PALCE26V12H-10JI [AMD]

28-Pin EE CMOS Versatile PAL Device; 28引脚EE CMOS通用PAL器件
PALCE26V12H-10JI
型号: PALCE26V12H-10JI
厂家: AMD    AMD
描述:

28-Pin EE CMOS Versatile PAL Device
28引脚EE CMOS通用PAL器件

文件: 总21页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FINAL  
COM’L: H-7/10/15/20  
IND: H-10/15/20  
PALCE26V12 Family  
28-Pin EE CMOS Versatile PAL Device  
DISTINCTIVE CHARACTERISTICS  
28-pin versatile PAL programmable logic  
Two clock inputs for independent functions  
device architecture  
Global asynchronous reset and synchronous  
Electrically erasable CMOS technology  
provides half power (only 115 mA) at high  
speed (7.5 ns propagation delay)  
preset for initialization  
Register preload for testability and built-in  
register reset on power-up  
14 dedicated inputs and 12 input/output  
Space-efficient 28-pin SKINNYDIP and PLCC  
macrocells for architectural flexibility  
packages  
Macrocells can be registered or combinatorial,  
Center VCC and GND pins to improve signal  
and active high or active low  
characteristics  
Varied product term distribution allows up to  
Extensive third-party software and programmer  
16 product terms per output  
support through FusionPLD partners  
GENERAL DESCRIPTION  
The PALCE26V12 is a 28-pin version of the popular  
PAL22V10 architecture. Built with low-power, high-  
speed, electrically-erasable CMOS technology, the  
PALCE26V12 offers many unique advantages.  
The product terms are connected to the fixed OR array  
with a varied distribution from 8 to 16 across the outputs  
(see Block Diagram). The OR sum of the products feeds  
the output macrocell. Each macrocell can be pro-  
grammed as registered or combinatorial, active high or  
active low, with registered I/O possible. The flip-flop can  
be clocked by one of two clock inputs. The output  
configuration is determined by four bits controlling three  
multiplexers in each macrocell.  
Device logic is automatically configured according to  
the user’s design specification. Design is simplified by  
design software, allowing automatic creation of a  
programming file based on Boolean or state equations.  
The software can also be used to verify the design and  
can provide test vectors for the programmed device.  
AMD’s FusionPLD program allows PALCE26V12  
designs to be implemented using a wide variety of  
popular industry-standard design tools. By working  
closely with the FusionPLD partners, AMD certifies that  
the tools provide accurate, quality support. By ensuring  
that third-party tools are available, costs are lowered  
because a designer does not have to buy a complete set  
of new tools for each device. The FusionPLD program  
also greatly reduces design time since a designer can  
use a tool that is already installed and familiar. Please  
refer to the PLD Software Reference Guide for certified  
development systems and the Programmer Reference  
Guide for approved programmers.  
The PALCE26V12 utilizes the familiar sum-of-products  
(AND/OR) architecture that allows users to implement  
complex logic functions easily and efficiently. Multiple  
levels of combinatorial logic can always be reduced  
to sum-of-products form, taking advantage of the  
very wide input gates available in PAL devices. The  
functions are programmed into the device through  
electrically-erasable floating-gate cells in the AND logic  
array and the macrocells. In the unprogrammed state,  
all AND product terms float HIGH. If both true and  
complement of any input are connected, the term will be  
permanently LOW.  
Publication# 16072 Rev. E Amendment/0  
Issue Date: February 1996  
2-306  
AMD  
BLOCK DIAGRAM  
I
CLK/I  
2
12  
PROGRAMMABLE  
AND ARRAY  
(52x150)  
SYNC.  
PRESET  
ASYNC.  
RESET  
8
8
10  
12  
14  
16  
16  
14  
12  
10  
8
8
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
I/O  
0
I/O  
1
I/O  
2
I/O  
3
I/O  
4
I/O  
5
I/O  
6
I/O  
7
I/O  
8
I/O  
9
I/O  
10  
I/O  
11  
16072E-1  
CONNECTION DIAGRAMS  
Top View  
DIP  
PLCC  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
CLK1/I0  
I13  
I1  
I/O11  
I/O10  
I/O9  
I/O8  
I/O7  
I/O6  
GND  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
I2  
4
3
2
1
26  
CLK2/I3  
I4  
28 27  
I
I/O  
5
6
25  
4
9
8
7
6
I5  
I
I/O  
I/O  
I/O  
5
24  
23  
22  
21  
20  
VCC  
I6  
7
8
22  
21  
V
7
CC  
I
8
6
9
20  
19  
18  
17  
I7  
I
GND  
9
7
10  
11  
12  
I8  
I
I/O  
5
10  
8
I9  
I
I/O  
4
11  
9
19  
I10  
I11  
I12  
17 18  
12 13 14 15 16  
13  
14  
16  
15  
16072E-2  
Note:  
16072E-3  
Pin 1 is marked for orientation.  
PIN DESCRIPTION  
CLK  
GND  
I
I/O  
VCC  
=
=
=
=
=
Clock  
Ground  
Input  
Input/Output  
Supply Voltage  
PALCE26V12 Family  
2–307  
AMD  
ORDERING INFORMATION  
Commercial and Industrial Products  
AMD commercial and industrial programmable logic products are available with several ordering options. The order  
number (Valid Combination) is formed by a combination of:  
PAL CE 26 V 12 H -7 P C /4  
OPTIONAL PROCESSING  
Blank = Standard Processing  
FAMILY TYPE  
PAL = Programmable Array Logic  
TECHNOLOGY  
CE = CMOS Electrically Erasable  
PROGRAMMING DESIGNATOR  
/4 = First Revision  
(May require programmer  
update)  
NUMBER OF  
ARRAY INPUTS  
OPERATING CONDITIONS  
OUTPUT TYPE  
V= Versatile  
C = Commercial (0°C to +75°C)  
I
= Industrial (–40°C to +85°C)  
NUMBER OF OUTPUTS  
PACKAGE TYPE  
P= 28-Pin 300 mil Plastic  
SKINNYDIP (PD3028)  
J = 28-Pin Plastic Leaded Chip  
Carrier (PL 028)  
POWER  
H= Half Power (115 mA ICC  
)
SPEED  
-7 = 7.5 ns tPD  
-10= 10 ns tPD  
-15= 15 ns tPD  
-20= 20 ns tPD  
Valid Combinations  
Valid Combinations  
Valid Combinations list configurations planned to be  
supported in volume for this device. Consult the lo-  
cal AMD sales office to confirm availability of specific  
valid combinations and to check on newly released  
combinations.  
PALCE26V12H-7  
JC  
PALCE26V12H-10  
PALCE26V12H-15  
PALCE26V12H-20  
/4  
PC, JC, PI, JI  
2–308  
PALCE26V12H-7/10/15/20 (Com’l), H-10/15/20 (Ind)  
AMD  
OE  
P1  
FUNCTIONAL DESCRIPTION  
AR CLK  
1
The PALCE26V12 has fourteen dedicated input lines,  
two of which can be used as clock inputs. Unused inputs  
should be tied directly to ground or VCC. Buffers for  
device inputs and feedbacks have both true and  
complementary outputs to provide user-selectable  
signal polarity. The inputs drive a programmable AND  
logic array, which feeds a fixed OR logic array.  
1
1
0
1
AR  
D
Q
0
0
0
1
1
0
Q
SP  
Pn  
S
2
S
0
n = 8,8,10,12,14,16  
CLK  
2
S
0
1
1
SP  
The OR gates feed the twelve I/O macrocells (see  
Figure 1). The macrocell allows one of eight potential  
output configurations; registered or combinatorial, ac-  
tive high or active low, with register or I/O pin feedback  
(seeFigure2). Inaddition, registeredconfigurationscan  
be clocked by either of the two clock inputs.  
*
S
3
*When S = 1 (unprogrammed) the feedback is selected by S .  
When S = 0 (programmed), the feedback is the opposite of  
3
3
1
that selected by S .  
1
16072E-4  
Figure 1. PALCE26V12 Macrocell  
The configuration choice is made according to the  
user’sdesignspecificationandcorrespondingprogram-  
ming of the configuration bits S0–S3 (see Table 1).  
Multiplexer controls initially float to VCC (1) through a  
programmable cell, selecting the “1” path through the  
multiplexer. Programming the cell connects the control  
line to GND (0), selecting the “0” path.  
Registered or Combinatorial  
Each macrocell of the PALCE26V12 includes a D-type  
flip-flop for data storage and synchronization. The  
flip-flop is loaded on the LOW-to-HIGH edge of the  
selected clock input. Any macrocell can be configured  
as combinatorial by selecting a multiplexer path that  
bypasses the flip-flop. Bypass is controlled by bit S1.  
Table 1. Macrocell Configuration Table  
Programmable Clock  
The clock input for any flip-flop can be selected to be  
from either pin 1 or pin 4. A 2:1 multiplexer controlled by  
bit S2 determines the clock input.  
S3 S1 S0  
Output Configuration  
1
0
0
Registered Output and Feedback,  
Active Low  
1
0
1
Registered Output and Feedback,  
Active High  
Programmable Feedback  
A 2:1 multiplexer allows the user to determine whether  
the macrocell feedback comes from the flip-flop or  
from the I/O pin, independent of whether the output is  
registered or combinatorial. Thus, registered outputs  
may have internal register feedback for higher speed  
(fMAX internal), or I/O feedback for use of the pin as a  
direct input (fMAX external). Combinatorial outputs may  
have I/O feedback, either for use of the signal in other  
equations or for use as another direct input, or register  
feedback.  
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
Combinatorial I/O, Active Low  
Combinatorial I/O, Active High  
Registered I/O, Active Low  
Registered I/O, Active High  
Combinatorial Output, Registered  
Feedback, Active Low  
0
1
1
Combinatorial Output, Registered  
Feedback, Active High  
1 = Unprogrammed EE bit  
0 = Programmed EE bit  
S2 Clock Input  
1
0
CLK1/I0  
CLK2/I3  
PALCE26V12 Family  
2–309  
AMD  
The feedback multiplexer is controlled by the same bit  
(S1) that controls whether the output is registered or  
combinatorial, as on the 22V10, with an additional  
control bit (S3) that allows the alternative feedback path  
to be selected. When S3 = 1, S1 selects register  
feedback for registered outputs (S1 = 0) and I/O  
feedback for combinatorial outputs (S1 = 1). When S3 =  
0, the opposite is selected: I/O feedback for registered  
outputsandregisterfeedbackforcombinatorialoutputs.  
Power-Up Reset  
All flip-flops power up to a logic LOW for predictable  
system initialization. Outputs of the PALCE26V12 will  
be HIGH or LOW depending on whether the output is  
activeloworactivehigh, respectively. TheVCC risemust  
be monotonic, and the reset delay time is 1000 ns  
maximum.  
Register Preload  
The register on the PALCE26V12 can be preloaded  
from the output pins to facilitate functional testing of  
complex state machine designs. This feature allows  
direct loading of arbitrary states, thereby making it  
unnecessary to cycle through long test vector se-  
quences to reach a desired state. In addition, transitions  
from illegal states can be verified by loading illegal  
states and observing proper recovery.  
Programmable Enable and I/O  
Each macrocell has a three-state output buffer con-  
trolled by an individual product term. Enable and disable  
can be a function of any combination of device inputs or  
feedback. The macrocell provides a bidirectional I/O pin  
if I/O feedback is selected, and may be configured as a  
dedicated input if the buffer is always disabled. This is  
accomplished by connecting all inputs to the enable  
term, forcing the AND of the complemented inputs to be  
always LOW. To permanently enable the outputs, all  
inputs are left disconnected from the term (the  
unprogrammed state).  
Security Bit  
After programming and verification, a PALCE26V12  
design can be secured by programming the security bit.  
Once programmed, this bit defeats readback of the  
internal programmed pattern by a device programmer,  
securing proprietary designs from competitors. Pro-  
gramming the security bit disables preload, and the  
array will read as if every bit is disconnected. The  
security bit can only be erased in conjunction with  
erasure of the entire pattern.  
Programmable Output Polarity  
The polarity of each macrocell output can be active high  
or active low, either to match output signal needs or to  
reduce product terms. Programmable polarity allows  
Boolean expressions to be written in their most compact  
form (true or inverted), and the output can still be of the  
desired polarity. It can also save “DeMorganizing”  
efforts.  
Programming and Erasing  
The PALCE26V12 can be programmed on standard  
logic programmers. It also may be erased to reset a  
previously configured device back to its virgin state.  
Erasure is automatically performed by the programming  
hardware. No special erase operation is required.  
Selection is controlled by programmable bit S0 in the  
output macrocell, and affects both registered and  
combinatorial outputs. Selection is automatic, based on  
the design specification and pin definitions. If the pin  
definition and output equation have the same polarity,  
the output is programmed to be active high.  
Quality and Testability  
The PALCE26V12 offers a very high level of built-in  
quality. The erasability of the device provides a means  
of verifying performance of all AC and DC parameters.  
In addition, this verifies complete programmability and  
functionality of the device to provide the highest  
programming yields and post-programming functional  
yields in the industry.  
Preset/Reset  
For initialization, the PALCE26V12 has additional  
Preset and Reset product terms. These terms are  
connected to all registered outputs. When the Synchro-  
nous Preset (SP) product term is asserted high, the  
output registers will be loaded with a HIGH or the next  
LOW-to-HIGHclocktransition. WhentheAsynchronous  
Reset (AR) product term is asserted high, the output  
registers will be immediately loaded with a LOW  
independent of the clock.  
Technology  
The high-speed PALCE26V12 is fabricated with AMD’s  
advanced electrically erasable (EE) CMOS process.  
The array connections are formed with proven EE cells.  
Inputs and outputs are designed to be compatible with  
TTL devices. This technology provides strong input  
clamp diodes, output slew-rate control, and a grounded  
substrate for clean switching.  
Note that preset and reset control the flip-flop, not the  
output pin. The output level is determined by the output  
polarity selected.  
2–310  
PALCE26V12 Family  
AMD  
AR  
SP  
AR  
SP  
D
Q
Q
D
Q
Q
CLK  
CLK  
Registered Active-Low Output,  
Register Feedback  
Registered Active-High Output,  
Register Feedback  
AR  
AR  
D
Q
Q
D
Q
Q
CLK  
CLK  
SP  
SP  
Registered Active-Low I/O  
Registered Active-High I/O  
Registered Outputs  
Combinatorial Active-Low I/O  
Combinatorial Active-High I/O  
AR  
AR  
D
Q
Q
D
Q
Q
CLK  
CLK  
SP  
SP  
Combinatorial Active-Low Output,  
Register Feedback  
Combinatorial Active-High Output,  
Register Feedback  
16072E-5  
Combinatorial Outputs  
Figure 2. PALCE26V12 Macrocell Configuration Options  
PALCE26V12 Family  
2–311  
AMD  
LOGIC DIAGRAM  
PALCE26V12  
8
12  
16  
20  
24  
28  
32  
44  
48  
0
4
36  
40  
ASYNCH.  
RESET  
0
1
28  
I13  
1
10  
11  
00  
01  
CLK1/I0  
AR  
SP  
27  
I/O11  
Q
Q
D
1
0
9
S0  
S2  
S1  
R
0
11  
*
2
I1  
1
S3  
10  
18  
10  
11  
00  
01  
AR  
SP  
26  
I/O 10  
D
Q
1
0
Q
S0  
S1  
S2  
R
0
10  
*
3
I2  
1
S3  
19  
10  
11  
00  
01  
25  
I/O9  
AR  
SP  
D
Q
1
0
Q
S0  
S1  
29  
S2  
R
9
*
4
0
1
CLK2/I 3  
S3  
30  
10  
11  
00  
01  
AR  
SP  
24  
I/O8  
D
Q
1
0
Q
S0  
S1  
S2  
42  
R
8
0
5
I4  
1
*
S3  
43  
10  
11  
00  
01  
AR  
SP  
23  
I/O 7  
D
Q
1
0
Q
S0  
S1  
S2  
57  
R
7
*
0
6
I5  
1
S3  
58  
10  
11  
00  
01  
22  
I/O6  
AR  
D
Q
1
0
Q
SP  
S0  
S1  
S2  
74  
R
6
*
0
8
1
I6  
8
12  
16  
20  
24  
28  
32  
44  
48  
0
4
36  
40  
AR CLK1  
SP  
S3  
21  
CLK 2  
GND  
*
When S3 = 1 (unprogrammed) the feedback is selected by S1.  
When S3 = 0 (programmed), the feedback is the opposite of  
16072E-6  
that selected by S .  
1
2–312  
PALCE26V12 Family  
AMD  
LOGIC DIAGRAM (continued)  
PALCE26V12  
AR CLK1  
SP  
8
12  
16  
20  
24  
28  
32  
44  
48  
0
4
36  
40  
CLK2  
75  
10  
11  
00  
01  
20  
I/O5  
AR  
SP  
D
Q
Q
1
0
S0  
S1  
S2  
91  
92  
R
*
5
0
9
I7  
1
S3  
10  
11  
00  
01  
19  
I/O4  
AR  
SP  
D
Q
1
0
Q
S0  
S1  
S2  
106  
107  
R
*
4
0
10  
I8  
1
S3  
10  
11  
00  
01  
AR  
SP  
18  
I/O3  
D
Q
1
0
Q
S0  
S1  
S2  
119  
120  
R
0
3
11  
I9  
1
*
S3  
10  
11  
00  
01  
AR  
SP  
17  
I/O2  
D
Q
1
0
Q
S0  
S1  
130  
S2  
R
2
0
12  
I10  
1
*
S3  
131  
139  
10  
11  
00  
01  
16  
I/O1  
AR  
SP  
D
Q
1
0
Q
S0  
S1  
S2  
R
1
0
13  
I11  
1
*
S3  
140  
10  
11  
00  
01  
15  
I/O0  
AR  
SP  
D
Q
1
0
Q
148  
149  
S0  
S1  
S2  
R
0
0
14  
I12  
1
SYNCH  
PRESET  
*
S3  
8
12  
16  
20  
24  
28  
32  
44  
48  
0
4
36  
40  
*
When S3 = 1 (unprogrammed) the feedback is selected by S1.  
When S3 = 0 (programmed), the feedback is the opposite of  
that selected by S1.  
16072E-6  
(concluded)  
PALCE26V12 Family  
2–313  
AMD  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature with  
Ambient Temperature (TA)  
Power Applied . . . . . . . . . . . . . . . . . –55°C to +125°C  
Operating in Free Air . . . . . . . . . . . . . . 0°C to +75°C  
Supply Voltage with  
Respect to Ground . . . . . . . . . . . . . –0.5 V to +7.0 V  
Supply Voltage (VCC  
with Respect to Ground . . . . . . . . +4.75 V to +5.25 V  
)
DC Input Voltage . . . . . . . . . . . . . . . –0.6 V to +7.0 V  
Industrial (I) Devices  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Ambient Temperature (TA)  
Operating in Free Air . . . . . . . . . . . . –40°C to +85°C  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Supply Voltage (VCC  
)
with Respect to Ground . . . . . . . . . . +4.5 V to +5.5 V  
Stresses above those listed under Absolute Maximum Rat-  
ings may cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to Absolute Maxi-  
mum Ratings for extended periods may affect device reliabil-  
ity. Programming conditions may differ.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless  
otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
VOH  
Output HIGH Voltage  
IOH = –3.2 mA  
VIN = VIH or VIL  
CC = Min  
2.4  
V
V
VOL  
VIH  
VIL  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
IOL = 16 mA  
VIN = VIH or VIL  
VCC = Min  
0.4  
V
V
V
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
2.0  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
0.8  
IIH  
IIL  
Input HIGH Leakage Current VIN = 5.25 V, VCC = Max (Note 2)  
Input LOW Leakage Current VIN = 0 V, VCC = Max (Note 2)  
10  
–10  
10  
µA  
µA  
µA  
IOZH  
Off-State Output Leakage  
Current HIGH  
VOUT = 5.25 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
IOZL  
Off-State Output Leakage  
Current LOW  
VOUT = 0 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
–10  
µA  
ISC  
Output Short-Circuit Current VOUT = 0.5 V, VCC = Max (Note 3)  
–30  
–170  
115  
mA  
mA  
ICC  
VIN = 0 V, Outputs Open (IOUT = 0 mA) H-7/10  
(Static)  
VCC = Max, f = 0 MHz  
Commercial Supply Current  
Industrial Supply Current  
ICC  
(Dynamic)  
H-7/10  
H-10  
140  
150  
mA  
mA  
VIN = 0 V, Outputs Open (IOUT = 0 mA)  
VCC = Max, f = 15 MHz  
ICC  
(Dynamic)  
Notes:  
1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.  
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).  
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT = 0.5 V  
has been chosen to avoid test problems caused by tester ground degradation.  
2–314  
PALCE26V12H-7/10 (Com’l), H-10 (Ind)  
AMD  
CAPACITANCE (Note 1)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Typ  
Unit  
CIN  
Input Capacitance  
VIN = 0 V  
VCC = 5.0 V  
5
TA = +25°C  
pF  
COUT  
Output Capacitance  
VOUT = 0 V  
f = 1 MHz  
8
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified  
where capacitance may be affected.  
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges  
(Note 2)  
-7  
-10  
Parameter  
Symbol  
Parameter Description  
Min  
Max  
Min  
Max  
Unit  
tPD  
tS1  
Input or Feedback to Combinatorial Output  
7.5  
10  
ns  
Setup Time from Input or Feedback  
Setup Time from SP to Clock  
Hold Time  
3.5  
4.5  
0
5
5
0
ns  
ns  
tS2  
tH  
ns  
tCO  
tAR  
Clock to Output  
6
9
ns  
Asynchronous Reset to Registered Output  
Asynchronous Reset Width  
Asynchronous Reset Recovery Time  
Synchronous Preset Recovery Time  
11  
13  
ns  
tARW  
tARR  
tSPR  
tWL  
tWH  
fMAX  
6
5
8
8
ns  
ns  
5
8
ns  
LOW  
3.5  
3.5  
105.3  
125  
4
ns  
Clock Width  
HIGH  
4
ns  
Maximum  
Frequency  
(Notes 3 and 4)  
External Feedback  
1/(tS + tCO)  
71.4  
105  
MHz  
MHz  
ns  
Internal Feedback (fCNT) 1/(tS + tCF)  
tEA  
tER  
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
8
10  
10  
7.5  
ns  
Notes:  
2. See Switching Test Circuit for test conditions.  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified  
where frequency may be affected.  
4. tCF is a calculated value and is not guaranteed. tCF can be found using the following equation:  
tCF = 1/fMAX (internal feedback) – tS.  
PALCE26V12H-7/10 (Com’l), H-10 (Ind)  
2–315  
AMD  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . –65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature with  
Ambient Temperature (TA)  
Power Applied . . . . . . . . . . . . . . . . . –55°C to +125°C  
Operating in Free Air . . . . . . . . . . . . . . 0°C to +75°C  
Supply Voltage with  
Respect to Ground . . . . . . . . . . . . . –0.5 V to +7.0 V  
Supply Voltage (VCC  
with Respect to Ground . . . . . . . . +4.75 V to +5.25 V  
)
DC Input Voltage . . . . . . . . . . . . . . . –0.6 V to +7.0 V  
lndustrial (I) Devices  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V  
Ambient Temperature (TA)  
Operating in Free Air . . . . . . . . . . . . –40°C to +85°C  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Supply Voltage (VCC  
)
with Respect to Ground . . . . . . . . . . +4.5 V to +5.5 V  
Stresses above those listed under Absolute Maximum Rat-  
ings may cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to Absolute Maxi-  
mum Ratings for extended periods may affect device reliabil-  
ity. Programming conditions may differ.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges unless  
otherwise specified  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
VOH  
Output HIGH Voltage  
IOH = –3.2 mA  
VIN = VIH or VIL  
CC = Min  
2.4  
V
V
VOL  
VIH  
VIL  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
IOL = 16 mA  
VIN = VIH or VIL  
VCC = Min  
0.4  
V
V
V
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
2.0  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
0.8  
IIH  
IIL  
Input HIGH Leakage Current  
Input LOW Leakage Current  
VIN = 5.25 V, VCC = Max (Note 2)  
VIN = 0 V, VCC = Max (Note 2)  
10  
–10  
10  
µA  
µA  
µA  
IOZH  
Off-State Output Leakage  
Current HIGH  
VOUT = 5.25 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
IOZL  
Off-State Output Leakage  
Current LOW  
VOUT = 0 V, VCC = Max  
VIN = VIH or VIL (Note 2)  
–10  
µA  
ISC  
Output Short-Circuit Current  
Commerical Supply Current  
VOUT = 0.5 V, VCC = Max (Note 3)  
–30  
–160  
105  
mA  
mA  
ICC  
(Static)  
VIN = 0 V, Outputs Open (IOUT = 0 mA) H-15/20  
VCC = Max, f = 0 MHz  
ICC  
(Dynamic)  
VIN = 0 V, Outputs Open (IOUT = 0 mA) H-15  
VCC = Max, f = 15 MHz  
150  
130  
150  
mA  
mA  
mA  
ICC  
(Static)  
VIN = 0 V, Outputs Open (IOUT = 0 mA) H-20  
VCC = Max  
Industrial Supply Current  
ICC  
VIN = 0 V, Outputs Open (IOUT = 0 mA) H-20  
(Dynamic)  
VCC = Max, f = 15 MHz  
Notes:  
1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.  
2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).  
3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT = 0.5 V  
has been chosen to avoid test problems caused by tester ground degradation.  
2–316  
PALCE26V12H-15/20 (Com’l, Ind)  
AMD  
CAPACITANCE (Note 1)  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Typ  
Unit  
CIN  
Input Capacitance  
VIN = 0 V  
VCC = 5.0 V  
TA = +25°C  
f = 1 MHz  
5
pF  
COUT  
Output Capacitance  
VOUT = 0 V  
8
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified  
where capacitance may be affected.  
SWITCHING CHARACTERISTICS over COMMERCIAL and INDUSTRIAL operating ranges  
(Note 2)  
-15  
-20  
Parameter  
Symbol  
Parameter Description  
Min  
Max  
Min  
Max  
Unit  
tPD  
tS  
Input or Feedback to Combinatorial Output  
15  
20  
ns  
Setup Time from Input, Feedback, or SP to Clock  
Hold Time  
10  
0
13  
0
ns  
ns  
tH  
tCO  
tAR  
Clock to Output  
10  
20  
12  
25  
ns  
Asynchronous Reset to Registered Output  
Asynchronous Reset Width  
ns  
tARW  
tARR  
tSPR  
tWL  
tWH  
15  
15  
10  
8
20  
20  
13  
10  
10  
40  
43  
ns  
Asynchronous Reset Recovery Time  
Synchronous Preset Recovery Time  
ns  
ns  
LOW  
ns  
Clock Width  
HIGH  
8
ns  
Maximum  
Frequency  
(Notes 3 and 4)  
External Feedback  
1/(tS + tCO  
)
50  
58.8  
MHz  
MHz  
ns  
fMAX  
Internal Feedback (fCNT  
)
1/(tS + tCF)  
tEA  
tER  
Notes:  
2. See Switching Test Circuit for test conditions.  
Input to Output Enable Using Product Term Control  
15  
15  
20  
20  
Input to Output Disable Using Product Term Control  
ns  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified  
where frequency may be affected.  
6. tCF is a calculated value and is not guaranteed. tCF can be found using the following equation:  
tCF = 1/fMAX (internal feedback) – tS.  
PALCE26V12H-15/20 (Com’l, Ind)  
2–317  
AMD  
SWITCHING WAVEFORMS  
Input or  
Feedback  
VT  
tS  
tH  
Input or  
Feedback  
VT  
VT  
tCO  
Clock  
tPD  
Registered  
Output  
Combinatorial  
Output  
VT  
VT  
16072E-8  
16072E-7  
Combinatorial Output  
Registered Output  
VT  
Input  
tWH  
tER  
tEA  
VOH - 0.5V  
VOL + 0.5V  
Clock  
VT  
VT  
Output  
tWL  
16072E-10  
Input to Output Disable/Enable  
Clock Width  
16072E-9  
tARW  
Input Asserting  
Asynchronous  
Reset  
Input Asserting  
Synchronous  
Preset  
VT  
VT  
tAR  
tS  
tH  
tSPR  
Registered  
Outputs  
Clock  
VT  
VT  
tARR  
tCO  
Registered  
Outputs  
Clock  
VT  
VT  
16072E-11  
16072E-12  
Asynchronous Reset  
Synchronous Preset  
Notes:  
1. VT = 1.5 V  
2. Input pulse amplitude 0 V to 3.0 V.  
3. Input rise and fall times 2 ns–5 ns typical.  
2–318  
PALCE26V12 Family  
AMD  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
Steady  
Will be  
Steady  
May  
Change  
from H to L  
Will be  
Changing  
from H to L  
May  
Change  
from L to H  
Will be  
Changing  
from L to H  
Don’t Care,  
Any Change  
Permitted  
Changing,  
State  
Unknown  
Does Not  
Apply  
Center  
Line is High-  
Impedance  
“Off” State  
KS000010-PAL  
SWITCHING TEST CIRCUIT  
5 V  
S1  
R1  
R2  
Output  
Test Point  
CL  
16072E-13  
Measured  
R2  
Specification  
tPD, tCO  
S1  
CL  
R1  
Output Value  
Closed  
1.5 V  
Com’l: H-15/20  
Ind: H-20  
390 Ω  
tEA  
Z H: Open  
Z L: Closed  
50 pF  
5 pF  
1.5 V  
300 Ω  
Com’l: H-7/10  
Ind: H-10/15  
300 Ω  
tER  
H Z: Open  
L Z: Closed  
H Z: VOH – 0.5 V  
L Z: VOL + 0.5 V  
PALCE26V12 Family  
2–319  
AMD  
TYPICAL ICC CHARACTERISTICS FOR THE PALCE26V12H-7/10  
VCC = 5.0 V, TA = 25°C  
150  
125  
100  
75  
50  
25  
ICC (mA)  
0
0
10  
20  
30  
40  
50  
Frequency (MHz)  
16072E-14  
The selected “typical” pattern utilized 50% of the device resources. Half of the macrocells were programmed as registered, and the  
other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector,  
half of the outputs were switching.  
By utilizing 50% of the device, a midpoint is defined for ICC. From this midpoint, a designer may scale the ICC graphs up or down to  
estimate the ICC requirements for a particular design.  
2–320  
PALCE26V12 Family  
AMD  
parts. As a result, the device can be erased and  
reprogrammed—a feature which allows 100% testing at  
the factory.  
ENDURANCE CHARACTERISTICS  
The PALCE26V12 is manufactured using AMD’s ad-  
vanced Electrically Erasable process. This technology  
uses an EE cell to replace the fuse link used in bipolar  
Symbol  
Parameter  
Test Conditions  
Min  
Unit  
tDR  
Min Pattern Data Retention Time  
Max Storage Temperature  
10  
20  
Years  
Years  
Cycles  
Max Operating Temperature  
Normal Programming Conditions  
N
Min Reprogramming Cycles  
100  
PALCE26V12 Family  
2–321  
AMD  
the state of the input and pulls the voltage away from the  
input threshold voltage where noise can cause oscilla-  
tions. For an illustration of this configuration, see below.  
Bus-Friendly Inputs  
The PALCE26V12H-7/10 (Com’l) and H-10/15 (Ind)  
inputs and I/O loop back to the input after the second  
stage of the input buffer. This configuration reinforces  
INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR REV. C VERSION*  
VCC  
VCC  
100 kΩ  
ESD  
Protection  
Input  
VCC  
VCC  
VCC  
100 kΩ  
Preload Feedback  
Circuitry  
Input  
16072E-15  
Output  
*
Device  
Rev. Letter  
Topside Marking:  
AMD CMOS PLD’s are marked on top of the package in the  
following manner:  
PALCE26V12H-7  
PALCE26V12H-10  
PALCE26V12H-15  
C
PALCE xxxx  
Datecode (4 numbers) LOT ID (3 characters) – – (Rev. Letter)  
The Lot ID and Rev. letter are separated by two spaces.  
2–322  
PALCE26V12 Family  
AMD  
false clocking caused by subsequent ringing. A special  
noise filter makes the programming circuitry completely  
insensitive to any positive overshoot that has a pulse  
width of less than about 100 ns.  
ROBUSTNESS FEATURES  
The PALCE26V12 has some unique features that make  
it extremely robust, especially when operating in high  
speed design environments. Input clamping circuitry  
limits negative overshoot, eliminating the possibility of  
INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR REV. B VERSION*  
VCC  
VCC  
> 50 kΩ  
ESD  
Protection  
and  
Programming  
Pins only  
Programming  
Voltage  
Detection  
Positive  
Overshoot  
Filter  
Programming  
Circuitry  
Clamping  
Typical Input  
VCC  
VCC  
> 50 kΩ  
Provides ESD  
Protection and  
Clamping  
Preload Feedback  
Circuitry  
Input  
16072E-16  
Typical Output  
Topside Marking:  
*
Device  
Rev. Letter  
AMD CMOS PLD’s are marked on top of the package in the  
following manner:  
PALCE xxxx  
PALCE26V12-15  
PALCE26V12-20  
B
Datecode (4 numbers) LOT ID (3 characters) – – (Rev. Letter)  
The Lot ID and Rev. letter are separated by two spaces.  
PALCE26V12 Family  
2–323  
AMD  
range of ways VCC can rise to its steady state, two  
conditions are required to ensure a valid power-up  
reset. These conditions are:  
POWER-UP RESET  
The power-up reset feature ensures that all flip-flops will  
be reset to LOW after the device has been powered up.  
The output state will depend on the programmed  
configuration. This feature is valuable in simplifying  
state machine initialization. A timing diagram and  
parameter table are shown below. Due to the synchro-  
nous operation of the power-up reset and the wide  
The VCC rise must be monotonic.  
Following reset, the clock input must not be driven  
from LOW to HIGH until all applicable input and  
feedback setup times are met.  
Parameter  
Symbol  
Parameter Description  
Max  
Unit  
tPR  
Power-Up Reset Time  
1000  
ns  
See Switching  
Characteristics  
tS  
Input or Feedback Setup Time  
Clock Width LOW  
tWL  
VCC  
4 V  
Power  
tPR  
Registered  
Active-Low  
Output  
tS  
Clock  
16072E-17  
tWL  
Power-Up Reset Waveform  
2–324  
PALCE26V12 Family  
AMD  
TYPICAL THERMAL CHARACTERISTICS  
Measured at 25°C ambient. These parameters are not tested.  
PALCE26V12  
Typ  
SKINNYDIP  
Parameter  
Symbol  
Parameter Description  
PLCC  
Unit  
θjc  
Thermal impedance, junction to case  
19  
65  
18  
°C/W  
θja  
Thermal impedance, junction to ambient  
55  
°C/W  
θjma  
Thermal impedance, junction to ambient with air flow 200 lfpm air  
59  
54  
50  
50  
48  
44  
39  
37  
°C/W  
°C/W  
°C/W  
°C/W  
400 lfpm air  
600 lfpm air  
800 lfpm air  
Plastic θjc Considerations  
The data listed for plastic θjc are for reference only and are not recommended for use in calculating junction temperatures. The  
heat-flow paths in plastic-encapsulated devices are complex, making the θjc measurement relative to a specific location on the  
package surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of  
the package. Furthermore, θjc tests on packages are performed in a constant-temperature bath, keeping the package surface at  
a constant temperature. Therefore, the measurements can only be used in a similar environment.  
2–325  
PALCE26V12H-15/20  
AMD  
internal delay from the flip-flop outputs through the inter-  
nal feedback and logic to the flip-flop inputs. This fMAX is  
designated “fMAX internal”. A simple internal counter is a  
good example of this type of design, therefore, this pa-  
rameter is sometimes called “fCNT.”  
fMAX Parameters  
The parameter fMAX is the maximum clock rate at which  
the device is guaranteed to operate. Because the flexi-  
bility inherent in programmable logic devices offers a  
choice of clocked flip-flop designs, fMAX is specified for  
three types of synchronous designs.  
The third type of design is a simple data path applica-  
tion. In this case, input data is presented to the flip-flop  
and clocked through; no feedback is employed. Under  
these conditions, the period is limited by the sum of the  
data setup time and the data hold time (tS + tH). How-  
ever, a lower limit for the period of each fMAX type is the  
minimum clock period (tWH + tWL). Usually, this minimum  
The first type of design is a state machine with feedback  
signals sent off-chip. This external feedback could go  
back to the device inputs, or to a second device in a  
multi-chip state machine. The slowest path defining the  
period is the sum of the clock-to-output time and the in-  
put setup time for the external signals (tS + tCO). The re-  
ciprocal, fMAX, is the maximum frequency with external  
feedback or in conjunction with an equivalent speed de-  
vice. This fMAX is designated “fMAX external.”  
clock period determines the period for the third fMAX  
,
designated “fMAX no feedback.”  
f
MAX external and fMAX no feedback are calculated pa-  
rameters. fMAX external is calculated from tS and tCO, and  
MAX no feedback is calculated from tWL and tWH. fMAX in-  
ternal is measured.  
The second type of design is a single-chip state ma-  
chine with internal feedback only. In this case, flip-flop  
inputs are defined by the device inputs and flip-flop out-  
puts. Under these conditions, the period is limited by the  
f
CLK  
(SECOND  
CHIP)  
LOGIC  
REGISTER  
tS  
tS  
tCO  
fMAX External; 1/(tS + tCO  
)
CLK  
CLK  
LOGIC  
REGISTER  
LOGIC  
REGISTER  
tS  
fMAX No Feedback; 1/(tS + tH) or 1/(tWH + tWL  
16072E-18  
fMAX Internal (fCNT  
)
)
2–326  
PALCE26V12 Family  

相关型号:

PALCE26V12H-10JI/4

EE PLD, 10ns, PAL-Type, CMOS, PQCC28, PLASTIC, LCC-28
LATTICE

PALCE26V12H-10PC

28-Pin EE CMOS Versatile PAL Device
AMD

PALCE26V12H-10PC/4

EE PLD, 10ns, PAL-Type, CMOS, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28
LATTICE

PALCE26V12H-10PI

28-Pin EE CMOS Versatile PAL Device
AMD

PALCE26V12H-10PI/4

EE PLD, 10ns, PAL-Type, CMOS, PDIP28, 0.300 INCH, SKINNY, PLASTIC, DIP-28
LATTICE

PALCE26V12H-10PI/5

EE PLD, 10ns, CMOS, PDIP28,
LATTICE

PALCE26V12H-15

28-Pin EE CMOS Versatile PAL Device
AMD

PALCE26V12H-15JC

28-Pin EE CMOS Versatile PAL Device
AMD

PALCE26V12H-15JC/4

Electrically-Erasable PLD
ETC

PALCE26V12H-15JI

28-Pin EE CMOS Versatile PAL Device
AMD

PALCE26V12H-15JI/4

EE PLD, 15ns, PAL-Type, CMOS, PQCC28, PLASTIC, LCC-28
LATTICE

PALCE26V12H-15PC

28-Pin EE CMOS Versatile PAL Device
AMD