use with the respective SYNC pins as a crystal oscilla-  
tor. The receive clock may be 1, 16, 32, or 64 times the  
data rate in asynchronous modes.  
In SDLC mode, the AUTO RTS RESET enhancement  
described later in this document brings RTS High after  
the last 0 of the closing flag leaves the TxD pin.  
SYNCA, SYNCB  
TRxCA, TRxCB  
Synchronization (Inputs/Outputs; Active Low)  
Transmit/Receive Clocks  
(Inputs/Outputs; Active Low)  
These pins can act either as inputs, outputs, or part of  
the crystal oscillator circuit. In the Asynchronous Re-  
ceivemode(crystaloscillatoroptionnotselected), these  
pins are inputs similar to CTS and DCD. In this mode,  
transitions on these lines affect the state of the Sync/  
Hunt status bits in Read Register 0 but have no other  
function.  
These pins can be programmed in several different  
modes of operation. TRxC may supply the receive clock  
or the transmit clock in the input mode or supply the out-  
put of the digital phase-locked loop, the crystal oscilla-  
tor, the baud rate generator, or the transmit clock in the  
output mode.  
In External Synchronization mode with the crystal  
oscillator not selected, these lines also act as inputs.  
In this mode, SYNC must be driven Low two receive  
clock cycles after the last bit in the SYNC character is  
received. Character assembly begins on the rising edge  
of the receive clock immediately preceding the activa-  
tion of SYNC.  
Channel Controls for Modem, DMA,  
or Other  
CTSA, CTSB  
Clear to Send (Inputs; Active Low)  
If these pins are programmed as Auto Enables, a Low  
on these inputs enables their respective transmitters. If  
not programmed as Auto Enables, they may be used as  
general-purpose inputs. Both inputs are Schmitt-trigger  
buffered to accommodate slow rise-time inputs. The  
SCC detects pulses on these inputs and may interrupt  
the CPU on both logic level transitions.  
In the Internal Synchronization mode (Monosync and  
Bisync) with the crystal oscillator not selected, these  
pins act as outputs and are active only during the part of  
the receive clock cycle in which SYNC characters are  
recognized. The SYNC condition is not latched, so  
these outputs are active each time a SYNC pattern is  
recognized (regardless of character boundaries). In  
SDLC mode, these pins act as outputs and are valid on  
receipt of a flag.  
DCDA, DCDB  
Data Carrier Detect (Inputs; Active Low)  
These pins function as receiver enables if they are pro-  
grammed as Auto Enables; otherwise, they may be  
Am85C30  
7
AMD  
interrupt (interrupt acknowledge cycle only). IEO is con-  
nected to the next lower priority device’s IEI input and  
thus inhibits interrupts from lower priority devices.  
W/REQA, W/REQB  
Wait/Request (Outputs; Open drain when pro-  
grammed for a Wait function, driven High or Low  
when programmed for a Request function)  
INT  
These dual-purpose outputs may be programmed as  
Request lines for a DMA controller or as Wait lines to  
synchronize the CPU to the SCC data rate. The reset  
state is Wait.  
Interrupt Request (Output; Active Low,  
Open Drain)  
This signal is activated when the SCC requests an  
interrupt.  
Control  
INTACK  
A/B  
Interrupt Acknowledge (Input; Active Low)  
Channel A/Channel B Select (Input)  
This signal indicates an active interrupt acknowledge  
cycle. During this cycle, the SCC interrupt daisy chain  
settles. When RD becomes active, the SCC places an  
interrupt vector on the data bus (if IEI is High). INTACK  
is latched by the rising edge of PCLK.  
This signal selects the channel in which the Read or  
Write operation occurs.  
CE  
Chip Enable (Input; Active Low)  
Serial Data  
This signal selects the SCC for a Read or Write  
operation.  
RxDA, RxDB  
Receive Data (Inputs; Active High)  
D/C  
These input signals receive serial data at standard TTL  
levels.  
Data/Control Select (Input)  
This signal defines the type of information transferred to  
or from the SCC. A High means data is transferred; a  
Low indicates a command is transferred.  
TxDA, TxDB  
Transmit Data (Outputs; Active High)  
These output signals transmit serial data at standard  
TTL levels.  
Data Bus  
D7–D0  
Data Bus (Input/Output; Three State)  
Miscellaneous  
These lines carry data and commands to and from the  
SCC.  
GND  
Ground  
Interrupt  
PCLK  
Clock (Input)  
IEI  
This is the master SCC clock used to synchronize inter-  
nal signals. PCLK is not required to have any phase  
relationship with the master system clock. PCLK is a  
TTL- level signal. Maximum transmit rate is 1/4 PCLK.  
Interrupt Enable In (Input; Active High)  
IEI is used with IEO to form an interrupt daisy chain  
when there is more than one interrupt-driven device. A  
HighIEIindicatesthatnootherhigherprioritydevicehas  
an interrupt under service or is requesting an interrupt.  
VCC  
+ 5 V Power Supply  
IEO  
Interrupt Enable Out (Output; Active High)  
IEO is High only if IEI is High and the CPU is not servic-  
ing an SCC interrupt or the SCC is not requesting an  
8
Am85C30  
AMD  
ARCHITECTURE  
The ESCC internal structure includes two full-duplex  
channels, two 10 × 19 bit SDLC/HDLC frame status  
FIFOs, twobaudrategenerators, internalcontrolandin-  
terrupt logic, and a bus interface to a non-multiplexed  
bus. Associated with each channel are a number of  
Read and Write registers for mode control and status in-  
formation, as well as logic necessary to interface with  
modems or other external devices (see Logic Symbol).  
and three Read registers: one containing the vector with  
status information (Channel B only), one containing the  
vector without status (A only), and one containing the in-  
terrupt pending bits (A only).  
The registers for each channel are designated as  
follows:  
WR0–WR15—Write Registers 0 through 15. An addi-  
tional Write register, WR7 Prime (WR7), is available for  
enabling or disabling additional SDLC/HDLC enhance-  
ments if bit D0 of WR15 is set.  
Thelogicforbothchannelsprovidesformats, synchroni-  
zation, and validation for data transferred to and from  
the channel interface. The modem control inputs are  
monitored by the control logic under program control. All  
of the modem control signals are general-purpose in na-  
ture and can optionally be used for functions other than  
modem control.  
RR0–RR3, RR10, RR12, RR13, RR15—Read Regis-  
ters 0 through 3, 10, 12, 13, and 15.  
If bit D2 of WR15 is set, then two additional Read regis-  
ters, RR6 and RR7, are available. These registers are  
used with the 10 × 19 bit Frame Status FIFO.  
The register set for each channel includes ten control  
(Write) registers, two SYNC character (Write) registers,  
and four status (Read) registers. In addition, each baud  
rate generator has two (Read/Write) registers for hold-  
ing the time constant that determines the baud rate. Fi-  
nally, associated with the interrupt logic is a Write  
register for the interrupt vector accessible through either  
channel, a Write-only Master Interrupt Control register,  
Table 1 lists the functions assigned to each Read  
and Write register. The ESCC contains only one  
WR2 and WR9, but they can be accessed by either  
channel. All other registers are paired (one for  
each channel).  
TxDA  
Baud  
Rate  
Generator  
RxDA  
Transmitter  
Receiver  
RTxCA  
TRxCA  
10×19 Bit  
Frame  
Status  
FIFO  
Internal  
Control  
Logic  
Channel  
A
Registers  
SYNCA  
Control  
Logic  
RTSA  
CTSA  
DCDA  
Data  
8
5
CPU  
Bus VO  
Internal Bus  
Channel A  
Control  
Interrupt  
Control  
Lines  
Interrupt  
Control  
Logic  
Channel  
B
Registers  
TxDB  
RxDB  
RTxCB  
TRxCB  
Channel B  
SYNCB  
RTSB  
CTSB  
DCDB  
+5 V GND PCLK  
10216F-5  
Figure 1. Block Diagram of ESCC Architecture  
Am85C30  
9
AMD  
The transmitter has an 8-bit transmit data buffer register  
loaded from the internal data bus and a 20-bit transmit  
shift register that can be loaded either from the sync-  
character registers or from the transmit data register.  
Depending on the operational mode, outgoing data are  
routed through one of four main paths before they are  
transmitted from the Transmit Data output (TxD).  
Data Path  
The transmit and receive data path illustrated in Figure 2  
is identical for both channels. The receiver has three  
8-bit buffer registers in a FIFO arrangement, in addition  
to the 8-bit receive shift register. This scheme creates  
additional time for the CPU to service an interrupt at the  
beginning of a block of high-speed data. Incoming data  
are routed through one of several paths (data or CRC)  
depending on the selected mode (the character length  
in asynchronous modes also determines the data path).  
Table 1. Read and Write Register Functions  
Read Register Functions  
Write Register Functions  
Write Register Functions  
WR0  
WR1  
Command Register, Register Pointers CRC  
initialize, initialization commands for the various  
modes, shift right/shift left command  
Interrupt conditions and data transfer mode  
definition  
RR0  
Transmit/Receive buffer status and External  
status  
RR1  
Special Receive Condition status  
(also 10 × 19 bit FIFO Frame Reception Status if  
WR15 bit D2 is set)  
WR2  
WR3  
WR4  
Interrupt vector (accessed through either channel)  
Receive parameters and control  
Transmit/Receive miscellaneous parameters and  
modes  
RR2  
Modified interrupt vector  
(Channel B only)  
Unmodified interrupt vector  
(Channel A only)  
WR5  
WR6  
WR7  
WR7′  
Transmit parameters and controls  
Sync character or SDLC address field  
Sync character or SDLC flag  
SDLC/HDLC enhancements(if bit D0 of WR15 is  
set)  
RR3  
RR6  
RR7  
RR8  
Interrupt Pending bits  
(Channel A only)  
LSB Byte Count (14-bit counter)  
(if WR15 bit D2 set)  
MSB Byte Count (14-bit counter)  
and 10 × 19 bit FIFO Status (if WR15 bit D2 is set)  
Receive buffer  
WR8  
WR9  
Transmit buffer  
Master interrupt control and reset (accessed  
through either channel)  
WR10 Miscellaneous transmitter/receiver control bits,  
data encoding  
RR10 Miscellaneous XMTR, RCVR status  
RR12 Lower byte of baud rate generator time constant  
RR13 Upper byte of baud rate generator time constant  
RR15 External/Status interrupt information  
WR11 Clock mode control, Rx and Tx clock source  
WR12 Lower byte of baud rate generator time constant  
WR13 Upper byte of baud rate generator time constant  
WR14 Miscellaneous control bits, DPLL control  
WR15 External/Status interrupt control  
10  
Am85C30  
AMD  
Am85C30  
11  
AMD  
DETAILED DESCRIPTION  
The functional capabilities of the ESCC can be de-  
scribed from two different points of view: as a data com-  
munications device, it transmits and receives data in a  
wide variety of data communications protocols; as a mi-  
croprocessor peripheral, it interacts with the CPU and  
provides vectored interrupts and handshaking signals.  
The ESCC does not require symmetric transmit and  
receive clock signals—a feature allowing use of the  
wide variety of clock sources. The transmitter and re-  
ceiver can handle data at a rate of 1, 1/16, 1/32, or 1/64  
of the clock rate supplied to the receive and transmit  
clock inputs. In asynchronous modes, the SYNC pin  
may be programmed as an input used for functions,  
such as monitoring a ring indicator.  
Data Communications Capabilities  
The ESCC provides two independent full-duplex  
channels programmable for use in any common  
asynchronous or SYNC data-communication protocol.  
Figure3andthefollowingdescriptionbrieflydetailthese  
protocols.  
Synchronous Modes  
The ESCC supports both byte-oriented and bit-oriented  
synchronous communication. SYNC byte-oriented pro-  
tocols can be handled in several modes, allowing char-  
acter synchronization with a 6-bit or 8-bit SYNC  
character (Monosync), any 12-bit or 16-bit SYNC pat-  
tern (Bisync), or with an external SYNC signal. Leading  
SYNC characters can be removed without interrupting  
the CPU.  
Asynchronous Modes  
Transmission and reception can be accomplished inde-  
pendently on each channel with 5 to 8 bits per character,  
plus optional even or odd parity. The transmitters can  
supply 1, 1 1/2, or 2 stop bits per character and can pro-  
vide a break output at any time. The receiver break-  
detectionlogicinterruptstheCPUbothatthestartandat  
the end of a received break. Reception is protected from  
spikes by a transient spike-rejection mechanism that  
checks the signal one-half a bit time after a Low level is  
detected on the receive data input. If the Low does not  
persist (as in the case of a transient), the character as-  
sembly process does not start.  
5- or 7-bit SYNC characters are detected with 8- or  
16-bit patterns in the ESCC by overlapping the larger  
pattern across multiple incoming SYNC characters as  
shown in Figure 4.  
CRC checking for Synchronous byte-oriented modes is  
delayed by one character time so that the CPU may dis-  
able CRC checking on specific characters. This permits  
the implementation of protocols, such as IBM BISYNC.  
Both CRC-16 (X16 + X15 + X2 + 1) and CCITT (X16 + X12 +  
X5 + 1) error-checking polynomials are supported.  
Either polynomial may be selected in BISYNC and  
MONO-SYNC modes. Users may preset the CRC gen-  
erator and checker to all 1s or all 0s. The ESCC also pro-  
vides a feature that automatically transmits CRC data  
when no other data are available for transmission. This  
allows for high-speed transmissions under DMA control  
Framing errors and overrun errors are detected and  
buffered together with the partial character on which  
they occur. Vectored interrupts allow fast servicing of  
error conditions using dedicated routines. Furthermore,  
a built-in checking process avoids the interpretation of  
framing error as a new start bit; a framing error results in  
theadditionofone-halfabittimetothepointatwhichthe  
search for the next start bit begins.  
Parity  
Start  
Stop  
Marking Line  
Marking Line  
Data  
Data  
Data  
Data  
Asynchronous  
Sync  
Data  
CRC1  
CRC2  
CRC2  
Monosync  
Sync  
Data  
Data  
Data  
Sync  
CRC1  
Signal  
Data  
Bisync  
CRC1  
CRC1  
CRC2  
CRC2  
External Sync  
Information  
Flag Address  
Flag  
SDLC/HDLC × 25  
10216F-7  
Figure 3. SCC Protocols  
Am85C30  
12  
AMD  
5 Bits  
Sync  
Sync  
Data  
Data  
Data  
Data  
Sync  
8 Bits  
16 Bits  
10216F-8  
Figure 4. Detecting 5- or 7-Bit Synchronous Characters  
with no need for CPU intervention at the end of a mes-  
sage. When there are no data or CRC to send in SYNC  
modes, the transmitter inserts 6-, 8-, or 16-bit SYNC  
characters, regardless of the programmed character  
length.  
TheESCCcanbeconvenientlyusedunderDMAcontrol  
to provide high-speed reception or transmission. In re-  
ception, for example, the ESCC can interrupt the CPU  
when the first character of a message is received. The  
CPU then enables the DMA to transfer the message to  
memory. The ESCC then issues an end-of-frame inter-  
rupt and the CPU can check the status of the received  
message. Thus, the CPU is freed for other service while  
the message is being received. The CPU may also en-  
able the DMA first and have the ESCC interrupt only on  
end-of-frame. This procedure allows all data to be trans-  
ferred via the DMA.  
The ESCC supports SYNC bit-oriented protocols, such  
as SDLC and HDLC, by performing automatic flag send-  
ing, zero-bit insertion, and CRC generation. A special  
command can be used to abort a frame in transmission.  
At the end of a message, the ESCC automatically trans-  
mits the CRC and trailing flag when the transmitter un-  
derruns. The transmitter may also be programmed to  
send an idle line consisting of continuous flag charac-  
ters or a steady marking condition.  
SDLC Loop Mode  
The ESCC supports SDLC Loop mode in addition to  
normal SDLC. In a SDLC Loop, there is a primary con-  
troller station that manages the message traffic flow and  
anynumberofsecondarystations. InSDLCLoopmode,  
the ESCC performs the functions of a secondary station  
while an ESCC operating in regular SDLC mode can act  
as a controller (Figure 5).  
If a transmit underrun occurs in the middle of a mes-  
sage, an external/status interrupt warns the CPU of this  
status change so that an abort may be issued. The  
ESCC may also be programmed to send an abort itself  
in case of an underrun, relieving the CPU of this task.  
One to 8 bits per character can be sent allowing recep-  
tion of a message with no prior information about the  
character structure in the information field of a frame.  
Controller  
The receiver automatically acquires synchronization on  
the leading flag of a frame in SDLC or HDLC and pro-  
vides a synchronization signal on the SYNC pin (an in-  
terrupt can also be programmed). The receiver can be  
programmed to search for frames addressed by a single  
byte (or 4 bits within a byte) of a user-selected address  
or to a global broadcast address. In this mode, frames  
not matching either the user-selected or broadcast ad-  
dress are ignored. The number of address bytes can be  
extended under software control. For receiving data, an  
interrupt on the first received character, or an interrupt  
on every character, or on special condition only (end-of-  
frame) can be selected. The receiver automatically de-  
letes all 0s inserted by the transmitter during character  
assembly. CRC is also calculated and is automatically  
checked to validate frame transmission. At the end of  
transmission, the status of a received frame is available  
in the status registers. In SDLC mode, the ESCC must  
be programmed to use the SDLC CRC polynomial,  
but the generator and checker may be preset to all 1s  
or all 0s. The CRC is inverted before transmission  
and the receiver checks against the bit pattern  
0001110100001111.  
Secondary #1  
Secondary #3  
Secondary #2  
Secondary #4  
10216F-9  
Figure 5. A SDLC Loop  
A secondary station in a SDLC Loop is always listening  
to the messages being sent around the loop and, in fact,  
must pass these messages to the rest of the loop by  
retransmitting them with a 1-bit time delay. The sec-  
ondary station can place its own message on the loop  
only at specific times. The controller signals that secon-  
dary stations may transmit messages by sending a spe-  
cial character, called an EOP (End of Poll), around the  
loop. The EOP character is the bit pattern 11111110.  
Because of zero insertion during messages, this bit pat-  
tern is unique and easily recognized.  
NRZ, NRZI or FM coding may be used in any 1X mode.  
The parity options available in asynchronous modes are  
available in synchronous modes.  
Am85C30  
13  
AMD  
When a secondary station has a message to transmit  
and recognizes an EOP on the line, it changes the last  
binary 1 of the EOP to a 0 before transmission. This has  
the effect of turning the EOP into a flag sequence. The  
secondary station now places its message on the loop  
and terminates the message with an EOP. Any secon-  
dary stations farther down the loop with messages to  
transmit can then append their messages to the mes-  
sage of the first secondary station by the same process.  
Any secondary stations without messages to send  
merely echo the incoming messages and are prohibited  
from placing messages on the loop (except upon recog-  
nizing an EOP).  
Time Constant Values  
for Standard Baud Rates at BR Clock  
= 3.9936 MHz  
Time Constant  
(decimal/Hex notation)  
Rate  
(Baud)  
Error  
19200  
9600  
7200  
4800  
3600  
2400  
2000  
1800  
1200  
600  
300  
150  
134.5  
110  
75  
102  
206  
275  
414  
553  
(0066)  
(00CE)  
(0113)  
(019E)  
(0229)  
(033E)  
(03E4)  
(0453)  
(067E)  
(0CFE)  
(19FE)  
(33FE)  
(39FC)  
(46E7)  
(67FE)  
(98FE)  
0
0
0.12%  
0
0.06%  
0
0.04%  
0.03%  
0
0
830  
996  
SDLC Loop mode is a programmable option in the  
ESCC. NRZ, NRZI, and FM coding may all be used in  
SDLC Loop mode.  
1107  
1662  
3326  
6654  
13310  
14844  
18151  
26622  
39934  
0
0
Baud Rate Generator  
Each channel in the ESCC contains a programmable  
baud rate generator. Each generator consists of two  
8-bit time constant registers that form a 16-bit time con-  
stant, a 16-bit down counter, and a flip-flop on the output  
producing a square wave. On start-up, the flip-flop on  
theoutputissetinaHighstate, thevalueinthetimecon-  
stant register is loaded into the counter, and the counter  
starts counting down. The output of the baud rate gen-  
erator toggles upon reaching zero; the value in the time  
constant register is loaded into the counter, and the  
processisrepeated. Thetimeconstantmaybechanged  
at any time, but the new value does not take effect until  
the next load of the counter.  
0.0007%  
0.0015%  
0
0
50  
Digital Phase-Locked Loop  
The ESCC contains a digital phase-locked loop (DPLL)  
to recover clock information from a data stream with  
NRZIorFMencoding. TheDPLLisdrivenbyaclockthat  
is nominally 32 (NRZI) or 16 (FM) times the data rate.  
The DPLL uses this clock, along with the data stream, to  
construct a clock for the data. This clock may then be  
used as the SCC receive clock, the transmit clock,  
or both.  
The output of the baud rate generator may be used as  
either the transmit clock, the receive clock, or both. It  
can also drive the digital phase-locked loop (see next  
section).  
For NRZI encoding, the DPLL counts the 32X clock to  
create nominal bit times. As the 32X clock is counted,  
the DPLL is searching the incoming data stream for  
edges (either 1/0 or 0/1). As long as no transitions are  
detected, the DPLL output will be free running and its in-  
put clock source will be divided by 32, producing an out-  
put clock without any phase jitter. Upon detecting a  
transitiontheDPLLwilladjustitsclockoutput(duringthe  
next counting cycle) by adding or subtracting a count of  
1, thus producing a terminal count closer to the center of  
the bit cell. The adding or subtracting of a count of 1 will  
produce a phase jitter of ±5.63° on the output of the  
DPLL. Because the SCC’s DPLL uses both edges of the  
incoming signal to compare with its clock source, the  
mark-space ratio (50%) of the incoming signal should  
not deviate by more than ±1.5% if proper locking is to  
occur.  
If the receive clock or transmit clock is not programmed  
to come from the TRxC pin, the output of the baud rate  
generator may be echoed out via the TRxC pin.  
The following formula relates the time constant to the  
baud rate where PCLK or RTxCis the baud rate genera-  
tor input frequency in Hz. The clock mode is X1, X16,  
X32, or X64 as selected in Write Register 4, bits D6 and  
D7. Synchronous operation modes should select X1 and  
asynchronous should select X16, X32, or X64.  
PCLK or RTxC Frequency  
Time Constant =  
– 2  
2 (Baud Rate)(Clock Mode)  
The following formula relates the time constant to the  
baud rate. The baud rate is in bits/second.  
For FM encoding, the DPLL still counts from 0 to 31, but  
with a cycle corresponding to two bit times. When the  
DPLL is locked, the clock edges in the data stream  
should occur between counts 15 and 16 and between  
PCLK or RTxC Frequency  
Baud Rate =  
2 × (Clock Mode) × (Time Constant + 2)  
14  
Am85C30  
AMD  
counts31and0. TheDPLLlooksforedgesonlyduringa  
time centered on the 15/16 counting transition.  
additional transition at the center of the bit cell. In FM0  
(biphase space), a transition occurs at the beginning of  
every bit cell. A 0 is represented by an additional transi-  
tion at the center of the bit cell, and a 1 is represented by  
no additional transition at the center of the bit cell. In ad-  
dition to these four methods, the ESCC can be used to  
decode Manchester (biphase level) data by using the  
DPLL in the FM mode and programming the receiver for  
NRZ data. Manchester encoding always produces a  
transition at the center of the bit cell. If the transition is  
0/1, the bit is a 0. If the transition is 1/0, the bit is a 1.  
The 32X clock for the DPLL can be programmed to  
come from either the RTxC input or the output of the  
baud rate generator. The DPLL output may be pro-  
grammed to be echoed out of the SCC via the TRxC pin  
(if this pin is not being used as an input).  
Crystal Oscillator  
When using a crystal oscillator to supply the receive or  
transmitclockstoachanneloftheSCC, theusershould:  
Auto Echo and Local Loopback  
1. Select a crystal oscillator that satisfies the following  
specifications:  
The ESCC is capable of automatically echoing every-  
thing it receives. This feature is useful mainly in asyn-  
chronous modes but works in SYNC and SDLC modes  
as well. In Auto Echo mode, TxD is RxD. Auto Echo  
modecanbeusedwithNRZIorFMencodingwithnoad-  
ditional delay, because the data stream is not decoded  
before retransmission. In Auto Echo mode, the CTS in-  
put is ignored as a transmitter enable (although transi-  
tions on this input can still cause interrupts if  
programmed to do so). In this mode, the transmitter is  
actually bypassed, and the programmer is responsible  
for disabling transmitter interrupts and WAIT/  
REQUEST on transmit.  
30 ppm @ 25°C  
50 ppm over temperatures of –20° to 70°C  
5 ppm/yr aging  
5-MW drive level  
2. Place crystal across RTxC and SYNC pins.  
3. Place 30-pF capacitors to ground from both RTxC  
and SYNC pins.  
4. Set bit D7 of WR11 to 1.  
Data Encoding  
The ESCC is also capable of Local Loopback. In this  
mode, TxD is RxD just as in Auto Echo mode. However,  
in Local Loopback mode, the internal transmit data is  
tied to the internal receive data, and RxD is ignored (ex-  
cept to be echoed out via TxD). The CTS and DCD in-  
puts are also ignored as transmit and receive enables.  
However, transitions on these inputs can still cause in-  
terrupts. Local Loopback works in asynchronous,  
SYNC, and SDLC modes with NRZ, NRZI, or FM coding  
of the data stream.  
The ESCC may be programmed to encode and decode  
the serial data in four different ways (Figure 6). In NRZ  
encoding, a 1 is represented by a High level, and a 0 is  
representedbyaLowlevel. InNRZIencoding, a1isrep-  
resented by no change in level, and a 0 is represented  
by a change in level. In FM1 (more properly, biphase  
mark), a transition occurs at the beginning of every bit  
cell. A 1 is represented by an additional transition at the  
center of the bit cell, and a 0 is represented by no  
1
1
0
0
1
0
Data  
NRZ  
Bit Cell Level  
High = 1  
Low = 0  
No Change = 1  
Change = 0  
NRZI  
Bit Center Transition  
Transition = 1  
No Transition = 0  
FM1  
(Biphase Mark)  
No Transition = 1  
Transition = 0  
(Biphase Mark)  
FM0  
Manchester  
High Low = 1  
Low High = 0  
10216F-10  
Figure 6. Data Encoding Methods  
Am85C30  
15  
AMD  
The other 2 bits are related to the Z-Bus interrupt priority  
chain (Figure 7). As a Z-Bus peripheral, the ESCC may  
request an interrupt only when no higher priority device  
is requesting one, for example, when IEI is High. If the  
device in question requests an interrupt, it pulls down  
INT. The CPU then responds with INTACK, and the in-  
terrupting device places the vector on the A/D bus.  
I/O Interface Capabilities  
The ESCC offers the choice of Polling, Interrupt (vec-  
tored or nonvectored), and Block Transfer modes to  
transferdata, status, andcontrolinformationtoandfrom  
the CPU. The Block Transfer mode can be implemented  
under CPU or DMA control.  
Polling  
In the SCC, the IP bit signals a need for interrupt servic-  
ing. When an IP bit is set to 1 and the IEI input is High,  
the INT output is pulled Low, requesting an interrupt. In  
the ESCC, if the IE bit is set for an interrupt, then the IP  
forthatsourcecanneverbeset. TheIPbitsarereadable  
in RR3A.  
All interrupts are disabled. Three status registers in the  
ESCC are automatically updated whenever any func-  
tion is performed. For example, end-of-frame in SDLC  
mode sets a bit in one of these status registers. The idea  
behind polling is for the CPU to periodically read a status  
register until the register contents indicate the need for  
data to be transferred. Only one register needs to be  
read; depending on its contents, the CPU either writes  
data, reads data, or continues. Two bits in the register  
indicate the need for data transfer. An alternative is a  
poll of the Interrupt Pending register to determine the  
source of an interrupt. The status for both channels re-  
sides in one register.  
The IUS bits signal that an interrupt request is being  
serviced. If an IUS is set, all interrupt sources of lower  
priority in the ESCC and external to the ESCC are pre-  
vented from requesting interrupts. The internal interrupt  
sources are inhibited by the state of the internal daisy  
chain, while lower priority devices are inhibited by the  
IEO output of the ESCC being pulled Low and propa-  
gatedtosubsequentperipherals. AnIUSbitissetduring  
an Interrupt Acknowledge cycle if there are no higher  
priority devices requesting interrupts.  
Interrupts  
When an ESCC responds to an Interrupt Acknowledge  
signal (INTACK) from the CPU, an interrupt vector may  
be placed on the data bus. This vector is written in WR2  
and may be read in RR2A or RR2B (Figures 8 and 9).  
There are three types of interrupts: Transmit, Receive,  
and External/Status. Each interrupt type is enabled un-  
der program control with Channel A having higher prior-  
ity than Channel B, and with Receive, Transmit, and  
External/Status interrupts prioritized in that order within  
each channel. When the Transmit interrupt is enabled,  
the CPU is interrupted when the transmit buffer be-  
comes empty. (This implies that the transmitter must  
have had a data character written into it so that it can be-  
come empty.) When enabled, the Receive can interrupt  
the CPU in one of three ways:  
To speed interrupt response time, the ESCC can modify  
3 bits in this vector to indicate status. If the vector is read  
in Channel A, status is never included; if it is read in  
Channel B, status is always included.  
EachofthesixsourcesofinterruptsintheESCC(Trans-  
mit, Receive, and External/Status interrupts in both  
channels) has 3 bits associated with the interrupt  
source: Interrupt Pending (IP), Interrupt Under Service  
(IUS), and Interrupt Enable (IE). Operation of the IE bit is  
straightforward. If the IE bit is set for a given interrupt  
source, then that source can request interrupts. The ex-  
ception is when the MIE (Master Interrupt Enable) bit in  
WR9 is reset and no interrupts may be requested. The  
IE bits are write-only.  
Interrupt on First Receive Character or Special  
Receive condition  
Interrupt on all Receive Characters or Special  
Receive condition  
Interrupt on Special Receive condition only  
Peripheral  
Peripheral  
Peripheral  
+5 V  
IEI AD7–AD0 INT INTACK IEO IEI AD7–AD0 INT INTACK IEO  
IEI AD7–AD0 INT INTACK  
+5 V  
D7–D0  
AD7–AD0  
INT  
INTACK  
10216F-11  
Figure 7. Z-Bus Interrupt Schedule  
Am85C30  
16  
AMD  
Interrupt on First Character or Special Condition and In-  
terrupt on Special Condition Only are typically used with  
the Block Transfer mode. A Special Receive Condition  
is one of the following: receiver overrun, framing error in  
asynchronous mode, end-of-frame in SDLC mode, and  
optionally, a parity error. The Special Receive Condition  
interrupt is different from an ordinary Receive Character  
Available interrupt only in the status placed in the vector  
during the Interrupt Acknowledge cycle. In Interrupt on  
First Receive Character, an interrupt can occur from  
Special Receive Conditions any time after the first  
Receive Character Interrupt.  
message, correct initialization of the next message, and  
the accurate timing of the Abort condition in external  
logic in SDLC mode. In SDLC Loop mode, this feature  
allowssecondarystationstorecognizethewishesofthe  
primary station to regain control of the loop during a poll  
sequence.  
CPU/DMA Block Transfer  
The SCC provides a Block Transfer mode to accommo-  
date CPU block transfer functions and DMA controllers.  
The Block Transfer mode uses the WAIT/REQUEST  
output in conjunction with the Wait/Request bits in WR1.  
The WAIT/REQUEST output can be defined under soft-  
ware control as a WAIT line in the CPU Block Transfer  
mode or as a REQUEST line in the DMA Block Transfer  
mode.  
The main function of the External/Status interrupt is to  
monitor the signal transitions of the CTS, DCD, and  
SYNC pins; however, an External/Status interrupt is  
also caused by a Transmit Underrun condition, a zero  
count in the baud rate generator, the detection of a  
Break (asynchronous mode), Abort (SDLC mode), or  
EOP (SDLC Loop mode) sequence in the data stream.  
The interrupt caused by the Abort or EOP has a special  
feature allowing the ESCC to interrupt when the Abort or  
EOP sequence is detected or terminated. This feature  
facilitates the proper termination of the current  
To a DMA controller, the ESCC REQUEST output indi-  
cates that the ESCC is ready to transfer data to or from  
memory. To the CPU, the WAIT line indicates that the  
SCC is not ready to transfer data, thereby requesting  
that the CPU extend the I/O cycle. The DTR/REQUEST  
can be used as the transmit request line, thus allowing  
full-duplex operation under DMA control.  
PROGRAMMING INFORMATION  
Each channel has fifteen Write registers that are indi-  
vidually programmed from the system bus to configure  
the functional personality of each channel. Each chan-  
nel also has eight Read registers from which the system  
can read Status, Baud rate, or Interrupt information.  
Writing to or reading from any register except RR0,  
WR0, and the data registers thus involves two  
operations:  
First, write the appropriate code into WR0, then follow  
this by a Write or Read operation on the register thus  
specified. Bits 0 through 4 in WR0 are automatically  
cleared after this operation, so that WR0 then points to  
WR0 or RR0 again.  
On the Am85C30, only four data registers (Read and  
Write for Channels A and B) are directly selected by a  
High on the D/C input and the appropriate levels on the  
RD, WR, and A/Bpins. All other registers are addressed  
indirectly by the content of Write Register 0 in conjunc-  
tion with a Low on the D/C input and the appropriate lev-  
els on the RD, WR, and A/Bpins. If bit D3 in WR0 is 1 and  
bits5and6are0, thenbits0, 1, and2addressthehigher  
registers 8 through 15. If bits 4, 5, and 6 contain a differ-  
ent code, bits 0, 1, and 2 address the lower registers 0  
through 7 as shown in Table 2.  
Channel A/Channel B selection is made by the A/Binput  
(High = A, Low = B).  
The system program first issues a series of commands  
to initialize the basic mode of operation. This is followed  
by other commands to qualify conditions within the se-  
lected mode. For example, the asynchronous mode,  
character length, clock rate, number of stop bits, even or  
odd parity might be set first. Then the interrupt mode  
would be set and, finally, receiver or transmitter enable.  
Am85C30  
17  
AMD  
Table 2. Register Addressing  
“Point High”  
Code In WR0:  
D2, D1, D0  
In WR0:  
Write  
Register  
Read  
Register  
D/C  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Either Way  
Not True  
Not True  
Not True  
Not True  
Not True  
Not True  
Not True  
Not True  
True  
True  
True  
True  
True  
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Data  
0
1
2
3
4
5
6
7
Data  
0
1
2
3
(0)  
(1)  
(2)  
(3)  
Data  
10  
(15)  
12  
13  
(10)  
15  
Data  
9
10  
11  
12  
13  
14  
15  
True  
True  
True  
Am85C30 Technical Manual for detailed descriptions of  
the read registers.  
Read Registers  
The ESCC contains eight Read registers [actually nine,  
countingthereceivebuffer(RR8)ineachchannel]. Four  
of these may be read to obtain status information (RR0,  
RR1, RR10, and RR15). Two registers (RR12 and  
RR13) may be read to learn the baud rate generator  
time constant. RR2 contains either the unmodified inter-  
rupt vector (Channel A) or the vector modified by status  
information (Channel B). RR3 contains the Interrupt  
Pending (IP) bits (Channel A). In addition, if bit D2 of  
WR15 is set, RR6 and RR7 are available for providing  
frame status from the 10 × 19 bit Frame Status FIFO.  
Figure 8 shows the formats for each Read register.  
Write Registers  
The ESCC contains 15 Write registers (16 counting  
WR8, the transmit buffer) in each channel. These Write  
registers are programmed separately to configure the  
functional “personality” of the channels. Two registers  
(WR2 and WR9) are shared by the two channels that  
can be accessed through either of them. WR2 contains  
the interrupt vector for both channels, while WR9 con-  
tains the interrupt control bits. In addition, if bit D0 of  
WR15 is set, Write Register 7 prime (WR7) is available  
for programming additional SDLC/HDLC enhance-  
ments. When bit D0 of WR15 is set, executing a write to  
WR7 actually writes to WR7to further enhance the  
functional “personality” of each channel. Figure 8 shows  
the format of each Write register.  
The status bits of RR0 and RR1 are carefully grouped to  
simplify status monitoring, for example, when the inter-  
rupt vector indicates a Special Receive Condition  
interrupt, all the appropriate error bits can be  
read from a single register (RR1). Please refer to  
18  
Am85C30  
AMD  
Read Register 3  
Read Register 0  
D5 D4 D3 D2 D1 D0  
D7 D6  
D7 D6  
D7 D6  
D5 D4 D3 D2 D1 D0  
D7 D6  
D7 D6  
D7 D6  
Channel B EXT STAT IP*  
Channel B Tx IP*  
Channel B Rx IP*  
Channel A EXT STAT IP*  
Channel A Tx IP*  
Channel A Rx IP*  
0
Rx Character Available  
Zero Count  
Tx Buffer Empty  
DCD  
SYNC Hunt  
CTS  
Tx Underrun/EOM  
Break Abort  
0
*Always 0 in B Channel  
Read Register 6  
Read Register 1  
D5 D4 D3 D2 D1 D0  
D5 D4 D3 D2 D1 D0  
BC0  
BC1  
All Sent  
Residue Code 2  
Residue Code 1  
Residue Code 0  
Parity Error  
Rx Overrun Error  
CRC Framing Error  
End-of-Frame (SDLC)  
BC2  
BC3  
BC4  
BC5  
BC6  
BC7  
14-Bit  
LSB Byte  
Count  
Read Register 7  
Read Register 2  
D5 D4 D3 D2 D1 D0  
D5 D4 D3 D2 D1 D0  
V0  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
BC8  
BC9  
14-Bit  
BC10  
MSB Byte  
BC11  
Interrupt Vector*  
Count  
BC12  
BC13  
FDA*  
FOY**  
10 × 19 bit  
FIFO Status  
*FIFO Data Available Status  
**FIFO Overflow Status  
*Modified in B Channel  
10216F-12  
Figure 8. Read Register Bit Functions  
Am85C30  
19  
AMD  
Read Register 13  
Read Register 10  
D5 D4 D3 D2 D1 D0  
D7 D6  
D5 D4 D3 D2 D1 D0  
D7 D6  
TC8  
TC9  
0
On Loop  
TC10  
TC11  
TC12  
TC13  
TC14  
TC15  
0
0
Upper Byte of  
Time Constant  
Loop Sending  
0
Two Clocks Missing  
One Clock Missing  
Read Register 15  
Read Register 12  
D5 D4 D3 D2 D1 D0  
D7 D6  
D5 D4 D3 D2 D1 D0  
D7 D6  
SDLC/HDLC Enhancement Status*  
Zero Count IE  
10 × 19 bit FIFO Enable/Disable*  
DCD IE  
SYNC Hunt IE  
CTS IE  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
Lower Byte of  
Time Constant  
Tx Underrun/EOM IE  
Break/Abort IE  
10216F-12  
(concluded)  
*Added Enhancement  
Figure 8. Read Register Bit Functions (continued)  
Write Register 0  
D5 D4 D3 D2 D1 D0  
D7 D6  
Register  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
9
0
1
2
3
4
5
6
7
10  
11  
12  
13  
14  
15  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Null Code  
Point High Register Group  
Reset Ext/Status Interrupts  
Send Abort  
Enable Int on Next Rx Character  
Reset Tx Int Pending  
Error Reset  
Reset Highest IUS  
Null Code  
Reset Rx CRC Checker  
Reset Tx CRC Generator  
0
0
1
1
0
1
0
1
Reset Tx Underrun/EOM Latch  
10216F-13  
Figure 9. Write Register Bit Functions  
20  
Am85C30  
AMD  
Write Register 4  
Write Register 1  
D5 D4 D3 D2 D1 D0  
D7 D6  
D5 D4 D3 D2 D1 D0  
D7 D6  
Parity Enable  
Parity Even/Odd  
Ext Int Enable  
Tx Int Enable  
Parity is Special Condition  
Rx Int Disable  
Rx Int on First Character or Special Condition  
Int on All Rx Characters or Special Condition  
Rx Int on Special Condition only  
0
0
1
1
0
1
0
1
Sync Modes Enable  
1 Stop Bit/Character  
1 1/2 Stop Bits/Character  
2 Stop Bits/Character  
0
0
1
1
0
1
0
1
0
0
1
1
0
1
0
1
8-Bit Sync Character  
Wait/DMA Request on Receive/Transmit  
Wait/DMA Request Function  
Wait/DMA Request Enable  
16-Bit Sync Character  
SDLC Mode (01111110 Flag)  
External Sync Mode  
Write Register 2  
0
0
1
1
0
1
0
1
X1 Clock Mode  
X16 Clock Mode  
X32 Clock Mode  
X64 Clock Mode  
D5 D4 D3 D2 D1 D0  
D7 D6  
V0  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
Write Register 5  
Interrupt Vector*  
D5 D4 D3 D2 D1 D0  
D7 D6  
Tx CRC Enable  
RTS  
SDLC/CRC-16  
Tx Enable  
Send Break  
Write Register 3  
D5 D4 D3 D2 D1 D0  
D7 D6  
0
0
1
1
0
1
0
1
Tx 5 Bits (or less)/Character  
Tx 7 Bits/Character  
Tx 6 Bits/Character  
Tx 8 Bits/Character  
Rx Enable  
Sync Character Load Inhibit  
Address Search Mode (SDLC)  
Rx CRC Enable  
DTR  
Enter Hunt Mode  
Auto Enable  
0
0
1
1
0
1
0
1
Rx 5 Bits/Character  
Rx 7 Bits/Character  
Rx 6 Bits/Character  
Rx 8 Bits/Character  
Write Register 6  
D5 D4 D3 D2 D1 D0  
D7 D6  
Monosync 8 Bits  
Monosync 8 Bits  
Bisync 16 Bits  
Bisync 12 Bits  
SDLC  
SYNC7 SYNC6 SYNC5 SYNC4  
SYNC1 SYNC0 SYNC5 SYNC4  
SYNC7 SYNC6 SYNC5 SYNC4  
SYNC3 SYNC2 SYNC1 SYNC0  
SYNC3 SYNC2 SYNC1 SYNC0  
SYNC3 SYNC2 SYNC1 SYNC0  
SYNC3 SYNC2 SYNC1 SYNC0  
1
ADR3  
1
1
ADR2  
1
1
ADR1  
1
1
ADR0  
1
ADR7  
ADR7  
ADR6  
ADR6  
ADR5  
ADR5  
ADR4  
ADR4  
SDLC (Address 0)  
10216F-13  
Figure 9. Write Register Bit Functions (continued)  
Am85C30  
21  
AMD  
Write Register 7  
D5 D4 D3 D2 D1 D0  
D7 D6  
Monosync 8 Bits  
Monosync 8 Bits  
Bisync 16 Bits  
Bisync 12 Bits  
SDLC  
SYNC7 SYNC6 SYNC5 SYNC4  
SYNC5 SYNC4 SYNC3 SYNC2  
SYNC5 SYNC14 SYNC13 SYNC12 SYNC11 SYNC10 SYNC9 SYNC8  
SYNC11 SYNC10 SYNC9 SYNC8 SYNC7 SYNC6 SYNC5 SYNC4  
SYNC3 SYNC2 SYNC1 SYNC0  
SYNC1 SYNC0  
1
1
0
1
1
1
1
1
1
0
Write Register 7  
D5 D4 D3 D2 D1 D0  
D7 D6  
Auto Tx Flag  
Auto EOM Latch Reset  
Auto RTS  
TxD Pulled High in SDLC NRZI Mode  
Fast DTR/REQ Mode  
CRC Check Bytes Completely Received  
Extended Read Enable  
Must Be Set to 0  
Write Register 9  
Write Register 11  
D5 D4 D3 D2 D1 D0  
D7 D6  
D7 D6  
D5 D4 D3 D2 D1 D0  
VIS  
NV  
DLC  
MIE  
0
0
1
1
0
1
0
1
TRxC Out = XTAL Output  
TRxC Out = Transmit Clock  
TRxC Out = BR Generator Output  
TRxC Out = DPLL Output  
Status High/Status Low  
Interrupt Masking  
without INTACK*  
TRxC O/I  
0
0
1
1
0
1
0
1
No Reset  
0
0
1
1
0
1
0
1
Transmit Clock = RTxC Pin  
Channel Reset B  
Channel Reset A  
Force Hardware Reset  
Transmit Clock = TRxC Pin  
Transmit Clock = BR Generator Output  
Transmit Clock = DPLL Output  
*Added Enhancement  
0
0
1
1
0
1
0
1
Receive Clock = RTxC Pin  
Receive Clock = TRxC Pin  
Receive Clock = BR Generator Output  
Receive Clock = DPLL Output  
RTxC XTAL/No XTAL  
10216F-13  
Figure 9. Write Register Bit Functions (continued)  
22  
Am85C30  
AMD  
Write Register 10  
Write Register 12  
D5 D4 D3 D2 D1 D0  
D7 D6  
D5 D4 D3 D2 D1 D0  
D7 D6  
6-Bit/8-Bit Sync  
Loop Mode  
Abort/Flag on Underrun  
Mark/Flag Idle  
Go Active on Roll  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
Lower Byte of  
Time Constant  
0
0
1
1
0
1
0
1
NRZ  
NRZI  
FM1 (Transition = 1)  
FM0 (Transition = 0)  
CRC Preset ‘1’ or ‘0’  
Write Register 13  
D5 D4 D3 D2 D1 D0  
D7 D6  
TC8  
TC9  
TC10  
TC11  
TC12  
TC13  
TC14  
TC15  
Upper Byte of  
Time Constant  
Write Register 14  
D5 D4 D3 D2 D1 D0  
D7 D6  
BR Generator Enable  
BR Generator Source  
DTR/Request Function  
Auto Echo  
Write Register 15  
D5 D4 D3 D2 D1 D0  
D7 D6  
Local Loopback  
SDLC/HDLC Enhancements Enable*  
Zero Count IE  
10 × 19 Bit FIFO Enable*  
DCD IE  
Sync/Hunt IE  
CTS IE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
Null Command  
1
0
1
0
1
0
1
Enter Search Mode  
Reset Missing Clock  
Disable DPLL  
Set Source = BR Generator  
Set Source = RTxC  
Set FM Mode  
Tx Underrun/EOM IE  
Break/Abort IE  
Set NRZI Mode  
* Added Enhancement  
10216F-13  
(concluded)  
Figure 9. Write Register Bit Functions (continued)  
Am85C30 Timing  
Read Cycle Timing  
The ESCC generates internal control signals from WR  
and RD that are related to PCLK. Since PCLK has no  
phase relationship with WR and RD, the circuitry gener-  
ating these internal control signals must provide time for  
metastable conditions to disappear. This gives rise to a  
recovery time related to PCLK. The recovery time ap-  
plies only between bus transactions involving the  
ESCC. The recovery time required for proper operation  
is specified from the falling edge of WR or RD in the first  
transaction involving the ESCC, to the falling edge of  
WR or RD in the second transaction involving the  
ESCC. This time must be at least 3 1/2 PCLK regardless  
of which register or channel is being accessed.  
Figure 10 illustrates Read cycle timing. Addresses on  
A/BandD/CandthestatusonINTACKmustremainsta-  
ble throughout the cycle. If CE falls after RD falls or if it  
rises before RD rises, the effective RD is shortened.  
Write Cycle Timing  
Figure 11 illustrates Write cycle timing. Addresses on  
A/B and D/C and the status on INTACK must remain  
stable throughout the cycle. If CE falls after WR falls or if  
it rises before WR rises, the effective WR is shortened.  
Data must be valid before the rising edge of WR.  
Am85C30  
23  
AMD  
and IEI is High when RD falls, the Acknowledge cycle is  
intended for the SCC. In this case, the ESCC may be  
programmed to respond to RD Low by placing its inter-  
rupt vector on D7–D0 ; it then sets the appropriate Inter-  
rupt-Under-Service latch internally.  
Interrupt Acknowledge Cycle Timing  
NO TAG illustrates Interrupt Acknowledge cycle timing.  
Between the time INTACK goes Low and the falling  
edge of RD, the internal and external IEI/IEO daisy  
chainssettle. IfthereisaninterruptpendingintheESCC  
A/B, D/C  
INTACK  
CE  
Address Valid  
WR  
D7 –D0  
Data Valid  
10216F-14  
Figure 10. Read Cycle Timing  
A/B, D/C  
INTACK  
CE  
Address Valid  
WR  
Data Valid  
D7 –D0  
Figure 11. Write Cycle Timing  
10216F-15  
INTACK  
RD  
D7 –D0  
Vector  
10216F-16  
Figure 12. Interrupt Acknowledge Cycle Timing  
24  
Am85C30  
AMD  
FIFO  
memory while the CPU verifies that the message was  
properly received.  
FIFO Enhancements  
When used with a DMA controller, the Am85C30 Frame  
Status FIFO enhancement maximizes the ESCC’s abil-  
ity to receive high-speed back-to-back SDLC messages  
while minimizing frame overruns due to CPU latencies  
in responding to interrupts.  
Summarizing the operation, data is received, assem-  
bled, and loaded into the 3-byte receive FIFO before be-  
ing transferred to memory by the DMA controller. When  
a flag is received at the end of an SDLC frame, the frame  
byte count from the 14-bit counter and 5 status bits are  
loaded into the status FIFO for verification by the CPU.  
The CRC checker is automatically reset in preparation  
for the next frame, which can begin immediately. Since  
the byte count and status are saved for each frame, the  
message integrity can be verified at a later time. Status  
information for up to 10 frames can be stored before a  
status FIFO overrun could occur.  
Additional logic was added to the industry-standard  
NMOS SCC consisting of a 10-deep by 19-bit status  
FIFO, a 14-bit receive byte counter, and control logic as  
shown in Figure 13. The 10 × 19 bit status FIFO is sepa-  
rate from the existing 3-byte receive data and error  
FIFOs.  
When the enhancement is enabled, the status in Read  
Register 1 (RR1) and byte count for the SDLC frame will  
be stored in the 10 × 19 bit status FIFO. This allows  
the DMA controller to transfer the next frame into  
If receive interrupts are enabled while the 10 × 19 FIFO  
is enabled, an SDLC end-of-frame special condition will  
Reset on Flag Detect  
Increment on Byte DET  
Enable Count in SDLC  
SCC Status Reg  
14-Bit Byte Counter  
14 Bits  
(Existing)  
RR1  
6 Bits  
End-of-Frame Signal  
Status Read Comp  
Residue Bits(3)  
Overrun  
CRC Error  
10 × 19 Bit FIFO Array  
Tail Pointer  
4-Bit  
Counter  
Head Pointer  
4-Bit Counter  
4-Bit  
Comparator  
Over Equal  
5 Bits  
EN  
8 Bits  
EOF = 1  
Bit 7  
6 Bits  
6-Bit MUX  
2 Bits  
6 Bits  
RR1  
Bit 6 Bits 0–5  
RR7  
FIFO Enable  
RR6  
Interface to SCC  
WR(15) Bit 2 Set  
Enables Status FIFO  
Byte Counter Contains 14 Bits  
for a 16-kb Maximum Count  
FIFO Data Available Status Bit  
Status Bit Set to 1  
When Reading From FIFO  
FIFO Overflow Status Bit  
MSB of RR(7) is Set on Status FIFO  
Overflow  
In SDLC mode, the following definitions apply:  
All Sent bypasses MUX and equals contents of SCC Status Register.  
Parity bits bypass MUX and do the same.  
EOF is set to 1 whenever reading from the FIFO.  
10216F-17  
Figure 13. SCC Status Register Modifications  
Am85C30  
25  
AMD  
not lock the 3-byte receive data FIFO. An SDLC  
end-of-frame still locks the 3-byte receive data FIFO in  
“Interrupt on first Receive Character or Special Condi-  
tion” and “Interrupt on Special Condition Only” modes  
when the 10 × 19 FIFO is disabled. This feature allows  
the 10 × 19 SDLC FIFO to accept multiple SDLC frames  
without CPU intervention at the end of each frame.  
from the status register, and reads from RR7 and RR6  
will contain bits that are undefined. Bit 6 of RR7 (FIFO  
Data Available) can be used to determine if status data  
is coming from the FIFO or directly from the status regis-  
ter, since it is set to 1 whenever the FIFO is not empty.  
Because not all status bits are stored in the FIFO, the All  
Sent, Parity, and EOF bits will bypass the FIFO. The  
status bits sent through the FIFO will be Residue Bits  
(3), Overrun, and CRC Error.  
FIFO Detail  
For a better understanding of details of the FIFO opera-  
tion, refer to the block diagram contained in Figure 13.  
Thesequenceforproperoperationofthebytecountand  
FIFO logic is to read the registers in the following order,  
RR7, RR6, and RR1 (reading RR6 is optional). Addi-  
tional logic prevents the FIFO from being emptied by  
multiple reads from RR1. The read from RR7 latches the  
FIFO empty/full status bit (bit 6) and steers the status  
multiplexer to read from the SCC megacell instead of  
the status FIFO (since the status FIFO is empty). The  
read from RR1 allows an entry to be read from the FIFO  
(if the FIFO was empty, logic is added to prevent a FIFO  
underflow condition).  
Enable/Disable  
This FIFO is implemented so that it is enabled when  
WR15 bit 2 is set and the ESCC is in the SDLC/HDLC  
mode, otherwise the status register contents bypass the  
FIFO and go directly to the bus interface (the FIFO  
pointer logic is reset either when disabled or via a chan-  
nel or power-on reset). When the FIFO mode is dis-  
abled, the ESCC is completely downward-compatible  
with the NMOS Am8530. The FIFO mode is disabled on  
power-up (WR15 bit 2 is set to 0 on reset). The effects of  
backward compatibility on the register set are that RR4  
is an image of RR0, RR5 is an image of RR1, RR6 is an  
image of RR2, and RR7 is an image of RR3. For the de-  
tailsoftheaddedregisters, refertoFigure15. Thestatus  
of the FIFO Enable signal can be obtained by reading  
RR15 bit 2. If the FIFO is enabled, the bit will be set to 1;  
otherwise, it will be reset.  
Write Operation  
When the end of an SDLC frame (EOF) has been re-  
ceived and the FIFO is enabled, the contents of the  
status and byte-count registers are loaded into the  
FIFO. The EOF signal is used to increment the FIFO. If  
the FIFO overflows, the MSB of RR7 (FIFO Overflow) is  
set to indicate the overflow. This bit and the FIFO control  
logic are reset by disabling and reenabling the FIFO  
control bit (WR15 bit 2). For details of FIFO control tim-  
ing during an SDLC frame, refer to Figure 14.  
Read Operation  
When WR15 bit 2 is set and the FIFO is not empty, the  
next read to status register RR1 or the additional regis-  
ters RR7 and RR6 will actually be from the FIFO. Read-  
ing status register RR1 causes one location of the FIFO  
to be emptied, so status should be read after reading the  
byte count, otherwise the count will be incorrect. Before  
the FIFO underflows, it is disabled. In this case, the mul-  
tiplexer is switched to allow status to be read directly  
Byte Counter Detail  
The 14-bit byte counter allows for packets up to 16K  
bytes to be received. For a better understanding of its  
operation, refer to Figures 13 and 14.  
Byte Count  
0
F
1
2
3
4
5
6
7
0
F
1
2
3
4
5
6
7
Data Stream  
A
D
D
D
D
C
C
F
A
D
D
D
D
C
C
F
Internal Byte Strobe  
Increments Counter  
Internal Byte Strobe  
Increments Counter  
Don’t Load  
Counter On  
1st Flag  
Reset Byte  
Counter Here  
Reset  
Reset  
Byte Counter  
Reset  
Byte Counter  
Load Counter  
Into FIFO and  
Increment PTR  
Byte Counter  
Load Counter  
Into FIFO and  
Increment PTR  
Key  
F : Flag  
A : Address Field  
D : Data  
C : Control Field  
10216F-18  
Figure 14. SDLC Byte Counting Detail  
Am85C30  
26  
AMD  
7
6
5
4
3
2
1
0
BC BC BC BC BC BC  
13 12 11 10  
RR7  
FOY FDA  
9
8
FIFO Data Available Status  
1 = Status Reads Will Come From FIFO  
0 = Status Reads Will Come From SCC  
FIFO Overflow Status  
1 = FIFO Overflowed During Operation  
0 = Normal  
7
6
5
4
3
2
1
0
Read From FIFO  
LSB Byte Count  
BC  
7
BC BC BC BC BC  
BC BC  
RR6  
6
6
5
4
4
3
2
1
0
7
5
3
2
1
0
ENH: SDLC/HDLC Enhancement Status  
1 = Enhancements Enabled  
0 = Enhancements Disabled  
RR15  
FEN  
ENH  
Status FIFO Enable Control Bit  
1 = Status and Byte Count Will be  
Held in the Status FIFO Until Read  
Status Will Not be Held (SCC Emulation Mode)  
0 =  
= No Change From NMOS SCC DFN  
10216F-19  
Figure 15. SCC Additional Registers  
WR7. Table 3 shows what functions on the Am85C30  
are enabled when these bits are set.  
Enable  
The byte counter is enabled when the SCC is in the  
SDLC/HDLC mode and WR15 bit 2 is set to 1.  
When bit D2 of WR15 is set to 1, two additional registers  
(RR6 and RR7) per channel specific to the 10 × 19 bit  
Frame Status FIFO are made available. The Am85C30  
register map when this function is enabled is shown in  
Table 4.  
Reset  
The byte counter is reset whenever an SDLC flag char-  
acter is received. The reset is timed so that the contents  
of the byte counter are successfully written into the  
FIFO.  
Bit D0 of WR15 determines whether or not other en-  
hancementspertinentonlytoSDLC/HDLCmodeopera-  
tion are available for programming via WR7as shown  
below. Write Register 7 prime (WR7) can be written to  
when bit D0 of WR15 is set to 1. When this bit is set, writ-  
ing to WR7 (flag register) actually writes to WR7. If bit  
D6 of this register is set to 1, previously unreadable reg-  
isters WR3, WR4, WR5, and WR10 are readable by the  
pro-cessor. In addition, WR7is also readable by having  
this bit set. WR3 is read when a bogus RR9 register is  
accessed during a read cycle. WR10 is read by access-  
ing RR11, and WR7is accessed by executing a read to  
RR14. The Am85C30 register map with bit D0 of WR15  
and bit D6 of WR7set is shown in Table 5.  
Increment  
The byte counter is incremented by writes to the data  
FIFO. The counter represents the number of bytes re-  
ceived by the SCC, rather than the number of bytes  
transferred from the SCC. (These counts may differ by  
up to the number of bytes in the receive data FIFO con-  
tained in the SCC.)  
Am85C30 SDLC/HDLC Enhancement  
Register Access  
SDLC/HDLC enhancements on the Am85C30 are en-  
abled or disabled via bits D2 or D0 in WR15. Bit D2 deter-  
mines whether or not the 10 × 19 bit SDLC/HDLC  
frame status FIFO is enabled while bit D0 determines  
whether or not other enhancements are enabled via  
If both bits D0 and D2 of WR15 are set to 1 and D6 of  
WR7is set to 1, then the Am85C30 register map is as  
shown in Table 6.  
Am85C30  
27  
AMD  
Table 3. Enhancement Options  
WR15 Bit D2  
10 × 19 Bit  
WR15 Bit D0  
SDLC/HDLC  
WR7Bit D6  
Extended  
Functions  
Enabled  
FIFO Enabled  
Enhancement Enabled  
Read Enabled  
1
0
0
1
x
10 × 19 bit FIFO  
enhancement enabled only  
0
SDLC/HDLC enhancements  
enabled only  
SDLC/HDLC enhancements  
enabled with extended read  
enabled  
0
1
1
1
1
1
1
0
1
10 × 19 bit FIFO and  
SDLC/HDLC enhancements  
enabled  
10 × 19 bit FIFO and  
SDLC/HDLC enhancements  
with extended read enabled  
Table 4. 10× 19 Bit FIFO Enabled  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR0B  
WR1B  
WR2  
RR0B  
RR1B  
RR2B  
RR3B  
(RR0B)  
(RR1B)  
RR6B  
RR7B  
RR0A  
RR1A  
RR2A  
RR3A  
(RR0A)  
(RR1A)  
RR6A  
RR7A  
WR3B  
WR4B  
WR5B  
WR6B  
WR7B  
WR0A  
WR1A  
WR2  
WR3A  
WR4A  
WR5A  
WR6A  
WR7A  
With the Point High command:  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR8B  
WR9  
RR8B  
RR13B  
RR10B  
(RR15B)  
RR12B  
RR13B  
(RR10B)  
RR15B  
RR8A  
(RR13A)  
RR10A  
(RR15A)  
RR12A  
RR13A  
(RR10A)  
RR15A  
WR10B  
WR11B  
WR12B  
WR13B  
WR14B  
WR15B  
WR8A  
WR9  
WR10A  
WR11A  
WR12A  
WR13A  
WR14A  
WR15A  
28  
Am85C30  
AMD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDLC/HDLC  
Auto RTS  
Turnoff  
SDLC/HDLC  
Auto  
SDLC/HDLC  
Auto EOM  
Reset  
DTR/REQ  
Fast Mode  
Force TxD  
High  
Must Be Set  
to 0  
Ext. Read  
Enable  
Rx comp.  
CRC  
Tx Flag  
WR7—SDLC/HDLC Programmable Enhancements*  
*Note:  
Options 3, 4, 5, and 6 may be used regardless of whether SDLC/HDLC mode is selected.  
Table 5. SDLC/HDLC Enhancements Enabled  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
RR0B  
RR1B  
RR2B  
RR3B  
RR4B (WR4B)  
RR5B (WR5B)  
(RR2B)  
(RR3B)  
RR0A  
RR1A  
RR2A  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR0B  
WR1B  
WR2  
WR3B  
WR4B  
WR5B  
WR6B  
WR7B  
WR0A  
WR1A  
WR2  
WR3A  
WR4A  
WR5A  
WR6A  
WR7A  
RR3A  
RR4A (WR4A)  
RR5A (WR5A)  
(RR2A)  
(RR3A)  
With the Point High command:  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR8B  
WR9  
RR8B  
RR9 (WR3B)  
RR10B  
RR11B (WR10B)  
RR12B  
RR13B  
RR14B (WR7B)  
RR15B  
RR8A  
RR9A (WR3A)  
RR10A  
RR11A (WR10A)  
RR12A  
WR10B  
WR11B  
WR12B  
WR13B  
WR14B  
WR15B  
WR8A  
WR9  
WR10A  
WR11A  
WR12A  
WR13A  
WR14A  
WR15A  
RR13A  
RR14A (WR7A)  
RR15A  
Am85C30  
29  
AMD  
Table 6. SDLC/HDLC Enhancements and 10× 19 Bit FIFO Enabled  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
RR0B  
RR1B  
RR2B  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR0B  
WR1B  
WR2  
WR3B  
WR4B  
WR5B  
WR6B  
WR7B  
WR0A  
WR1A  
WR2  
WR3A  
WR4A  
WR5A  
WR6A  
WR7A  
RR3B  
RR4B (WR4B)  
RR5B (WR5B)  
RR6B  
RR7B  
RR0A  
RR1A  
RR2A  
RR3A  
RR4A (WR4A)  
RR5A (WR5A)  
RR6A  
RR7A  
With the Point High command:  
A/B  
PNT2  
PNT1  
PNT0  
Write  
Read  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
WR8B  
WR9  
RR8B  
RR9 (WR3B)  
RR10B  
RR11B (WR10B)  
RR12B  
RR13B  
RR14B (WR7B)  
RR15B  
RR8A  
RR9A (WR3A)  
RR10A  
RR11A (WR10A)  
RR12A  
WR10B  
WR11B  
WR12B  
WR13B  
WR14B  
WR15B  
WR8A  
WR9  
WR10A  
WR11A  
WR12A  
WR13A  
WR14A  
WR15A  
RR13A  
RR14A (WR7A)  
RR15A  
30  
Am85C30  
AMD  
Register, the last 2 bits of the CRC check character  
received are never transferred to the Receive Data  
FIFO. Thus, the received CRC characters are unavail-  
able for use.  
Auto RTS Reset  
On the CMOS ESCC, if bit D0 of WR15 and bit D2 of  
WR7are set to 1 and the channel is in SDLC mode, the  
RTS pin may be reset early in the Tx Underrun routine  
and the RTS pin will remain active until the last 0 bit of  
the closing flag leaves the TxD pin as shown in Figure  
16. Note that in order for this to function properly, bits D3  
and D2 of WR10 must be set to 1 and 0, respectively.  
CMOS Am85C30  
On the Am85C30, the option of being able to receive the  
complete CRC characters generated by the transmitter  
is provided when both bit D0 of WR15 and bit D5 of WR7′  
are set to 1. When these 2 bits are set and an end-of-  
frame flag is detected, the last 2 bits of the CRC will  
be clocked into the Receive Shift Register before its  
contents are transferred to the Receive Data FIFO. The  
data-CRC boundary and CRC character bit formats for  
each Residue Code provided are shown in Figures 17A  
through 17D for each character length selected.  
CRC Character Reception  
NMOS Am8530H  
On the NMOS Am8530H, when the end-of-frame flag is  
detected, the contents of the Receive Shift Register are  
transferred to the Receive Data FIFO regardless of the  
number of bits accumulated. Because of the 3-bit delay  
between the Receive SYNC Register and Receive Shift  
Data Being Sent  
Data  
CRC  
CRC  
Flag  
Tx Underrun/EOM  
RTS Bit D1 WR5  
RTS Pin (Active Low)  
10216F-20  
Figure 16. Auto RTS Reset Mode  
Am85C30  
31  
AMD  
Residue  
Code  
012  
Residue  
Code  
012  
001  
101  
D
D
D
D
D
C0 C1 C2  
D
D
D
D
D
D
D
C0 C1  
C0 C1 C2 C3 C4 C5 C6 C7  
C5 C6 C7 C8 C9 C10 C11 C12  
C8 C9 C10 C11 C12 C13 C14 C15  
C0 C1 C2 C3 C4 C5 C6  
C4 C5 C6 C7 C8 C9 C10 C11  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
100  
010  
D
D
D
D
D
D
D
D
D
C0  
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5  
C0 C1 C2 C3 C4  
C3 C4 C5 C6 C7 C8 C9 C10  
C8 C9 C10 C11 C12 C13 C14 C15  
C2 C3 C4 C5 C6 C7 C8 C9  
C7 C8 C9 C10 C11 C12 C13 C14  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
110  
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3  
C1 C2 C3 C4 C5 C6 C7 C8  
C6 C7 C8 C9 C10 C11 C12 C13  
C8 C9 C10 C11 C12 C13 C14 C15  
10216F-21  
Figure 17A. 5 Bits/Character  
32  
Am85C30  
AMD  
Residue  
Code  
012  
Residue  
Code  
012  
010  
110  
D
D
D
D
D
D
C0 C1  
D
D
D
D
D
D
D
D
C0  
C0 C1 C2 C3 C4 C5 C6 C7  
C6 C7 C8 C9 C10 C11 C12 C13  
C8 C9 C10 C11 C12 C13 C14 C15  
C0 C1 C2 C3 C4 C5 C6  
C5 C6 C7 C8 C9 C10 C11 C12  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
001  
101  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5  
C0 C1 C2 C3 C4  
C4 C5 C6 C7 C8 C9 C10 C11  
C8 C9 C10 C11 C12 C13 C14 C15  
C3 C4 C5 C6 C7 C8 C9 C10  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
011  
100  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3  
C0 C1 C2  
C2 C3 C4 C5 C6 C7 C8 C9  
C8 C9 C10 C11 C12 C13 C14 C15  
C1 C2 C3 C4 C5 C6 C7 C8  
C7 C8 C9 C10 C11 C12 C13 C14  
C8 C9 C10 C11 C12 C13 C14 C15  
10216F-21  
Figure 17B. 6 Bits/Character  
Am85C30  
33  
AMD  
Residue  
Code  
012  
Residue  
Code  
012  
111  
100  
D
D
D
D
D
D
D
C0  
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5 C6 C7  
C7 C8 C9 C10 C11 C12 C13 C14  
C8 C9 C10 C11 C12 C13 C14 C15  
C0 C1 C2 C3 C4 C5 C6  
C6 C7 C8 C9 C10 C11 C12 C13  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
010  
110  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5  
C0 C1 C2 C3 C4  
C5 C6 C7 C8 C9 C10 C11 C12  
C8 C9 C10 C11 C12 C13 C14 C15  
C4 C5 C6 C7 C8 C9 C10 C11  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
001  
101  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3  
C0 C1 C2  
C3 C4 C5 C6 C7 C8 C9 C10  
C8 C9 C10 C11 C12 C13 C14 C15  
C2 C3 C4 C5 C6 C7 C8 C9  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
011  
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1  
D
C1 C2 C3 C4 C5 C6 C7 C8  
C8 C9 C10 C11 C12 C13 C14 C15  
10216F-21  
Figure 17C. 7 Bits/Character  
34  
Am85C30  
AMD  
Residue  
Code  
012  
Residue  
Code  
012  
011  
111  
(No Residue)  
(1 Residue Bit)  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5 C6 C7  
C8 C9 C10 C11 C12 C13 C14 C15  
C0 C1 C2 C3 C4 C5 C6  
C7 C8 C9 C10 C11 C12 C13 C14  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
000  
100  
(2 Residue Bits)  
(3 Residue Bits)  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3 C4 C5  
C0 C1 C2 C3 C4  
C6 C7 C8 C9 C10 C11 C12 C13  
C8 C9 C10 C11 C12 C13 C14 C15  
C5 C6 C7 C8 C9 C10 C11 C12  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
010  
110  
(4 Residue Bits)  
(5 Residue Bits)  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1 C2 C3  
C0 C1 C2  
C4 C5 C6 C7 C8 C9 C10 C11  
C8 C9 C10 C11 C12 C13 C14 C15  
C3 C4 C5 C6 C7 C8 C9 C10  
C8 C9 C10 C11 C12 C13 C14 C15  
Residue  
Code  
012  
Residue  
Code  
012  
001  
101  
(6 Residue Bits)  
(7 Residue Bits)  
D
D
D
D
D
D
D
D
D
D
D
D
D
C0 C1  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
C0  
C2 C3 C4 C5 C6 C7 C8 C9  
C8 C9 C10 C11 C12 C13 C14 C15  
C1 C2 C3 C4 C5 C6 C7 C8  
C8 C9 C10 C11 C12 C13 C14 C15  
10216F-21  
(concluded)  
Figure 17D. 8 Bits/Character  
Am85C30  
35  
AMD  
WR5 (D0) and the Tx Underrun/EOM bit in RR0 (D6).  
However, if the Transmit Enable bit is set to 0 when a  
transmit underrun (i.e., both the Transmit Buffer and  
Transmit Shift Register become empty) occurs, the  
CRC check characters will not be sent regardless of the  
state of the Tx Underrun/EOM bit.  
Auto Flag Mode  
On the NMOS Am8530H, if the transmitter is actively  
mark idling and a frame of data is ready to be transmit-  
ted, the Mark/Flag Idle bit must be set to 0 before data is  
written to WR8, otherwise the opening flag will not be  
sentproperly. However, caremustbeexercisedindoing  
this because the mark idle pattern (eight 1 bits) is trans-  
mitted 8 bits at a time, and all 8 bits must have trans-  
ferred out of the Transmit Shift Register before a flag  
may be loaded and sent. If data is written into the Trans-  
mit Buffer (WR8) before the flag is loaded into the Trans-  
mit Shift Register, the data character written to WR8 will  
supersede flag transmission and the opening flag will  
not be transmitted.  
If the Transmit Enable bit is set to 1 when an underrun  
occurs, then the state of the Tx Underrun/EOM bit and  
the Abort/Flag on Underrun bit in WR10 (D2) determine  
the action taken by the transmitter. The Abort/Flag on  
Underrun bit may be set or reset by the processor,  
whereas the Tx Underrun/EOM bit is set by the transmit-  
ter and can only be reset by the processor via the Reset  
Tx Underrun/EOM Command in WR0.  
On the CMOS Am85C30, if bit D0 of WR15 is set to 1 and  
the ESCC is programmed for SDLC operation, an option  
is provided via bit D0 of WR7that eliminates this re-  
quirement. If bit D0 of WR7is set to 1 and a character is  
written to the Transmit Buffer while the transmitter is  
mark idling, the Mark/Flag Idle bit in WR10 need not be  
reset to 0 in order to have the opening flag sent because  
the transmitter will automatically send it before com-  
mencing to send data.  
If the Tx Underrun/EOM bit is set to 1 when an underrun  
occurs, the transmitter will close the frame by sending a  
flag; however, if this bit is set to 0, the frame data will be  
appended with either the accumulated CRC characters  
followed by a flag or an abort pattern followed by a flag,  
dependingonthestateoftheAbort/FlagonUnderrunbit  
in the WR10 (D2). In either case, after the closing flag is  
sent, the transmitter will idle the transmission line as  
specified by the Mark/Flag Idle bit D3 in WR10.  
In addition, as long as bit D0 of WR15 and bit D1 of WR7′  
are set to 1, the CRC transmit generator will be auto-  
matically preset to the initial state programmed by bit D7  
of WR10 (so the Reset Tx CRC Generator command is  
also not necessary), and the Tx Underrun/EOM latch  
willberesetautomaticallyoneverynewframesent. This  
ensures that an opening flag and proper CRC genera-  
tion and transmission will always be sent without proc-  
essor intervention under varying bus latency conditions.  
Hence, if the CRC check characters are to be properly  
appended to a frame, the Abort/Flag on Underrun bit  
must be set to 0, and the Reset Tx Underrun/EOM Com-  
mand must be issued after the first but before the last  
character is written to the Transmit Buffer. This will en-  
sure that either an abort or the CRC will be transmitted if  
an underrun occurs. Normally, the Abort/Flag on Under-  
run bit in WR10 should be set to 1 around the same time  
that the Tx Underrun/EOM bit is reset so that an abort  
will be sent if the transmitter accidentally underruns, and  
then set to 0 near the end of the frame to allow the cor-  
rect transmission of CRC.  
Auto Transmit CRC Generator Preset  
The NMOS Am8530H does not automatically preset the  
CRC generator prior to frame transmission. This must  
be done in software, usually during the initialization rou-  
tine. This is accomplished by issuing the Reset Tx CRC  
Generator Command via WR0. For proper results, this  
command must be issued while the transmitter is en-  
abled and idling and before any data are written to the  
Transmit Buffer.  
On the Am85C30, if bit D0 of WR15 is set to 1, the option  
of having the Tx Underrun/EOM bit reset automatically  
at the start of every frame is provided via bit D1 of WR7.  
This helps alleviate the software burden of having to re-  
spond within one character time when high-speed data  
are being sent.  
SDLC/HDLC NRZI Transmitter Disabling  
In addition, if CRC is to be used, the transmit CRC gen-  
erator must be enabled by setting bit D0 of WR5 to 1.  
CRC is normally calculated on all characters between  
openingandclosingflags, sothisbitshouldbesetto1at  
initialization and never changed.  
On the NMOS Am8530H, if NRZI encoding is being  
used and the transmitter is disabled, the state of the TxD  
pin will depend on the last bit sent. That is, the TxD pin  
may either idle in a Low or High state as shown in  
Figure 18.  
On the CMOS Am85C30, setting bit D0 of WR15 to 1 will  
cause the transmit CRC generator to be preset auto-  
matically every time an opening flag is sent, so the Re-  
set Tx CRC Generator Command is not necessary.  
On the CMOS Am85C30, an option is provided that al-  
lows setting the TxD pin High when operating in SDLC  
mode with NRZI encoding enabled. If bit D0 of WR15 is  
set to 1, then bit D3 of WR7can be used to set the TxD  
pin High. Note that the operation of this bit is independ-  
ent of the Tx Enable bit in WR5. The Tx Enable bit in  
WR5 is used to disable and enable the transmitter,  
Auto Tx Underrun/EOM Latch Reset  
On the ESCC, the transmission of the CRC check char-  
acters is controlled by the Transmit CRC Enable bit in  
36  
Am85C30  
AMD  
1
1
0
0
1
1
1
1
1
1
0
0
Transmitter Disabled Here  
TxD Pin Output (NRZI Encoded)  
Hi  
Lo  
10216F-22  
Figure 18. Transmitter Disabling with NRZI Encoding  
whereas bit D3 of WR7acts as a pseudo transmitter dis-  
able and enable by just forcing the TxD pin High when  
set even though the transmitter may actually be mark or  
flag idling. Care must be used when setting this bit be-  
causeanycharacterbeingtransmittedatthetimethisbit  
is set will be “chopped off,” and data written to theTrans-  
mit Buffer while this bit is set will be lost.  
interrupt occurs, a read to RR2 emulates a hardware  
Interrupt Acknowledge cycle as it functions in Vectored  
mode. In this case the CPU must first read RR2 to deter-  
mine the internal interrupt source and then jump to the  
appropriate interrupt routine. Reading RR2 sets the IUS  
bit for the highest priority IP. After the interrupting condi-  
tion is cleared, the routine can then read RR3 to deter-  
mine if any other IPs are set and clear them. At the end  
of the interrupt routine, a Reset IUS command must be  
issued to unlock the internal daisy chain.  
When the transmit underrun occurs and the CRC and  
closing flag have been sent, bit D3 can be set to pull TxD  
High. When ready to start sending data again this bit  
must be reset to 0 before the first character is written to  
the Transmit Buffer. Note that resetting this bit causes  
the TxD pin to take whatever state the NRZI encoder is  
in at the time, so synchronization at the receiver may  
take longer because the first transition seen on the TxD  
pin may not coincide with a bit boundary. Note that in or-  
der for this to function properly, bits D3 and D2 of WR10  
must be set to 1 and 0, respectively.  
Since the CPU can acknowledge the ESCC of highest  
priority with a read of its RR2 interrupt vector, there is no  
need for an external daisy chain. IEI for all ESCC de-  
vices should be tied active High. When acknowledging  
an ESCC interrupt request, the CPU must issue one  
read to RR2 per interrupt request. The modified inter-  
rupt vector can be read from Channel B, or the original  
vector stored in WR2 can be read from Channel A.  
Either action will produce the same internal actions on  
the IUS logic. Note that the No Vector and Vector In-  
cludes Status bits in WR9 are ignored when bit D5 in  
WR9 is set to 1.  
Interrupt Masking Without INTACK  
The NMOS Am8530H’s ability to mask lower priority in-  
terrupts is done via the IUS bit. This bit is internal to the  
SCC and is not observable by the processor. Being able  
to automatically mask lower priority interrupts allows a  
modular approach to coding interrupt routines. How-  
ever, using the masking capabilities of the NMOS SCC  
requires that the INTACK cycle be generated. In stand-  
alone applications, having to generate INTACK through  
external hardware in order to use this capability is an  
unnecessary expense.  
2-Mb/s FM Data Transmission and  
Reception  
The 16-MHz version of the CMOS Am85C30  
(Am85C30-16) is capable of transmitting and receiving  
FM-encoded data at the rate of 2 Mb/s. This is accom-  
plished by applying a 32-MHz clock to the RTxC pin and  
assigning this waveform to drive the Internal Digital  
Phase-Locked Loop (DPLL) clock. This feature allows  
the user to send both clock and data information over  
the same line at 2 Mb/s and can eliminate external  
DPLLs required for high-speed NRZ data clock  
generation.  
On the CMOS Am85C30, if bit D5 in WR9 is set to 1, the  
INTACK cycle does not need to be generated in order to  
have the IUS bit set. This allows the user to respond to  
ESCC interrupt requests with a software acknowledg-  
ment through RR2. When bit D5 in WR9 is set and an  
Am85C30  
37  
AMD  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Voltage at any Pin  
Ambient Temperature (TA) . . . . . . . 0°C to +70°C  
Relative to VSS . . . . . . . . . . . . . . . . . –0.5 to+7.0 V  
Supply Voltage (VCC) . . . . . . . . . . . . . +5 V ± 10%  
Industrial (I) Devices  
Stresses above those listed under ABSOLUTE MAXIMUM  
RATINGS may cause permanent device failure. Functionality  
at or above these limits is not implied. Exposure to absolute  
maximum ratings for extended periods may affect device  
reliability.  
Ambient Temperature (TA) . . . . . –40°C to +85°C  
Supply Voltage (VCC) . . . . . . . . . . . . . . 5 V ±10%  
Military (M) Devices  
Case Temperature (TC) . . . . . . . –55°C to 125°C  
Supply Voltage (VCC) . . . . . . . . . . . . . . 5 V ±10%  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over COMMERCIAL operating range  
Parameter  
Symbol  
Parameter  
Description  
Test Conditions  
Min  
2.2  
Max  
VCC +0.3*  
0.8  
Unit  
V
VIH  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
Input Leakage  
Commercial  
VIL  
–0.3*  
2.4  
V
VOH1  
VOH2  
VOL  
IIL  
IOH = –1.6 mA  
IOH = –250 µA  
IOL = +2.0 mA  
0.4 V VIN 2.4 V  
0.4 V VOUT 2.4 V  
8.192 MHz  
V
VCC –0.8  
V
0.4  
V
±10.0  
±10.0  
µA  
µA  
IOL  
Output Leakage  
ICC1  
VCC Supply Current  
18  
18  
22  
22  
mA  
mA  
mA  
mA  
10 MHz  
12 MHz  
16.384 MHz  
Inputs at  
voltage rails,  
output unloaded  
CIN  
Input Capacitance  
10  
15  
20  
pF  
pF  
pF  
Unmeasured pins returned  
to ground = 1 MHz over  
specified temperature range  
COUT  
CMO  
Output Capacitance  
Bidirectional Capacitance  
*VIH Max and VIL Min not tested. Guaranteed by design.  
into the referenced pin. Standard conditions are as  
follows:  
Standard Test Conditions  
The characteristics below apply for the following stan-  
dard test conditions, unless otherwise noted. All  
voltages are referenced to GND. Positive current flows  
+4.5 V VCC +5.5 V  
GND = 0 V  
0°C TA 70°C  
SWITCHING TEST CIRCUITS  
Standard Test Dynamic Load Circuit  
Open-Drain Test Load  
+5 V  
IO L = 2 mA  
Threshold  
2.2 K  
Voltage  
From Output  
Under Test  
From Output  
Under Test  
VT= 1.4 V  
75 pF  
75 pF  
IOH = 250 µA  
10216F-23  
10216F-24  
38  
Am85C30  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range  
General Timing (see Figure 19)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max Unit  
1
2
3
TdPC(REQ)  
TdPC(W)  
PCLK to W/REQ Valid Delay  
PCLK to Wait Inactive Delay  
250  
350  
NA  
150  
250  
NA  
80  
180  
NA  
ns  
ns  
TsRXC(PC)  
RxC to PCLK Setup Time  
(Notes 1, 4 & 8)  
NA  
0
NA  
0
NA  
0
4
5
TsRXD(RXCr)  
ThRXD(RXCr)  
TsRXD(RXCf)  
ThRXD(RXCf)  
TsSY(RXC)  
RxD to RxC Setup Time  
(Xl Mode) (Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
RxD to RxC Hold Time  
(Xl Mode) (Note 1)  
150  
0
125  
0
50  
6
RxD to RxC Setup Time  
(Xl Mode) (Notes 1, 5)  
0
7
RxD to RxC Hold Time  
(Xl Mode) (Notes 1, 5)  
150  
–200  
5TcPC  
NA  
125  
–150  
5TcPC  
NA  
50  
8
SYNC to RxC Setup Time  
(Note 1)  
–100  
5TcPc  
NA  
9
ThSY(RXC)  
SYNC to RxC Hold Time  
(Note 1)  
10  
11  
12  
13  
TsTXC(PC)  
TxC to PCLK Setup Time  
(Notes 2, 4 & 8)  
TdTXCf(TXD)  
TdTXCr(TXD)  
TdTXD(TRX)  
TxC to TxD Delay (Xl Mode)  
(Note 2)  
200  
200  
200  
150  
150  
140  
80  
80  
80  
ns  
ns  
ns  
TxC to TxD Delay (Xl Mode)  
(Notes 2, 5)  
TxD to TRxC Delay  
(Send Clock Echo)  
14a  
14b  
15a  
15b  
16a  
16b  
17  
TwRTXh  
TwRTxh(E)  
TwRTXI  
TwRTXl(E)  
TcRTX  
RTxC High Width (Note 6)  
RTxC High Width (Note 9)  
RTxC Low Width (Note 6)  
RTxC Low Width (Note 9)  
RTxC Cycle Time (Notes 6, 7)  
RTxC Cycle Time (Note 9)  
150  
50  
120  
40  
80  
15.6  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
150  
50  
120  
40  
15.6  
244  
31.25  
62  
488  
125  
400  
100  
100  
120  
120  
400  
120  
120  
TcRTx(E)  
TcRTXX  
TwTRXh  
TwTRXI  
TcTRX  
Crystal Oscillator Period (Note 3) 125  
1000  
1000  
1000  
18  
TRxC High Width (Note 6)  
TRxC Low Width (Note 6)  
TRxC Cycle Time (Notes 6, 7)  
DCD or CTS Pulse Width  
SYNC Pulse Width  
150  
150  
488  
200  
200  
80  
19  
80  
20  
244  
70  
21  
TwEXT  
22  
TwSY  
70  
Notes:  
1. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
2. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
3. Both RTxC and SYNC have 30-pF capacitors to ground connected to them.  
4. Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between  
RxC and PCLK or TxC and PCLK is required.  
5. Parameter applies only to FM encoding/decoding.  
6. Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to  
chip PCLK requirements.  
7. The maximum receive or transmit data is 1/4 PCLK.  
8. External PCLK to RxC or TxC synchronization requirement eliminated for PCLK divide-by-four operation.  
TRxC and RTxC rise and fall times are identical to PCLK. Reference timing specs Tfpc and Trpc.  
Tx and Rx input clock slow rates should be kept to a maximum of 30 ns. All parameters related to input CLK edges  
should be referenced at the point at which the transition begins or ends, whichever is the worst case.  
9. ENHANCED FEATURE—RTxC used as input to internal DPLL only.  
Am85C30  
39  
AMD  
SWITCHING TEST INPUT/OUTPUT WAVEFORM  
2.4 V  
2.0 V  
Test  
Points  
0.8 V  
2.0 V  
0.8 V  
0.4 V  
10216F-25  
AC testing: Inputs are driven at 2.4 V for a logic 1 and 0.4 V for a logic 0.  
Timing measurements are made at 2.0 V for a logic 1 and 0.8 V for logic 0.  
PCLK  
1
W/REQ  
Request  
2
W/REQ  
Wait  
3
RTxC, TRxC  
Receive  
4
5
6
7
RxD  
8
9
SYNC  
External  
10  
TRxC RTxC  
Transmit  
12  
11  
TxD  
13  
TRxC  
Output  
14  
15  
RTxC  
16  
17  
TRxC  
18  
19  
20  
CTS, DCD, R1  
21  
21  
SYNC  
Input  
22  
22  
10216F-26  
Figure 19. General Timing  
Am85C30  
40  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
System Timing (see Figure 20)  
10 MHz  
Min Max Unit  
8.192 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
1
TdRXC(REQ)  
RXC W/REQ Valid Delay  
8
12  
8
12  
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
(Note 2)  
2
3
TdRXC(W)  
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
4
14  
7
8
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
7a  
7b  
8
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
Valid Delay (Note 1)  
2
6
2
6
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Unit  
1
TdRXC(REQ)  
TdRXC(W)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
14  
7
TcPc  
2
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
3
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
7a  
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
7b  
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
2
6
Valid Delay (Note 1)  
Notes:  
1. Open-drain output, measured with open-drain test load.  
2. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
4. Parameter applies to Enhanced Request mode only.  
Am85C30  
41  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
Read and Write Timing (see Figure 21)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max Unit  
1
2
TwPCI  
PCLK Low Width  
50  
50  
2000  
2000  
15  
40  
40  
2000  
2000  
12  
26  
26  
2000  
2000  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TwPCh  
TfPC  
PCLK High Width  
3
PCLK Fall Time  
4
TrPC  
PCLK Rise Time  
15  
12  
8
5
TcPC  
PCLK Cycle Time  
122  
70  
0
4000  
100  
50  
0
4000  
61  
35  
0
4000  
6
TsA(WR)  
ThA(WR)  
TsA(RD)  
ThA(RD)  
TsIA(PC)  
TsIA(WR)  
Address to WR Setup Time  
Address to WR Hold Time  
Address to RD Setup Time  
Address to RD Hold Time  
INTACK to PCLK Setup Time  
7
8
70  
0
50  
0
35  
0
9
10  
11  
20  
145  
20  
120  
15  
70  
INTACK to WR Setup Time  
(Note 1)  
12  
13  
ThIA(WR)  
TsIA(RD)  
INTACK to WR Hold Time  
0
0
0
ns  
ns  
INTACK to RD Setup Time  
145  
120  
70  
(Note 1)  
14  
15  
16  
17  
18  
19  
ThIAi(RD)  
ThIA(PC)  
INTACK to RD Hold Time  
INTACK to PCLK Hold Time  
CE Low to WR Setup Time  
CE to WR Hold Time  
0
40  
0
0
30  
0
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
TsCEI(WR)  
ThCE(WR)  
TsCEh(WR)  
TsCEI(RD)  
0
0
0
CE High to WR Setup Time  
60  
0
50  
0
30  
0
CE Low to RD Setup Time  
(Note 1)  
20  
21  
ThCE(RD)  
CE to RD Hold Time (Note1)  
0
0
0
ns  
ns  
TsCEh(RD)  
CE High to RD Setup Time  
60  
50  
30  
(Note 1)  
22  
23  
24  
25  
26  
TwRDI  
RD Low Width (Note 1)  
150  
0
125  
0
75  
0
ns  
ns  
ns  
ns  
ns  
TdRD(DRA)  
TdRDr(DR)  
TdRDf(DR)  
TdRD(DRz)  
RD to Read Data Active Delay  
RD to Read Data Not Valid Delay  
RD to Read Data Valid Delay  
0
0
0
140  
40  
120  
35  
70  
20  
RD to Read Data Float Delay  
(Note 2)  
Notes:  
1. Parameter does not apply to Interrupt Acknowledge transactions.  
2. Float delay is defined as the time at which the data bus is released from its drive state with a maximum DC load and  
minimum AC load.  
42  
Am85C30  
AMD  
RTxC TRxC  
Receive  
W/REQ  
Request  
1
2
W/REQ  
Wait  
SYNC  
Output  
3
INT  
4
RTxC  
TRxC  
Transmit  
W/REQ  
Request  
5
6
W/REQ  
Wait  
DTR REQ  
Request  
7
INT  
8
CTS, DCD, RI  
SYNC  
Input  
9
INT  
10  
10216F-27  
Figure 20. System Timing  
Am85C30  
43  
AMD  
PCLK  
1
2
3
5
6
4
A/B, D/C  
7
10  
8
9
11  
INTACK  
CE  
10  
12  
13  
14  
15  
16  
18  
21  
RD  
19  
22  
20  
D7 –D0  
Read  
Valid  
17  
23  
24  
25  
27  
26  
WR  
28  
D7 –D0  
Write  
29  
Valid  
31  
30  
W/REQ  
Wait  
32  
W/REQ  
Request  
35  
33  
DTR/REQ  
Request  
34  
36  
INT  
37  
10216F-28  
Figure 21. Read and Write Timing  
44  
Am85C30  
AMD  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
Interrupt Acknowledge Timing, Reset Timing, Cycle Timing (see Figures 22–24)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
27  
TdA(DR)  
Address Required Valid to Read  
Data Valid Delay  
220  
160  
100  
ns  
28  
29  
TwWRI  
WR Low Width  
150  
0
125  
0
75  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TdWRf(DW)  
ThDW(WR)  
TdWR(W)  
WR to Write Data Valid  
35  
35  
20  
30  
Write Data to WR Hold Time  
WR to Wait Valid Delay (Note 2)  
RD to Wait Valid Delay (Note 2)  
WR to W/REQ Not Valid Delay  
RD to W/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
RD to DTR/REQ Not Valid Delay  
PCLK to INT Valid Delay (Note 2)  
31  
170  
170  
100  
100  
50  
50  
70  
70  
32  
TdRD(W)  
33  
TdWRf(REQ)  
TdRDf(REQ)  
TdWRr(REQ)  
TdWRr(EREQ)  
TdRDr(REQ)  
TdPC(INT)  
TdIAi(RD)  
170  
120  
34  
170  
120  
35a  
35b  
36  
4.0TcPc  
120  
4.0TcPc  
120  
4.0TcPc ns  
70  
NA  
175  
ns  
ns  
ns  
ns  
NA  
NA  
37  
500  
400  
38  
INTACK to RD (Acknowledge)  
Delay (Note 3)  
150  
150  
125  
125  
50  
75  
39  
40  
TwRDA  
RD (Acknowledge) Width  
ns  
ns  
TdRDA(DR)  
RD (Acknowledge) to Read  
140  
120  
70  
Data Valid Delay  
41  
42  
TsIEI(RDA)  
ThIEI(RDA)  
IEI to RD (Acknowledge) Setup  
Time  
95  
0
80  
0
50  
0
ns  
ns  
IEI to RD (Acknowledge) Hold  
Time  
43  
44  
45  
46  
47  
48  
TdIEI(IEO)  
TdPC(IEO)  
TdRDA(INT)  
TdRD(WRQ)  
TdWRQ(RD)  
TwRES  
IEI to IEO Delay Time  
95  
80  
45  
80  
ns  
ns  
ns  
ns  
ns  
ns  
PCLK to IEO Delay  
200  
450  
175  
320  
RD to INT Inactive Delay (Note 2)  
RD to WR Delay for No Reset  
WR to RD Delay for No Reset  
200  
15  
15  
15  
15  
10  
10  
75  
WR and RD Coincident Low for  
150  
100  
Reset  
49  
Trc  
Valid Access Recovery Time  
(Note 1)  
3.5  
3.5  
3.5  
TcPc  
Notes:  
1. Parameter applies only between transactions involving the ESCC, if WR/RD falling edge is synchronized to PCLK  
falling edge, then TrC = 3TcPc.  
2. Open-drain output, measured with open-drain test load.  
3. Parameter is system dependent. For any SCC in the daisy chain, TdIAi(RD) must be greater than the sum of DdPC(IEO)  
for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEI(IEO) for each device separating  
them in the daisy chain.  
4. Parameter applies to Enhanced Request mode only.  
Am85C30  
45  
AMD  
WR  
RD  
48  
46  
47  
10216F-29  
Figure 22. Reset Timing  
CE  
49  
RD or WR  
10216F-30  
Figure 23. Cycle Timing  
PCLK  
10  
15  
INTACK  
14  
10  
38  
RD  
39  
23  
24  
D7 –D0  
Valid  
40  
26  
42  
41  
IEI  
44  
43  
IEO  
45  
INT  
10216F-31  
Figure 24. Interrupt Acknowledge Timing  
Am85C30  
46  
AMD  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range  
General Timing (see Figure 19)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max Unit  
1
2
3
TdPC(REQ)  
TdPC(W)  
PCLK to W/REQ Valid Delay  
PCLK to Wait Inactive Delay  
250  
350  
NA  
150  
250  
NA  
80  
180  
NA  
ns  
ns  
TsRXC(PC)  
RxC to PCLK Setup Time  
(Notes 1, 4 & 8)  
NA  
0
NA  
0
NA  
0
4
5
TsRXD(RXCr)  
ThRXD(RXCr)  
TsRXD(RXCf)  
ThRXD(RXCf)  
TsSY(RXC)  
RxD to RxC Setup Time  
(Xl Mode) (Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
RxD to RxC Hold Time  
(Xl Mode) (Note 1)  
150  
0
125  
0
50  
6
RxD to RxC Setup Time  
(Xl Mode) (Notes 1, 5)  
0
7
RxD to RxC Hold Time  
(Xl Mode) (Notes 1, 5)  
150  
–200  
5TcPC  
NA  
125  
–150  
5TcPC  
NA  
50  
8
SYNC to RxC Setup Time  
(Note 1)  
–100  
5TcPc  
NA  
9
ThSY(RXC)  
SYNC to RxC Hold Time  
(Note 1)  
10  
11  
12  
13  
TsTXC(PC)  
TxC to PCLK Setup Time  
(Notes 2, 4 & 8)  
TdTXCf(TXD)  
TdTXCr(TXD)  
TdTXD(TRX)  
TxC to TxD Delay (Xl Mode)  
(Note 2)  
200  
200  
200  
150  
150  
140  
80  
80  
80  
ns  
ns  
ns  
TxC to TxD Delay (Xl Mode)  
(Notes 2, 5)  
TxD to TRxC Delay  
(Send Clock Echo)  
14a  
14b  
15a  
15b  
16a  
16b  
17  
TwRTXh  
TwRTxh(E)  
TwRTXI  
TwRTXl(E)  
TcRTX  
RTxC High Width (Note 6)  
RTxC High Width (Note 9)  
RTxC Low Width (Note 6)  
RTxC Low Width (Note 9)  
RTxC Cycle Time (Notes 6, 7)  
RTxC Cycle Time (Note 9)  
150  
50  
120  
40  
80  
15.6  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
150  
50  
120  
40  
15.6  
244  
31.25  
62  
488  
125  
400  
100  
100  
120  
120  
400  
120  
120  
TcRTx(E)  
TcRTXX  
TwTRXh  
TwTRXI  
TcTRX  
Crystal Oscillator Period (Note 3) 125  
1000  
1000  
1000  
18  
TRxC High Width (Note 6)  
TRxC Low Width (Note 6)  
TRxC Cycle Time (Notes 6, 7)  
DCD or CTS Pulse Width  
SYNC Pulse Width  
150  
150  
488  
200  
200  
80  
19  
80  
20  
244  
70  
21  
TwEXT  
22  
TwSY  
70  
Notes:  
1. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
2. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
3. Both RTxC and SYNC have 30-pF capacitors to ground connected to them.  
4. Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between  
RxC and PCLK or TxC and PCLK is required.  
5. Parameter applies only to FM encoding/decoding.  
6. Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to  
chip PCLK requirements.  
7. The maximum receive or transmit data is 1/4 PCLK.  
8. External PCLK to RxC or TxC synchronization requirement eliminated for PCLK divide-by-four operation.  
TRxC and RTxC rise and fall times are identical to PCLK. Reference timing specs Tfpc and Trpc.  
Tx and Rx input clock slow rates should be kept to a maximum of 30 ns. All parameters related to input CLK edges  
should be referenced at the point at which the transition begins or ends, whichever is the worst case.  
9. ENHANCED FEATURE—RTxC used as input to internal DPLL only.  
Am85C30  
47  
AMD  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range (continued)  
System Timing (see Figure 20)  
8.192 MHz  
10 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Unit  
1
TdRXC(REQ)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
8
12  
TcPc  
2
3
TdRXC(W)  
RXC to Wait Inactive Delay  
8
14  
7
8
4
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
(Notes 1, 2)  
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
7a  
7b  
8
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
Valid Delay (Note 1)  
2
6
2
6
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Unit  
1
TdRXC(REQ)  
RXC W/REQ Valid Delay  
8
8
12  
TcPc  
(Note 2)  
2
TdRXC(W)  
RXC to Wait Inactive Delay  
(Notes 1, 2)  
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
3
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
7a  
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
7b  
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
Valid Delay (Note 1)  
2
6
Notes:  
1. Open-drain output, measured with open-drain test load.  
2. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
4. Parameter applies to Enhanced Request mode only.  
48  
Am85C30  
AMD  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range (continued)  
Read and Write Timing (see Figure 21)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max Unit  
1
2
TwPCI  
PCLK Low Width  
50  
50  
1000  
1000  
15  
40  
40  
1000  
1000  
12  
26  
26  
1000  
1000  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TwPCh  
TfPC  
PCLK High Width  
3
PCLK Fall Time  
4
TrPC  
PCLK Rise Time  
15  
12  
8
5
TcPC  
PCLK Cycle Time  
122  
70  
0
2000  
100  
50  
0
2000  
61  
35  
0
2000  
6
TsA(WR)  
ThA(WR)  
TsA(RD)  
ThA(RD)  
TsIA(PC)  
TsIA(WR)  
Address to WR Setup Time  
Address to WR Hold Time  
Address to RD Setup Time  
Address to RD Hold Time  
INTACK to PCLK Setup Time  
7
8
70  
0
50  
0
35  
0
9
10  
11  
20  
145  
20  
120  
15  
70  
INTACK to WR Setup Time  
(Note 1)  
12  
13  
ThIA(WR)  
TsIA(RD)  
INTACK to WR Hold Time  
0
0
0
ns  
ns  
INTACK to RD Setup Time  
145  
120  
70  
(Note 1)  
14  
15  
16  
17  
18  
19  
ThIAi(RD)  
ThIA(PC)  
INTACK to RD Hold Time  
INTACK to PCLK Hold Time  
CE Low to WR Setup Time  
CE to WR Hold Time  
0
40  
0
0
30  
0
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
TsCEI(WR)  
ThCE(WR)  
TsCEh(WR)  
TsCEI(RD)  
0
0
0
CE High to WR Setup Time  
60  
0
50  
0
30  
0
CE Low to RD Setup Time  
(Note 1)  
20  
21  
ThCE(RD)  
CE to RD Hold Time (Note1)  
0
0
0
ns  
ns  
TsCEh(RD)  
CE High to RD Setup Time  
60  
50  
30  
(Note 1)  
22  
23  
24  
25  
26  
TwRDI  
RD Low Width (Note 1)  
150  
0
125  
0
75  
0
ns  
ns  
ns  
ns  
ns  
TdRD(DRA)  
TdRDr(DR)  
TdRDf(DR)  
TdRD(DRz)  
RD to Read Data Active Delay  
RD to Read Data Not Valid Delay  
RD to Read Data Valid Delay  
0
0
0
140  
40  
125  
35  
70  
20  
RD to Read Data Float Delay  
(Note 2)  
Notes:  
1. Parameter does not apply to Interrupt Acknowledge transactions.  
2. Float delay is defined as the time at which the data bus is released from its drive state with a maximum DC load and  
minimum AC load.  
Am85C30  
49  
AMD  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range (continued)  
Interrupt Acknowledge Timing, Reset Timing, Cycle Timing (see Figures 22–24)  
8.192 MHz  
10 MHz  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
27  
TdA(DR)  
Address Required Valid to Read  
Data Valid Delay  
220  
160  
100  
ns  
28  
29  
TwWRI  
WR Low Width  
150  
0
125  
0
75  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TdWRf(DW)  
ThDW(WR)  
TdWR(W)  
WR to Write Data Valid  
35  
35  
20  
30  
Write Data to WR Hold Time  
WR to Wait Valid Delay (Note 2)  
RD to Wait Valid Delay (Note 2)  
WR to W/REQ Not Valid Delay  
RD to W/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
RD to DTR/REQ Not Valid Delay  
PCLK to INT Valid Delay (Note 2)  
31  
170  
170  
100  
100  
50  
50  
70  
70  
32  
TdRD(W)  
33  
TdWRf(REQ)  
TdRDf(REQ)  
TdWRr(REQ)  
TdWRr(EREQ)  
TdRDr(REQ)  
TdPC(INT)  
TdIAi(RD)  
170  
120  
34  
170  
120  
35a  
35b  
36  
4.0TcPc  
120  
4.0TcPc  
120  
4.0TcPc ns  
70  
NA  
175  
ns  
ns  
ns  
ns  
NA  
NA  
37  
500  
400  
38  
INTACK to RD (Acknowledge)  
Delay (Note 3)  
150  
150  
125  
125  
50  
75  
39  
40  
TwRDA  
RD (Acknowledge) Width  
ns  
ns  
TdRDA(DR)  
RD (Acknowledge) to Read  
140  
120  
70  
Data Valid Delay  
41  
42  
TsIEI(RDA)  
ThIEI(RDA)  
IEI to RD (Acknowledge) Setup  
Time  
95  
0
80  
0
50  
0
ns  
ns  
IEI to RD (Acknowledge) Hold  
Time  
43  
44  
45  
46  
47  
48  
TdIEI(IEO)  
TdPC(IEO)  
TdRDA(INT)  
TdRD(WRQ)  
TdWRQ(RD)  
TwRES  
IEI to IEO Delay Time  
95  
80  
45  
80  
ns  
ns  
ns  
ns  
ns  
ns  
PCLK to IEO Delay  
200  
450  
175  
320  
RD to INT Inactive Delay (Note 2)  
RD to WR Delay for No Reset  
WR to RD Delay for No Reset  
200  
15  
15  
15  
15  
10  
10  
75  
WR and RD Coincident Low for  
150  
100  
Reset  
49  
Trc  
Valid Access Recovery Time  
(Note 1)  
3.5  
3.5  
3.5  
TcPc  
Notes:  
1
Parameter applies only between transactions involving the ESCC, if WR/RD falling edge is synchronized to PCLK  
falling edge, then TrC = 3TcPc.  
2. Open-drain output, measured with open-drain test load.  
3. Parameter is system dependent. For any SCC in the daisy chain, TdIAi(RD) must be greater than the sum of DdPC(IEO)  
for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEI(IEO) for each device separating  
them in the daisy chain.  
4. Parameter applies to Enhanced Request mode only.  
50  
Am85C30  
AMD  
PHYSICAL DIMENSIONS*  
CD 040  
2.035  
2.080  
.098  
MAX  
.565  
.605  
1
.050  
.065  
.100  
BSC  
TOP VIEW  
.005  
MIN  
.590  
.615  
.008  
.012  
.160  
.220  
.015  
.060  
.150  
MIN  
.125  
.160  
0°  
15°  
06824D  
BZ13 CD 040  
5/20/92 c dc  
.700  
MAX  
.015  
.022  
SIDE VIEW  
END VIEW  
*For reference only. BSC is an ANSI standard for Basic Space Centering.  
Am85C30  
51  
AMD  
PHYSICAL DIMENSIONS  
CL 044  
.500  
BSC  
.250  
BSC  
.050  
BSC  
.250  
BSC  
.045  
.055  
.500  
BSC  
.006  
.022  
.022  
.028  
.015  
MIN  
.003  
.015  
.640  
.660  
.054  
.088  
.040 X 45° REF. (3x)  
(OPTIONAL)  
.625  
BSC  
.064  
.100  
.640 .625  
.660 BSC  
INDEX CORNER  
.020 X 45° REF.  
(OPTIONAL)  
PLANE 2  
PLANE 1  
06825E  
AW 29  
8/15/91 c dc  
52  
Am85C30  
AMD  
PHYSICAL DIMENSIONS  
PD 040  
2.040  
2.080  
.530  
.580  
1
.045  
.065  
.090  
.110  
.005  
MIN  
TOP VIEW  
.600  
.625  
.008  
.015  
.140  
.225  
.015  
.060  
.120  
.160  
0°  
7°  
.630  
.700  
06823E  
CJ76 PD 040  
1/21/93 c dc  
.014  
.022  
END VIEW  
SIDE VIEW  
PL 044  
.020  
MIN  
.042  
.048  
.050  
REF  
.042  
.056  
.025  
R
.045  
.026  
.032  
.013  
.021  
.685 .650  
.695 .656  
.500 .590  
REF .630  
.009  
.015  
.650  
.656  
.685  
.695  
.090  
.120  
06752F  
CJ48 PL 044  
1/21/93 c dc  
.165  
.180  
TOP VIEW  
SIDE VIEW  
Trademarks  
Copyright 1993 Advanced Micro Devices, Inc. All rights reserved.  
AMD is a registered trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Am85C30  
53  
AMENDMENT  
Advanced  
Micro  
Am85C30  
Enhanced Serial Communications Controller  
Devices  
SUMMARY  
This amendment adds information to the Final Data  
Sheet on the Commercial and Industrial 20 MHz speed  
grades. This latest offering complements the 8, 10, and  
16 MHz speed grades currently offered by AMD.  
A few minor inaccuracies are also corrected and a clari-  
fication section on Hardware Reset in Software that had  
been previously available as a separate page is now re-  
printed here for ease of reference.  
Pages 39 and 47: SWITCHING  
CHARACTERISTICS  
DETAILS  
Page 1: DISTINCTIVE CHARACTERISTICS  
In note 8 change from “clock slow rates” to “clock  
slew rates”.  
Add 20 MHz/5.0 Mbyte/s under “Fastest data rate  
of any Am85C30” bullet.  
Pages 39–50: SWITCHING CHARACTERISTICS  
Page 4: Ordering Information, Commodity  
Products  
Add minimum and maximum limits, where appro-  
priate, for the 20 MHz speed grade now being  
offered.  
Change word from “Commodity” to “Standard”  
Add Am85C30-20 to valid combinations and  
-20 = 20 MHz to SPEED OPTION  
Note: Minor corrections should be made on the exist-  
ing data sheets. However, for ease of use, pages  
38–50 as well as the page on Hardware Reset in Soft-  
ware are printed with this amendment.  
Page 5: OrderingInformation, IndustrialProducts  
Add Am85C30-20 to valid combinations and  
-20 = 20 MHz to SPEED OPTION  
Change package description from “J = 44-Pin  
Leadless Chip Carrier (PL 044) ” to “J = 44-Pin  
Plastic Leaded Chip Carrier (PL 044) ”.  
Page 38: DC CHARACTERISTICS  
Delete ICC1 for the 12 MHz speed grade since this  
speed is not offered.  
Add ICC1 for the 20 MHz speed grade now being  
offered.  
Change symbol from “CMO” to “CI/O” and add note  
on Capacitance.  
Publication# 10216 Rev. F Amendment/1  
Issue Date: December 1993  
AMD  
A M E N D M E N T  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature (TA) . . . . . . . . . . 0°C to +70°C  
Supply Voltage (VCC) . . . . . . . . . . . . . . . . +5 V ± 10%  
Voltage at any Pin  
Relative to VSS . . . . . . . . . . . . . . . –0.5 to+7.0 V  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . –40°C to +85°C  
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . 5 V ± 10%  
Stresses above those listed under Absolute Maximum Rat-  
ings may cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to absolute maxi-  
mum ratings for extended periods may affect device reliability.  
Military (M) Devices  
Case Temperature (TC) . . . . . . . . . –55°C to +125°C  
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . 5 V ± 10%  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over operating range unless otherwise specified  
Parameter  
Symbol  
Parameter  
Description  
Test Conditions  
Min  
Max  
Unit  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output High Voltage  
Output Low Voltage  
Input Leakage  
2.2  
–0.3*  
VCC +0.3*  
V
V
0.8  
VOH1  
VOH2  
VOL  
IIL  
IOH = –1.6 mA  
IOH = –250 µA  
IOL = +2.0 mA  
0.4 V VIN 2.4 V  
0.4 V VOUT 2.4 V  
8.192 MHz  
2.4  
V
VCC –0.8  
V
0.4  
V
±10.0  
±10.0  
µA  
µA  
IOL  
Output Leakage  
ICC1  
VCC Supply Current  
18  
18  
22  
22  
mA  
mA  
mA  
mA  
10 MHz  
Inputs at  
voltage rails,  
output unloaded  
16.384 MHz  
20 MHz  
CIN**  
COUT**  
CI/O**  
Input Capacitance  
10  
15  
20  
pF  
pF  
pF  
Unmeasured pins returned  
to ground = 1 MHz over  
specified temperature range  
Output Capacitance  
Bidirectional Capacitance  
*VIH Max and VIL Min not tested. Guaranteed by design.  
**These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified  
where capacitance may be affected.  
into the referenced pin. Standard conditions are as  
follows:  
Standard Test Conditions  
The characteristics below apply for the following stan-  
dard test conditions, unless otherwise noted. All  
voltages are referenced to GND. Positive current flows  
+4.5 V VCC +5.5 V  
GND = 0 V  
0°C TA 70°C  
SWITCHING TEST CIRCUITS  
Standard Test Dynamic Load Circuit  
Open-Drain Test Load  
+5 V  
IO L = 2 mA  
Threshold  
2.2K  
Voltage  
From Output  
Under Test  
From Output  
Under Test  
VT= 1.4 V  
75 pF  
75 pF  
IOH = 250 µA  
10216F/1-1  
10216F/1-2  
2
Am85C30  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range unless otherwise  
specified—General Timing (see Figure 19)  
8.192 MHz  
10 MHz  
16.384 MHz  
20 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min Max Min Max  
Min Max Min Max Unit  
1
2
3
TdPC(REQ)  
TdPC(W)  
PCLK to W/REQ Valid Delay  
PCLK to Wait Inactive Delay  
250  
350  
NA  
150  
250  
NA  
80  
180  
NA  
70  
ns  
170 ns  
NA ns  
TsRXC(PC)  
RxC to PCLK Setup Time  
(Notes 1, 4 & 8)  
NA  
0
NA  
0
NA  
0
NA  
0
4
5
6
7
8
9
TsRXD(RXCr)  
ThRXD(RXCr)  
TsRXD(RXCf)  
ThRXD(RXCf)  
TsSY(RXC)  
RxD to RxC Setup Time  
(Xl Mode) (Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
RxD to RxC Hold Time  
(Xl Mode) (Note 1)  
150  
0
125  
0
50  
45  
RxD to RxC Setup Time  
(Xl Mode) (Notes 1, 5)  
0
0
RxD to RxC Hold Time  
(Xl Mode) (Notes 1, 5)  
150  
–200  
5TcPc  
NA  
125  
–150  
5TcPc  
NA  
50  
45  
SYNC to RxC Setup Time  
(Note 1)  
–100  
5TcPc  
NA  
–90  
5TcPc  
NA  
ThSY(RXC)  
SYNC to RxC Hold Time  
(Note 1)  
10 TsTXC(PC)  
11 TdTXCf(TXD)  
12 TdTXCr(TXD)  
13 TdTXD(TRX)  
TxC to PCLK Setup Time  
(Notes 2, 4 & 8)  
TxC to TxD Delay (Xl Mode)  
(Note 2)  
200  
200  
200  
150  
150  
140  
80  
80  
80  
70 ns  
70 ns  
70 ns  
TxC to TxD Delay (Xl Mode)  
(Notes 2, 5)  
TxD to TRxC Delay  
(Send Clock Echo)  
14a TwRTXh  
14b TwRTxh(E)  
15a TwRTXI  
15b TwRTXl(E)  
16a TcRTX  
RTxC High Width (Note 6)  
RTxC High Width (Note 9)  
RTxC Low Width (Note 6)  
RTxC Low Width (Note 9)  
RTxC Cycle Time (Notes 6, 7)  
RTxC Cycle Time (Note 9)  
Crystal Oscillator Period (Note 3)  
TRxC High Width (Note 6)  
TRxC Low Width (Note 6)  
TRxC Cycle Time (Notes 6, 7)  
DCD or CTS Pulse Width  
SYNC Pulse Width  
150  
50  
120  
40  
80  
15.6  
80  
70  
15.6  
70  
ns  
ns  
ns  
ns  
ns  
ns  
150  
50  
120  
40  
15.6  
244  
31.25  
62  
15.6  
200  
31.25  
488  
125  
400  
100  
16b TcRTx(E)  
17 TcRTXX  
18 TwTRXh  
19 TwTRXI  
20 TcTRX  
125 1000 100 1000  
1000  
61 1000 ns  
150  
150  
488  
200  
200  
120  
120  
400  
120  
120  
80  
70  
70  
ns  
ns  
ns  
ns  
ns  
80  
244  
70  
200  
60  
21 TwEXT  
22 TwSY  
70  
60  
Notes:  
1. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
2. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
3. Both RTxC and SYNC have 30-pF capacitors to ground connected to them.  
4. Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between  
RxC and PCLK or TxC and PCLK is required.  
5. Parameter applies only to FM encoding/decoding.  
6. Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to  
chip PCLK requirements.  
7. The maximum receive or transmit data is 1/4 PCLK.  
8. External PCLK to RxC or TxC synchronization requirement eliminated for PCLK divide-by-four operation.  
TRxC and RTxC rise and fall times are identical to PCLK. Reference timing specs Tfpc and Trpc.  
Tx and Rx input clock slew rates should be kept to a maximum of 30 ns. All parameters related to input CLK edges  
should be referenced at the point at which the transition begins or ends, whichever is the worst case.  
9. ENHANCED FEATURE—RTxC used as input to internal DPLL only.  
Am85C30  
3
AMD  
A M E N D M E N T  
SWITCHING TEST INPUT/OUTPUT WAVEFORM  
2.4 V  
2.0 V  
Test  
0.8 V  
2.0 V  
0.8 V  
Points  
0.4 V  
10216F/1-3  
AC testing: Inputs are driven at 2.4 V for a logic 1 and 0.4 V for a logic 0.  
Timing measurements are made at 2.0 V for a logic 1 and 0.8 V for logic 0.  
PCLK  
1
W/REQ  
Request  
2
W/REQ  
Wait  
3
RTxC, TRxC  
Receive  
4
5
6
7
RxD  
8
9
SYNC  
External  
10  
TRxC RTxC  
Transmit  
12  
11  
TxD  
13  
TRxC  
Output  
14  
15  
RTxC  
16  
17  
TRxC  
18  
19  
20  
CTS, DCD, R1  
21  
21  
SYNC  
Input  
22  
22  
10216F/1-4  
Figure 19. General Timing  
Am85C30  
4
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
System Timing (see Figure 20)  
10 MHz  
8.192 MHz  
Max  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Min  
Max  
Unit  
1
TdRXC(REQ)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
14  
7
8
12  
TcPc  
2
3
TdRXC(W)  
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
4
8
4
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
7a  
7b  
8
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
2
6
2
6
Valid Delay (Note 1)  
16.384 MHz  
20 MHz  
Parameter  
Symbol  
Parameter  
Description  
Min  
Max  
No.  
Min  
Max  
Unit  
1
TdRXC(REQ)  
TdRXC(W)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
8
12  
TcPc  
2
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
4
14  
7
8
4
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
3
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
7a  
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
7b  
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
2
6
2
6
Valid Delay (Note 1)  
Notes:  
1. Open-drain output, measured with open-drain test load.  
2. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
4. Parameter applies to Enhanced Request mode only.  
Am85C30  
5
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
Read and Write Timing (see Figure 21)  
8.192 MHz  
10 MHz  
16.384 MHz  
20 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min Max Min Max  
Min Max Min Max Unit  
1
2
3
4
5
6
7
8
9
TwPCI  
TwPCh  
TfPC  
PCLK Low Width  
50  
50  
2000  
2000  
15  
40  
40  
2000  
2000  
12  
26  
26  
2000  
2000  
8
22 2000 ns  
22 2000 ns  
PCLK High Width  
PCLK Fall Time  
5
5
ns  
ns  
TrPC  
PCLK Rise Time  
15  
12  
8
TcPC  
PCLK Cycle Time  
122 4000 100 4000  
61  
35  
0
4000  
50 2000 ns  
TsA(WR)  
ThA(WR)  
TsA(RD)  
ThA(RD)  
Address to WR Setup Time  
Address to WR Hold Time  
Address to RD Setup Time  
Address to RD Hold Time  
INTACK to PCLK Setup Time  
70  
0
50  
0
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
70  
0
50  
0
35  
0
30  
0
10 TsIA(PC)  
11 TsIA(WR)  
20  
145  
20  
120  
15  
70  
15  
65  
INTACK to WR Setup Time  
(Note 1)  
12 ThIA(WR)  
13 TsIA(RD)  
INTACK to WR Hold Time  
0
0
0
0
ns  
ns  
INTACK to RD Setup Time  
(Note 1)  
145  
120  
70  
65  
14 ThIAi(RD)  
15 ThIA(PC)  
16 TsCEI(WR)  
17 ThCE(WR)  
18 TsCEh(WR)  
19 TsCEI(RD)  
INTACK to RD Hold Time  
INTACK to PCLK Hold Time  
CE Low to WR Setup Time  
CE to WR Hold Time  
0
40  
0
0
30  
0
0
15  
0
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
CE High to WR Setup Time  
60  
0
50  
0
30  
0
25  
0
CE Low to RD Setup Time  
(Note 1)  
20 ThCE(RD)  
21 TsCEh(RD)  
CE to RD Hold Time (Note1)  
0
0
0
0
ns  
ns  
CE High to RD Setup Time  
(Note 1)  
60  
50  
30  
25  
22 TwRDI  
RD Low Width (Note 1)  
150  
0
125  
0
75  
0
65  
0
ns  
ns  
ns  
ns  
23 TdRD(DRA)  
24 TdRDr(DR)  
25 TdRDf(DR)  
26 TdRD(DRz)  
RD to Read Data Active Delay  
RD to Read Data Not Valid Delay  
RD to Read Data Valid Delay  
0
0
0
0
140  
40  
120  
35  
70  
20  
65  
RD to Read Data Float Delay  
(Note 2)  
20 ns  
Notes:  
1. Parameter does not apply to Interrupt Acknowledge transactions.  
2. Float delay is defined as the time at which the data bus is released from its drive state with a maximum DC load and  
minimum AC load.  
6
Am85C30  
AMD  
A M E N D M E N T  
RTxC TRxC  
Receive  
W/REQ  
Request  
1
2
W/REQ  
Wait  
SYNC  
Output  
3
INT  
4
RTxC  
TRxC  
Transmit  
W/REQ  
Request  
5
6
W/REQ  
Wait  
DTR REQ  
Request  
7
INT  
8
CTS, DCD, RI  
SYNC  
Input  
9
INT  
10  
10216F/1-5  
Figure 20. System Timing  
Am85C30  
7
AMD  
PCLK  
A M E N D M E N T  
1
2
3
5
6
4
A/B, D/C  
7
10  
8
9
11  
INTACK  
CE  
10  
12  
13  
14  
15  
16  
18  
21  
RD  
19  
22  
20  
D0–D7  
Read  
Valid  
17  
23  
24  
25  
27  
26  
WR  
28  
D0–D7  
Write  
29  
31  
Valid  
30  
W/REQ  
Wait  
32  
W/REQ  
Request  
35  
33  
DTR/REQ  
Request  
34  
36  
INT  
37  
10216F/1-6  
Figure 21. Read and Write Timing  
8
Am85C30  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued)  
Interrupt Acknowledge Timing, Reset Timing, Cycle Timing (see Figures 22–24)  
8.192 MHz  
10 MHz  
16.384 MHz  
20 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min Max Min Max  
Min Max Min Max Unit  
27 TdA(DR)  
Address Required Valid to Read  
Data Valid Delay  
220  
35  
160  
35  
100  
20  
90 ns  
ns  
28 TwWRI  
WR Low Width  
150  
0
125  
0
75  
0
65  
0
29 TdWRf(DW)  
30 ThDW(WR)  
31 TdWR(W)  
32 TdRD(W)  
WR to Write Data Valid  
20  
ns  
ns  
ns  
ns  
ns  
ns  
Write Data to WR Hold Time  
WR to Wait Valid Delay (Note 2)  
RD to Wait Valid Delay (Note 2)  
WR to W/REQ Not Valid Delay  
RD to W/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
170  
170  
100  
100  
50  
50  
50  
50  
65  
65  
33 TdWRf(REQ)  
34 TdRDf(REQ)  
35a TdWRr(REQ)  
170  
120  
70  
170  
120  
70  
4TcPc  
120  
4TcPc  
120  
4TcPc  
70  
4TcPc ns  
35b TdWRr(EREQ) WR to DTR/REQ Not Valid Delay  
65  
ns  
ns  
36 TdRDr(REQ)  
37 TdPC(INT)  
38 TdIAi(RD)  
RD to DTR/REQ Not Valid Delay  
PCLK to INT Valid Delay (Note 2)  
NA  
NA  
NA  
NA  
500  
400  
175  
160 ns  
ns  
INTACK to RD (Acknowledge)  
Delay (Note 3)  
150  
150  
125  
125  
50  
75  
45  
65  
39 TwRDA  
RD (Acknowledge) Width  
ns  
40 TdRDA(DR)  
RD (Acknowledge) to Read  
Data Valid Delay  
140  
120  
70  
60 ns  
41 TsIEI(RDA)  
42 ThIEI(RDA)  
IEI to RD (Acknowledge) Setup  
95  
0
80  
0
50  
0
45  
0
ns  
ns  
Time  
IEI to RD (Acknowledge) Hold  
Time  
43 TdIEI(IEO)  
44 TdPC(IEO)  
45 TdRDA(INT)  
46 TdRD(WRQ)  
47 TdWRQ(RD)  
48 TwRES  
IEI to IEO Delay Time  
95  
80  
45  
80  
40  
70  
ns  
ns  
PCLK to IEO Delay  
200  
450  
175  
320  
RD to INT Inactive Delay (Note 2)  
RD to WR Delay for No Reset  
WR to RD Delay for No Reset  
200  
180 ns  
15  
15  
15  
15  
10  
10  
75  
10  
10  
65  
ns  
ns  
ns  
WR and RD Coincident Low for  
Reset  
150  
100  
49 Trc  
Valid Access Recovery Time  
(Note 1)  
3.5  
3.5  
3.5  
3.5  
TcPc  
Notes:  
1
Parameter applies only between transactions involving the ESCC, if WR/RD falling edge is synchronized to PCLK  
falling edge, then TrC = 3TcPc.  
2. Open-drain output, measured with open-drain test load.  
3. Parameter is system dependent. For any SCC in the daisy chain, TdIAi(RD) must be greater than the sum of DdPC(IEO)  
for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEI(IEO) for each device separating  
them in the daisy chain.  
4. Parameter applies to Enhanced Request mode only.  
Am85C30  
9
AMD  
A M E N D M E N T  
WR  
RD  
48  
46  
47  
10216F/1-7  
Figure 22. Reset Timing  
CE  
49  
RD or WR  
10216F/1-8  
Figure 23. Cycle Timing  
PCLK  
10  
15  
INTACK  
14  
10  
38  
RD  
39  
23  
24  
D0–D7  
Valid  
40  
26  
42  
41  
IEI  
44  
43  
IEO  
45  
INT  
10216F/1-9  
Figure 24. Interrupt Acknowledge Timing  
Am85C30  
10  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range unless  
otherwise specified—General Timing (see Figure 19)  
20 MHz  
8.192 MHz  
10 MHz  
16.384 MHz  
Industrial Only  
Parameter  
Symbol  
Parameter  
Description  
No.  
1
Min Max Min Max  
Min Max Min Max Unit  
TdPC(REQ)  
TdPC(W)  
PCLK to W/REQ Valid Delay  
PCLK to Wait Inactive Delay  
250  
350  
NA  
150  
250  
NA  
80  
180  
NA  
70  
ns  
2
170 ns  
NA ns  
3
TsRXC(PC)  
RxC to PCLK Setup Time  
(Notes 1, 4 & 8)  
NA  
0
NA  
0
NA  
0
NA  
0
4
5
6
7
8
9
TsRXD(RXCr)  
ThRXD(RXCr)  
TsRXD(RXCf)  
ThRXD(RXCf)  
TsSY(RXC)  
RxD to RxC Setup Time  
(Xl Mode) (Note 1)  
ns  
ns  
ns  
ns  
ns  
ns  
RxD to RxC Hold Time  
(Xl Mode) (Note 1)  
150  
0
125  
0
50  
45  
RxD to RxC Setup Time  
(Xl Mode) (Notes 1, 5)  
0
0
RxD to RxC Hold Time  
(Xl Mode) (Notes 1, 5)  
150  
–200  
5TcPc  
NA  
125  
–150  
5TcPc  
NA  
50  
45  
SYNC to RxC Setup Time  
–100  
5TcPc  
NA  
–90  
5TcPc  
NA  
(Note 1)  
ThSY(RXC)  
SYNC to RxC Hold Time  
(Note 1)  
10 TsTXC(PC)  
11 TdTXCf(TXD)  
12 TdTXCr(TXD)  
13 TdTXD(TRX)  
TxC to PCLK Setup Time  
(Notes 2, 4 & 8)  
TxC to TxD Delay (Xl Mode)  
200  
200  
200  
150  
150  
140  
80  
80  
80  
70 ns  
70 ns  
70 ns  
(Note 2)  
TxC to TxD Delay (Xl Mode)  
(Notes 2, 5)  
TxD to TRxC Delay  
(Send Clock Echo)  
14a TwRTXh  
14b TwRTxh(E)  
15a TwRTXI  
15b TwRTXl(E)  
16a TcRTX  
16b TcRTx(E)  
17 TcRTXX  
18 TwTRXh  
19 TwTRXI  
20 TcTRX  
21 TwEXT  
22 TwSY  
RTxC High Width (Note 6)  
RTxC High Width (Note 9)  
RTxC Low Width (Note 6)  
RTxC Low Width (Note 9)  
RTxC Cycle Time (Notes 6, 7)  
RTxC Cycle Time (Note 9)  
Crystal Oscillator Period (Note 3)  
TRxC High Width (Note 6)  
TRxC Low Width (Note 6)  
TRxC Cycle Time (Notes 6, 7)  
DCD or CTS Pulse Width  
SYNC Pulse Width  
150  
50  
120  
40  
80  
15.6  
80  
70  
15.6  
70  
ns  
ns  
ns  
ns  
ns  
ns  
150  
50  
120  
40  
15.6  
244  
31.25  
62  
15.6  
200  
31.25  
488  
125  
400  
100  
125 1000 100 1000  
1000  
61 1000 ns  
150  
150  
488  
200  
200  
120  
120  
400  
120  
120  
80  
70  
70  
ns  
ns  
ns  
ns  
ns  
80  
244  
70  
200  
60  
70  
60  
Notes:  
1. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
2. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
3. Both RTxC and SYNC have 30-pF capacitors to ground connected to them.  
4. Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between  
RxC and PCLK or TxC and PCLK is required.  
5. Parameter applies only to FM encoding/decoding.  
6. Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to  
chip PCLK requirements.  
7. The maximum receive or transmit data is 1/4 PCLK.  
8. External PCLK to RxC or TxC synchronization requirement eliminated for PCLK divide-by-four operation.  
TRxC and RTxC rise and fall times are identical to PCLK. Reference timing specs Tfpc and Trpc.  
Tx and Rx input clock slew rates should be kept to a maximum of 30 ns. All parameters related to input CLK edges  
should be referenced at the point at which the transition begins or ends, whichever is the worst case.  
9. ENHANCED FEATURE—RTxC used as input to internal DPLL only.  
Am85C30  
11  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range  
(continued)—System Timing (see Figure 20)  
10 MHz  
8.192 MHz  
Max  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min  
Min  
Max  
Unit  
1
TdRXC(REQ)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
14  
7
8
12  
TcPc  
2
3
TdRXC(W)  
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
4
8
4
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
7a  
7b  
8
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
2
6
2
6
Valid Delay (Note 1)  
20 MHz  
Industrial Only  
16.384 MHz  
Parameter  
Symbol  
Parameter  
Description  
No.  
Unit  
Min  
Max  
Min  
Max  
1
TdRXC(REQ)  
TdRXC(W)  
RXC W/REQ Valid Delay  
(Note 2)  
8
12  
8
12  
TcPc  
2
RXC to Wait Inactive Delay  
(Notes 1, 2)  
8
4
14  
7
8
4
14  
7
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
TcPc  
3
TdRXC(SY)  
TdRXC(INT)  
TdTXC(REQ)  
TdTXC(W)  
RxC to SYNC Valid Delay  
(Note 2)  
4
RxC to INT Valid Delay  
(Notes 1, 2)  
10  
5
16  
8
10  
5
16  
8
5
TxC to W/REQ Valid Delay  
(Note 3)  
6
7a  
TxC to Wait Inactive Delay  
(Notes 1, 3)  
5
11  
7
5
11  
7
TdTXC(DRQ)  
TdTXC(EDRQ)  
TdTXC(INT)  
TdSY(INT)  
TxC to DTR/REQ Valid Delay  
(Note 3)  
4
4
7b  
TxC to DTR/REQ Valid Delay  
(Notes 3, 4)  
5
8
5
8
8
TxC to INT Valid Delay  
(Notes 1, 3)  
6
10  
6
6
10  
6
9
SYNC Transition to INT Valid  
Delay (Note 1)  
2
2
10  
TdEXT(INT)  
DCD or CTS Transition to INT  
2
6
2
6
Valid Delay (Note 1)  
Notes:  
1. Open-drain output, measured with open-drain test load.  
2. RxC is RTxC or TRxC, whichever is supplying the receive clock.  
3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.  
4. Parameter applies to Enhanced Request mode only.  
12  
Am85C30  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range  
(continued)  
Read and Write Timing (see Figure 21)  
20 MHz  
Parameter  
Symbol  
Parameter  
Description  
8.192 MHz  
10 MHz  
16.384 MHz  
Industrial Only  
No.  
Unit  
Min Max Min Max  
Min Max Min Max  
1
2
3
4
5
6
7
8
9
TwPCI  
TwPCh  
TfPC  
PCLK Low Width  
50  
50  
1000  
1000  
15  
40  
40  
1000  
1000  
12  
26  
26  
1000  
1000  
8
22 1000 ns  
22 1000 ns  
PCLK High Width  
PCLK Fall Time  
5
5
ns  
ns  
TrPC  
PCLK Rise Time  
15  
12  
8
TcPC  
PCLK Cycle Time  
122 2000 100 2000  
61  
35  
0
2000  
50 2000 ns  
TsA(WR)  
ThA(WR)  
TsA(RD)  
ThA(RD)  
Address to WR Setup Time  
Address to WR Hold Time  
Address to RD Setup Time  
Address to RD Hold Time  
INTACK to PCLK Setup Time  
70  
0
50  
0
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
70  
0
50  
0
35  
0
30  
0
10 TsIA(PC)  
11 TsIA(WR)  
20  
145  
20  
120  
15  
70  
15  
65  
INTACK to WR Setup Time  
(Note 1)  
12 ThIA(WR)  
13 TsIA(RD)  
INTACK to WR Hold Time  
0
0
0
0
ns  
ns  
INTACK to RD Setup Time  
(Note 1)  
145  
120  
70  
65  
14 ThIAi(RD)  
15 ThIA(PC)  
16 TsCEI(WR)  
17 ThCE(WR)  
18 TsCEh(WR)  
19 TsCEI(RD)  
INTACK to RD Hold Time  
INTACK to PCLK Hold Time  
CE Low to WR Setup Time  
CE to WR Hold Time  
0
40  
0
0
30  
0
0
15  
0
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
CE High to WR Setup Time  
60  
0
50  
0
30  
0
25  
0
CE Low to RD Setup Time  
(Note 1)  
20 ThCE(RD)  
21 TsCEh(RD)  
CE to RD Hold Time (Note1)  
0
0
0
0
ns  
ns  
CE High to RD Setup Time  
(Note 1)  
60  
50  
30  
25  
22 TwRDI  
RD Low Width (Note 1)  
150  
0
125  
0
75  
0
65  
0
ns  
ns  
ns  
ns  
23 TdRD(DRA)  
24 TdRDr(DR)  
25 TdRDf(DR)  
26 TdRD(DRz)  
RD to Read Data Active Delay  
RD to Read Data Not Valid Delay  
RD to Read Data Valid Delay  
0
0
0
0
140  
40  
125  
35  
70  
20  
65  
RD to Read Data Float Delay  
(Note 2)  
20 ns  
Notes:  
1. Parameter does not apply to Interrupt Acknowledge transactions.  
2. Float delay is defined as the time at which the data bus is released from its drive state with a maximum DC load and  
minimum AC load.  
Am85C30  
13  
AMD  
A M E N D M E N T  
SWITCHING CHARACTERISTICS over MILITARY/INDUSTRIAL operating range  
(continued)  
Interrupt Acknowledge Timing, Reset Timing, Cycle Timing (see Figures 22–24)  
20 MHz  
8.192 MHz  
10 MHz  
16.384 MHz  
Industrial Only  
Parameter  
Symbol  
Parameter  
Description  
No.  
Min Max Min Max  
Min Max Min Max Unit  
27 TdA(DR)  
Address Required Valid to Read  
Data Valid Delay  
220  
35  
160  
35  
100  
90 ns  
28 TwWRI  
WR Low Width  
150  
0
125  
0
75  
0
65  
0
ns  
29 TdWRf(DW)  
30 ThDW(WR)  
31 TdWR(W)  
32 TdRD(W)  
WR to Write Data Valid  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
Write Data to WR Hold Time  
WR to Wait Valid Delay (Note 2)  
RD to Wait Valid Delay (Note 2)  
WR to W/REQ Not Valid Delay  
RD to W/REQ Not Valid Delay  
WR to DTR/REQ Not Valid Delay  
170  
170  
100  
100  
50  
50  
50  
50  
65  
65  
33 TdWRf(REQ)  
34 TdRDf(REQ)  
35a TdWRr(REQ)  
170  
120  
70  
170  
120  
70  
4TcPc  
120  
4TcPc  
120  
4TcPc  
70  
4TcPc ns  
35b TdWRr(EREQ) WR to DTR/REQ Not Valid Delay  
65  
ns  
ns  
36 TdRDr(REQ)  
37 TdPC(INT)  
38 TdIAi(RD)  
RD to DTR/REQ Not Valid Delay  
PCLK to INT Valid Delay (Note 2)  
NA  
NA  
NA  
NA  
500  
400  
175  
160 ns  
ns  
INTACK to RD (Acknowledge)  
Delay (Note 3)  
150  
150  
125  
125  
50  
75  
45  
65  
39 TwRDA  
RD (Acknowledge) Width  
ns  
40 TdRDA(DR)  
RD (Acknowledge) to Read  
Data Valid Delay  
140  
120  
70  
60 ns  
41 TsIEI(RDA)  
42 ThIEI(RDA)  
IEI to RD (Acknowledge) Setup  
95  
0
80  
0
50  
0
45  
0
ns  
ns  
Time  
IEI to RD (Acknowledge) Hold  
Time  
43 TdIEI(IEO)  
44 TdPC(IEO)  
45 TdRDA(INT)  
46 TdRD(WRQ)  
47 TdWRQ(RD)  
48 TwRES  
IEI to IEO Delay Time  
95  
80  
45  
80  
40  
70  
ns  
ns  
PCLK to IEO Delay  
200  
450  
175  
320  
RD to INT Inactive Delay (Note 2)  
RD to WR Delay for No Reset  
WR to RD Delay for No Reset  
200  
180 ns  
15  
15  
15  
15  
10  
10  
75  
10  
10  
65  
ns  
ns  
ns  
WR and RD Coincident Low for  
Reset  
150  
100  
49 Trc  
Valid Access Recovery Time  
(Note 1)  
3.5  
3.5  
3.5  
3.5  
TcPc  
Notes:  
1
Parameter applies only between transactions involving the ESCC, if WR/RD falling edge is synchronized to PCLK  
falling edge, then TrC = 3TcPc.  
2. Open-drain output, measured with open-drain test load.  
3. Parameter is system dependent. For any SCC in the daisy chain, TdIAi(RD) must be greater than the sum of DdPC(IEO)  
for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEI(IEO) for each device separating  
them in the daisy chain.  
4. Parameter applies to Enhanced Request mode only.  
14  
Am85C30  
AMD  
A M E N D M E N T  
Am85C30 HARDWARE RESET  
IN SOFTWARE  
IntheabsenceofahardwarelogicoraPower-On-Reset  
mechanism, the following procedure should be used to  
ensure that the ESCC is properly reset.  
Note: For hardware reset only steps 1 through 4 are  
needed; steps 5 through 8 are mentioned simply for  
confirmation. Also, this procedure is applicable to only  
the first time hardware reset. Any subsequent chip  
reset can be achieved by simply writing a ‘C0’  
to WR9.  
1. Power Up  
2. Read RR0  
(Dummy Read)  
(Dummy Read)  
(Hardware Reset)  
For further information refer to the Technical Manual  
PID # 07513D.  
3. Read RR1  
4. Write a C0h to WR9  
5. Read RR0  
(Should expect binary  
01XXX100 = typically  
‘44h’)  
6. Read RR1  
(Should expect binary  
0X000110 = typically  
‘06h’)  
7. Write ‘a value’ to Write Register 2  
8. Read RR2  
(Should get ‘a value’)  
If RR2 = WR2, in steps 7 and 8, then the ESCC is prop-  
erly reset.  
Am85C30  
15  

相关型号:

AM85C30-10BUA

Enhanced Serial Communications Controller
AMD

AM85C30-10DC

Telecommunication IC
ETC

AM85C30-10DCB

Telecommunication IC
ETC

AM85C30-10DIB

Telecommunication IC
ETC

AM85C30-10JC

Enhanced Serial Communications Controller
AMD

AM85C30-10JI

Communications Controller
ETC

AM85C30-10JIB

Communications Controller
ETC

AM85C30-10LIB

Telecommunication IC
ETC

AM85C30-10PC

Enhanced Serial Communications Controller
AMD

AM85C30-12BQA

Communications Controller
ETC

AM85C30-12BUA

Communications Controller
ETC

AM85C30-12DC

Telecommunication IC
ETC