13715-201 [AMI]

Clock Generator, 300MHz, CMOS, PDSO16, 5.30 MM, SSOP-16;
13715-201
型号: 13715-201
厂家: AMI SEMICONDUCTOR    AMI SEMICONDUCTOR
描述:

Clock Generator, 300MHz, CMOS, PDSO16, 5.30 MM, SSOP-16

光电二极管
文件: 总15页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
1.0 Features  
2.0 Description  
• Extremely flexible and low-jitter phase-locked loop (PLL)  
frequency synthesis  
The FS7140 / FS7145 is a monolithic CMOS clock gen-  
erator/regenerator IC designed to minimize cost and  
component count in a variety of electronic systems. Via the I2C-  
bus interface, the FS714x can be adapted to many clock  
generation requirements.  
• No external loop filter components needed  
• 150MHz CMOS or 340MHz PECL outputs  
• Completely configurable via I2C™-bus  
• Up to four FS7140 or FS7145 can be used on a single  
I2C-bus  
• 3.3V operation  
• Independent on-chip crystal oscillator and external  
reference input  
The length of the reference and feedback dividers, their fine  
granularity, and the flexibility of the post divider make the  
FS714x the most flexible stand-alone phase-locked loop (PLL)  
clock generator available.  
• Very low "cumulative" jitter  
3.0 Applications  
SCL  
SDA  
1
2
3
4
5
6
7
8
16 CLKN  
15 CLKP  
14 VDD  
SCL  
SDA  
1
2
3
4
5
6
7
8
16 CLKN  
15 CLKP  
• Precision frequency synthesis  
• Low-frequency clock multiplication  
• Video line-locked clock generation  
• Laser beam printers (FS7145)  
ADDR0  
VSS  
14  
ADDR0  
VSS  
VDD  
13  
13  
n/c  
SYNC  
XIN  
12 REF  
11 VSS  
10 n/c  
XIN  
12 REF  
11 VSS  
10 n/c  
XOUT  
ADDR1  
VDD  
XOUT  
ADDR1  
VDD  
9
9
IPRG  
IPRG  
Figure 1: Pin Configuration:  
16-pin (0.150”) SOIC, 16-pin (5.3mm) SSOP  
Sync  
SYNC  
Control  
(FS7145 only)  
IPRG  
XIN  
Loop  
Filter  
Crystal  
Oscillator  
XOUT  
REF  
UP  
Reference  
Divider  
(NR)  
CLKP  
CLKN  
Phase-  
Frequency  
Detector  
Voltage  
Controlled  
Oscillator  
Post  
Divider  
(NPx)  
Charge  
Pump  
DOWN  
CMOS/PECL  
Output  
ADDR[1:0]  
Feedback  
Divider (NF)  
SCL  
SDA  
I2C  
Interface  
Registers  
FS7140 / FS7145  
Figure 2: Device Block Diagram  
AMI Semiconductor  
www.amis.com  
1
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 1: FS7140 Pin Descriptions  
Pin  
1
Type  
DI  
Name  
SCL  
Description  
Serial Interface Clock (requires an external pull-up)  
Serial Interface Data Input/Output (requires an external pull-up)  
Address Select Bit "0"  
Ground  
2
DIO  
SDA  
D
DI  
3
ADDR0  
VSS  
4
P
AI  
5
XIN  
Crystal Oscillator Feedback  
Crystal Oscillator Drive  
Address Select Bit "1"  
Power Supply (+3.3V nominal)  
PECL Current Drive Programming  
No Connection  
6
AO  
XOUT  
ADDR1  
VDD  
IPRG  
n/c  
D
DI  
7
8
P
AI  
-
9
10  
11  
12  
13  
14  
15  
16  
P
DIU  
VSS  
Ground  
REF  
Reference Frequency Input  
No Connection  
-
n/c  
P
VDD  
CLKP  
CLKN  
Power Supply (+3.3V nominal)  
Clock Output  
DO  
DO  
Inverted Clock Output  
D
Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; DIU = Input with Internal Pull-Up; DI = Input with Internal Pull-Down; DIO = Digital Input/Output;  
DI-3 = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin  
Table 2: FS7145 Pin Descriptions  
Pin  
1
Type  
DI  
Name  
SCL  
Description  
Serial Interface Clock (requires an external pull-up)  
Serial Interface Data Input/Output (requires an external pull-up)  
Address Select Bit "0"  
2
DIO  
SDA  
D
DI  
3
ADDR0  
VSS  
4
P
AI  
Ground  
5
XIN  
Crystal Oscillator Feedback  
Crystal Oscillator Drive  
6
AO  
XOUT  
ADDR1  
VDD  
D
DI  
7
Address Select Bit "1"  
8
P
AI  
Power Supply (+3.3V nominal)  
PECL Current Drive Programming  
No Connection  
9
IPRG  
n/c  
10  
11  
12  
13  
14  
15  
16  
-
P
VSS  
Ground  
DIU  
DIU  
P
REF  
Reference Frequency Input  
Synchronization Input  
SYNC  
VDD  
Power Supply (+3.3V nominal)  
Clock Output  
DO  
DO  
CLKP  
CLKN  
Inverted Clock Output  
Key: AI = Analog Input; AO = Analog Output; DI = Digital Input; DIU = Input with Internal Pull-Up; DI = Input with Internal Pull-Down; DIO = Digital Input/Output;  
DI-3 = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin  
D
AMI Semiconductor  
www.amis.com  
2
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
modulus. Selected moduli below 12 are also permitted.  
Moduli of: 4, 5, 8, 9, and 10 are also allowed (4 and 5 are not  
available on date codes prior to 0108).  
4.0 Functional Block Description  
4.1 Phase Locked Loop (PLL)  
The phase locked loop is a standard phase- and frequency-  
locked loop architecture. The PLL consists of a reference  
divider, a phase-frequency detector (PFD), a charge pump, an  
internal loop filter, a voltage-controlled oscillator (VCO), a  
feedback divider, and a post divider.  
4.1.3 Post Divider  
The post divider consists of three individually programmable  
dividers, as shown in Figure 3.  
The reference frequency (generated by either the on-board  
crystal oscillator or an external frequency source), is first  
reduced by the Reference Divider. The integer value that the  
frequency is divided by is called the modulus and is denoted as  
NR for the reference divider. This divided reference is then fed  
into the PFD.  
POST1[3:0]  
POST2[3:0]  
POST3[1:0]  
Post  
Divider 1  
Post  
Divider 2  
Post  
Divider 3  
(NP3)  
f
fCLK  
VCO  
(NP1  
)
(NP2  
)
POST DIVIDER (N  
)
Px  
The VCO frequency is fed back to the PFD through the  
feedback divider (the modulus is denoted by NF).  
Figure 3: Post Divider  
The PFD will drive the VCO up or down in frequency until the  
divided reference frequency and the divided VCO frequency  
appearing at the inputs of the PFD are equal. The input/output  
relationship between the reference frequency and the VCO  
frequency is then:  
P1  
P2  
The moduli of the individual dividers are denoted as N , N  
P3  
Px  
and N , and together they make up the array modulus N .  
NPx = NP × NP × NP  
1
2
3
The post divider performs several useful functions. First, it  
allows the VCO to be operated in a narrower range of speeds  
compared to the variety of output clock speeds that the device  
is required to generate. Second, the extra integer in the  
denominator permits more flexibility in the programming of the  
loop for many applications where frequencies must be  
achieved exactly.  
fVCO  
NF  
fREF  
NR  
=
This basic PLL equation can be rewritten as  
NF  
NR  
fVCO  
= fREF  
A post-divider (actually a series combination of three post  
dividers) follows the PLL and the final equation for device  
output frequency is:  
Note that a nominal 50/50 duty factor is always preserved  
(even for selections which have an odd modulus).  
See Table 8 for additional information.  
  
NF  
1
  
  
fCLK = fREF  
NR NPx  
4.1.4 Crystal Oscillator  
  
The FS7140 is equipped with a Pierce-type crystal oscillator.  
The crystal is operated in parallel resonant mode. Internal  
load capacitance is provided for the crystal. While a  
recommended load capacitance for the crystal is specified,  
crystals for other standard load capacitances may be used if  
great precision of the reference frequency (100ppm or less) is  
not required.  
4.1.1 Reference Divider  
The reference divider is designed for low phase jitter. The  
divider accepts the output of either the crystal oscillator circuit  
or an external reference frequency. The reference divider is a  
12 bit divider, and can be programmed for any modulus from 1  
to 4095 (divide by 1 not available on date codes prior to 0108).  
4.1.5 Reference Divider Source MUX  
4.1.2 Feedback Divider  
The source of frequency for the reference divider can be  
chosen to be the device crystal oscillator or the REF pin by the  
REFDSRC bit.  
The feedback divider is based on a dual-modulus divider (also  
called dual-modulus prescaler) technique. It permits division  
by any integer value between 12 and 16383. Simply program  
the FBKDIV register with the binary equivalent of the desired  
When not using the crystal oscillator, it is preferred to connect  
AMI Semiconductor  
www.amis.com  
3
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
IN  
SS  
OUT  
X to V . Do not connect to X  
.
Then:  
When not using the REF input, it is preferred to leave it floating  
R1 (from CLKP and CLKN output to VDD) =  
DD  
LOAD  
DD  
HI  
or connected to V .  
R
* V / V =  
75 * 3.3 / 2.4 =  
103 ohms  
4.1.6 Feedback Divider Source MUX  
The source of frequency for the feedback divider may be  
selected to be either the output of the post divider or the output  
of the VCO by the FBKDSRC bit.  
R2 (from CLKP and CLKN output to GND) =  
LOAD  
DD  
DD  
HI  
R
* V / (V - V ) =  
75 * 3.3 / (3.3 - 2.4) =  
275 ohms  
Ordinarily, for frequency synthesis, the output of the VCO is  
used. Use the output of the post divider only where a  
deterministic phase relationship between the output clock and  
reference clock are desired (line-locked mode, for example).  
Rprgm (from VDD to IPRG pin) =  
DD  
LOAD  
HI  
LO  
26 * (V * R ) / (V - V ) / 3 =  
26 * (3.3 * 75) / (2.4 - 1.6) / 3 =  
2.68 Kohms  
4.1.7 Device Shutdown  
Two bits are provided to effect shutdown of the device if  
desired, when it is not active. SHUT1 disables most externally  
4.3 SYNC Circuitry  
observable device functions.  
quiescent current to absolute minimum values. Normally, both  
bits should be set or cleared together.  
SHUT2 reduces device  
The FS7145 supports nearly instantaneous adjustment of the  
output CLK phase by the SYNC input. Either edge direction of  
SYNC (positive-going or negative-going) is supported.  
Serial communications capability is not disabled by either  
SHUT1 or SHUT2.  
Example (positive-going SYNC selected): Upon the negative  
edge of SYNC input, a sequence begins to stop the CLK  
output. Upon the positive edge, CLK resumes operation,  
synchronized to the phase of the SYNC input (plus a  
deterministic delay). This is performed by control of the device  
post-divider. Phase resolution equal to ½ of the VCO period  
can be achieved (approximately down to 2ns).  
4.2 Differential Output Stage  
The differential output stage supports both CMOS and pseudo-  
ECL (PECL) signals. The desired output interface is chosen via  
the programming registers.  
5.0 I2C-bus Control Interface  
If a PECL interface is used, the transmission line is usually  
terminated using a Thévenin termination. The output stage can  
only sink current in the PECL mode, and the amount of sink  
current is set by a programming resistor on the LOCK/IPRG  
pin. The ratio of output sink current to IPRG current is 13:1.  
Source current for the CLKx pins is provided by the pull-up  
resistors that are part of the Thévenin termination.  
This device is a read/write slave device meeting all  
Philips I2C-bus specifications except a "general  
call." The bus has to be controlled by a master  
device that generates the serial clock SCL,  
controls bus access and generates the START  
and STOP conditions while the device works as a slave. Both  
master and slave can operate as a transmitter or receiver, but  
the master device determines which mode is activated. A  
device that sends data onto the bus is defined as the  
transmitter, and a device receiving data as the receiver.  
4.2.1 Example  
Assume that it is desired to connect a PECL-type fanout buffer  
right next to the FS7140.  
I2C-bus logic levels noted herein are based on a percentage of  
Further assume:  
DD  
· V = 3.3V  
DD  
the power supply (V ). A logic-one corresponds to a nominal  
HI  
· desired V = 2.4V  
DD  
SS  
voltage of V , while a logic-zero corresponds to ground (V ).  
LO  
· desired V = 1.6V  
LOAD  
· equivalent R  
= 75 ohms  
AMI Semiconductor  
www.amis.com  
4
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
5.1 Bus Conditions  
5.2 I2C-bus Operation  
Data transfer on the bus can only be initiated when the bus is  
not busy. During the data transfer, the data line (SDA) must  
remain stable whenever the clock line (SCL) is high. Changes  
in the data line while the clock line is high will be interpreted by  
the device as a START or STOP condition. The following bus  
conditions are defined by the I2C-bus protocol.  
All programmable registers can be accessed randomly or  
sequentially via this bi-directional two wire digital interface. The  
crystal oscillator does not have to run for communication to  
occur.  
The device accepts the following I2C-bus commands:  
5.1.1 Not Busy  
5.2.1 Slave Address  
Both the data (SDA) and clock (SCL) lines remain high to  
indicate the bus is not busy.  
After generating a START condition, the bus master broadcasts  
a seven-bit slave address followed by a R/W bit. The address  
of the device is:  
5.1.2 START Data Transfer  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
A high to low transition of the SDA line while the SCL input is  
high indicates a START condition. All commands to the device  
must be preceded by a START condition.  
1
0
1
1
0
X
X
where X is controlled by the logic level at the ADDR pins. The  
selectable ADDR bits allow four different FS7140 devices to  
exist on the same bus. Note that every device on an I2C-bus  
must have a unique address to avoid pos-sible bus conflicts.  
5.1.3 STOP Data Transfer  
A low to high transition of the SDA line while SCL is held high  
indicates a STOP condition. All commands to the device must  
be followed by a STOP condition.  
5.2.2 Random Register Write Procedure  
Random write operations allow the master to directly write to  
any register. To initiate a write procedure, the R/W bit that is  
transmitted after the seven-bit device address is a logic-low.  
This indicates to the addressed slave device that a register  
address will follow after the slave device acknowledges its  
device address. The register address is written into the slave's  
address pointer. Following an acknowledge by the slave, the  
master is allowed to write eight bits of data into the addressed  
register. A final acknowledge is returned by the device, and the  
master generates a STOP condition.  
5.1.4 Data Valid  
The state of the SDA line represents valid data if the SDA line  
is stable for the duration of the high period of the SCL line after  
a START condition occurs. The data on the SDA line must be  
changed only during the low period of the SCL signal. There is  
one clock pulse per data bit.  
Each data transfer is initiated by a START condition and  
terminated with a STOP condition. The number of data bytes  
transferred between START and STOP conditions is  
determined by the master device, and can continue indefinitely.  
However, data that is overwritten to the device after the first  
eight bytes will overflow into the first register, then the second,  
and so on, in a first-in, first-overwritten fashion.  
If either a STOP or a repeated START condition occurs during  
a register write, the data that has been transferred is ignored.  
5.2.3 Random Register Read Procedure  
Random read operations allow the master to directly read from  
any register. To perform a read procedure, the R/W bit that is  
transmitted after the seven-bit address is a logic-low, as in the  
register write procedure. This indicates to the addressed slave  
device that a register address will follow after the slave device  
acknowledges its device address. The register address is then  
written into the slave's address pointer.  
5.1.5 Acknowledge  
When addressed, the receiving device is required to generate  
an acknowledge after each byte is received. The master device  
must generate an extra clock pulse to coincide with the  
acknowledge bit. The acknowledging device must pull the SDA  
line low during the high period of the master acknowledge  
clock pulse. Setup and hold times must be taken into account.  
Following an acknowledge by the slave, the master generates  
a repeated START condition. The repeated START terminates  
the write procedure, but not until after the slave's address  
pointer is set. The slave address is then resent, with the R/W  
bit set this time to a logic-high, indicating to the slave that data  
will be read. The slave will acknowledge the device address,  
and then transmits the eight-bit word. The master does not  
The master must signal an end of data to the slave by not  
generating and acknowledge bit on the last byte that has been  
read (clocked) out of the slave. In this case, the slave must  
leave the SDA line high to enable the master to generate a  
STOP condition.  
AMI Semiconductor  
www.amis.com  
5
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
acknowledge the transfer but does generate a STOP condition.  
5.2.5 Sequential Register Read Procedure  
Sequential read operations allow the master to read from each  
register in order. The register pointer is automatically  
incremented by one after each read. This procedure is more  
efficient than the random register read if several registers must  
be read.  
5.2.4 Sequential Register Write Procedure  
Sequential write operations allow the master to write to each  
register in order. The register pointer is automatically  
incremented after each write. This procedure is more efficient  
than the random register write if several registers must be  
written.  
To perform a read procedure, the R/W bit that is transmitted  
after the seven-bit address is a logic-low, as in the register  
write procedure. This indicates to the addressed slave device  
that a register address will follow after the slave device  
acknowledges its device address. The register address is then  
written into the slave's address pointer.  
To initiate a write procedure, the R/W bit that is transmitted  
after the seven-bit device address is a logic-low. This indicates  
to the addressed slave device that a register address will follow  
after the slave device acknowledges its device address. The  
register address is written into the slave's address pointer.  
Following an acknowledge by the slave, the master is allowed  
to write up to eight bytes of data into the addressed register  
before the register address pointer overflows back to the  
beginning address.  
Following an acknowledge by the slave, the master generates  
a repeated START condition. The repeated START terminates  
the write procedure, but not until after the slave's address  
pointer is set. The slave address is then resent, with the R/W  
bit set this time to a logic-high, indicating to the slave that data  
will be read. The slave will acknowledge the device address,  
and then transmits all eight bytes of data starting with the initial  
addressed register. The register address pointer will overflow if  
the initial register address is larger than zero. After the last byte  
of data, the master does not acknowledge the transfer but  
does generate a STOP condition.  
An acknowledge by the device between each byte of data must  
occur before the next data byte is sent.  
Registers are updated every time the device sends an  
acknowledge to the host. The register update does not wait for  
the STOP condition to occur. Registers are therefore updated  
at different times during a sequential register write.  
AMI Semiconductor  
www.amis.com  
6
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
S
DEVICE ADDRESS  
W
A
REGISTER ADDRESS  
A
DATA  
A P  
7-bit Receive  
Device Address  
Register Address  
Acknowledge  
Data  
Acknowledge  
STOP Condition  
Acknowledge  
START  
Command  
WRITE Command  
From bus host  
to device  
From device  
to bus host  
Figure 4: Random Register Write Procedure  
S
DEVICE ADDRESS  
W
A
REGISTER ADDRESS  
A
S
DEVICE ADDRESS  
R
A
DATA  
A P  
7-bit Receive  
Device Address  
7-bit Receive  
Device Address  
Register Address  
Acknowledge  
Data  
Acknowledge  
STOP Condition  
NO Acknowledge  
Repeat START  
START  
Command  
WRITE Command  
Acknowledge  
READ Command  
From bus host  
to device  
From device  
to bus host  
Figure 5: Random Register Read Procedure  
S
DEVICE ADDRESS  
W
A
REGISTER ADDRESS  
A
DATA  
A
DATA  
A
DATA  
A P  
7-bit Receive  
Device Address  
Register Address  
Acknowledge  
Data  
Data  
Data  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
START  
Command  
WRITE Command  
STOP Command  
From bus host  
to device  
From device  
to bus host  
Figure 6: Sequential Register Write Procedure  
S
DEVICE ADDRESS  
W
A
REGISTER ADDRESS  
A
S
DEVICE ADDRESS  
R
A
DATA  
A
DATA  
A P  
7-bit Receive  
Device Address  
7-bit Receive  
Device Address  
Register Address  
Acknowledge  
Data  
Data  
Acknowledge  
Acknowledge  
NO Acknowledge  
Repeat START  
START  
Command  
WRITE Command  
Acknowledge  
READ Command  
STOP Command  
From bus host  
to device  
From device  
to bus host  
Figure 7: Sequential Register Read Procedure  
AMI Semiconductor  
www.amis.com  
7
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
6.0 Programming Information  
All register bits are cleared to zero on power-up. All register  
bits may be read back as written.  
Table 3: FS7140 Register Map  
ADDRESS  
BYTE 7  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
(Bit 63)  
(Bit 62)  
(Bit 61)  
(Bit 60)  
(Bit 59)  
(Bit 58)  
(Bit 57)  
(Bit 56)  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
RESERVED  
RESERVED  
SHUT2  
(Bit 53)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
(Bit 55)  
(Bit 54)  
(Bit 52)  
(Bit 51)  
(Bit 50)  
(Bit 49)  
(Bit 48)  
BYTE 6  
BYTE 5  
0 = Normal  
1 = Powered Down  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
RESERVED  
LC  
(Bit 46)  
LR[1]  
(Bit 45)  
LR[0]  
(Bit 44)  
RESERVED  
RESERVED  
CP[1]  
(Bit 41)  
CP[0]  
(Bit 40)  
(Bit 47)  
(Bit 43)  
(Bit 42)  
Loop Filter Cap  
Select  
Must be set to “0”  
Loop Filter Resistor Select  
Must be set to “0”  
Must be set to “0”  
Charge Pump Current Select  
CMOS  
(Bit 39)  
FBKDSRC  
(Bit 38)  
FBKDIV[13]  
FBKDIV[12]  
FBKDIV[11]  
FBKDIV[10]  
FBKDIV[9]  
(Bit 33)  
FBKDIV[8]  
(Bit 32)  
(Bit 37)  
(Bit 36)  
(Bit 35)  
(Bit 34)  
BYTE 4  
0 = VCO Output  
1 = Post Divider  
Output  
8192  
4096  
2048  
1024  
512  
256  
0 = PECL  
1 = CMOS  
See Section 4.1.2 for disallowed FBKDIV values  
FBKDIV[7]  
(Bit 31)  
FBKDIV[6]  
(Bit 30)  
FBKDIV[5]  
(Bit 29)  
FBKDIV[4]  
(Bit 28)  
FBKDIV[3]  
(Bit 27)  
FBKDIV[2]  
(Bit 26)  
FBKDIV[1]  
(Bit 25)  
FBKDIV[0]  
(Bit 24)  
BYTE 3  
BYTE 2  
128  
64  
32  
16  
8
4
2
1
See Section 4.1.2 for disallowed FBKDIV values  
POST2[3]  
(Bit 23)  
POST2[2]  
(Bit 22)  
POST2[1]  
(Bit 21)  
POST2[0]  
(Bit 20)  
POST1[3]  
(Bit 19)  
POST1[2]  
(Bit 18)  
POST1[1]  
(Bit 17)  
POST1[0]  
(Bit 16)  
Modulus = N+1 (N=0 to 11)  
See Table 8  
Modulus = N+1 (N=0 to 11)  
See Table 8  
POST3[1]  
(Bit 15)  
POST3[0]  
(Bit 14)  
SHUT1  
(Bit 13)  
REFDSRC  
(Bit 12)  
REFDIV[11]  
REFDIV[10]  
REFDIV[9]  
REFDIV[8]  
(Bit 11)  
(Bit 10)  
(Bit 9)  
(Bit 8)  
BYTE 1  
BYTE 0  
Modulus = 1, 2, 4, or 8  
See Table 8  
0 = Normal  
1 = Powered Down  
0 = Crystal Oscillator  
1 = REF Pin  
2048  
1024  
512  
256  
REFDIV[7]  
REFDIV[6]  
REFDIV[5]  
REFDIV[4]  
REFDIV[3]  
REFDIV[2]  
REFDIV[1]  
REFDIV[0]  
(Bit 7)  
(Bit 6)  
(Bit 5)  
(Bit 4)  
(Bit 3)  
(Bit 2)  
(Bit 1)  
(Bit 0)  
128  
64  
32  
16  
8
4
2
1
AMI Semiconductor  
www.amis.com  
8
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 4: FS7145 Register Map  
ADDRESS  
BYTE 7  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
(Bit 63)  
(Bit 62)  
(Bit 61)  
(Bit 60)  
(Bit 59)  
(Bit 58)  
(Bit 57)  
(Bit 56)  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
RESERVED  
RESERVED  
SHUT2  
(Bit 53)  
RESERVED  
RESERVED  
RESERVED  
SYNCPOL  
(Bit 49)  
SYNCEN  
(Bit 48)  
(Bit 55)  
(Bit 54)  
(Bit 52)  
(Bit 51)  
(Bit 50)  
BYTE 6  
BYTE 5  
0 = Normal  
1 = Powered Down  
“0” = negative  
“1” = positive  
“0” = negative  
“1” = positive  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
Must be set to “0”  
RESERVED  
LC  
(Bit 46)  
LR[1]  
(Bit 45)  
LR[0]  
(Bit 44)  
RESERVED  
RESERVED  
CP[1]  
(Bit 41)  
CP[0]  
(Bit 40)  
(Bit 47)  
(Bit 43)  
(Bit 42)  
Loop Filter Cap  
Select  
Must be set to “0”  
Loop Filter Resistor Select  
Must be set to “0”  
Must be set to “0”  
Charge Pump Current Select  
CMOS  
(Bit 39)  
FBKDSRC  
(Bit 38)  
FBKDIV[13]  
FBKDIV[12]  
FBKDIV[11]  
FBKDIV[10]  
FBKDIV[9]  
(Bit 33)  
FBKDIV[8]  
(Bit 32)  
(Bit 37)  
(Bit 36)  
(Bit 35)  
(Bit 34)  
BYTE 4  
0 = VCO Output  
1 = Post Divider  
Output  
8192  
4096  
2048  
1024  
512  
256  
0 = PECL  
1 = CMOS  
See Section 4.1.2 for disallowed FBKDIV values  
FBKDIV[7]  
(Bit 31)  
FBKDIV[6]  
(Bit 30)  
FBKDIV[5]  
(Bit 29)  
FBKDIV[4]  
(Bit 28)  
FBKDIV[3]  
(Bit 27)  
FBKDIV[2]  
(Bit 26)  
FBKDIV[1]  
(Bit 25)  
FBKDIV[0]  
(Bit 24)  
BYTE 3  
BYTE 2  
128  
64  
32  
16  
8
4
2
1
See Section 4.1.2 for disallowed FBKDIV values  
POST2[3]  
(Bit 23)  
POST2[2]  
(Bit 22)  
POST2[1]  
(Bit 21)  
POST2[0]  
(Bit 20)  
POST1[3]  
(Bit 19)  
POST1[2]  
(Bit 18)  
POST1[1]  
(Bit 17)  
POST1[0]  
(Bit 16)  
Modulus = N+1 (N=0 to 11)  
See Table 8  
Modulus = N+1 (N=0 to 11)  
See Table 8  
POST3[1]  
(Bit 15)  
POST3[0]  
(Bit 14)  
SHUT1  
(Bit 13)  
REFDSRC  
(Bit 12)  
REFDIV[11]  
REFDIV[10]  
REFDIV[9]  
REFDIV[8]  
(Bit 11)  
(Bit 10)  
(Bit 9)  
(Bit 8)  
BYTE 1  
BYTE 0  
Modulus = 1, 2, 4, or 8  
See Table 8  
0 = Normal  
1 = Powered Down  
0 = Crystal Oscillator  
1 = REF Pin  
2048  
1024  
512  
256  
REFDIV[7]  
REFDIV[6]  
REFDIV[5]  
REFDIV[4]  
REFDIV[3]  
REFDIV[2]  
REFDIV[1]  
REFDIV[0]  
(Bit 7)  
(Bit 6)  
(Bit 5)  
(Bit 4)  
(Bit 3)  
(Bit 2)  
(Bit 1)  
(Bit 0)  
128  
64  
32  
16  
8
4
2
1
AMI Semiconductor  
www.amis.com  
9
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 5: Device Configuration Bits  
Table 9: Post Divider Control Bits  
Name  
Description  
Name  
Description  
REFerence Divider SouRCe  
[0] = Crystal Oscillator / [1] = REF Pin  
FeedB ack Divider SouRCe  
[0] = VCO Output / [1] = Post Divider Output  
SHUTdown1  
[0] = Normal / [1] = Powered Down  
SHUTdown2  
[0] = Normal / [1] = Powered Down  
CLKP/CLKN Output Mode  
[0] = PECL Output / [1] CMOS Output  
P1  
POST Divider #1 (N ) Modulus  
REFDSRC  
[0000]  
[0001]  
[0010]  
[0011]  
[0100]  
[0101]  
[0110]  
[0111]  
[1000]  
[1001]  
[1010]  
[1011]  
[1100]  
[1101]  
1
2
3
4
5
6
7
8
9
FBKDSRC  
SHUT1  
SHUT2  
CMOS  
POST1[3:0]  
10  
11  
12  
Table 6: Main Loop Tuning Bits  
Name  
Description  
Charge Pump Current  
Do not use  
[1110]  
[1111]  
[00]  
[01]  
2.0µA  
4.5µA  
CP[1:0]  
P2  
POST Divider #2 (N ) Modulus  
[10]  
[11]  
11.0µA  
22.5µA  
[0000]  
[0001]  
[0010]  
[0011]  
[0100]  
[0101]  
[0110]  
[0111]  
[1000]  
[1001]  
[1010]  
[1011]  
[1100]  
[1101]  
[1110]  
[1111]  
1
2
3
4
5
6
7
8
9
Loop Filter Resistor Select  
[00]  
[01]  
[10]  
400KΩ  
133KΩ  
30KΩ  
LR[1:0]  
LC  
[11]  
12KΩ  
Loop Filter Capacitor Select  
POST2[3:0]  
[0]  
[1]  
185pF  
500pF  
10  
11  
12  
Table 7: PLL Divider Control Bits  
NAME  
DESCRIPTION  
Do not use  
R
REFerence DIVider (N )  
REFDIV[11:0]  
FBKDIV[13:0]  
R
FeedBacK DIVider (N )  
P3  
POST Divider #3 (N ) Modulus  
[00]  
[01]  
[10]  
[11]  
1
2
4
8
POST3[1:0]  
Table 8: SYNC Control Bits (FS7145 only)  
Name  
Description  
SYNC Enable  
[0] = Disabled / [1] = Enabled  
SYNC POLarity  
SYNCEN  
SYNCPOL  
[0] = Negative Edge / [1] = Positive Edge  
AMI Semiconductor  
www.amis.com  
10  
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
7.0 Electrical Specifications  
Table 10: Absolute Maximum Ratings  
Parameter  
Symbol  
Min.  
Max.  
Units  
V
4.5  
SS  
DD  
V
SS  
Supply Voltage, dc (V = ground)  
V -0.5  
Input Voltage, dc  
V
1
V
SS  
DD  
V -0.5  
V +0.5  
Output Voltage, dc  
V
O
SS  
DD  
V
V -0.5  
V +0.5  
-50  
-50  
-65  
-55  
50  
50  
mA  
mA  
°C  
°C  
°C  
I
I
DD  
IK  
Input Clamp Current, dc (V < 0 or V > V )  
I
I
I
DD  
OK  
Output Clamp Current, dc (V < 0 or V > V )  
Storage Temperature Range (non-condensing)  
Ambient Temperature Range, Under Bias  
I
150  
125  
150  
S
T
A
T
Junction Temperature  
J
T
Per IPC/JEDEC  
J-STD-020B  
Reflow Solder Profile  
Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7)  
2
kV  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only and functional operation of the  
device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect  
device performance, functionality and reliability.  
CAUTION: ELECTROSTATIC SENSITIVE DEVICE  
Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a  
high-energy electrostatic discharge.  
Table 11: Operating Conditions  
Parameter  
Symbol Conditions/Description  
Min.  
3.0  
0
Typ.  
Max.  
3.6  
Units  
Supply Voltage  
3.3  
V
DD  
V
Ambient Operating Temperature Range  
70  
°C  
A
T
AMI Semiconductor  
www.amis.com  
11  
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 12: DC Electrical Specifications  
Parameter  
Overall  
Symbol Conditions/Description  
Min.  
Typ.  
Max.  
Units  
XTAL  
VCO  
CMOS mode; F  
= 15MHz; F = 400MHz;  
DD  
I
I
Supply Current, Dynamic  
35  
mA  
CLK  
F
= 200MHx; does not include load current  
DDL  
Supply Current, Static  
SHUT1, SHUT2 bit both “1”  
400  
700  
µA  
Serial Communication I/O (SDA, SCL)  
High-Level Input Voltage  
IH  
DD  
V
V
V
0.8*V  
V
IL  
DD  
0.2*V  
+10  
Low-Level Input Voltage  
V
hys  
DD  
0.33*V  
14  
Hysteresis Voltage  
V
I
I
Input Leakage Current  
SDA, SCL in read condition  
-10  
5
µA  
mA  
OL  
SDA  
I
SDA in acknowledge condition; V = 0.4V  
Low-Level Output Sink Current (SDA)  
Address Select Input (ADDR0, ADDR1)  
High-Level Input Voltage  
IH  
IL  
VDD  
V
V
V
-1.0  
-1.0  
-1.0  
V
Low-Level Input Voltage  
0.8  
1
V
IH  
ADDRx  
ADDRx  
DD  
I
I
V
= V  
High-Level Input Current (pull-down)  
Low-Level Input Current  
30  
µA  
µA  
IL  
V
= 0V  
-1  
Reference Frequency Input (REF)  
High-Level Input Voltage  
IH  
VDD  
V
V
V
V
IL  
Low-Level Input Voltage  
0.8  
1
V
IH  
IL  
REF  
V
DD  
= V  
I
I
High-Level Input Current  
-1  
µA  
µA  
REF  
V
= 0V  
Low-Level Input Current (pull-down)  
Sync Control Input (SYNC)  
High-Level Input Voltage  
-30  
-30  
IH  
VDD  
V
V
V
V
IL  
Low-Level Input Voltage  
0.8  
1
V
IH  
REF  
REF  
DD  
I
I
V
= V  
High-Level Input Current  
-1  
µA  
µA  
IL  
V
= 0V  
Low-Level Input Current (pull-down)  
Crystal Oscillator Input (XIN)  
Threshold Bias Voltage  
TH  
DD  
V /2  
V
V
IH  
XIN  
XIN  
I
V
= VDD  
= GND  
High-Level Input Current  
40  
µA  
µA  
MHz  
pF  
IL  
I
V
Low-Level input Current  
-40  
X
F
Crystal Frequency  
Fundamental mode  
35  
10  
L(XTAL)  
C
Recommended Crystal Load Capacitance*  
Crystal Oscillator Output (XOUT)  
High-Level Output Source Current  
Low-Level Output Sink Current  
PECL Current Program I/O (IPRG)  
Low-Level Input Current  
For best matching with internal crystal oscillator load  
16-18  
OH  
XOUT  
V
I
I
= 0  
-8.5  
11  
mA  
mA  
OL  
XOUT  
IPRG  
O
V
= VDD  
IL  
I
V
= 0V; PECL Mode  
-10  
µA  
Clock Outputs, CMOS Mode (CLKN, CLKP)  
High-Level Output Source Current  
Low-Level Output Sink Current  
Clock Outputs, PECL Mode (CLKN, CLKP)  
OH  
OL  
I
I
V = 2.0V  
19  
mA  
mA  
O
V = 0.4V  
-35  
IPRG  
V
will be clamped to this level when a resistor is  
IPRG  
V
IPRG Bias Voltage  
VDD/3  
13  
V
connected from VDD to IPRG  
IPRG  
IPRG  
I
VDD  
IPRG  
SET  
I
- (V - V ) / R  
IPRG Bias Current  
Sink Current to IPRG Current Ratio  
Tristate Output Current  
DD  
3.5  
10  
mA  
Z
I
-10  
µA  
A
Unless otherwise stated, V = 3.3V ± 10%, no load on any output, and ambient temperature range T = 0°C to 70°C. Parameters denoted with an asterisk ( * ) represent nominal characterization data  
and are not production tested to any specific limits. MIN and MAX characterization data are ± 3σ from typical. Negative currents indicate current flows out of the device.  
AMI Semiconductor  
www.amis.com  
12  
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 13: AC Timing Specifications  
Clock  
(MHz)  
Parameter  
Overall  
Symbol  
Conditions/Description  
Min. Typ.  
Max.  
Units  
CMOS outputs  
PECL outputs  
0
0
150  
300  
400  
O(max)  
f
Output Frequency*  
MHz  
VCO  
f
VCO Frequency*  
40  
MHz  
ns  
r
t
L
C = 7pF  
CMOS Mode Rise Time*  
CMOS Mode Fall Time*  
PECL Mode Rise Time*  
PECL Mode Fall Time*  
Reference Frequency Input (REF)  
Input Frequency  
1
f
L
t
C = 7pF  
1
ns  
r
t
L
L
C = 7pF; R = 65 ohm  
1
ns  
f
L
L
t
C = 7pF; R = 65 ohm  
1
ns  
REF  
F
80  
MHz  
ns  
REHF  
t
Reference High Time  
3
3
REFL  
t
Reference Low Time  
ns  
Sync Control Input (SYNC)  
Sync High Time  
SYNCH  
CLK  
t
T
for orderly CLK stop/start  
for orderly CLK stop/start  
3
3
SYNCL  
CLK  
t
T
Sync Low Time  
Clock Output (CLKP, CLKN)  
Duty Cycle (CMOS Mode)*  
Duty Cycle (PECL Mode)*  
Measured at 1.4V  
50  
50  
%
%
CLKP  
CLKN  
Measured at zero crossings of (V -V  
)
For valid programming solutions. Long-term (or cumulative) jitter specified is RMS  
position error of any edge compared with an ideal clock generated from the same  
reference frequency. It is measured with a time interval analyzer using a 500  
microsecond window, using statistics gathered over 1000 samples.  
ps  
FREF/NREF > 1000kHz  
FREF/NREF ~= 500kHz  
FREF/NREF ~= 250kHz  
FREF/NREF ~= 125kHz  
FREF/NREF ~= 62.5kHz  
FREF/NREF ~= 31.5kHz  
40MHz < VCO Frequency < 100MHz  
VCO Frequency > 100MHz  
25  
50  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
j(LT)  
Jitter, Long Term (σ  
γ
(τ))∗  
t
100  
190  
240  
300  
75  
j(P)  
t
Jitter, Period (peak-peak)*  
50  
DD  
A
Unless otherwise stated, V = 3.3V ± 10%, no load on any output, and ambient temperature range T = 0°C to 70°C. Parameters denoted with an asterisk ( * ) represent nominal characterization data  
and are not production tested to any specific limits. MIN and MAX characterization data are ± 3σ from typical.  
Table 14: Serial Interface Timing Specifications  
Fast Mode  
Parameter  
Symbol  
Conditions/Description  
Units  
Min.  
0
Max.  
SCL  
f
Clock Frequency  
SCL  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUF  
t
Bus Free Time Between STOP and START  
Setup Time, START (repeated)  
Hold Time, START  
1300  
600  
600  
100  
0
su:STA  
t
hd:STA  
t
su:DAT  
t
Setup Time, Data Input  
Hold Time, Data Input  
SDA  
SDA  
hd:DAT  
t
AA  
t
Output Data Valid From Clock  
Rise Time, Data and Clock  
Fall Time, Data and Clock  
High Time, Clock  
900  
300  
300  
R
t
SDA, SCL  
SDA, SCL  
SCL  
F
t
HI  
t
600  
1300  
600  
LO  
t
Low Time, Clock  
SCL  
su:STO  
t
Setupt Time, STOP  
DD  
A
Unless otherwise stated, V = 3.3V ± 10%, no load on any output, and ambient temperature range T = 0°C to 70°C. Parameters denoted with an asterisk ( * ) represent nominal characterization data  
and are not production tested to any specific limits. MIN and MAX characterization data are ± 3σ from typical.  
AMI Semiconductor  
www.amis.com  
13  
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
SCL  
thd:STA  
tsu:STA  
tsu:STO  
SDA  
ADDRESS OR  
DATA VALID  
DATA CAN  
CHANGE  
START  
STOP  
Figure 8: Bus Timing Data  
tHI  
tR  
tF  
tLO  
SCL  
tsu:STA  
thd:STA  
tsu:STO  
tsu:DAT  
thd:DAT  
SDA  
IN  
tBUF  
tAA  
tAA  
SDA  
OUT  
Figure 9: Data Transfer Sequence  
8.0 Package Information for ‘Green’ (FS7140) and ‘Non-Green’ (FS7140 & FS7145)  
Table 15: 16-pin SOIC (0.150”) Package Dimensions  
Dimensions  
16  
Inches  
Min.  
Millimeters  
Max.  
0.068  
0.0098  
0.061  
0.019  
0.0098  
0.393  
0.157  
Min.  
Max.  
1.73  
0.249  
1.55  
0.49  
0.249  
9.98  
3.99  
A
A1  
A2  
B
0.061  
0.004  
0.055  
0.013  
0.0075  
0.386  
0.150  
1.55  
0.102  
1.40  
E
H
0.33  
C
D
E
0.191  
9.80  
1
ALL RADII:  
0.005" TO 0.01"  
h x 45°  
7° typ.  
B
e
3.81  
e
0.050 BSC  
1.27 BSC  
C
A2  
A
H
h
0.230  
0.010  
0.016  
0°  
0.244  
0.016  
0.035  
8°  
5.84  
0.25  
0.41  
0°  
6.20  
0.41  
0.89  
8°  
D
L
θ
A1  
L
BASE PLANE  
SEATING PLANE  
Θ
AMI Semiconductor  
www.amis.com  
14  
Data Sheet  
FS7140-01 / FS7140-01g / FS7145 Programmable Phase-Locked Loop Clock Generator  
Table 16: 16-pin SOIC (0.150”) Package Characteristics  
Parameter  
Symbol  
Conditions/Description  
Air flow = 0 ft./min.  
Corner lead  
Typ.  
108  
2.5  
Units  
°CW  
nH  
JA  
Θ
Thermal Impedance, Junction to Free-Air  
11  
L
Lead Inductance, Self  
Center lead  
1.2  
nH  
Table 17: 16-pin 5.3mm (0.209”) SSOP Package Dimensions  
16  
Dimensions  
Millimeters  
Inches  
Min.  
Max.  
0.078  
0.008  
0.070  
0.015  
0.008  
0.249  
0.212  
Min.  
1.73  
0.05  
1.68  
0.25  
0.13  
6.07  
5.20  
Max.  
1.99  
0.21  
1.78  
0.38  
0.20  
6.33  
5.38  
A
A1  
A2  
B
0.068  
0.002  
0.066  
0.010  
0.005  
0.239  
0.205  
E
H
C
D
1
B
e
E
e
0.0256 BSC  
0.65 BSC  
C
A2  
A
H
0.301  
0.022  
0
0.311  
0.037  
8
7.65  
0.55  
0
7.90  
0.95  
8
D
L
θ
A1  
L
Θ
BASE PLANE  
SEATING PLANE  
Table 18: 16-pin 5.3mm (0.208”) SSOP Package Characteristics  
Parameter  
Symbol  
Conditions/Description  
TYP.  
UNITS  
Thermal Impedance, Junction to Free-Air  
16-pin 0.150” SOIC  
JA  
Θ
Air flow = 0ms  
90  
°C/W  
Corner lead  
Center lead  
2.3  
1
nH  
nH  
11  
L
Lead Inductance, Self  
9.0 Ordering Information  
Ordering Code  
Device Number  
Package Type  
Operating Temperature Range  
Shipping Configuration  
13715-802  
13715-201  
13715-102  
13715-202  
FS7140-01  
FS7140-01  
FS7145  
16-pin (0.150”) SOIC  
16-pin (5.3mm) SSOP  
16-pin (0.150”) SOIC  
16-pin (5.3mm) SSOP  
0°C to 70°C (commercial)  
0°C to 70°C (commercial)  
0°C to 70°C (commercial)  
0°C to 70°C (commercial)  
Tape and reel/tubes (please specify)  
Tape and reel/tubes (please specify)  
Tape and reel/tubes (please specify)  
Tape and reel/tubes (please specify)  
FS7145  
16-pin (5.3mm) SSOP  
‘green’ or lead-free packaging  
13715-805  
FS7140-01g  
0°C to 70°C (commercial)  
Tape and reel/tubes (please specify)  
AMI Semiconductor  
www.amis.com  
15  
© 2004 AMI Semiconductor, Inc.  
AMI Semiconductor makes no warranty for the use of its products, other than those expressly contained in the company’s standard warranty contained in AMI Semiconductor’s Terms and Conditions. The company  
assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to  
update the information contained herein. No licenses to patents or other intellectual property of AMI Semiconductor are granted by the company in connection with the sale of AMI Semiconductor products, expressly or  
by implication. I2C is a licensed trademark of Philips Electronics, N.V. AMI Semiconductor reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.  
IM  

相关型号:

13715-801

Clock Generator, 500MHz, CMOS, PDSO28, 0.300 INCH, SOIC-28
AMI

13715-805

Clock Generator, 300MHz, CMOS, PDSO16, 5.30 MM, LEAD FREE, SSOP-16
AMI

1372-1

MICRO PINS
ETC

1372-2

MICRO PINS
ETC

1373-1

MICRO PINS
ETC

1373-2

MICRO PINS
ETC

1374

4.5A, 500kHz Step-Down Switching Regulator
Linear

1374-1

MICRO PINS
ETC

1374-2

MICRO PINS
ETC

1374-3

MICRO PINS
ETC

1374331-1

THIS DRAWING IS A CONTROLLED DOCUMENT.
TE