AS3677 [AMSCO]

Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver; 三通道的照明管理单元与DCDC步/时, ALS , 2xDLS ( = DBC)和RGB驱动器
AS3677
型号: AS3677
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver
三通道的照明管理单元与DCDC步/时, ALS , 2xDLS ( = DBC)和RGB驱动器

驱动器 CD
文件: 总68页 (文件大小:4711K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
austriamicrosystems AG  
is now  
ams AG  
The technical content of this austriamicrosystems datasheet is still valid.  
Contact information:  
Headquarters:  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
e-Mail: ams_sales@ams.com  
Please visit our website at www.ams.com  
Datasheet  
AS3677  
Triple Channel Lighting Management Unit with DCDC step/up,  
ALS, 2xDLS(=DBC) and RGB Driver  
1 General Description  
2 Key Features  
High-Efficiency Step Up DC/DC Converter  
The AS3677 is a highly-integrated CMOS Power and  
Lighting Management Unit for mobile telephones, and  
other Li+ battery powered devices.  
- Up to 25V, up to 50mA for White LEDs  
- Programmable Over voltage Protection  
(10V, 16V or 25V)  
The AS3677 incorporates one Step Up DC/DC Con-  
verter for white backlight LEDs one Analog-to-Digital  
Converter, six current sinks, LED in-circuit function test,  
an I2C serial interface, and control logic all onto a single  
device. It includes a charge pump to control e.g. an RGB  
together with an internal pattern generator for smooth  
blinking effects.  
50mA Charge Pump  
- 1:1 and 1:2 Mode with automatic Up Switching  
- Only 2 External Capacitors Required  
6 Current Sinks  
- Fully Programmable (8-bit) from: 0mA to 25.5mA  
- 3xHigh Voltage capable (up to 2V)  
It supports ambient light sensor processing and two  
Dynamic Luminance Scaling (DLS) (also called  
Dynamic Backlight Control - DBC) input.  
- 3xLow voltage for use wth the CP (up to 5.5V)  
- Selectively Enable/Disable Current Sinks  
- Dual ynamic Luminance Scaling (DLS) support to  
impove backlight opratintime (can adjust any  
current source)  
- Light Sensor inut with internal hardware process-  
ing to conrobacklight according to ambient light  
using 3 goups  
Internally the PWM signal for DLS can be used to  
change the analog current through the current sources  
(two channels can be used simultaneously). This avoids  
noise in the system as the changes of backlight control  
happen continuously without using the PWM modulation  
scheme.  
InternWM Generation  
Output voltages and output currents are fully prgram-  
mable.  
8 Besution  
- Autonomous Logarithmic up/down dimming  
ed Pattern Generator  
The AS3677 is part of the austriamicrosystms AS3675,  
AS3687/87XM, AS3688 and AS368liting manage-  
ment unit family. It is software compatto AS3675,  
AS3676, AS3687/87XM, AS3688 and AS3689.  
- Autonomous driving of Fun RGB or indicator LEDs  
10-bit Successive Approximation ADC  
- 27µs Conversion Time  
The AS3677 is available in a space-saving WL-CSP  
package measuring only 2.2x2.2x0.6mm and opertes  
over the -30ºC to +85ºC temperature range
- Selectable Inputs: VANA, DLS1, DLS2, ALS/  
GPIO1, GPIO2, CURR1, CURR2, CURR6, VBAT,  
RGB1, RGB2 and RGB3  
- Internal Temp. Measurement  
- Light Sensor input with Java support (JSR-256):  
read ADC processed value  
Figure 1. Function Diagram  
ꢘꢊꢎ  
Support for automatic LED testing (open and  
shorted LEDs can be identified)  
AS3677  
Programmable LDO  
- 1.8 to 3.35V, 10mA  
ꢁꢙ  
ꢁꢂꢀꢁ  
- Programmable via Serial Interface  
Wide Battery Supply Range: 3.0V to 5.5V  
I2C Serial Interface Control with address control pin  
Over current and Thermal Protection  
ꢀꢄꢅꢆ  
ꢇꢈꢉꢉꢉ  
ꢉꢉꢉꢉꢊꢋꢌ  
Package  
WL-CSP25, 2.2x2.2x0.6mm, 0.4mm pitch  
ꢔꢇꢕꢑꢏꢖ  
ꢒꢓꢁ  
ꢄꢍꢀꢉꢎꢏꢐꢑ  
3 Applications  
Lighting Management Unit for mobile phones, smart-  
phones, PMP or PND  
www.austriamicrosystems.com/AS3677  
(ptr)  
1v3-1  
1 - 67  
AS3677  
Datasheet - Applications  
The application circuit including all external components is shown in Figure 2:  
Figure 2. Application Circuit AS3677  
ꢍꢇꢬꢬꢥꢗ  
ꢃ  
ꢍꢇꢬꢬꢥꢗ  
ꢍꢇꢬꢬꢥꢗ  
ꢆꢃ  
ꢄꢑꢄꢷꢯ  
ꢃ  
ꢃꢐꢷꢡ  
ꢂꢕꢝꢮꢚ  
ꢂꢕꢝ  
ꢆꢃꢮꢚ  
ꢆꢃꢮꢸ  
ꢖꢈꢉꢌꢇꢔꢬ  
ꢵ  
ꢵꢶꢐꢊꢯ  
ꢄ  
ꢶꢷꢯ  
ꢂꢖꢋꢋꢉꢈꢗꢌꢘꢈ  
ꢌꢆꢚꢛꢜꢝ  
ꢫ  
ꢛꢪꢉꢈꢋꢖꢉ  
ꢈꢘꢋꢉꢋꢎꢘꢊ  
ꢃꢌꢖꢊꢌꢃꢺ  
ꢓꢐꢔꢕ  
ꢚꢛꢜꢝ  
ꢆꢓ  
ꢷꢯ  
ꢍꢍꢮꢠꢆ  
ꢍꢋꢉꢜꢬꢟꢠꢆ  
ꢆꢘꢊꢉꢈꢋꢉꢈ  
ꢆꢇꢈꢈꢉꢊꢋꢌꢍꢎꢊꢏꢐ  
ꢐꢑꢃꢒꢄꢓꢑꢓꢔꢕ  
ꢀꢁꢂꢃ  
ꢍꢍꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢄ  
ꢂꢕꢝ  
ꢀꢉꢉꢈꢉꢊꢐ  
ꢖꢊꢧ  
ꢀꢁꢂꢅ  
ꢉꢔꢉꢈꢖꢋꢇꢈꢉ  
ꢍꢇꢉꢈꢊ  
ꢗꢊꢖꢔꢎꢣ  
ꢄ  
ꢅ  
ꢠꢵ  
ꢓ  
ꢠꢴ  
ꢠꢶ  
ꢠꢹ  
ꢠꢰꢍꢃ  
ꢠꢰꢍꢄ  
ꢠꢰꢍꢌꢈꢘꢐꢐꢎꢊꢳ  
ꢇꢔꢎꢊꢖꢊꢉ  
ꢎꢊꢳ  
ꢚꢫꢲꢇꢋꢐ  
ꢌ  
ꢈꢖꢋꢘꢈ  
ꢇꢋꢘꢔꢔꢎꢊꢳ  
ꢻꢚꢫꢲꢼꢰꢎꢊꢉꢖꢈꢽ  
ꢠꢿ  
ꢃꢐ  
ꢂꢕꢝ  
ꢡꢢꢇꢈꢈꢉꢊꢋꢌꢍꢎꢊꢏꢐ  
ꢣꢤꢌꢐꢑꢃꢒꢄꢓꢑꢓꢔꢕ  
ꢕ  
ꢛ  
ꢢ  
ꢀꢀꢃ  
ꢀꢀꢄ  
ꢀꢀꢴ  
ꢆꢅ  
ꢃꢐꢐꢊꢯ  
ꢕꢔꢎꢉꢊꢋꢌꢳꢤꢋꢌꢍꢉꢊꢘꢈ  
ꢈꢘꢐꢐꢎꢊꢳ  
ꢊꢋꢉꢈꢈꢇꢋꢌꢎꢊꢉ  
ꢞꢸꢝ  
ꢢꢠꢠꢮꢞꢟꢯ  
ꢊꢋꢉꢈꢈꢇꢋ  
ꢀꢃ  
ꢃꢒꢃꢐꢏꢭ  
ꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢁꢚꢞꢛꢟ  
ꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢌꢕꢆ  
ꢃ  
ꢀꢄ  
ꢚꢞꢛꢃ  
ꢚꢞꢛꢄ  
ꢰꢱ  
ꢍꢉꢈꢎꢖꢊꢋꢉꢈꢉꢌꢖꢊꢧ  
ꢉꢈꢘꢌꢉꢈ  
ꢉꢌꢖꢏꢉꢇꢬ  
ꢰꢱ  
ꢇꢈꢈꢐꢺꢂꢕꢝꢺ  
ꢮꢯꢺ  
ꢰꣀꢠꢋ  
ꢚꢛꢜꢝꢺꢋꢉꢔꢬ  
ꢕ  
ꢚꢞꢛꢅ  
ꢕ  
ꢀ  
ꢂꢕꢝ  
AS3677  
ꢍꢍ  
ꢍꢍ  
www.austriamicrosystems.com/AS3677  
1v3-1  
2 - 67  
AS3677  
Datasheet - Pinout  
4 Pinout  
4.1  
Pin Assignments  
Figure 3. Pin Assignments (Top View)  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢂꢇꢁꢈꢉꢊꢋꢌ  
ꢑꢅꢐꢀ  
ꢄꢅ  
ꢑꢀꢓꢔꢏ  
ꢄꢕ  
ꢍꢎꢄꢏꢐꢑꢀ ꢍꢗꢗꢐꢛꢑꢛꢑ  
 
ꢗ!  
ꢄ"  
ꢄꢒ  
ꢑꢅꢐꢚ  
ꢎꢅ  
ꢄꢖꢗꢘꢙꢀꢆꢓꢅ  
ꢎꢕ  
ꢍꢎꢄꢏ  
ꢎꢒ  
ꢍꢗꢗ  
 
ꢍꢗꢗ  
ꢎ"  
ꢜꢙꢎꢅ  
ꢑ"  
ꢍꢄꢚꢄ  
ꢑꢅ  
ꢆꢚꢏ  
ꢑꢕ  
ꢄꢛꢜ  
ꢑꢒ  
ꢜꢙꢎꢕ  
 
ꢙꢀꢆꢓꢒ  
ꢛꢅ  
ꢑꢖꢝ  
ꢛꢕ  
ꢛꢖꢕ  
ꢛꢒ  
ꢙꢎꢒ  
 
ꢑꢔꢜꢜꢅ  
ꢛ"  
ꢙꢀꢆꢓꢕ  
#ꢅ  
ꢛꢄꢏꢄ  
 
ꢖꢗꢅ  
#ꢒ  
ꢑꢔꢜꢜ
#  
ꢑꢔꢜꢜꢕ  
#"  
AS3677  
4.2  
Pin Description  
Table 1. Pin Description  
Pin Number  
Pin Name  
Description  
Charge pumflyng capacitor  
Charge pump output capacitor  
hge pump supply voltage  
A1  
A2  
A3  
C1_P  
CPOUT  
VBAT_CP  
DC and charge pump power ground pad - make a short connection to  
apacitor C1 and C2 (and C5)  
A4  
VSS_DCD
Power pad - DCDC switch transistor output  
Charge pump flying capacitor  
Ambient Light Sensor input and General Purpose Input Output 1  
Positive supply pad - Connect to battery.  
ground pad  
A5  
B1  
B2  
B3  
B4  
C1  
C2  
C3  
C4  
C5  
SW  
C1_N  
LS/GPIO1  
VBAT  
VSS  
ground pad  
VSS  
LDO Output pad  
VANA  
INT  
interrupt output - open drain active low  
I2C address select input  
Analog current sink input  
Analog current sink input  
ADR  
RGB2  
RGB1  
www.austriamicrosystems.com/AS3677  
1v3-1  
3 - 67  
AS3677  
Datasheet - Pinout  
Table 1. Pin Description  
Pin Number  
Pin Name  
Description  
General Purpose Input Output 3  
D1  
D2  
D3  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
GPIO3  
CLK  
Digital input - Clock input for serial interface.  
Digital Luminance Scaling PWM input2 (or General Input)  
Analog current sink input  
DLS2  
RGB3  
CURR1  
GPIO2  
DATA  
Analog current sink input  
General Purpose Input Output 2  
Digital input/output - Serial interface data  
Digital Luminance Scaling PWM input1 (or General Input)  
Analog current sink input  
DLS1  
CURR6  
CURR2  
Analog current sink input  
www.austriamicrosystems.com/AS3677  
1v3-1  
4 - 67  
AS3677  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Table 3, “General  
Operating Conditions; typical values are at VBAT=3.7V and 25ºC,” on page 5 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Applicable for high-voltage  
current sink pins CURR1,  
CURR2, CURR6, SW  
VIN_HV  
26V Pins  
-0.3  
26  
V
Applicable for 5V pins  
VBAT, VBAT_CP, CK,  
DATA, ADR, RGB1, RB2,  
RGB3, CPOUT, C1_P, C1_N,  
NT  
VIN_MV  
VIN_LV  
5V Pins  
-0.3  
-0.3  
7.0  
5.0  
V
V
Applicabfor .3V pins  
ALS/GPO1, PIO2, GPIO3,  
LS1DLS2, VANA  
3.3V Pins  
GND pins  
0.0  
-25  
0
V
2xVS, VSS_DCDC  
Input Pin Current without causing  
latchup  
+25  
mA  
At 25ºC, Norm: EIA/JESD78  
Tstrg  
IIN  
Storage Temperature Range  
55  
5
125  
85  
ºC  
V
Humidity  
HBM  
Non-condensing  
-2000  
2
Norm: JESD22-A114F  
Norm: JEDEC JESD 22-  
C101E  
CDM  
-500  
-00  
500  
100  
0.75  
260  
V
V
VESD  
Norm: JEDEC JESD 22-  
A115-B  
M
TA = 70 ºC, Tjunc_max =  
125ºC; RTHJU=73 K/W  
Pt  
Total Power Dissipation  
Peak Body Temperature  
Moisture sensitivity vel  
W
ºC  
T = 20 to 40s, in accordance  
with IPC/JEDEC J-STD 020.  
TBODY  
MSL  
Represents a max. floor life  
time of unlimited  
1
6 Electrical Characteristics  
Table 3. General Operating Condtions; typical values are at VBAT=3.7V and 25ºC  
Symbol  
VHV  
Paraeter  
igh Voltage  
Battery Voltage  
Condition  
Min  
0.0  
3.0  
1.5  
Typ  
Max  
26.0  
5.5  
Unit  
V
Applicable for high-voltage current sink pins  
CURR1, CURR2 and CURR6.  
VBAT  
Pin VBAT, VBAT_CP  
3.7  
V
Periphery Supply  
Voltage  
VPE
For serial interface pins.  
5.5  
V
Operating  
AMB  
-30  
25  
110  
10  
85  
15  
ºC  
µA  
µA  
Temperature Range  
Normal Operating current (see Operating  
Modes on page 58)  
IACTIVE  
Battery current  
Current consumption in standby mode.  
Interface active  
ISTANDBY Standby Mode Current  
www.austriamicrosystems.com/AS3677  
1v3-1  
5 - 67  
AS3677  
Datasheet - Electrical Characteristics  
Table 3. General Operating Conditions; typical values are at VBAT=3.7V and 25ºC  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Shutdown Mode  
Current  
ISHUTDOWN  
interface inactive (CLK and DATA set to 0V)  
0.1  
3
µA  
www.austriamicrosystems.com/AS3677  
1v3-1  
6 - 67  
AS3677  
Datasheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
Measured at VBAT=3.7V and TAMB=25ºC unless otherwise specified.  
Figure 4. DCDC Efficiency vs. Load Current  
Figure 5. Charge Pump: Efficiency vs. VBAT  
90  
90  
80  
70  
60  
50  
40  
30  
2
85  
80  
75  
70  
65  
60  
Vout: 25V, L=NRH3012  
Vout: 15V, L=NRH3012  
ad=50mA  
Iload=20mA  
55  
50  
0
10  
20  
30  
40  
50  
60  
,8  
3
3,2  
3,4  
3,
3,8  
4
4,2  
IOUT (mA)  
VBAT [V
Figure 6. Charge Pump: Battery current vs. VBAT  
ure 7. Current Sink URR1 vs. V(CURRx)  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
30  
25  
Code=255  
20  
Code=128  
Code=32  
15  
10  
5
Iloa50mA  
10  
ad=20mA  
0
0
2,8  
3
3,2  
3,4 3,6  
VBAT []  
3,8  
4
4,2  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
VCURR [V]  
Figure 8. Current Sink RGB1 vsV(CURRx)  
Figure 9. LDO Output Voltage VANA vs. Code  
30  
3,4  
3,2  
3
25  
2,8  
2,6  
2,4  
2,2  
2
Code=255  
20  
15  
10  
5
Code=128  
Code=32  
1,8  
1,6  
0
0
5
10  
15  
20  
25  
30  
0
0,2 0,4 0,6 0,8  
1
1,2 1,4 1,6 1,8  
2
VCURR [V]  
binary code  
www.austriamicrosystems.com/AS3677  
1v3-1  
7 - 67  
AS3677  
Datasheet - Typical Operating Characteristics  
Figure 10. LDO Output Voltage VANA vs. Load  
Figure 11. Charge Pump input and output ripple  
2,81  
1:2 Mode  
2,8  
50mA Load  
2,79  
0
1
2
3
4
5
6
7
8
9
10  
ILOAD [mA]  
www.austriamicrosystems.com/AS3677  
1v3-1  
8 - 67  
AS3677  
Datasheet - Detailed Description  
8 Detailed Description  
8.1  
LDO  
The LDO is a general purpose LDO and the output pin connected to VANA and intended to power an external light  
sensor. Stability is guaranteed with ceramic output capacitors of 100nF ±20% (X5R).  
The LDO is off by default after start-up.  
Figure 12. LDO Block Diagram  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢆꢀꢇꢈ  
ꢆꢇꢉꢇ  
ꢎꢏꢍ  
ꢊꢋꢋꢌꢍ  
AS3677  
Table 4. Electrical Characteristics  
Symbol  
ILOAD  
Parameter  
Output current  
On Resistance  
Dropout Voltage  
Supply Current  
Start-up Time  
Condition  
Min  
Typ  
10  
Max  
10  
Unit  
mA  
Ω
0
RON  
25  
VDROPOUT  
ION  
250  
mV  
µA  
µs  
Without ad  
VBAT > 3.0V  
19  
tstart  
200  
+3  
Output Voltage  
Tolerance  
Vout_tol  
VOUT  
-3  
%
1.8  
1.8  
2.75  
3.35  
V
V
Output Voltage  
Full Programmable Range  
8.1.1 LDO Registers  
Table 5. Reg control Register  
Reg control  
Addr: 00  
This register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs,  
current sinks, the Step Up DC/DC Converter, and low-power mode.  
Bit  
BiName  
Default Access  
Description  
0
1
LDO is switched off  
LDO is switched on  
ldo_on  
0
0
R/W  
www.austriamicrosystems.com/AS3677  
1v3-1  
9 - 67  
AS3677  
Datasheet - Detailed Description  
Table 6. LDO Voltage Register  
LDO Voltage  
Addr: 07h  
This register sets the output voltage (VANA) for the LDO.  
Bit  
Bit Name  
Default Access  
Description  
Controls LDO voltage selection.  
00000b  
...  
1.8V  
LSB=50mV  
3.35V  
ldo_voltage  
4:0  
00000b  
R/W  
11111b  
8.2  
Step Up DC/DC Converter  
The Step Up DC/DC Converter is a high-efficiency current mode PWM regulator, providing output voltage up to .g.  
25V/50mA. A constant switching-frequency results in a low noise on the supply and output voltages.  
Figure 13. Step Up DCDC Converter Internal Block Diagram  
ꢉꢄꢘ:  
ꢃꢒ  
ꢔꢑꢔ89  
ꢜꢚꢙꢚꢜ)ꢈꢍ%ꢆ  
ꢌꢈꢆꢘꢙꢄꢙꢚꢖꢍꢛ  
$ꢒ  
ꢒꢐ8ꢀ  
ꢌꢈꢆꢘꢙꢄꢘꢙꢝꢅꢆ*  
ꢉ"  
'ꢒ  
ꢒ#ꢀ+  
ꢕꢐꢐꢋꢀ+  
ꢎ)ꢋ  
!"#  
$ꢜ%ꢊꢎ  
&ꢍꢈꢆ  
'ꢅꢊꢚꢆꢅ  
ꢃꢔ  
6ꢑ789  
ꢜꢚꢙꢎꢅꢅ  
(ꢎꢜꢊ)ꢙꢖꢍꢛ  
ꢆꢘꢙꢄꢘꢙꢘꢅꢜꢈ  
ꢅꢍꢖꢘ  
ꢆꢅꢌꢏꢜꢜꢈꢂꢎꢜꢖꢘ  
ꢐꢑ
 
ꢌꢈꢆꢘꢙꢄꢘꢙꢝ  
'ꢔ  
';  
'6  
'ꢕ  
'5  
ꢇꢎ  
ꢆꢅꢅꢂꢜꢈꢍ  
'1  
'7  
'<  
'ꢒꢐ  
ꢀꢁꢂꢃꢄꢅꢅꢆꢇꢈꢂꢉꢊꢇꢋꢌ  
ꢆꢍꢎꢏꢂꢐꢑꢒꢓꢔꢕꢑꢕꢖꢗ  
ꢌꢈꢆꢘꢙꢄꢘꢙꢝ ꢙꢍꢄ  
ꢃ.//ꢒ  
ꢃ.//ꢔ  
ꢃ.//1  
ꢗꢄꢈꢜꢍꢈꢊꢎ  
ꢝꢆꢆ, ꢍꢎꢋꢌꢆ)ꢆꢎꢈ  
-./ꢒ0ꢔ12  
ꢃ.//3ꢂꢜꢇꢂꢍꢇ,  
ꢎꢄꢅꢅ3ꢙꢜꢇꢙꢎꢘ4ꢐ  
AS3677  
Table 7. Step Up DC/DC Converter Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IVDD  
Quiescent Current  
Pulse skipping mode.  
200  
µA  
www.austriamicrosystems.com/AS3677  
1v3-1  
10 - 67  
AS3677  
Datasheet - Detailed Description  
Table 7. Step Up DC/DC Converter Parameters (Continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Feedback Voltage for  
Current Sink  
VFB  
on CURR1, CURR2 or CURR6 in regulation.  
0.4  
0.5  
0.6  
V
Regulation  
step_up_lowcur=0  
step_up_lowcur=1  
1200  
750  
600  
330  
0.42  
ICOIL_MAX  
Coil current limit  
mA  
step_up_lowcur=0  
For fixed startup time of  
500us  
step_up_lowcur=1  
RSW  
ILOAD  
fIN  
Switch Resistance  
Load Current  
ON-resistance of external switching transistor.  
At 25V output voltage  
1.0  
50  
Ω
0
mA  
Switching Frequency  
Internally trimmed  
0.9  
1
1.1  
Hz  
Ceramic, ±20%. Use nominal 4.7µF capacitors  
to obtain at least 0.7µF under all conditions  
(voltage dependence of capacitors)  
COUT  
Output Capacitor  
Inductor  
0.7  
7
4.
µF  
µH  
Use inductors with small Crsitic (<100pF) to  
get high effiiency
L
10  
13  
tMIN_ON  
Minimum on Time  
Maximum Duty Cycle  
Voltage ripple >20kHz  
Voltage ripple <20kHz  
Efficiency  
90  
90  
140  
190  
ns  
%
MDC  
160  
40  
mV  
mV  
%
Vripple  
Cout=4.7µF,Iout=0..4mA, VBAT=3.0..42V  
Iout=0mAVout=17V,VBA.8V  
Efficiency  
85  
To ensure soft startup of the dcdc converter, e over current limits ae reduced for a fixed time after enabling the dcdc  
converter. The total startup time for an ouput voltage of e.g. 26V s less than 2ms.  
8.2.1 Feedback Selection  
Register DCDC control1 and DCDC control2 selects the of feedback for the Step Up DC/DC Converter.  
The feedback for the DC/DC converter can be selcted to any of the current sinks (CURR1, CURR2, CURR6). If the  
register bit step_up_fb_auto is set, the feedback ph is automatically selected between CURR1, CURR2 and CURR6  
(the lowest voltage of these current sinks is sed)1. The Step Up DC/DC Converter is regulated such that the required  
current at the feedback path can be supported
Note: Always choose the path with the est voltage drop as feedback to guarantee adequate supply for the other  
(unregulated) paths or enble the register bit step_up_fb_auto.  
8.2.2 Over voltage Protecion  
The over voltage protectin is ontrolled by the register step_up_vmax (can be programmed to 10V, 16V or 25V) to  
protect the external compoents (especially the output capacitor C1. If the voltage on the pin SW exceeds this voltage,  
the DCDC is immdatedisabled and the register bit step_up_ov is set. To re-enable the DCDC set step_up_on=0  
and afterwards stepup_on=1.  
The voltage ring f the external components must be chosen to fit to the software setting of step_up_vmax2.  
Noe: e vltage on CURR1, CURR2 and CURR6 must not exceed 26V (see page 20)  
1. It is recommended to leave step_up_fb_auto=1 (default) all the times.  
2. If the voltage is the DCDC overvoltage protection is chosen above the voltage ratings of the external com-  
ponents, permanent damage might result.  
www.austriamicrosystems.com/AS3677  
1v3-1  
11 - 67  
AS3677  
Datasheet - Detailed Description  
8.2.3 PCB Layout Hints  
To ensure good EMC performance of the DCDC converter, keep its external power components C1, L1, D1 and C2  
close together. Connect the ground of C1, C2 locally together and connect this with a short path to AS3677 VSS. This  
ensures that local high-frequency currents will not flow to the battery.  
8.2.4 Step up Registers  
Table 8. Reg control Register  
Reg control  
Addr: 00  
This register enables/disables the Charge Pump and the Step Up DC/DC  
Converter.  
Bit  
Bit Name  
Default Access  
Description  
Enable the step up converter  
Disable the Step Up DC/DC Converter  
Enable the Step Up DC/DC Coverter  
step_up_on  
0b  
1b  
3
0
R/W  
Table 9. DCDC control1 Register  
DDC control1  
Addr: 21h  
This rgister controls the Step Up DC/DC Converter.  
Bit  
Bit Name  
Default Access  
escription  
Defines the clock equency of the Step Up DC/DC  
Converter.  
step_up_frequ  
RW  
R/W  
0
0
0
1
1MHz  
500kHz  
Conols the feedback source if step_up_fb_auto = 0  
0
01  
no feedback selected - don’t use  
CURR1 feedback enabled  
(default)  
step_up_fb  
2:1  
4:3  
01  
10  
11  
CURR2 feedback enabled  
CURR6 feedback enabled  
Overvoltage protection for the DCDC step up  
00  
01  
10  
11  
16V  
10V  
step_up_vmax  
00  
R/W  
25V  
don’t use (15.5V)  
Table 10. DCDC cntrolRegister  
DCDC control2  
Add: 22h  
This register controls the Step Up DC/DC Converter and low-voltage current  
sinks CURR3x.  
Bit  
Bit Name  
Default Access  
Description  
Step Up DC/DC Converter output voltage at low loads,  
when pulse skipping is active  
skip_fast  
1
0
R/W  
0
1
Accurate output voltage, more ripple  
Elevated output voltage, less ripple  
www.austriamicrosystems.com/AS3677  
1v3-1  
12 - 67  
AS3677  
Datasheet - Detailed Description  
Table 10. DCDC control2 Register (Continued)  
DCDC control2  
Addr: 22h  
This register controls the Step Up DC/DC Converter and low-voltage current  
sinks CURR3x.  
Bit  
Bit Name  
Default Access  
Description  
Step Up DC/DC Converter coil current limit  
Normal current limit  
step_up_lowcur  
step_up_ov  
3
1
0
R/W  
R
0
1
Current limit reduced by approx. 33%  
Step Up DC/DC overvoltage triggered  
No overvoltage triggered  
0
1
4
7
Overvoltage triggered; this bit is automatally  
reset by step_up_on=0  
step_up_fb select the feedack f the DCDC  
converter  
0
The feedback is automtcallchosen within the  
current sinks CURR1, URR2 and CURR6  
(ner DCDC_FB). Only thse are used for this  
seection, which arenaled (currX_mode must  
not be 00) and not connected to the charge  
pup (currX_on_cp must be 0).  
step_up_fb_auto  
1
R/W  
1
8.3  
Charge Pump  
The Charge Pump uses the external flying capacior Cto generate output volages higher than the battery voltage.  
There are two different operating modes of the charge pump itself:  
1:1 Bypass Mode  
- Battery input and output are conneced by a low-impedancswitc
- battery current = output current.  
1:2 Mode  
- The output voltage is up to 2 times the battery voltithout load), but is limited to VCPOUTmax all the time  
- battery current = 2 times output current  
As the battery voltage decreases, the Charge Pummut be switched from 1:1 mode to 1:2 mode in order to provide  
enough supply for the current sinks. Depening on the actual current the mode with best overall efficiency can be auto-  
matically or manually selected:  
The charge pump mode switching can e ne manually or automatically with the following possible software settings:  
Automatic  
- Start with 1:1 mode  
- Switch up automatically to 1:2 mode  
Manual  
- Set modes 1:1 and 12 by software  
The Charge Pumreques the external components listed in the following table:  
Table 11. Charge Pmp External Components  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
External Flying  
Capacitor  
Ceramic low-ESR capacitor between pins  
C1_P and C1_N  
C4  
470  
nF  
External Storage  
Capacitor  
Ceramic low-ESR capacitor between pins  
CPOUT and VSS, pins CPOUT and VSS_CP  
5  
1.0  
µF  
Note: The connections of the external capacitors C4 and C5 should be kept as short as possible.  
www.austriamicrosystems.com/AS3677  
1v3-1  
13 - 67  
AS3677  
Datasheet - Detailed Description  
The maximum voltage on the flying capacitor C4 is VBAT.  
Table 12. Charge Pump Characteristics  
Symbol  
ICPOUT  
VCPOUTmax  
η
Parameter  
Condition  
Min  
Typ  
Max  
50  
Unit  
mA  
V
Output Current  
Continuous  
Depending on PCB layout  
0.0  
Output Voltage  
Efficiency  
Internally limited, Including output ripple  
5.6  
Including current sink loss;  
ICPOUT < 50mA.  
80  
%
Power Consumption  
without Load,  
ICP1_2  
1:2 Mode  
2.15  
mA  
fclk = 1 MHz  
Rcp1_1  
Rcp1_2  
Effective Charge  
Pump Output  
Resistance (Open  
Loop, fclk = 1MHz)  
1:1 Mode; VBAT = 3V  
8.8  
31  
Ω
1:1.2 Mode; VBAT = 3V  
Accuracy of Clock  
Frequency  
fclk Accuracy  
currhv_switch  
currlv_switch  
-10  
10  
0.45  
0.2  
%
V
CURR1, 2, 6  
minimum voltage  
If the voltage drops belw this treshold, the  
charge pump will use he nexavailable  
mode  
> 1:2)  
RGB1-3 minimum  
voltage  
V
cp_stardebounce=0  
240  
µsec  
µsec  
CP automatic up-  
switching debounce  
time  
tdeb  
After switching on CP (cp_on set 1),
cpstart_debounce=1  
2000  
8.3.1 Charge Pump Mode Switchin
If automatic mode switching is enabled (c_moe_switching (see page 16) = 00 or cp_mode_switching = 01) the  
charge pump monitors the current sinkwhih are connected ia a ed to the output CPOUT. To identify these current  
sources (sinks), the registers CP moditch1 and CP mode Switch2 (register bits rgb1_on_cp rgb3_on_cp,  
curr1_on_cp, curr2_on_cp and curr6_on_cp) should be before starting the charge pump (cp_on (see page 16) =  
1). If any of the voltage on these current sources drops bw the threshold (currlv_switch, currhv_switch), the next  
higher mode is selected after the debounce time.  
If the currX_on_cp=0 and the according curent sink is connected to the charge pump, the current sink will be func-  
tional, but there is no up switching of the chae pump, if the voltage compliance is too low for the current sink to sup-  
ply the specified current.  
www.austriamicrosystems.com/AS3677  
1v3-1  
14 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 14. Automatic Mode Switching  
-*ꢖꢖꢜꢏ.  
ꢋ-/ꢄꢒꢀꢁ  
ꢒꢁ  
ꢒ,  
ꢀꢐ*ꢏ$ꢜ"ꢁꢎꢊꢚ  
 ꢘ!ꢜ"#ꢔꢕꢖꢍꢐꢕꢙ$  
"
%"&'"%ꢆ  
ꢍꢚꢒꢊꢘ!ꢜ(%ꢉ'  
%+%ꢆ  
ꢋ##ꢒꢛꢀꢛꢀ  
ꢀꢁꢂꢃꢄ  
ꢅ0-
ꢏ$ꢝꢒꢘꢙꢒꢍꢚ  
ꢏ$ꢝꢆꢒꢘꢙꢒꢍꢚ  
ꢅ0-ꢆ  
ꢅ0-1  
ꢏ$ꢝ1ꢍꢚ  
ꢉꢉꢊ
ꢏꢏ2ꢑꢒꢓꢔꢕꢖꢍꢐꢗ  
ꢛꢜꢝꢘꢎꢙꢍꢜ  
ꢍꢎꢏꢏꢒꢘꢙꢒꢍꢚ  
ꢀꢃꢅꢅꢆ  
ꢇꢈꢉꢊꢋ  
ꢌꢍꢎꢏꢏꢐꢑꢒꢓꢔꢕꢖꢍꢐꢗ  
ꢍꢎꢏꢏꢆꢒꢘꢙꢒꢍꢚ  
ꢀꢃꢅꢅꢆ  
ꢍꢎꢏꢏ)ꢒꢙꢒꢍꢚ  
ꢀꢃꢅꢅ)  
AS3677  
8.3.2 Soft Start  
An implemented soft start mechnism reduces the inrush current. Battery current is smoothed when switching the  
charge pump on and also at ech switching condition. This precaution reduces electromagnetic radiation significantly.  
8.3.3 Unused Chare Pump  
If the charge pump inot used, capacitors C4 and C5 (not C2) can be removed. The pins C1_P, C1_N and CPOUT  
should be left open and keep register cp_on and cp_auto_on at 0 (default value).  
www.austriamicrosystems.com/AS3677  
1v3-1  
15 - 67  
AS3677  
Datasheet - Detailed Description  
8.3.4 Charge Pump Registers  
Table 13. Reg control Register  
Reg control  
This register controls the Charge Pump.  
Default Access Description  
Addr: 00h  
Bit  
Bit Name  
Set Charge Pump into 1:1 mode (off state) unless  
0
cp_auto_on is set  
cp_on  
2
0
R/W  
1
Enable manual or automatic mode switching  
Table 14. CP control Register  
CP control  
Addr: 23h  
This register enables/disables the Charge Pump and the Step Up DC/DC  
Converter.  
Bit  
Bit Name  
Default Access  
Description  
Clock frequency sectio.  
1 MHz  
cp_clk  
0
0
R/W  
R/W  
0
1
500 kz  
rge Pump mode manual mode sets this mode, in  
automatic mode reprts the actual mode used)  
00  
1:1 mode  
cp_mode  
2:1  
4:3  
00b  
01  
10  
1:2 mode  
11  
Set the mode switching algorithm  
Automatic Mode switching  
01  
cp_mode_switching  
00b  
R/W  
10  
Manual Mode switching; register cp_mode defines  
the actual charge pump mode used  
11  
0
1
0
Mode switching debounce timer is always 240µs  
Upon startup (cp_on set to 1) the mode switching  
debounce time is first started with 2ms then  
reduced to 240µs  
cp_start_debounce  
cp_auto_on  
5
6
1
R/W  
R/W  
Charge Pump is switched on/off with cp_on  
Charge Pump is automatically switched on if a  
current sink, which is connected to the charge  
pump (defined by registers CP Mode Switch 1 & 2)  
is switched on  
1
www.austriamicrosystems.com/AS3677  
1v3-1  
16 - 67  
AS3677  
Datasheet - Detailed Description  
Table 15. CP mode Switch1 Register  
CP mode Switch1  
Setup which current sinks are connected (via leds) to the charge pump; if set to  
‘1’ the correspond current source (sink) is used for automatic mode selection of  
the charge pump  
Addr: 24h  
Bit  
Bit Name  
Default Access  
Description  
current Sink RGB1 is not connected to charge  
pump  
0
1
0
1
0
1
rgb1_on_cp  
4
1
1
1
R/W  
R/W  
R/W  
current sink RGB1 is connected to charge pump  
current Sink RGB2 is not connected to charge  
pump  
rgb2_on_cp  
rgb3_on_cp  
5
6
current sink RGB2 is connected to charge ump  
current Sink RGB3 is not connected to charge  
pump  
current sink RGB3 is connected o chrge pump  
Table 16. CP mode Switch2 Register  
CP mode Switch2  
Setup which currens are connected via LEDs) to the charge pump; if set  
to ‘1’ the correspond rent source (sink) used for automatic mode selection  
of the charge pump  
Addr: 25h  
Bit  
Bit Name  
Default Access  
Description  
cuSink CURR1is not connected to charge  
pump  
0
1
0
0
1
curr1_on_cp  
0
0
0
0
R/W  
R/W  
RW  
curent sink CURR1 is connected to charge pump  
current Sink CURR2 is not connected to charge  
pump  
curr2_on_cp  
curr6_on_cp  
1
7
current sink CURR2 is connected to charge pump  
current Sink CURR6 is not connected to charge  
pump  
current sink CURR6 is connected to charge pump  
Table 17. Curr low voltage status1 Registe
Curr low voltage status1  
Indicates the low voltage status of the current sinks. If the currX_low_v bit is  
set, the voltage on the current sink is too low, to drive the selected output  
current  
Addr: 2Ah  
Bit  
BiName  
Default Access  
Description  
0
1
0
1
0
1
0
1
voltage of current Sink RGB1 >currlv_switch  
voltage of current Sink RGB1 <currlv_switch  
voltage of current Sink RGB2 >currlv_switch  
voltage of current Sink RGB2 <currlv_switch  
voltage of current Sink RGB3 >currlv_switch  
voltage of current Sink RGB31 <currlv_switch  
voltage of current Sink CURR6 >currlv_switch  
voltage of current Sink CURR6 <currlv_switch  
rgb_low_v  
rgb2_low_v  
rgb3_low_v  
curr6_low_v  
4
NA  
NA  
NA  
NA  
R
R
R
R
5
6
7
www.austriamicrosystems.com/AS3677  
1v3-1  
17 - 67  
AS3677  
Datasheet - Detailed Description  
Table 18. Curr low voltage status2 Register  
Curr low voltage status2  
Indicates the low voltage status of the current sinks. If the currX_low_v bit is  
set, the voltage on the current sink is too low, to drive the selected output  
current  
Addr: 2Bh  
Bit  
Bit Name  
Default Access  
Description  
0
1
0
1
voltage of current Sink CURR1 >currhv_switch  
voltage of current Sink CURR1 <currhv_switch  
voltage of current Sink CURR2 >currhv_switch  
voltage of current Sink CURR2 <currhv_swith  
curr1_low_v  
curr2_low_v  
0
NA  
NA  
R
R
1
8.4  
Current Sinks  
The AS3677 contains three general purpose current sinks intended to control backlight LEDs.  
CURR1, CURR2 and CURR6 are used as feedback for the Step Up DC/DC Converter (regulated to 0.5V n this config-  
uration) see Feedback Selection on page 11.  
Table 19. Current Sink Function Overview  
Max.  
Current  
(mA)  
Resolutin  
Max.  
Voltage (V)  
Software Current  
Control  
Hardware On/Off  
Control  
Current Sink  
(Bits
mA)  
RGB1  
RGB2  
RGB3  
Internal PWM; external  
PWM at DLS1, Pattern  
generator  
5.5  
25.5  
8
8
0.1  
Separate  
Internal PWM; external  
PWM at DLS1, Pattern  
generator  
CURR1  
CURR2  
CURR6  
26.0  
5.5  
0.1  
Separate  
Internal PWM; external  
PWM at DLS1 or  
DLS2, Pattern  
generator  
The processing inside the AS3677 is shown iFigure 15 (shown for one current source only):  
www.austriamicrosystems.com/AS3677  
1v3-1  
18 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 15. Internal processing of the different signals  
ꢖꢗꢗꢆꢇꢒ  
ꢏꢐꢇꢇꢆꢓꢅꢑ  
ꢎꢀꢁꢈꢘꢙꢚꢉ  
ꢀꢁꢉꢋꢖꢓꢗꢋꢀꢁꢌ  
 
ꢀꢁ  
ꢂꢃꢄꢅꢆꢇ  
ꢏꢐꢇꢇꢑꢒꢖ"#ꢒ!ꢇ ꢐ$  
ꢎꢀꢁ  
ꢏꢐꢇꢇꢑꢒꢖꢗꢗꢆꢇ  
ꢔꢛꢜꢜ
'
ꢏꢐꢇꢇꢑꢒ  
ꢈꢉꢊꢋꢈꢌꢊꢋꢈꢍ  
ꢏꢐꢇꢇꢆꢓꢅ  
$("ꢒꢏ ꢗꢆ  
ꢗꢄꢝꢒꢖꢓꢖꢄ !ꢊ  
ꢏꢐꢇꢇꢑꢒ ꢓꢒꢗꢄꢝ  
%&  
ꢀꢁꢂꢃ+ꢋꢑꢉꢊꢌꢊ!#ꢇ!#ꢌꢊꢇ!#.  
ꢏꢐꢇꢇꢑꢒ" ꢗꢆ  
ꢖꢅꢅꢆꢇꢓꢋꢏ ꢓꢅꢇ ꢄ  
ꢀ)*  
ꢖꢅꢅꢆꢇꢓ  
$ꢖꢅꢅꢆꢇꢓꢒꢗꢖꢅꢖ  
8.4.1 Unused Current Sinks  
Unused current sinks can be left open or used as ADC nputs (see Analog-to-Digital Converter on page 50).  
www.austriamicrosystems.com/AS3677  
1v3-1  
19 - 67  
AS3677  
Datasheet - Detailed Description  
8.4.2 High Voltage Current Sinks CURR1, CURR2, CURR6  
The high voltage current sinks have a resolution of 8 bits.  
Table 20. HV Current Sinks Characteristics  
Symbol  
IBIT7  
Parameter  
Condition  
Min  
Typ  
12.8  
6.4  
3.2  
1.6  
0.8  
0.4  
0.2  
0.1  
Max  
Unit  
Current sink if Bit7 = 1  
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
matching Accuracy  
absolute Accuracy  
IBIT6  
IBIT5  
IBIT4  
For V(CURRx) > 0.45V  
mA  
IBIT3  
IBIT2  
IBIT1  
IBIT0  
Δm  
-7  
7  
+15  
25  
%
%
V
Δ
-15  
CURR1,CURR2,CURR6  
VCURR1,2,6x  
IQCURR1,2,6  
Voltage compliance  
Quiescent current  
0.45  
165  
µA  
High Voltage Current Sinks CURR1, CURR2, CURR6 egisters  
Table 21. Curr1 current Register  
1 current  
This register cons thHigh voltage current sink current.  
Addr: 09h  
Bit  
Bit Name  
Deault Access  
Description  
Defines current into current sink curr1  
0h  
01h  
....  
0 mA  
0.1 mA  
....  
curr1_current  
7:0  
0
R/W  
FFh  
25.5 mA  
Table 22. Curr2 current Register  
Curr2 current  
Addr: 0Ah  
This register controls the High voltage current sink current.  
Bit  
Bit Nme  
Default Access  
Description  
Defines current into current sink curr2  
00h  
01h  
....  
0 mA  
0.1 mA  
....  
crr2_current  
7:0  
0
R/W  
FFh  
25.5 mA  
www.austriamicrosystems.com/AS3677  
1v3-1  
20 - 67  
AS3677  
Datasheet - Detailed Description  
Table 23. Curr6 current Register  
Curr6 current  
Addr: 2Fh  
This register controls the High voltage current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into current sink CURR6  
00h  
01h  
....  
0 mA  
0.1 mA  
....  
curr6_current  
7:0  
0
R/W  
FFh  
25.5 mA  
Table 24. curr12 control Register  
curr12 control  
Addr: 01h  
This register select the mode of the current sinks controls Hih voage current  
sink current.  
Bit  
Bit Name  
Default Access  
Descriptio
Selethe mode of the current sink curr1  
00b  
1b  
10b  
11b  
off  
curr1_mode  
on  
PWM controlled  
1:0  
0
0
R/W  
R/W  
LED pattern controlled  
Selthmode of the current sink curr2  
off  
00b  
1b  
10b  
11b  
curr2_mode  
on  
3:2  
PWM controlled  
LED pattern controlled  
Table 25. curr rgb control Register  
curr rgb control  
Addr: 02h  
This register select the mode of the current sinks CURR6.  
Bit  
Bit Name  
Default Access  
Description  
Select the mode of the current sink CURR6  
00b  
01b  
10b  
11b  
off  
on  
curr6_mde  
7:6  
0
R/W  
PWM controlled  
LED pattern controlled  
www.austriamicrosystems.com/AS3677  
1v3-1  
21 - 67  
AS3677  
Datasheet - Detailed Description  
8.4.3 Current Sinks RGB1, RGB2, RGB3  
These current sinks have a resolution of 8 bits and can sink up to 25.5mA.  
Table 26. Current Sinks RGB1, RGB2, RGB3 Parameters  
Symbol  
IBIT7  
IBIT6  
IBIT5  
IBIT4  
IBIT3  
IBIT2  
IBIT1  
IBIT0  
Δm  
Parameter  
Condition  
Min  
Typ  
12.8  
6.4  
3.2  
1.6  
0.8  
0.4  
0.2  
0.1  
Max  
Unit  
Current sink if Bit7 = 1  
Current sink if Bit6 = 1  
Current sink if Bit5 = 1  
Current sink if Bit4 = 1  
Current sink if Bit3 = 1  
Current sink if Bit2 = 1  
Current sink if Bit1 = 1  
Current sink if Bit0 = 1  
matching Accuracy  
For V(RGBx) > 0.2V  
mA  
-10  
-15  
+0  
+15  
%
%
Δ
absolute Accuracy  
RGB1, RGB2, RG3  
CPO  
UT  
VRGBX  
Voltage compliance  
Quiescent current  
0.2  
V
IQRGB1,2,3  
165  
µA  
RGB Current Sinks Registers  
Table 27. curr rgb control Register  
cr rb control  
Thiregister select the moe of the current sinks RGB1, RGB2, RGB3  
Addr: 02h  
Bit  
Bit Name  
efalt Access  
Description  
Select the mode of the current sink RGB1  
00b  
01b  
10b  
11b  
off  
rgb1_mode  
1:0  
0
0
0
/W  
R/W  
R/W  
on  
PWM controlled  
LED pattern controlled  
Select the mode of the current sink RGB2  
00b  
01b  
10b  
11b  
off  
rgb2_mode  
rgb3_mode  
3:2  
5:4  
on  
PWM controlled  
LED pattern controlled  
Select the mode of the current sink RGB3  
off  
00b  
01b  
10b  
11b  
on  
PWM controlled  
LED pattern controlled  
www.austriamicrosystems.com/AS3677  
1v3-1  
22 - 67  
AS3677  
Datasheet - Detailed Description  
Table 28. Rgb1 current Register  
Rgb1 current  
Addr: 0Bh  
This register controls the RGB current sink current.  
Bit  
Bit Name  
Default Access  
Description  
Defines current into Current sink RGB1  
00h  
01h  
....  
0 mA  
0.1 mA  
....  
rgb1_current  
7:0  
0
R/W  
FFh  
25.5 mA  
Table 29. Rgb2 current Register  
Rgb2 current  
Addr: 0Ch  
This register controls the RGB current sink curent.  
Bit  
Bit Name  
Default Access  
Description  
Dfes current into Currensink RGB2  
00h  
....  
0 A  
0.1 mA  
....  
rgb2_current  
7:0  
0
R/W  
FFh  
25.5 mA  
Table 30. Rgb3 current Register  
Rgb3 current  
Addr: 0Dh  
This regier controls the RGB current sink current.  
Bit  
Bit Name  
efault Access  
Description  
Defines current into Current sink RGB3  
00h  
01h  
....  
0 mA  
0.1 mA  
....  
rgb3_current  
7:0  
0
R/W  
FFh  
25.5 mA  
8.4.4 LED Pattern Geneato
The LED pattern generator icapble of producing a pattern with 32 bits length and 1 second duration (31.25ms for  
each bit). The pattern itsecan be started every second, every 2nd, 3rd up to 7th second3.  
With this pattern l urrnt sinks can be controlled. The pattern itself switches the configured current sources between  
0 and their programed current.  
If everything se is switched off, the current consumption in this mode is IACTIVE. (excluding current through switched  
on current source) and the charge pump, if required. The charge pump can be automatically switched on/off depending  
on he pern (set register cp_auto_on on page 16=1) to reduce the overall current consumption.  
3. All times can be extended by a factor of 8 by setting pattern_slow=1 (this result in a delay of up to 56s)  
www.austriamicrosystems.com/AS3677  
1v3-1  
23 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 16. LED Pattern Generator AS3677 for pattern_color = 0  
%ꢆꢝꢉꢀꢆꢚꢂ"ꢁꢂ"ꢉꢇꢂꢉꢀꢂꢇꢗꢆꢂꢈꢆꢇꢄ#ꢂꢅꢆ$ꢉꢈꢇꢆꢅꢂ#ꢙꢇꢇꢆꢅꢀ&ꢚꢙꢇꢙ  
ꢉꢀꢂꢇꢗꢉꢈꢂꢆ'ꢙꢘ#ꢛꢆꢂꢇꢗꢆꢂꢃꢜꢚꢆꢂꢉꢈꢂꢋ ꢋꢋꢋ  ꢋꢋꢔꢔꢔ  
/ꢀꢁꢂꢃꢄꢅꢅꢆꢀꢇꢂꢈꢉꢀꢊ  
          
ꢍꢌ          
ꢔꢔꢔ  
ꢔꢔꢔ  
ꢍꢋꢔꢌꢏꢘꢈ  
(ꢌꢏ ꢘꢈꢂꢉꢝꢂ#ꢙꢇꢇꢆꢅꢀ&ꢈꢛꢜ)*ꢋ+  
ꢖꢇꢂꢇꢗꢉꢈꢂꢇꢉꢘꢆꢂꢙꢂꢚꢆꢛꢙꢁꢂꢜꢝꢂ ꢈ!ꢋꢈ!ꢌꢈ!ꢔꢔꢔ!ꢒꢈ!ꢋꢐꢈ!ꢌꢎꢈ!ꢍꢌꢈ!ꢎ ꢈ!ꢎꢒꢈ!ꢏꢐꢈ  
ꢃꢙꢀꢂ"ꢆꢂ#ꢅꢜ$ꢅꢙꢘꢘꢆꢚ  
To select the different current sinks to be controlled by the LED pattern generator, see the ‘xxxx’_mode registers  
(where ‘xxxx’ stands for the to be controlled current sink, e.g. curr1_mode for CURR1 current sink). See also the  
description of the different current sinks.  
To allow the generator of a color patterns set the bit pattern_color to ‘1’. Then the pattern can be connected to CURRx  
as follows:  
Figure 17. LED Pattern Generator AS3677 for pattern_color = 1  
%ꢗꢔꢓꢙꢗ&ꢒ'(ꢒ'ꢓꢎꢒꢓꢙꢒꢎ)ꢗꢒꢗꢎ*ꢒꢘꢗ+ꢓꢎꢗꢕꢖꢎꢎꢗꢘꢙꢚ&ꢖꢎꢖ  
ꢓꢙꢒꢎ)ꢓꢒꢗ,ꢖꢏꢕꢛꢗꢒꢎ)ꢗꢒ-ꢜ&ꢗꢒꢒꢂꢂꢂꢂꢂꢌꢌꢂꢌꢂꢂꢂꢂꢂꢌꢌꢌꢂꢌꢂꢂꢋꢋ  
ꢋꢋꢋ  
ꢋꢋꢋ  
ꢀꢁꢁꢂꢃꢁꢄꢅꢂ  
ꢆꢀꢁꢁꢇꢃꢁꢄꢅꢇ  
ꢆꢀꢁꢁꢈꢃꢁꢄꢅꢉ  
 " #  
ꢇꢑ  #  
ꢋꢋꢋ  
 $   
    
ꢇꢊ    
ꢉꢌ     
ꢋꢋꢋ  
ꢋꢋꢋ  
ꢂꢌꢌꢏꢐ  
ꢐꢑꢌꢌꢏꢒꢓꢔꢒꢕꢖꢎꢎꢗꢘꢙꢚꢝ ꢂ!  
.ꢎꢒꢎ)ꢓꢒꢎꢓꢏꢗꢒꢖꢛꢖ(ꢒꢜ/ꢂ/ꢇ/ꢋꢋꢋ/ꢑ/ꢂꢈ/ꢇ"/ꢉꢇ/"ꢌ/"ꢑ/$ꢈꢐ  
-ꢖꢙꢒ'ꢗꢒꢕꢘꢜ+ꢖꢏꢏ&  
Only those current sinks will be controd, where the ‘xode register is configured for LED pattern.  
If the register bit pattern_slow is set, all pattern times are increased by a factor of eight. (bit duration: 250ms if  
pattern_color=0 / 800ms if pattern_color=1, delays between pattern up to 56s).  
Soft Dimming for Pattern  
The internal pattern generator can be comined with the internal pwm dimming modulator to obtain as shown in the fol-  
lowing figure:  
Figure 18. Soft dimming Architecre fr the AS3677 (softdim_pattern=1 and pattern_color = 1)  
ꢙꢂꢅ  
ꢆꢎꢅ  
ꢆꢎꢅ  
ꢆꢎꢅ  
ꢌꢗ  
ꢃꢂꢙꢂꢅ ꢈꢍꢋꢘꢆꢍ  
ꢌꢌꢛꢜꢌꢁꢝꢛ  
ꢌꢌ ꢜꢌꢁꢝ  
ꢌꢌ!ꢜꢌꢁꢝ"  
ꢙꢂꢅ  
ꢌꢗ  
ꢃꢂꢙꢂꢅ ꢈꢍꢋꢘꢆꢍ  
ꢁꢂꢂꢃꢄ  
ꢁꢂꢀꢂꢃꢄꢅꢆꢃ  
ꢙꢂꢅ  
ꢌꢗ  
ꢃꢂꢙꢂꢅ ꢈꢍꢋꢘꢆꢍ  
ꢕꢂꢃꢆ  
ꢇꢂꢅꢂꢖꢅ  
ꢖꢆꢀꢅꢃꢆꢙꢋꢖꢎꢃꢃꢂꢀꢅꢋꢙꢆꢎꢃꢖꢂꢙꢋ#ꢆꢀꢜꢆ$$%ꢋ$ꢆꢃ  
ꢖꢎꢃꢃꢂꢀꢅꢋꢙꢆꢎꢃꢖꢂꢋꢐ&ꢂꢃꢂ  
ꢋꢖꢎꢃꢃ'(ꢉꢆꢏꢂꢋ)ꢋ*+ꢇꢋꢍꢄꢅꢅꢂꢃꢀ  
ꢇꢈꢉꢉꢈꢀꢊꢋꢋꢋ  
ꢌꢄꢉꢍ  
ꢁꢂꢀ  
ꢎꢍꢋꢏꢆꢐꢀ  
ꢒꢓꢔ  
ꢔꢆꢏꢎꢄꢅꢆꢃ  
www.austriamicrosystems.com/AS3677  
1v3-1  
24 - 67  
AS3677  
Datasheet - Detailed Description  
With the AS3677 smooth fade-in and fade-out effects can be automatically generated.  
As there is only one dimming ramp generator and one pwm modulator following constraints have to be considered  
when setting up the pattern (applies only if pattern_color=1):  
Figure 19. Soft dimming example Waveform for CURR30-32  
ꢋꢄꢂꢊꢌꢄꢍꢇꢎꢎꢇꢂꢏꢄꢐꢅꢄꢑꢒꢓꢔꢔꢕꢖꢗꢄꢘꢙꢂꢄꢈꢊ  
ꢆꢃꢙꢚꢃꢊꢍꢄꢙꢛꢃꢊꢚꢄꢃꢜꢊꢄꢍꢇꢎꢎꢇꢂꢏꢄ  
ꢍꢁꢌꢂꢄꢑꢒꢓꢔꢔꢕꢝꢗꢄꢇꢆꢄꢛꢇꢂꢇꢆꢜꢊꢍ  
ꢀꢁꢂ  
3  
ꢀꢁꢂꢄ  
ꢀꢁꢂꢅ  
ꢁꢀ  
ꢂꢁꢃꢄꢅꢁꢆꢆꢇꢈꢉꢊ  
ꢋꢄꢂꢊꢌꢄꢍꢇꢎꢎꢇꢂꢏꢄꢐꢅꢄꢑꢒꢓꢔꢔꢕꢖꢗꢄꢘꢙꢂꢂꢁꢃꢄꢈꢊ  
ꢆꢃꢙꢚꢃꢊꢍꢄꢙꢛꢃꢊꢚꢄꢁꢚꢄꢜꢇꢉꢊꢄꢁꢂꢊꢄꢘꢜꢙꢂꢂꢊꢉꢄꢑꢒꢓꢔꢔꢕꢝꢗ  
ꢇꢆꢄꢍꢇꢎꢎꢇꢂꢏꢄꢐꢅ  
However using the identical dimming waveform for two chs is possible as shown in the following figure:  
Figure 20. Soft dimming example Waveform for CURR30-3
ꢀꢁ  
ꢂꢃꢄꢅ  
ꢀꢁ  
ꢂꢃꢄꢆ  
ꢂꢃꢄꢇ  
ꢀꢁ  
LED Pattern Registers  
Table 31. Pattern data0...Pattern data3 Registers  
Pattern data0, Pattern data1, Pattern data2, Pattern data3  
Addr: 19h,1Ah,1Bh,1Ch  
This registers contains the pattern data for the current sinks.  
Bit  
Bit Name  
Default Access  
Description  
pattern_data_01  
7:0  
0
0
R/W  
R/W  
Pattern data0  
7:0  
Pattern data1  
pattern_ata_
pater_daa_2  
patern_data_3  
7:0  
7:0  
0
0
R/W  
R/W  
Pattern data2  
Pattern data3  
1. Update any f the pattern register only if none of the current sources is connected to the pattern generator  
('xxxxode must not be 11b). The pattern generator is automatically started at the same time when any of the  
currensources is connected to the pattern generator  
www.austriamicrosystems.com/AS3677  
1v3-1  
25 - 67  
AS3677  
Datasheet - Detailed Description  
Table 32. Pattern control Register  
Pattern control  
Addr: 18h  
This register controls the LED pattern  
Description  
Bit  
Bit Name  
Default Access  
Defines the pattern type for the current sinks  
0b  
1b  
single 32 bit pattern (also set currX_mode = 11)  
pattern_color  
0
0
R/W  
R/W  
R/W  
RGB pattern with each 10 bits (set all  
currX_mode = 11)  
Delay between pattern, details (see Table 35); together wit
pattern_delay2 sets the delay time between pattern
pattern_delay  
2:1  
3
00b  
0b  
Enable the ‘soft’ dimming feature for the pattern genrato
Pattern generator directly control curret  
softdim_pattern  
0
sources  
1
‘Soft Dimming’ is performed (see page 24)  
Table 33. Gpio current Register  
Addr: 2Ch  
pio current  
Description  
Bit  
Bit Name  
Default Access  
Day between pattern (se Table 35 on page 26); together  
th pattern_delay sts the delay time between patterns  
pattern_delay2  
4
0
R/W  
attern timing control  
0b  
1b  
normal mode  
pattern_slow  
6
0
R/W  
slow mode (all pattern times are increased by a  
factor of eight)  
Table 34. Pattern End Register  
Addr: 54h  
Pattern End  
Description  
Bit  
Bit Name  
Default Aces
pattern_end is toggled from 0 to 1 (or from 1 to 0) at each  
end of the pattern just before restarting of the internal  
pattern generator at the first bit of the pattern data  
(can be used to synchronize the baseband software to the  
pattern_end  
0
R
pattern generator)1  
1. pattern_end toggles whenevthe AS3677 is in active mode (see Section 8.11 Operating Modes on page 58)  
even if no pattern data has been setup.  
Table 35. LED Pttrn ming  
pattrn_delay2 pattern_delay[1..0]  
bit duration [ms]  
pattern  
duration [s]  
(total cycle  
time:  
pattern +  
delay)  
delay[s]  
between  
patterns  
pattern_slow  
delay between patterns  
pattern_color=0 pattern_color=1  
01  
1
0
0
00  
31  
100  
1
0
0
0
0
0
0
01  
10  
11  
31  
31  
31  
100  
100  
100  
2
3
4
2
3
www.austriamicrosystems.com/AS3677  
1v3-1  
26 - 67  
AS3677  
Datasheet - Detailed Description  
Table 35. LED Pattern timing  
pattern_delay2 pattern_delay[1..0]  
bit duration [ms]  
pattern  
duration [s]  
(total cycle  
time:  
pattern +  
delay)  
delay[s]  
between  
patterns  
pattern_slow  
delay between patterns  
pattern_color=0 pattern_color=1  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
31  
31  
100  
100  
100  
100  
800  
800  
800  
800  
800  
800  
800  
00  
4
5
5
6
31  
6
7
31  
7
8
250  
250  
250  
250  
250  
50  
250  
250  
0
8
8
1
24  
32  
40  
48  
56  
64  
16  
24  
3
40  
48  
56  
1. Even by setting 000 for pattern delay, there is a small delay before the new patrns starts.  
8.4.5 PWM Generator  
The PWM generator can be used for any cuent snk. The setting plies for all current sinks, which are controlled by  
the pwm generator (e.g. CURR1 is pwm ontroed if curr1_mod= 10The pwm modulated signal can switch on/off  
the current sinks and therefore dependng oits duty cycle chnge he brightness of an attached LED.  
Internal PWM Generator  
The internal PWM generator uses the 2MHz internal clocinput frequency and its dimming range is 6 bits digital  
(2MHz / 2^6 = 31.3kHz pwm frequency) and 2 bits nalog. Depending on the actual code in the register pwm_code the  
following algorithm is used:  
If pwm_code bit 7 = 1  
Then the upper 6 bits (Bits 7:2) of pwmcoe are used for the 6 bits PWM generation, which controls the selected cur-  
rents sinks directly  
If pwm_code bit 7 =0 and bit 6 = 1  
Then bits 6:1 of pwm_code are sed for the 6 bits PWM generation. This signal controls the selected current sinks, but  
the analog current of these sks is divided by 2  
If pwm_code bit 7 and bi6 = 0  
Then bits 5:0 of p_coe are used for the 6 bits PWM generation. This signal controls the selected current sinks, but  
the analog current of hese sinks is divided by 4  
www.austriamicrosystems.com/AS3677  
1v3-1  
27 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 21. PWM Control  
ꢒꢅꢄꢖꢗꢗꢇꢘꢒꢙꢑꢘꢚꢛꢙꢜꢐꢖꢒꢝꢘꢝ ꢅ!  
ꢄꢖꢗꢗꢇꢘꢒꢙꢝꢗꢇꢆꢑ"ꢑꢆꢇꢆꢐ#  
ꢐꢑꢒꢓꢔꢕ  
ꢐꢑꢒꢓꢔꢕ  
ꢒꢅꢄꢖꢗꢗꢇꢘꢒꢙꢑꢘꢚꢛꢙꢜꢐꢖꢒꢝꢘꢝ ꢅ!  
ꢄꢖꢗꢗꢇꢘꢒꢙꢝꢗꢇꢆꢑ"ꢑꢆꢇꢆꢐ#  
ꢒꢅꢄꢖꢗꢗꢇꢘꢒꢙꢑꢘꢚꢛꢙꢜ  
ꢐꢑꢒꢓꢔꢕ  
ꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
Automatic Up/Down Dimming  
If the register pwm_dim_mode is set to 01 (up dimming) or 10 (down dimming) the value within the reister pwm_code  
is increased (up dimming) or decreased (down dimming) every time and amount (either 1/4th or 1/8th) dined by the  
register pwm_dim_speed. The maximum value of 255 (completely on) and the minimum value of 0 (o) is never  
exceeded. It is used to smoothly and automatically dim the brightnes of the LEDs connecteo anof the current  
sinks. The PWM code is readable all the time (also during up andowdimming).  
The waveform for up dimming looks as follows (cycles omitted fosimplcity):  
Figure 22. PWM Dimming Waveform for up dimming (pwm_ode = 01); cur_mode = PWM controlled (not  
all steps shown)  
ꢄꢅꢆꢂꢃꢄꢄꢇꢈꢁ  
ꢀꢉꢊ  
ꢀꢉꢋ  
ꢈꢇꢘꢁꢌꢙꢁꢇꢐꢚꢌꢀꢌꢍꢎꢁꢏ  
ꢛꢓꢔꢌꢕꢖꢌꢂꢖꢂꢗꢇ  
ꢀꢉꢋꢌꢍꢎꢁꢏꢌꢃꢐꢌꢁꢑ  
ꢒꢓꢓꢔꢌꢕꢃꢁꢖꢌꢂꢖ
The internal pwm modulator circuit controls the currnt sinks as shown in the following figure:  
Figure 23. PWM Control Circuit (currX_mode 10b (PWM controlled)); X = any current sink  
ꢕꢀꢀꢋꢆꢗ(ꢅ! ꢈ  
ꢈꢁꢆꢆꢉꢊꢃꢀꢀꢋꢆ  
ꢈꢁꢆꢆꢉꢊꢈꢁꢆꢆꢋꢌꢄ  
ꢖꢛꢜꢜꢉ  
ꢍꢎ  
ꢍꢏ  
ꢓꢔꢕꢖꢗꢗꢗ  
#ꢆꢅꢒꢗ$ꢋꢆ ꢃꢂ  
ꢓꢌꢄꢋꢆ%ꢃꢈꢋ  
ꢐꢑꢒꢊꢈꢅꢀꢋ  
ꢈꢁꢆꢆꢉꢊꢃꢒ*ꢊ  
!ꢆꢅꢁꢐꢗ&ꢗꢇꢇ  
 !  
!"ꢀꢁꢂꢃꢄꢅꢆ  
ꢎꢘꢙꢚ  
+
,
AS3677  
ꢔ ꢒꢒ ꢌ!ꢗꢗꢗ  
ꢜꢃꢒꢐ  
"ꢋꢌ  
ꢕ()  
 %ꢗꢐꢑꢒꢊꢀ ꢒꢊꢒꢅꢀꢋꢗ&ꢗꢇ'ꢗꢅꢆꢗ'ꢇ  
ꢃꢀꢀꢋꢆꢊꢈꢁꢆꢆꢋꢌꢄꢉ  
The adder logic (available for all current sinks) is intended to allow dimming not only from 0% to 100% (or 100% to 0%)  
of currX_current, but also e.g. from 10% to 110% (or 110% to 10%) of currX_current. The starting current for up dim-  
ming is defined by 0 + currX_adder and the end current is defined by currX_current + currX_adder.  
www.austriamicrosystems.com/AS3677  
1v3-1  
28 - 67  
AS3677  
Datasheet - Detailed Description  
An overflow of the internal bus (8 Bits wide to the IDAC) has to be avoided by the register settings (currX_current +  
currX_adder must not exceed 255).  
Note: The adder logic operates independent of the currX_mode setting, but its main purpose is to work together with  
the pwm modulator (improved up/down dimming)  
If the adder logic is not used anymore, set the bit currX_adder to 0. (Setting adder_currentX to 0 is not suffi-  
cient)  
At the end of up/down dimming, the pwm_code register keeps its final value (for up-dimming 255 and for down-  
dimming 0). This can be used to identify the exact time, when up/down dimming is finished.  
Table 36. PWM Dimming Table  
Decrease by 1/4th  
every step  
Decrease by 1/8th  
every step  
Seconds  
Seconds  
Seconds  
Seconds  
50msec/  
Step  
25msec/  
Step  
5msec/  
Step  
2.5msec/  
Step  
Step  
%Dimming  
PWM  
%Dimming  
PWM  
1
100,0  
75,3  
56,5  
42,4  
31,8  
23,9  
18,0  
13,7  
10,6  
8,2  
255  
192  
144  
108  
81  
61  
46  
35  
27  
21  
16  
12  
9
100,0  
87,8  
76,9  
67,5  
59,2  
52,2  
45,9  
40,4  
35,7  
31,
27,5  
24,3  
21,6  
19,2  
6,9  
14,9  
13,3  
11,8  
10,6  
9,4  
255  
224  
196  
172  
13
117  
103  
91  
0,00s  
0,05s  
010s  
0,5s  
0,20s  
0,25s  
0,30s  
0,
0,s  
,5s  
0,50s  
0,55s  
0,60s  
0,65s  
0,70s  
0,75s  
0,80s  
0,85s  
0,90s  
0,95s  
1,00s  
1,05s  
1,10s  
1,15s  
1,20s  
1,25s  
1,30s  
1,35s  
1,40s  
0,00s  
0,03s  
0,05s  
0,08s  
0,10s  
13s  
0,15s  
0,18s  
0,20s  
0,23s  
0,25s  
0,28s  
0,30s  
0,33s  
0,35s  
0,38s  
0,40s  
0,43s  
0,45s  
0,48s  
0,50s  
0,53s  
0,55s  
0,58s  
0,60s  
0,63s  
0,65s  
0,68s  
0,70s  
0,00s  
0005s  
0,010s  
0,015s  
0,020s  
0,025s  
0,030s  
0,035s  
0,040s  
0,045s  
0,050s  
0,055s  
0,060s  
0,065s  
0,070s  
0,075s  
0,080s  
0,085s  
0,090s  
0,095s  
0,100s  
0,105s  
0,110s  
0,115s  
0,120s  
0,125s  
0,130s  
0,135s  
0,140s  
0,000s  
0,003s  
0,005s  
0,008s  
0,010s  
0,013s  
0,015s  
0,018s  
0,020s  
0,023s  
0,025s  
0,028s  
0,030s  
0,033s  
0,035s  
0,038s  
0,040s  
0,043s  
0,045s  
0,048s  
0,050s  
0,053s  
0,055s  
0,058s  
0,060s  
0,063s  
0,065s  
0,068s  
0,070s  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
2
27  
28  
29  
80  
6,3  
70  
4,7  
3,5  
5  
2,7  
7
49  
2,4  
6
43  
2,0  
5
38  
1,6  
4
34  
1,2  
3
30  
0,8  
27  
0,4  
1
24  
00  
0
8,2  
21  
7,5  
19  
6,7  
17  
5,9  
15  
5,5  
14  
5,1  
13  
4,7  
12  
4,3  
11  
3,9  
10  
www.austriamicrosystems.com/AS3677  
1v3-1  
29 - 67  
AS3677  
Datasheet - Detailed Description  
Table 36. PWM Dimming Table  
Decrease by 1/4th  
every step  
Decrease by 1/8th  
every step  
Seconds  
Seconds  
Seconds  
Seconds  
50msec/  
Step  
25msec/  
Step  
5msec/  
Step  
2.5msec/  
Step  
Step  
%Dimming  
PWM  
%Dimming  
PWM  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3,5  
3,1  
2,7  
2,4  
2,0  
1,6  
1,2  
0,8  
0,4  
0,0  
9
8
7
6
5
4
3
2
1
0
1,45s  
1,50s  
1,55s  
1,60s  
1,65s  
1,70s  
1,75s  
1,80s  
1,85s  
1,90s  
0,73s  
0,75s  
0,78s  
0,80s  
0,83s  
0,85s  
0,88s  
0,90s  
0,93s  
0,95s  
0,145s  
0,150s  
0,155s  
0,160s  
0,165s  
0,170s  
0,175s  
0,80s  
0185s  
0,19s  
0,073s  
0,075s  
0,078s  
0,080s  
0,08s  
0,085s  
0,088s  
0,090s  
0,093s  
0,095s  
PWM Generator Registers  
Table 37. Pwm control Register  
Pwm conrol  
Addr: 16h  
This register contros PWM generator  
Description  
Bit  
Bit Name  
Defaut Access  
Selects the dimming mode  
no dimming; actual content of register  
pwm_code is used for pwm generator  
0b  
1b  
logarithmic up dimming (codes are increased).  
Start value is actual pwm_code  
pwm_dim_mode  
2:1  
00b  
R/W  
logarithmic down dimming (codes are  
decreased). Start value is actual pwm_code;  
switch off the dimmed current source after  
dimming is finished to avoid unnecessary  
quiescent current  
10b  
11b  
NA  
Defines dimming speed by increase/decrease pwm_code  
by 1/4th every 50 msec (total dim time 1.0s)  
000b  
by 1/8th every 50 msec (total dim time 1.9s)  
001b  
by 1/4th every 25 msec (total dim time 0.5s)  
010b  
by 1/8th every 25 msec (total dim time 0.95s)  
011b  
pwm_dim_speed  
5:3  
000b  
R/W  
by 1/4th every 5 msec (total dim time 100ms)  
100b  
by 1/8th every 5 msec (total dim time 190ms)  
101b  
by 1/4th every 2.5 msec (total dim time 50ms)  
110b  
by 1/8th every 2.5 msec (total dim time 95ms)  
111b  
www.austriamicrosystems.com/AS3677  
1v3-1  
30 - 67  
AS3677  
Datasheet - Detailed Description  
Table 38. Pwm code Register  
Pwm code  
This register controls the Pwm code.  
Description  
Addr: 17h  
Bit  
Bit Name  
Default Access  
Selects the PWM code  
00h  
....  
0% duty cycle  
....  
pwm_code  
7:0  
00b  
R/W  
FFh  
100% duty cycle  
Table 39. Adder Current 1 Register  
Adder Current 1  
Addr: 30h  
This register defines the current which can be added to CUR1, CURR30,  
CURR41, RGB1  
Bit  
Bit Name  
Default Access  
Description  
Selectthe added current value – o not exceed together  
wih curXcurrent the internal 8 Brange (see text)  
00h  
0 (reresents 0mA)  
....  
adder_current1  
7:0  
00b  
R/W  
FFh  
255 epresents 25.5mA)  
Table 40. Adder Current 2 Register  
Aer Current 2  
Addr: 31h  
his rgister defines the currnwhich can be added to CURR2, CURR31,  
CURR42, RGB2  
Bit  
Bit Name  
fault Access  
Description  
ects the added current value – do not exceed together  
with currX_current the internal 8 Bit range (see text)  
00h  
....  
0 (represents 0mA)  
....  
adder_current2  
7:0  
00b  
R/W  
FFh  
255 (represents 25.5mA)  
Table 41. Adder Current 3 Regist
Adder Current 3  
Addr: 32h  
This register defines the current which can be added to CURR6, CURR32,  
CURR43, RGB3  
Bit  
Bit Nme  
Default Access  
Description  
Selects the added current value – do not exceed together  
with currX_current the internal 8 Bit range (see text)  
00h  
....  
0 (represents 0mA)  
....  
adder_current3  
7:0  
00b  
R/W  
FFh  
255 (represents 25.5mA)  
www.austriamicrosystems.com/AS3677  
1v3-1  
31 - 67  
AS3677  
Datasheet - Detailed Description  
Table 42. Adder Enable 2 Register  
Adder Enable 2  
Addr: 34h  
Enables the adder circuit for the selected current sources  
Bit  
Bit Name  
Default Access  
Description  
Enables adder circuit for current source CURR1  
Normal Operation of the current source  
0
1
curr1_adder  
0
0
0
0
R/W  
R/W  
R/W  
adder_current1 gets added to the current  
source current; if curr1_amb_group is not 00,  
the adder current is multiplied by the ALS group  
selected by curr1_amb_group  
Enables adder circuit for current source CURR2  
Normal Operation of the current sourc
0
1
curr2_adder  
curr6_adder  
1
2
adder_current2 gets added the current  
source current; if curr2_am_grup is not 00,  
the adder current is multiplied y the ALS group  
selected by curr2_mb_roup  
nableadder circuit for currensource CURR6  
Normal Operaion the current source  
0
1
adder_urrent3 gets added to the current  
source cunt; if curr6_amb_group is not 00,  
the adder curret is multiplied by the ALS group  
sected by curr6_amb_group  
Table 43. Adder Enable 1 Register  
Adder Enable 1  
Addr: 33h  
Enables the addr circuit for the selected current sources  
Bit  
Bit Name  
fault Access  
Description  
Enables adder circuit for current source RGB1  
Normal Operation of the current source  
0
1
rgb1_adder  
0
0
0
R/W  
R/W  
R/W  
adder_current1 gets added to the current  
source current  
Enables adder circuit for current source RGB2  
Normal Operation of the current source  
0
1
rgb2_adder  
rgb_adder  
1
2
adder_current2 gets added to the current  
source current  
Enables adder circuit for current source RGB3  
Normal Operation of the current source  
0
1
adder_current3 gets added to the current  
source current  
8.4.6 S - Ambient Light Sensing  
Te ADC onverts every 1ms the ambient light sensor signal from pin ALS/GPIO14. This signal is pre-processed with  
a ofet defined by amb_offset and a gain defined by amb_gain (1/4, 1/2, 1, 2). Then it is low-pass filtered with a pro-  
grammable cut-off frequency going from 0.25Hz to 32Hz. Increasing signals and decreasing signal can have individual  
cut-off frequencies adjustable from 0.25Hz to 32Hz (amb_filter_up and amb_filter_down).  
This filtered signal can be readout from the register amb_result<7:0>.  
4. adc_select=02h (select ALS/GPIO1 input)  
www.austriamicrosystems.com/AS3677  
1v3-1  
32 - 67  
AS3677  
Datasheet - Detailed Description  
Each of the available three channels (N=1 or 2) has six 8-bit registers:  
- groupN_y0: define current multiplier for values below groupN_X1  
- groupN_y3: define current multiplier for high values (actual starting point defined by groupN_x1,groupN_k1 and  
groupN_x2,groupN_k2)  
- groupN_x1, groupN_k1: If ADC reading is > groupN_x1 then groupN_k1 divided by 32 defines the slope of the  
first ramp  
- groupN_x2, groupN_k2: If ADC reading is > groupN_x2 then groupN_k2 divided by 32 defines the slope of the  
second ramp  
Each current sources has a 2 bit register (currX_amb_group) to select None, Group1 or Group2 of ambient light sens-  
ing.  
The calculations are done every 1ms resulting in a flicker-free 1000Hz update rate of the current sources.  
Note: The ADC is switched off between conversion to save power.  
All groupN_k1 and groupN_k2 values are divided by 32 except group3_k1 (see page 39), which is dividby  
1. This allows a step response to a small change in the input signal (e.g. for keyboard backliht).  
Table 44. ALS Parameters  
Symbol  
Parameter  
Condion  
Min  
Typ  
Max  
Unit  
averaged; excluding LDsuppling external  
sensor - see LDO n page 9  
IALSON  
ALS operating current  
19  
µA  
www.austriamicrosystems.com/AS3677  
1v3-1  
33 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 24. Ambient Light Sensor and Interrupt Logic internal circuit  
ꢒꢝ+ꢁꢓꢄꢀꢁꢙꢅꢄ"ꢘꢆ3  
ꢒꢝ+ꢁꢘꢄꢀꢁꢙꢅꢄ"ꢘꢆ  
ꢒꢓꢀꢁꢃꢕꢘꢆꢅꢙꢁ"ꢜ  
/ꢊ!ꢏ567!!!8ꢏ674  
ꢒꢓꢀꢁꢃꢕꢘꢆꢅꢙꢁꢝꢂꢚꢖ  
/ꢊ!ꢏ567!!!8ꢏ674  
ꢌꢏ  
ꢌꢐ  
ꢑꢏ  
ꢑꢍ  
&9:ꢑ;0$.ꢐ  
ꢄꢒꢆ"ꢙꢒꢆꢅꢉ  
ꢓꢒ>ꢛꢏ55  
ꢓꢕꢖꢛꢊ  
ꢗꢕꢘꢆꢅꢙꢉ  
ꢘꢂꢚꢛꢜꢒꢄꢄꢛꢃꢕꢘꢆꢅꢙ  
ꢙꢕꢄꢅꢑꢃꢒꢘꢘꢆꢕꢓꢅꢛꢒꢝ !  
ꢛꢛꢛꢛꢛꢛꢛꢐꢊꢀꢕꢆꢛꢛꢛ  
ꢛꢛꢛꢛꢛ&%'  
$ꢖꢆꢅꢙꢙ"ꢜꢆꢛCꢖꢒꢀꢘꢅ  
;0$.ꢏ  
;0$.8  
ꢒꢓꢀꢁꢔꢒꢕꢖꢇꢐꢉꢊꢋ  
ꢌꢍ  
ꢖꢂꢆꢛꢊ>ꢊꢊD  
#
-.ꢀꢁꢂꢃꢃꢄꢅꢆꢇꢈꢉꢊꢋ  
ꢒꢓꢀꢁꢙꢖꢔꢁꢕꢖꢆꢁ-ꢕꢔ-ꢇꢈꢉꢊꢋ  
ꢖꢂꢆꢛꢊ>ꢊꢊD  
#
ꢒꢓꢀꢁꢙꢖꢔꢁꢕꢖꢆꢁꢘꢂꢚꢇꢈꢉꢊꢋ  
*ꢐ  
ꢒꢓꢀꢁꢆꢂꢂꢁꢘꢂꢚ  
ꢀꢁꢆꢂ-ꢕꢔ-  
#ꢛ<ꢕꢆꢛ=ꢛꢐꢊꢊꢊ67 ꢒꢓꢀꢁꢙꢅꢄ"ꢘꢆꢇꢈꢉꢊꢋꢛ/ꢙꢅꢒꢝꢑꢚꢙꢕꢆꢅꢛꢒ++ꢅꢄꢄ4  
$AB  
ꢕꢖꢄꢆꢒꢆ"ꢄꢇꢐꢉꢊꢋ  
$ꢖꢆꢅꢙꢙ"ꢜꢂꢔꢕ+  
/ꢙꢅꢒꢂ"ꢆꢛ+ꢘꢛꢕꢖꢆꢅꢙꢙ"ꢜꢆ4  
ꢔꢙꢂ"ꢜꢐꢁ?ꢊ  
ꢒꢓꢀꢁ@ꢅꢅꢜ  
ꢂ"ꢆ  
ꢔꢙꢂ"ꢜꢐ
ꢔꢙꢂ"ꢜꢁ@ꢐ  
ꢔꢙꢂ"ꢜꢐꢁ>ꢏ  
#
:ꢒꢓꢜꢘꢅꢑ  
6ꢂꢘꢝ  
ꢔꢙꢂ"ꢜꢐꢁ@ꢏ  
#
#
6ꢂꢘꢝ  
ꢔꢙ"ꢜꢐꢁ?
6ꢂꢘꢝ  
ꢕꢖ  
ꢔꢙꢂ"ꢜꢐ  
ꢔꢙꢂ"ꢜꢏ  
ꢔꢙꢂ"ꢜ8  
ꢊꢊ  
ꢊꢐ  
,ꢐ,  
ꢐꢊ  
ꢐꢐ  
ꢆꢂꢛꢒꢘꢘꢛꢂꢆ-ꢅꢙ  
+"ꢙꢙꢅꢖꢆꢛꢄꢂ"ꢙ+ꢅꢄ  
+"ꢙꢙ*ꢁꢒꢓꢀꢁꢔꢙꢂ"ꢜ  
#
.ꢆ-ꢅꢙꢛꢃ"ꢖ+ꢆꢕꢂꢖꢄ  
/0123ꢛꢝꢕꢓꢓꢕꢖꢔ!!!4  
$%&'ꢛꢛꢛ  
ꢃꢙꢂꢓꢛ+"ꢙꢙꢅꢖꢆꢛꢄꢅꢆꢆꢕꢖꢔꢛ  
ꢙꢅꢔꢕꢄꢆꢅꢙꢛ'())*ꢁ+"ꢙꢙꢅꢖꢆ  
'())*  
#
#
AS3677  
Ambient Light Sensor Registers  
Table 45. ALS control Regiter  
ALS control  
Addr: 9h  
control ambient light sensing  
Bit  
Bit Name  
Default Access  
Description  
Enables the ambient light sensing feature  
ambient light sensor disabled  
amb_on  
0
0
R/W  
0
1
ambient light sensor enabled  
www.austriamicrosystems.com/AS3677  
1v3-1  
34 - 67  
AS3677  
Datasheet - Detailed Description  
Table 45. ALS control Register (Continued)  
ALS control  
Addr: 90h  
control ambient light sensing  
Description  
Bit  
Bit Name  
Default Access  
Control Ambient Light Sensor preprocessing gain  
00  
gain = 1/4  
gain = 1/2  
gain = 1  
amb_gain  
2:1  
0
0
R/W  
R/W  
01  
10  
11  
gain = 2  
Enable S/H of group tables output - see Figure 24 on  
page 34  
amb_keep  
3
0
1
Group output is enabled (S/= sampling)  
Groups outputs on hold S/H hold)  
Table 46. ALS filter Register  
ALS filter  
Addr: 91h  
ontrol for ambient light sensor filtering  
escription  
Bit  
Bit Name  
Default Access  
ontrols the filtecuoff (-3dB) frequency (increasing)  
000  
001  
010  
11  
100  
101  
110  
111  
0.25Hz  
0.5Hz  
1Hz  
amb_filter_up  
2:0  
00
R/W  
2Hz  
4Hz  
8Hz  
16Hz  
32Hz  
Controls the filter cut off (-3dB) frequency (decreasing)  
000  
001  
010  
011  
100  
101  
110  
111  
0.25Hz  
0.5Hz  
1Hz  
amb_filte_don  
6:4  
000  
R/W  
2Hz  
4Hz  
8Hz  
16Hz  
32Hz  
Tabe 47. ALS offset Register  
Addr: 92h  
ALS offset  
Description  
Controls the offset of the ambient light sensor  
Bit  
Bit Name  
Default Access  
00h R/W  
amb_offset  
7:0  
www.austriamicrosystems.com/AS3677  
1v3-1  
35 - 67  
AS3677  
Datasheet - Detailed Description  
Table 48. ALS result Register  
Addr: 93h  
ALS result  
Description  
Bit  
Bit Name  
Default Access  
R
Filtered result of the ambient light sensor value  
amb_result  
7:0  
00h  
W
Pre-set the value of the ALS filter (especially useful when  
doing gain switching of the ALS sensor)  
Table 49. ALS curr12 group Register  
ALS curr12 group  
Addr: 94h  
controls the group mapping for CURR1 and CURR2  
Bit  
Bit Name  
Default Access  
Description  
CURR1 is mapped to ambient light sensor grou
00  
None - no ambient lighsenor control  
curr1_amb_group  
1:0  
00  
00  
R/W  
R/W  
01  
10  
11  
Group 1  
Grp 2  
Group 3  
CURR2 is mapped to ambient light sensor group  
0  
None - o ambient light sensor control  
curr2_amb_group  
3:2  
01  
10  
11  
Group 1  
Group 2  
Group 3  
Table 50. ALS rgb group Register  
ALS rgb group  
controls thp mapping for RGB1, RGB2, RGB3 and CURR6  
Addr: 95h  
Bit  
Bit Name  
Default Acess  
Description  
RGB1 is mapped to ambient light sensor group  
00  
None - no ambient light sensor control  
rgb1_amb_group  
1:0  
00  
00  
R/W  
R/W  
R/W  
01  
10  
11  
Group 1  
Group 2  
Group 3  
RGB2 is mapped to ambient light sensor group  
00  
None - no ambient light sensor control  
rg_am_group  
rgb3_amb_group  
3:2  
5:4  
01  
10  
11  
Group 1  
Group 2  
Group 3  
RGB3 is mapped to ambient light sensor group  
00  
None - no ambient light sensor control  
01  
10  
11  
Group 1  
Group 2  
Group 3  
www.austriamicrosystems.com/AS3677  
1v3-1  
36 - 67  
AS3677  
Datasheet - Detailed Description  
Table 50. ALS rgb group Register (Continued)  
ALS rgb group  
Addr: 95h  
controls the group mapping for RGB1, RGB2, RGB3 and CURR6  
Bit  
Bit Name  
Default Access  
Description  
CURR6 is mapped to ambient light sensor group  
00  
None - no ambient light sensor control  
curr6_amb_group  
7:6  
00  
R/W  
01  
10  
11  
Group 1  
Group 2  
Group 3  
Group1  
Table 51. ALS group 1 Y0 Register  
Addr: 98h  
ALS group 1 Y0  
Bit  
Bit Name  
Default Access  
00h R/W  
Description  
group1_y0  
7:0  
Goup 1 y0 value - divideby 256  
Table 52. ALS group 1 Y3 Register  
Addr: 99h  
ALS group 1 Y3  
Bit  
Bit Name  
Default Access  
00h RW  
escription  
group1_y3  
7:0  
Gup 1 y3 value - divided by 256  
Table 53. ALS group 1 X1 Register  
Addr: 9Ah  
ALS group 1 X1  
Description  
Bit  
Bit Name  
ault Access  
00h R/W  
group1_x1  
7:0  
Group 1 x1 value  
Table 54. ALS group 1 K1 Register  
Addr: 9Bh  
ALS group 1 K1  
Description  
Bit  
Bit Name  
Deult Access  
R/W  
group1_k1  
7:0  
Group 1 k1 value - divided by 32 defines first slope  
Table 55. ALS group 1 X2 Rester  
Addr: 9Ch  
ALS group 1 X2  
Description  
Bit  
Bit Name  
Default Access  
00h R/W  
roup_x2  
7:0  
Group 1 x2 value  
Table 56. ALgrop 1 K2 Register  
Addr: 9Dh  
ALS group 1 K2  
Description  
Bit  
Bit Name  
Default Access  
00h  
group1_k2  
7:
R/W Group 1 k2 value- value divided by 32 defines second slope  
www.austriamicrosystems.com/AS3677  
1v3-1  
37 - 67  
AS3677  
Datasheet - Detailed Description  
Group2  
Table 57. ALS group 2 Y0 Register  
Addr: 9Eh  
ALS group 2 Y0  
Description  
Bit  
Bit Name  
Default Access  
00h R/W  
group2_y0  
7:0  
Group 2 y0 value - divided by 256  
Table 58. ALS group 2 Y3 Register  
Addr: 9Fh  
ALS group 2 Y3  
Bit  
Bit Name  
Default Access  
00h R/W  
Description  
group2_y3  
7:0  
Group 2 y3 value - divided by 256  
Table 59. ALS group 2 X1 Register  
Addr: A0h  
ALS group 2 X1  
Description  
Bit  
Bit Name  
Default Access  
00h R/W  
group2_x1  
7:0  
Group 2 x1 vale  
Table 60. ALS group 2 K1 Register  
Addr: A1h  
ALS group K1  
Bit  
Bit Name  
Default Access  
00h R/W  
Desription  
group2_k1  
7:0  
Group 2 k1 vale - divided by 32 defines first slope  
Table 61. ALS group 2 X2 Register  
Addr: A2h  
LS group 2 X2  
Description  
Bit  
Bit Name  
efault Access  
00h R/W  
group2_x2  
7:0  
Group 2 x2 value  
Table 62. ALS group 2 K2 Register  
Addr: A3h  
ALS group 2 K2  
Description  
Bit  
Bit Name  
DefaulAccess  
group2_k2  
7:0  
0
R/W Group 2 k2 value- value divided by 32 defines second slope  
Group3  
Table 63. ALS group 3 Y0 Rgistr  
Addr: A4h  
ALS group 3 Y0  
Bit  
Bit Nme  
Default Access  
00h R/W  
Description  
group3_y0  
7:0  
Group 3 y0 value - divided by 256  
Table 64LS group 3 Y3 Register  
Addr: A5h  
ALS group 3 Y3  
B
Bit Name  
Default Access  
00h R/W  
Description  
group3_y3  
7:0  
Group 3 y3 value - divided by 256  
www.austriamicrosystems.com/AS3677  
1v3-1  
38 - 67  
AS3677  
Datasheet - Detailed Description  
Table 65. ALS group 3 X1 Register  
Addr: A6h  
ALS group 3 X1  
Description  
Group 3 x1 value  
Bit  
Bit Name  
Default Access  
00h R/W  
group3_x1  
7:0  
Table 66. ALS group 3 K1 Register  
Addr: A7h  
ALS group 3 K1  
Bit  
Bit Name  
Default Access  
00h R/W  
Description  
group3_k1  
7:0  
Group 3 k1 value - divided by 1 defines first slope  
Table 67. ALS group 3 X2 Register  
Addr: A8h  
ALS group 3 X2  
Description  
Bit  
Bit Name  
Default Access  
00h R/W  
group3_x2  
7:0  
Group 3 x2 value  
Table 68. ALS group 3 K2 Register  
Addr: A9h  
AS group 3 K2  
Description  
Bit  
Bit Name  
Default Access  
00h  
group3_k2  
7:0  
R/W Gup 3 k2 value- value diided by 32 defines second slope  
The output of the group selection circuit (after the S/H rcuit) can be observed with following registers:  
Table 69. ALS group output 1 Register  
Addr: AAh  
Bit Name  
amb_group1  
AS group output 1  
Description  
Bit  
efault Access  
00h  
7:0  
R
Ambient Light Sensor Group 1 output register  
Table 70. ALS group output 2 Register  
Addr: ABh  
ALS group output 2  
Bit  
Bit Name  
DefaulAccess  
0
Description  
amb_group2  
7:0  
R
Ambient Light Sensor Group 2 output register  
Table 71. ALS group output 3 Reister  
Addr: ACh  
ALS group output 3  
Bit  
Bit Nme  
Default Access  
00h  
Description  
amb_group3  
7:0  
R
Ambient Light Sensor Group 3 output register  
The range seection interrupt threshold and interrupt enable is defined by following registers amb_range_int_high and  
amb_range_intlow:  
Tble 72ALrange high interrupt threshold Register  
Addr: ADh  
Bit Name  
ALS range high interrupt threshold  
Description  
Bit  
Default Access  
If the filter output amb_result >= amb_range_int_high then  
an amb_too_high interrupt is asserted  
amb_range_int_high  
7:0  
00h  
R/W  
If amb_range_int_high=0, the interrupt is disabled  
www.austriamicrosystems.com/AS3677  
1v3-1  
39 - 67  
AS3677  
Datasheet - Detailed Description  
Table 73. ALS range low interrupt threshold Register  
Addr: AEh  
ALS range low interrupt threshold  
Description  
Bit  
Bit Name  
Default Access  
00h R/W  
If the filter output amb_result <= amb_range_int_low then  
an amb_too_low interrupt is asserted  
amb_range_int_low  
7:0  
If amb_range_int_low=0, the interrupt is disabled  
The range selection generates an interrupt by pulling the pin INT low (if any of the register bit of Interrupt Status are  
set, INT is pulled low(. When the register Interrupt Status is readout, the interrupt is automatically cleared:  
Table 74. Interrupt Status Register  
Addr: AFh  
Bit Name  
Interrupt Status  
Description  
Comparator for amb_result >= amb_rage_int_high  
Bit  
Default Access  
R/sC1  
0
amb_too_high  
amb_too_low  
0
0
1
not triggere
triggered  
Cmpaar for amb_result <= ab_range_int_low  
R/sC1  
0
1
0
not riggered  
triggered  
1. Read - self clear. The register automatically clears it contet after readout. Thiavoids any lost interrupts.  
8.4.7 DLS(=DBC) - Dynamic Luminance Scaling Input  
The pins DLS1 and DLS2 can be used for dyamic backlight scalinnput. Dynamic backlight scaling is used to reduce  
the power of the backlight especially wheshoing dark picture contets on the display. The control unit to operate  
DLS is the display processor sending a PWsignal to the AS677 nd in parallel changing the display content to com-  
pensate for a reduced brightness backt.  
The AS3677 can use the DLS (Dynamic Luminance Scalso called DBC = Dynamic Backlight Control) in two dif-  
ferent operating modes:  
1. Digital DLS Mode - selected by dls_analog=0: The input signal from pins DLS1 and DLS2 are controlling the  
current source directly. A logic ‘L’ sitches off the selected current source and a logic ‘H’ enables the current  
source with the configured current. Ts operating mode is compatible to the AS3676 processing of DLS.  
2. Analog DLS Mode - selected bdanalog=1: In this operating mode, the input signals form DLS1 and DLS2  
are digitally filtered (two parallel s are possible!) and smoothly controls the current through the selected  
www.austriamicrosystems.com/AS3677  
1v3-1  
40 - 67  
AS3677  
Datasheet - Detailed Description  
current source(s). Therefore the output signal does not show any PWM signal and therefore reduces the noise  
in noise sensitive systems - especially if the connection to the LED used long wires.  
Note: For any current source, do not use DLS and the internal PWM generator (see PWM Generator on page 27) at  
the same time.  
Table 75. DLS Input Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
pins DLS1 and DLS2 if  
used for DLS (any bit set:  
curr1_on_dls,  
dls_analog=0  
dls_analog=1  
25  
1000  
kHz  
DLS input frequency  
range  
fDLS  
curr2_on_dls or  
3001  
250001  
Hz  
curr6_on_dls); pin DLS1 if  
used for RGB1, RGB2 and  
RGB3 (only ‘digital’ DLS)  
DLS internal filter 3dB  
cutoff frequency  
fDLS_FILTER  
VIHDLS  
dls_analog=1, low pass filter 4th order  
2
kHz  
V
High Level Input  
Voltage  
1.38  
-5  
VAT  
pins DLS1 and DLS2  
to VBAT oVSS  
Low Level Input  
Voltage  
VILDLS  
ILEAK  
0.52  
5
V
Input Leakage Current  
µA  
1. For duty cycles >5%  
Note: If using dls_analog=1, the minimum PWM ratio is limited by the LED erformance. If the analog current is  
reduced too much, it might result in uneveness of the display bight as the LEDs are usually not specified  
at very low current operation).  
RGB1, RGB2 and RGB3 can only use digital’ DLS - the regiser dls_analog does have no influence.  
The analog processing of the DLS sigal works as follows (dl_anaog=1):  
1. The input signal from pins DLnd DLS2 are fento the digital filter. A logic ‘L’ is converted into ‘0.000’ and  
a logic ‘H’ is converted into ‘1.000’.  
2. The digital filter processes this signal. The ilter itself is implemented as a 4th order low pass filter with fixed  
coefficients. Its 3dB cut-off frequency is seto fLS_FILTER.  
3. The output signal (fixed comma biary 8 bit signal) is multiplied by the individual current setting.  
4. From this 8 x 8 multiplication (16bit reult), the 8 MSBs are used.  
This value is converted with a current DAC to a current, which controls the LED.  
8.4.8 Unused DLS Input Pin
The pins DLS1 and DLS2 shoud be connected to VSS if not used.  
8.4.9 DLS Internal Pcessing  
The internal processinis sown in Figure 25:  
www.austriamicrosystems.com/AS3677  
1v3-1  
41 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 25. DLS (Dynamic Luminance Scaling) internal circuit shown for a single current sink  
ꢁꢘꢚ1ꢛꢎ2  
&ꢙꢖꢑꢚꢚꢖꢙ  
ꢆꢂꢃ,-&ꢅ"ꢋ  
"ꢕ#ꢑꢙꢈ$ꢜꢏꢕꢘꢖꢏꢚ  
%&'ꢝ(ꢈ)ꢘ**ꢘꢏꢐꢔꢔꢔ+  
ꢆꢂꢃ  
ꢇꢉꢊꢊ/0ꢜꢙꢙꢑꢏꢕ  
ꢁꢘꢚ1ꢛꢎ2  
ꢌꢈꢆ.ꢁ  
ꢐꢎꢕꢑꢚ  
ꢜꢙꢙꢄ0)ꢛꢚꢄ  
ꢇꢉꢊꢊꢋ  
ꢜꢙꢙ/0ꢖꢏ0)ꢛꢚ  
ꢇꢉꢊꢊꢄ  
ꢇꢉꢊꢊ!  
ꢉꢊꢊꢋ  
ꢅꢁꢆꢇꢈꢈꢈ  
ꢇꢉꢊꢊꢄ  
ꢇꢉꢊꢊ!  
ꢜꢚꢑꢈꢌ  
ꢗ ꢚ  
ꢏꢎꢛꢖꢐ  
ꢜꢙꢙ!0)ꢛꢚꢄ  
ꢎꢏꢎꢛꢈꢁꢂꢃ  
ꢁꢂꢃꢋ  
ꢁꢂꢃꢄ  
ꢀꢋ  
ꢎꢓꢈꢈꢈ  
3ꢈꢈ  
ꢜꢙꢙꢄ0)ꢛ
ꢊꢎꢏꢐꢑꢒ  
ꢓꢔꢓꢓꢓꢈꢕꢖꢈꢋꢔꢓꢓꢓ  
ꢌꢈꢗꢘꢕꢈꢙꢑꢚꢖꢛꢜꢕꢘꢖꢏ  
ꢏ)  
ꢈꢈꢎꢋ  
4ꢕ#ꢈꢖꢙ)ꢑꢙꢈꢂ&ꢈ$ꢘꢛꢕꢑꢙ  
ꢁꢘꢚ1ꢛꢎ2  
ꢖꢙ  
ꢃꢜ5ꢀ)ꢘꢚ1ꢛꢎ2  
ꢀꢋ  
ꢎꢓꢈꢈꢈ  
3ꢈꢈ  
ꢈꢈꢈꢎꢋ  
ꢜꢙꢙ!0)ꢛꢚꢄ  
AS3677  
ꢏ)ꢈꢁꢘꢚ1ꢛꢎ2  
&ꢙꢖꢑꢚꢚꢖꢙ  
Table 76. DLS me cotrol1 Register  
DLS mode control1  
ddr56h  
Setup which current sinks are connected to the DLS; if set to '1' the  
correspond current source (sink) is combined with the DLS input  
Bit  
Bit Name  
Default Access  
Description  
0
RGB1 current sink is not combined with DLS  
rgb1_on_dls  
4
0
R/W  
RGB1 current sink is combined with DLS (only  
‘digital’ DLS with input pin DLS1)  
11  
www.austriamicrosystems.com/AS3677  
1v3-1  
42 - 67  
AS3677  
Datasheet - Detailed Description  
Table 76. DLS mode control1 Register (Continued)  
DLS mode control1  
Addr: 56h  
Setup which current sinks are connected to the DLS; if set to '1' the  
correspond current source (sink) is combined with the DLS input  
Bit  
Bit Name  
Default Access  
Description  
0
RGB2 current sink is not combined with DLS  
rgb2_on_dls1  
5
0
0
0
R/W  
R/W  
R/W  
RGB2 current sink is combined with DLS (only  
‘digital’ DLS with input pin DLS1)  
11  
0
RGB3 current sink is not combined with DLS  
rgb3_on_dls  
dls_analog  
6
7
RGB3 current sink is combined with DLS (nly  
‘digital’ DLS with input pin DLS1)  
11  
0
‘digital’ DLS for all current sinks  
‘analog’ DLS for CURR1, CURRand CURR6 if  
enabled  
1
1. When this bit is set, do not use the internal PWM generator for this current source at the sme tme.  
Table 77. DLS mode control2 Register  
DLS mode control2  
Addr: 57h  
Setup which cuent sinks are connecteto the DLS; if set to '1' the  
correspond cuent source (sink) is combined with the DLS input  
Bit  
Bit Name  
Default Acces
Description  
0
RR1 current sink is not combined with DLS  
curr1_on_dls  
0
0
0
/W  
R/W  
11  
0
CURR1 current sink is combined with DLS  
CURR2 current sink is not combined with DLS  
CURR2 current sink is combined with DLS  
curr2_on_dls  
1
11  
0
CURR2 uses DLS1 as input  
CURR2 uses DLS2 as input  
curr2_dls2  
curr6_dls2  
5
6
0
0
/W  
R/W  
1
0
CURR6 uses DLS1 as input  
1
CURR6 uses DLS2 as input  
0
CURR6 current sink is not combined with DLS  
curr6_on_dls  
7
0
R/W  
11  
CURR6 current sink is combined with DLS  
1. When this bit is set, do not ue the internal PWM generator for this current source at the same time.  
www.austriamicrosystems.com/AS3677  
1v3-1  
43 - 67  
AS3677  
Datasheet - Detailed Description  
8.5  
General Purpose Input / Output  
The pin DLS1, DLS2 are digital input, INT is an open drain output and ALS/GPIO1, GPIO2 and GPIO3 are a highly-  
configurable general purpose input/output pins which can be used for the following functionality:  
DLS1 and DLS2 primary function is a DLS input - see DLS(=DBC) - Dynamic Luminance Scaling Input on page 40  
ALS/GPIO1 primary function is ALS input - see ALS - Ambient Light Sensing on page 32  
Digital Schmitt Trigger Input  
Digital Output with 4mA Driving Capability at 2.8V Supply (VANA)  
Tristate Output  
Analog Input to the ADC  
Default Mode for ALS/GPIO1 is ADC input (as required for the ALS function), GPIO2 and GPIO3 is Input with Pull-  
Down  
Table 78. GPIO Pin Function Summary  
GPIO3 Pin  
Configuration  
Additional Function  
ADC Input, ALS - light senor input (see  
page 32)  
Digital Input, Totem-Pole Output (Push/Pull),  
Open Drain (PMOS or NMOS), High-Z, Pull-  
Down or Pull-Up Resistor  
ALS/GPIO1  
GPIO2, GPIO3  
DLS1, DLS2  
INT  
ADC Inut  
ADC Input, PWM InputDLS input (see page  
40)  
Digital Input  
Open Drain Output  
ADC Input  
www.austriamicrosystems.com/AS3677  
1v3-1  
44 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 26. GPIOs and VANA Blockdiagram  
ꢏꢑꢀꢒ  
AS3677  
ꢁꢉꢇ  
ꢈꢊꢋꢌꢍꢊꢍꢎꢏ  
ꢐꢐꢐꢐꢐꢐꢐ  
ꢏꢀꢓꢀ  
ꢏꢀꢓꢀ  
ꢈꢔꢔꢕꢖ  
ꢗꢘꢐꢀꢉꢙ  
 !"ꢘꢈ#ꢘꢛꢗ%ꢈ  
'ꢕ(ꢐ !"ꢘꢈ#)ꢘ(ꢝ%ꢔꢈꢐꢘ*ꢐꢈꢈ  
'ꢕ(ꢐꢚꢕꢘꢗꢐ !"ꢘꢈ#!ꢛ$$ꢜ%ꢈꢈ&  
 !"ꢘꢈ#!ꢛ$$ꢜ  
 !"ꢘꢈ#"ꢕ  
 !"ꢘꢈ#$ꢘ#+ꢛ**  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢘꢕ  
ꢘꢕ  
ꢘꢕ  
ꢕꢘꢗꢐ ꢘꢈ#$$ꢜ%ꢈꢈ  
 !"ꢘꢈ#ꢘꢛꢗ%ꢔ  
'ꢕ(ꢐ !"ꢘꢈ#)ꢘ(ꢝ%ꢔꢈꢐꢘ*ꢐꢈꢔ  
'ꢕ(ꢐꢚꢕꢘꢗꢐ !"ꢘꢈ#!ꢛ$$ꢜ%ꢈꢈ&  
ꢗꢘꢐꢀ  
ꢛꢜꢝꢐ ꢘꢈ#!ꢛ$$ꢜ%ꢈꢈ&  
 !"ꢘ,#ꢘꢛꢗ%ꢈ  
'ꢕ(ꢐ !"ꢘꢝ%ꢔꢈꢐꢘ*ꢐꢈꢈ  
'ꢕ(ꢐꢚꢕꢘꢗꢐ #!ꢛ$ꢜ%ꢈꢈ&  
 !"ꢘ,#!ꢛ$$ꢜ  
 !"ꢘ,#"ꢕ  
 !"ꢘ,#$ꢘ#+ꢛ**  
ꢄꢅꢆꢇ,  
ꢕꢘꢗꢐ !"ꢘ,#!ꢛ$$ꢜ%ꢈꢈ  
 !",#ꢘꢛꢗ%ꢔ  
ꢕ(ꢐ !"ꢘ,#)ꢘ(ꢝ%ꢐꢘ*ꢐꢈꢔ  
'ꢕ(ꢐꢚꢕꢘꢗꢐ !"ꢘ,#!ꢛ$$ꢜ%ꢈ&  
ꢗꢘꢐꢀꢉꢙ  
ꢚꢛꢜꢝꢐ !"ꢘ,#!ꢛ$$ꢜ%ꢈꢈ&  
 !"ꢘꢍ#
'ꢕ(ꢐ !ꢘ(ꢝ%ꢔꢈꢐꢘ*ꢐꢈꢈ  
'(ꢐꢚꢕꢘꢗꢐ !"ꢘꢍ#!ꢛ$$ꢜ%ꢈꢈ&  
 !"ꢘꢍ#!ꢛ$$ꢜ  
 !"ꢘꢍ#"ꢕ  
 !"ꢘꢍ#$ꢘ#+ꢛ**  
ꢄꢅꢆꢇꢍ  
ꢕꢘꢗꢐ !"ꢘꢍ#!ꢛ$$ꢜ%ꢈꢈ  
 !"ꢘꢍ#ꢘꢛꢗ%ꢔ  
'ꢕ(ꢐ !"ꢘꢍ#)ꢘ(ꢝ%ꢔꢈꢐꢘ*ꢐꢈꢔ  
'ꢕ(ꢐꢚꢕꢘꢗꢐ !"ꢘꢍ#!ꢛ$$ꢜ%ꢈꢈ&  
ꢗꢘꢐꢀꢉꢙ  
ꢚꢛꢜꢝꢐ !"ꢘꢍ#!ꢛ$$ꢜ%ꢈꢈ&  
8.5.1 Unused GPIO and digital Input Pins  
If the pins ALS/GIO1, PIO2 or GPIO3 are not used, they can be left open (an internal pulldown, which is enabled by  
default, will pull them to GND, ALS/GPIO1 is configured as ADC input). The pins DLS1 and DLS2 should be connected  
to VSS, INT cn be left open.  
8.5.2 GO and Digital Inputs Characteristics  
Tble 79. GPIO and digital inputs DC Characteristics  
Smbol  
Rpull  
Parameter  
Condition  
Min  
30  
Typ  
Max  
75  
Unit  
kΩ  
V
Pull up/Pull down  
Resistance  
enabled by gpio1_pulls,  
gpio2_pulls and gpio3_pulls  
VGPIO  
Supply Voltage  
=VANA  
1.8  
3.35  
www.austriamicrosystems.com/AS3677  
1v3-1  
45 - 67  
AS3677  
Datasheet - Detailed Description  
Table 79. GPIO and digital inputs DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
High Level Input  
Voltage  
VIHGPIO  
1.38  
VANA  
V
pins ALS/GPIO1, GPIO2 and  
GPIO3  
Low Level Input  
Voltage  
VILGPIO  
0.52  
5
V
VHYS  
ILEAK  
Hysteresis  
0.1  
V
Input Leakage Current  
to VANA or VSS  
at Iout  
-5  
µA  
High Level Output  
Voltage  
VOHGPIO  
VOLGPIO  
VOLINT  
0.8·VANA  
V
V
V
Low Level Output  
Voltage  
0.2·  
VANA  
Low Level Output  
voltage  
0.2  
Pin INT at 4mA  
VANA = 2.8V,  
gpio1_low_curr or  
gpio2_low_curr or  
gpio3_low_curr=
4
IOUT  
Driving Capability  
Capacitive Load  
mA  
pF  
VANA = 2.8V,  
gpio1_low_curr or  
gpio2_lowor  
gpio3_low_= 0  
101  
CLOAD  
50  
1. Limited by LDO driving capability - see LDO on page 9  
8.5.3 GPIO Registers  
Table 80. GPIO output 2 Register  
GPIO output 2  
Addr: 50h  
This register controls GPIO3 outputs.  
Bit  
Bit Name  
Default Aces
Description  
Writes a logic signal to pin ALS/GPIO1; this is independent  
of any other bit setting e.g., gpio1_mode Table 82.  
gpio1_out  
0
0
0
R/W  
R/W  
R/W  
Writes a logic signal to pin GPIO2; this is independent of  
any other bit setting e.g., gpio2_mode Table 82  
gpio2_out  
gpio3_out  
1
2
Writes a logic signal to pin GPIO3; this is independent of  
any other bit setting e.g., gpio3_mode Table 83  
Table 81. GPIO signal 2 egister  
GPIO signal 2  
This register controls GPIO3 outputs.  
Description  
Addr: 1h  
Bit  
Bit Name  
Default Access  
Reads a logic signal from pin ALS/GPIO1; this is  
independent of any other setting e.g.,Table 82 except  
gpio1_pulls=11  
gpio1_in  
0
N/A  
R
Reads a logic signal from pin GPIO2; this is independent of  
any other setting e.g.,Table 82 except gpio2_pulls=11  
gpio2_ in  
gpio3_ in  
1
2
N/A  
N/A  
R
R
Reads a logic signal from pin GPIO3; this is independent of  
any other setting e.g.,Table 83 except gpio3_pulls=11  
www.austriamicrosystems.com/AS3677  
1v3-1  
46 - 67  
AS3677  
Datasheet - Detailed Description  
Table 82. GPIO control Register  
GPIO control  
Addr: 1Eh  
This register controls GPIO3 and GPIO31 pin functions.  
Bit  
Bit Name  
Default Access  
Description  
Defines the direction for pin ALS/GPIO1  
Input only  
00  
01  
Output (push and pull)  
gpio1_mode  
1:0  
00  
11  
00  
0
R/W  
R/W  
R/W  
R/W  
Output (open drain, only push; only NMOS is  
active)  
10  
11  
Output (open drain, only pull; only PMOS is  
active)  
Adds the following pullup/pulldown to pin ALS/GPIO1this  
is independent of setting of bits gpi1_mode  
00  
01  
10  
None  
Pudown  
Pullu
gpio1_pulls  
gpio2_mode  
gpio2_pulls  
3:2  
5:4  
7:6  
ADC input (gpio1_mod= XX); recommended  
for analog signals  
11  
Defines the dection for pin GPIO2  
Input only  
00  
01  
Output (push and pull)  
tpt (open drain, only push; only NMOS is  
active)  
10  
1  
Output (open drain, only pull; only PMOS is  
active)  
ds the following pullup/pulldown to pin GPIO2; this is  
independent of setting of bits gpio2_mode  
00  
01  
10  
None  
Pulldown  
Pullup  
ADC input (gpio2_mode = XX); recommended  
for analog signals  
11  
Table 83. GPIO control 3 Registr  
GPIO control 3  
Addr: 1Fh  
This register enables low current mode for GPIO3s.  
Bit  
it Name  
Default Access  
Description  
Defines the direction for pin GPIO3  
Input only  
00  
01  
Output (push and pull)  
gpio3_mode  
:0  
00  
R/W  
Output (open drain, only push; only NMOS is  
active)  
10  
11  
Output (open drain, only pull; only PMOS is  
active)  
www.austriamicrosystems.com/AS3677  
1v3-1  
47 - 67  
AS3677  
Datasheet - Detailed Description  
Table 83. GPIO control 3 Register (Continued)  
GPIO control 3  
Addr: 1Fh  
This register enables low current mode for GPIO3s.  
Bit  
Bit Name  
Default Access  
Description  
Adds the following pullup/pulldown to pin GPIO3; this is  
independent of setting of bits gpio3_mode  
00  
01  
10  
None  
Pulldown  
Pullup  
gpio3_pulls  
3:2  
01  
R/W  
ADC input (gpio3_mode = XX); recommende
for analog signals  
11  
Table 84. GPIO driving cap Register  
GPIO driving cap  
Addr: 20h  
This register enables low current mode or GPO3s.  
Bit  
Bit Name  
Default Access  
Description  
Deinethe driving capability f pin ALS/GPIO1  
gpio1_low_curr  
0
0
0
0
R/W  
R/W  
R/W  
1
Iout  
Iout /4  
Defines thdriving capability of pin GPIO2  
gpio2_low_curr  
gpio3_low_curr  
1
2
0
1
Iout  
Iout /4  
efines the driving capability of pin GPIO3  
0
1
Iout  
Iout /4  
www.austriamicrosystems.com/AS3677  
1v3-1  
48 - 67  
AS3677  
Datasheet - Detailed Description  
8.6  
LED Test  
Figure 27. LED Function Testing  
ꢆꢀꢒꢒꢓ$  
ꢋ#  
ꢆꢀꢒꢒꢓ$  
ꢆꢀꢒꢒꢓ$  
ꢌ#  
'ꢍꢊ(5ꢌꢕ  
'ꢍꢊ(  
ꢙ#  
ꢌ#5ꢕ  
ꢌ#56  
ꢌ"  
ꢌꢛꢎꢁ&ꢂꢅꢕꢀ4ꢒ  
ꢆ%  
ꢘ!ꢂꢁ!ꢑꢓꢄꢎ&ꢂ  
ꢕꢁꢑꢄꢂꢔꢄꢇꢑꢃ  
ꢌꢕꢘꢝ(  
ꢆꢄꢂꢒꢅꢝꢒꢅꢋꢌ ꢋꢌ  
ꢌꢑꢃ!ꢂꢁꢄꢂꢁ  
ꢋ"  
ꢋ.  
ꢋ1  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇꢃꢈꢉ  
ꢋ,  
ꢋ-  
ꢋ/  
ꢋ0  
)3ꢍ#  
)3ꢍ"  
ꢋ#2  
*'ꢅꢌꢀꢁꢁꢂꢄꢅꢆꢇꢃꢈ
ꢌꢝ)#  
ꢌꢝ))"  
)+  
)3ꢍ,  
ꢋꢂꢄꢂꢔꢄꢅꢆꢛꢑꢁꢄꢉ  
ꢙꢚꢋꢅꢑꢁꢅꢔꢑꢃꢃꢂꢔꢄꢑꢁꢉ  
ꢍꢎꢉꢂꢏꢎꢃꢐꢅꢑꢁ  
ꢊꢒꢒꢓꢇꢔꢎꢄꢇꢑꢃ  
ꢕꢁꢑꢔꢂꢉꢉꢑꢁ  
ꢋꢂꢄꢂꢔꢄꢅꢘꢒꢂꢃ  
ꢙꢚꢋꢉ  
ꢊꢋꢌ  
AS3677  
The AS3677 supports the verification of the functioalitof all the connected LEDs (open and shorted LEDs and short  
to VSS can be detected). This feature is esecially useful in production test to verify the correct assembly of the LEDs,  
all its connectors and cables. It can also be ued in the field to verify if any of the LEDs is damaged. A damaged LED  
can then be disabled (to avoid unnecessacurrents).  
The current sources, dcdc converter, chapump and the internal ADC are used to verify correct operation of each  
LED string.  
8.6.1 Function Testing for single LEDs connected to the Charge Pump  
For any current source cnneced to the charge pump (CURR30-33) where only one LED is connected between the  
charge pump and the curret sink (see Figure 27) use:  
Table 85. Function esting for LEDs connected to the Charge Pump  
Step  
Action  
Example Code  
Switch on the charge pump and set it into manual  
1:2 mode (to avoid automatic mode switching  
during measurements)  
Reg 23h 14h (cp_mode = 1:2, manual)  
Reg 00h 04h (cp_on = 1)  
1
e.g. for register CURR31set to 9mA use  
Reg 0Dh 5Ah (rgb1_current = 9mA)  
Reg 02h 01h (rgb1_mode = on)  
2
3
Switch on the current sink for the LED to be tested  
Measure with the ADC the voltage on CPOUT  
Reg 26h 95h (adc_select=CPOUT,start ADC)  
Fetch the ADC result from Reg 27h and 28h  
www.austriamicrosystems.com/AS3677  
1v3-1  
49 - 67  
AS3677  
Datasheet - Detailed Description  
Table 85. Function Testing for LEDs connected to the Charge Pump  
Step  
Action  
Example Code  
Measure with the ADC the voltage on the switched  
on current sink  
Reg 26h 85h (adc_select=RGB1,start ADC)  
4
5
Fetch the ADC result from Reg 27h and 28h  
Switch off the current sink for the LED to be tested  
Reg 02h 00h (rgb1_mode = off)  
Compare the difference between the ADC  
measurements (which is the actual voltage across  
the tested LED) against the specification limits of  
the tested LED  
6
Calculation performed in baseband uProcessor  
Do the same procedure for the next LED starting  
from point 2  
7
8
Jump to 2. If not all the LEDs have been tested  
Switch off the charge pump  
set charge pump automatic mode  
Reg 00h 00h (cp_on = 0)  
Reg 23h 00h  
8.6.2 Function Testing example for LEDs connected to the DCDC  
Use following procedure as an example:  
Table 86. Function Testing procedure for LEDs connected to the DCDC  
Step  
Action  
Example Coe  
e.g. Test LEDs n CURR1:  
Reg 1h 01h (curr1_mode=on)  
Reg 09h 3ch (curr1_current = 9mA)  
Switch on one current sink (only one!) for the LED  
string to be tested (CURR1,2 or 6) - this exa
uses CURR1  
1
Select the feedback path for the LED string to e  
tested (e.g. step_up_fb = 01 for LED string on  
CURR1) and disable automatic edbck  
Re21h 02h (step_up_fb=CURR1)  
2
3
Reg 2h <- 04h (step_up_fb_auto=off)  
Set step_up_vmax to fit the externl components  
used (e.g. max 1V)  
eg 2h <- 00h (for 16V maximum output voltage)  
4
5
Switch on the DCDconverter  
Reg 00h 08h  
Wait 2ms (dcdc startup e and some margin)  
Reg 26h 98h (adc_select=CURR1, start ADC;  
6
7
Measure the voltage on CURR1  
Fetch the ADC result from Reg 27h and 28h)  
If the voltage on CURR1 is below 1.0buabove  
0.1V, this LED string is workig fine (typical value  
will be at 0.5V
For a proper working LED result must be below  
<199h (1.0V) and above >29h (0.1V)  
8
9
Switch off curret sk CURR1  
Reg 01h 00h (curr1_mode=off)  
Repeat whole procedure for ach used LED string  
(replace CURRwith CURR2 or CURR6)  
Note: With the above descrbed procedures electrically open and shorted LEDs can be automatically detected  
8.7  
Analog-to-Digital Converter  
The AS3677 has a uilt-in 10-bit successive approximation analog-to-digital converter (ADC). It is internally supplied  
which is also the full-sale input range (0V defines the ADC zero-code). For input signals exceeding 2.5V a resistor  
divider with a ain f 0.5 (Ratioprescaler) is used to scale the input of the ADC converter. Consequently the resolution  
is:  
Tble 87. ADC Input Ranges, Compliances and Resolution  
Channels (Pins)  
Input Range  
0V-2.5V  
VLSB  
Note  
ALS/GPIO1, GPIO2, GPIO3 and  
VANA, DLS1, DLS2  
2.44mV  
1 / ADCTC  
VLSB=2.5/1024  
junction temperature  
ADCTEMP_CODE  
-30°C to 125°C  
www.austriamicrosystems.com/AS3677  
1v3-1  
50 - 67  
AS3677  
Datasheet - Detailed Description  
Table 87. ADC Input Ranges, Compliances and Resolution  
Channels (Pins)  
Input Range  
0V-5V  
VLSB  
Note  
VLSB=(2.5/1024)/0.4; internal  
resistor divider used  
VBAT, CPOUT, RGB1, RGB2, RGB3  
CURR1, CURR2, CURR6  
4.88mV  
2.44mV  
0V-1.0V  
VLSB=2.5/1024  
Table 88. ADC Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Resolution  
10  
Bit  
see  
Table  
87  
VIN  
Input Voltage Range  
VSUPPLY = 2.5V  
VSS  
V
Differential Non-  
Linearity  
DNL  
± 0.25  
LSB  
INL  
Vos  
Integral Non-Linearity  
Input Offset Voltage  
Input Impedance  
± 0.
LSB  
LSB  
MΩ  
pF  
± 25  
Rin  
100  
-10  
Cin  
Input Capacitance  
9
VSUPPLY  
Idd  
Power Supply Range  
Power Supply Current  
± 2%, ily trimmed.  
During cnversion only.  
2.5  
V
286  
µA  
Temperature Sensor  
Accuracy  
TTOL  
ADCTOFFSET  
ADCTC  
@ 25 °C  
+10  
°C  
°C  
ADC temperature  
measurement offset  
value  
375  
Code temperature  
coefficient  
1.293  
9
°C/  
Code  
Temperature chage per ADC LSB  
For all low vourrent sinks, CPOUT  
d VBAT  
RatioPRESCALE  
R
Ratio of Prescaler  
0.4  
Transient Parameters (2.5V, 25 ºC)  
Tc  
fc  
ts  
Conversion Time  
Clock Frequency  
27  
1.0  
16  
µs  
MHz  
µs  
All signals are internally generated and  
triggered by start_conversion  
Settling Time of S&H  
The junction temperature (TJUNCTIN) can be calculated with the following formula (ADCTEMP_CODE is the adc conver-  
sion result for channel 17h seleced by register adc_select = 010111):  
TJUCTION [°C] = ADCTOFFSET - ADCTC · ADCTEMP_CODE  
(EQ 1)  
ADC Registers  
Table 89. ADC_MSB esult Register  
ADC_MSB result  
Addr: 27h  
Together with Register 27h, this register contains the results (MSB) of an ADC  
cycle.  
B
Bit Name  
Default Access  
N/A  
Description  
adc_result_msb  
6:0  
R
ADC results register.  
www.austriamicrosystems.com/AS3677  
1v3-1  
51 - 67  
AS3677  
Datasheet - Detailed Description  
Table 89. ADC_MSB result Register (Continued)  
ADC_MSB result  
Addr: 27h  
Together with Register 27h, this register contains the results (MSB) of an ADC  
cycle.  
Bit  
Bit Name  
Default Access  
Description  
Indicates end of ADC conversion cycle  
Result is ready  
result_not_ready  
7
N/A  
R
0
1
Conversion is running  
Table 90. ADC_LSB result Register  
ADC_LSB result  
Addr: 28h  
Together with Register 28h, this register contains the results (LSB) of an DC  
cycle  
Bit  
Bit Name  
Default Access  
N/A  
Description  
adc_result_lsb  
2:0  
R
ADC result reister  
Table 91. ADC_control Register  
ADC_control  
This registenput source selection and initialization of ADC  
Addr: 26h  
Bit  
5:0  
7
Bit Name  
Default Access  
escription  
Scts iput source as ADC input  
000000 00h)  
GPIO2  
000001 (01)  
00010 (02h)  
100 (04h)  
00101 (05h)  
000110 (06h)  
000111 (07h)  
001000 (08h)  
001001 (09h)  
010001 (11h)  
010010(12h)  
010011 (13h)  
010100 (14h)  
010101 (15h)  
010111 (17h)  
other codes  
VANA  
ALS/GPIO1  
GPIO3  
RGB1  
RGB2  
RGB3  
adc_select1  
0h  
R/W  
CURR1  
CURR2  
DLS1  
DLS2  
CURR6  
VBAT  
CPOUT  
ADCTEMP_CODE (junction temperature)  
reserved  
start_conversion  
N/A  
W
Writing a 1 into this bit starts one ADC conversion cycle.  
1. See Table Table 87 for ADC ranges and resolution.  
www.austriamicrosystems.com/AS3677  
1v3-1  
52 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 28. ADC Circuit  
ꢇ'ꢆ()*+,ꢁ  
)*+,ꢋ  
)*+,-  
ꢎꢇ.ꢇ  
ꢉ'ꢆꢁ  
ꢉ'ꢆꢋ  
ꢋꢌꢍꢎ  
ꢉꢏꢐꢉꢂ  
ꢀꢀꢀꢀꢁꢂꢃꢄꢅꢀꢆꢇꢈ  
ꢀꢀꢀꢀꢇꢉꢊ  
ꢛꢅꢒꢜꢝ  
ꢑꢒꢓꢔꢅꢕꢖꢗꢅꢕꢑꢒꢘꢙꢚ  
ꢊ/ꢈꢈꢁ  
ꢊ/ꢈꢈꢋ  
ꢊ/ꢈꢈ0  
ꢁ #$  
ꢘꢙ"ꢕꢓꢒꢒ"ꢅ  
ꢊꢗꢖꢅꢑꢗꢕ  
ꢓꢅꢘꢑꢅꢕ"ꢗꢖꢛꢒꢑꢓꢄꢗꢖ  
ꢎ%ꢇ&  
ꢊ*,/&  
ꢈ)%ꢁ  
ꢈ)%ꢋ  
ꢈ)%-  
ꢁ !  
ꢁ !  
AS3677  
8.8  
Power-On Reset  
The internal reset is controlled by two sources:  
VBAT Supply  
Serial interface state (CLK, DATA)  
The internal reset is forced if VBAT is low or iboth interface pins (CK, DATA) are low for more than tPOR_DEB (typ.  
100ms)5. Then device enters shutdown moe. For details see sectn Operating Modes on page 58.  
The reset levels control the state of all sters. As long as VBAand CLK/DATA are below their reset thresholds, the  
register contents are set to default. Acess by serial ints possible once the reset thresholds are exceeded.  
5. Only if shutdwn_enab=1  
www.austriamicrosystems.com/AS3677  
1v3-1  
53 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 29. Zero Power Device Wakeup block diagram  
AS3677  
&ꢌ"ꢁꢂꢐꢌꢇ ꢈꢌ ꢃꢇꢈꢁꢂꢇꢄꢅ  
ꢂꢁꢉꢁꢂꢁꢇꢊꢁ( ꢄꢇ* ꢃꢇꢈꢁꢂꢇꢄꢅ ꢋꢕ-  
ꢔ.ꢛꢜ  
ꢝꢁꢂꢌ !ꢌ"ꢁꢂ  
ꢕꢁ#ꢃꢊꢁ $ꢄꢒꢁ%&  
ꢔ.ꢛꢜ  
ꢔ.ꢛꢜ  
()%ꢈ*ꢇꢖ*ꢃ(ꢄ+  
*ꢁ+ꢌ%ꢇꢊꢁ  
ꢈꢃ,ꢁꢂ  
ꢏ,(ꢗꢏꢑꢑ,(  
ꢌꢇ  
ꢔꢕꢕꢖꢆꢗꢘ  
ꢉꢄ(ꢈꢖ()%ꢈ*"ꢇ  
ꢎꢏ  
ꢏꢐꢏꢑꢒꢓ  
ꢎ'  
ꢃꢇꢈ/ ꢋꢕ-  
ꢃꢇꢈ/ ꢋꢕ-  
ꢕꢛꢜꢛ  
ꢕꢛꢜꢛ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢇꢈꢁꢂꢉꢄꢊꢁ  
ꢋꢌꢍꢃꢊ  
ꢃꢇꢈ/ ꢋꢕ-  
ꢙꢋꢚ  
ꢙꢋꢚ  
.ꢛꢜ  
Table 92. Power On Reset Parameters  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Overall Power-On  
Reset  
Montor voltage on VBATpowon eset for  
all internal funions.  
VPOR_VBAT  
2.0  
V
Reset Level for pins  
CLK, DATA  
VPOR_PERI  
Monitor voltage on pis CLK, DATA  
1.0  
V
Reset debounce tim
for pins CLK, DATA  
tPOR_DEB  
tstart  
100  
6
ms  
ms  
Interface Startup Time  
8.8.1 Reset control register  
Table 93. Overtemp control Register  
Overtemp control  
Addr: 29h  
This register reads and resets the overtemperature flag.  
Default Access Description  
Bit  
Bit Nam
Enable Shutdown mode and serial interface reset.  
Serial Interface reset disabled. Device does not  
0
enter Shutdown mode  
shudwn_enab  
4
1
R/W  
Serial Interface reset enabled, device enters  
shutdown when SCL and SDA remain low for  
min. 100ms  
1
8.9  
Temperature Supervision  
An integrated temperature sensor provides over-temperature protection for the AS3677. This sensor generates a flag  
if the device temperature reaches the overtemperature threshold of 140º. The threshold has a hysteresis to prevent  
oscillation effects.  
If the device temperature exceeds the T140 threshold all current sources, the charge pump and the dcdc converter is  
disabled and the ov_temp flag is set. After decreasing the temperature by THYST operation is resumed.  
www.austriamicrosystems.com/AS3677  
1v3-1  
54 - 67  
AS3677  
Datasheet - Detailed Description  
The ov_temp flag can only be reset by first writing a 1 and then a 0 to the register bit rst_ov_temp.  
Bit ov_temp_on = 1 activates temperature supervision Table 95. It is recommend to leave this bit set (default state).  
Table 94. Overtemperature Detection  
Symbol  
T140  
Parameter  
Condition  
Min  
Typ  
140  
5
Max  
Unit  
ºC  
ov_temp Rising  
Threshold  
THYST  
ov_temp Hysteresis  
ºC  
Table 95. Overtemp control Register  
Overtemp control  
This register reads and resets the overtemperature flag.  
Default Access Description  
Addr: 29h  
Bit  
Bit Name  
Activates/deactivates device temperatursupervision.  
Default: Off - all other bits are only valid this bit is set to 1  
Temperature supervision idisaled. No reset  
ov_temp_on  
0
1
W
0
1
will be generated if devce temperature  
exceeds 40ºC  
Temperature supevision is enabled  
Indicates that the overtemperature threshold  
has been rehed; this flag is not cleared by an  
overtemperaue reset. It has to be cleared  
using rst_ov_temp  
ov_temp  
1
2
N/A  
0
R
1
The ov_temp fg is eared by first setting this bit to 1, and  
then setting this bit to 0.  
rst_ov_temp  
R/W  
8.10 Serial Interface  
The AS3677 is controlled using seril ierface pins CLK and ATA:  
Figure 30. Serial interface block diagram  
ꢔꢕꢕꢖꢆꢗꢘ  
ꢎꢏ  
ꢏꢐꢏꢑꢒꢓ  
AS3677  
ꢈ  
ꢕꢛꢛ  
ꢕꢛꢜꢛ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢇꢈꢁꢂꢉꢄꢊꢁ  
ꢋꢌꢍꢃꢊ  
ꢙꢋꢚ  
ꢙꢋꢚ  
www.austriamicrosystems.com/AS3677  
1v3-1  
55 - 67  
AS3677  
Datasheet - Detailed Description  
The clock line CLK is never held low by the AS3677 (as the AS3677 does not use clock stretching of the bus).  
Table 96. Serial Interface Voltages and Timings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
High Level Input  
Voltage  
VIHI/F  
1.38  
VBAT  
V
Low Level Input  
Voltage  
VILI/F  
0.0  
0.52  
V
Pins DATA and CLK  
VHYSTI/F  
tRISE  
Hysteresis  
Rise Time  
Fall Time  
0.1  
V
0
0
1000  
300  
ns  
ns  
tFALL  
Low Level Output  
voltage  
VOL  
0.2  
V
Pin DATA at 4mA  
tCLK_FILTER  
tDATA_FILTER  
Spike Filter on CLK  
Spike Filter on DATA  
100  
30  
ns  
ns  
The AS3677 is compatible to the NXP two wire specification http://www.nxp.com/acrobat_donloa/literature/9398/  
39340011.pdf, Version 2.1, January 2000 for standard and fast mode (high speed mode).  
8.10.1 Serial Interface Features  
Fast Mode Capability (Maximum Clock Frequency is 4)  
7-bit Addressing Mode  
Write Formats  
- Single-Byte Write  
- Page-Write  
Read Formats  
- Current-Address Read  
- Random-Read  
- Sequential-Read  
DATA Input Delay and CLK spike filtering by integracomponents  
8.10.2 Device Address Selection  
The serial interface address of the AS367has the following address:  
If ADR is connected to VSS: 80h – Write Commands, 81h – Read Commands  
If ADR is connected to VBAT: 82h – WCommands, 83h – Read Commands  
Figure 31. Complete Serial Data ransfer  
DATA  
CLK  
8
9
1-7  
8
9
1-7  
1-7  
8
9
P
S
Stop  
Condition  
Start  
Condition  
Address R/W  
ACK  
Data  
ACK  
Data  
ACK  
Serial Data Transfer Formats  
www.austriamicrosystems.com/AS3677  
1v3-1  
56 - 67  
AS3677  
Datasheet - Detailed Description  
Definitions used in the serial data transfer format diagrams are listed in the following table:  
Table 97. Serial Data Transfer Byte Definitions  
Symbol  
Definition  
Start Condition after Stop  
Repeated Start  
R/W (AS3677 Slave)  
Note  
1 bit  
1 bit  
S
R
R
Sr  
10000000b (80h) ADR=VSS  
10000010b (82h) ADR=VBAT  
DW  
DR  
Device Address for Write  
Device Address for Read  
R
R
10000001b (81h) ADR=VSS  
10000011b (83h) ADR=VBAT  
WA  
A
Word Address  
Acknowledge  
R
W
R
R
R
R
R
8 bits  
1 bit  
N
Not Acknowledge  
1 bit  
8 bs  
reg_data  
data (n)  
P
Register Data/Write  
Register Data/read  
Stop Condition  
1 bit  
8 bits  
WA++  
Increment Word Address Internally  
During Acknowledge  
Figure 32. Serial Interface Byte Write  
S
DW  
A
WA  
A
reg_data  
A P  
Write Register  
WA++  
(lave) receives data  
(= Slave) transmits data  
Figure 33. Serial Interface Page Wite  
n
S
DW  
A
WA  
A
reg_data 1  
A
reg_data 2  
A
reg_data  
A P  
rite Register  
WA++  
Write Register  
WA++  
Write Register  
WA++  
5  
5  
(= Slave) receives data  
(= Slave) transmits data  
Byte Write and Page Write formats are uto write data to the slave.  
The transmission begins with the TART condition, which is generated by the master when the bus is in IDLE state  
(the bus is free). The device-wriaddress is followed by the word address. After the word address any number of data  
bytes can be sent to the sav. The word address is incremented internally, in order to write subsequent data bytes on  
subsequent address locaons.  
For reading data rom te slave device, the master has to change the transfer direction. This can be done either with a  
repeated START codition followed by the device-read address, or simply with a new transmission START followed by  
the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register  
byte transmittd from the slave. In Read Mode any number of subsequent register bytes can be read from the slave.  
The wordress is incremented internally.  
Te follong diagrams show the serial read formats supported by the AS3677.  
www.austriamicrosystems.com/AS3677  
1v3-1  
57 - 67  
AS3677  
Datasheet - Detailed Description  
Figure 34. Serial Interface Random Read  
S
DW  
A
WA  
A
Sr  
DR  
A
data  
N P  
Read Register  
WA++  
(= slave) receives data  
(= slave) transmits data  
Random Read and Sequential Read are combined formats. The repeated START condition is used to change the  
direction after the data transfer from the master.  
The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START  
condition is followed by the device-write address and the word address.  
In order to change the data direction a repeated START condition is issued on the 1st CLKpulse after the ACKNOW
EDGE bit of the word address transfer. After the reception of the device-read address, the slave becomes the trnsmit-  
ter. In this state the slave transmits register data located by the previous received word address vector. The maser  
responds to the data byte with a NOT ACKNOWLEDGE, and issues a STOP condition on the bus.  
Figure 35. Serial Interface Sequential Read  
n
S
DW  
A
WA  
A
Sr  
DR  
A
data 1  
A
data 2  
...  
data  
N P  
Red Register  
++  
(= slave) receives data  
(= slave) transmits data  
Sequential Read is the extended form of Random Read, as multiple register-ata bytes are subsequently transferred.  
In contrast to the Random Read, in a sequential read the transferred reer-data bytes are responded by an acknowl-  
edge from the master. The number of data byes tnsferred in one equence is unlimited (consider the behavior of the  
word-address counter). To terminate the tansission the master has o send a NOT ACKNOWLEDGE following the  
last data byte and subsequently generate te STOP condition.  
Figure 36. Serial Interface Current Ass Read  
n
S
DR  
A
data 1  
data 2  
A
data  
N P  
Read Regis
WA++  
Read Register  
WA++  
Read Register  
WA++  
(= aveceives data  
(= slavsmits data  
To keep the access time as small s possible, this format allows a read access without the word address transfer in  
advance to the data transfer. Thbus is idle and the master issues a START condition followed by the Device-Read  
address.  
Analogous to Random Red, a single byte transfer is terminated with a NOT ACKNOWLEDGE after the 1st register  
byte. Analogous Seqential Read an unlimited number of data bytes can be transferred, where the data bytes must  
be responded to witan ACKNOWLEDGE from the master.  
For termination of te transmission the master sends a NOT ACKNOWLEDGE following the last data byte and a sub-  
sequent STOP ondition.  
811 perating Modes  
If thvoltages on CLK and DATA is less than VPOR_PERI for > tPOR_DEB (see Table 92 on page 54), the AS3677 is in  
shutdown mode and its current consumption is minimized (IBAT = ISHUTDOWN) and all internal registers are reset to their  
default values.  
If the voltage at CLK or DATA rises above VPOR_PERI, the AS3677 serial interface is enabled and the AS3677 and the  
standby mode is selected. The AS3677 is switched automatically from standby mode (IBAT = ISTANBY) into active mode  
(IBAT = IACTIVE) and back, if one of the following blocks are activated:  
www.austriamicrosystems.com/AS3677  
1v3-1  
58 - 67  
AS3677  
Datasheet - Detailed Description  
Charge pump  
Step up regulator  
Any current sink  
ADC conversion started  
PWM active  
Pattern mode active.  
If any of these blocks are already switched on the internal oscillator is running and a write instruction to the registers is  
directly evaluated within 1 internal CLK cycle (typ. 1µs)  
If all these blocks are disabled, a write instruction to enable these blocks is delayed by 64 CLK cycles (oscillator will  
startup, within max 200µs).  
The mode switching is shown in Figure 37:  
Figure 37. Startup and Operating Mode Selection  
ꢙꢅꢉꢇꢉꢍ!ꢄꢆꢇꢍꢃꢇꢝ%  
ꢚꢃꢀ3ꢍꢅ4ꢄꢆꢇ
ꢀꢁꢂꢃꢄꢀꢅꢄꢃꢂꢆꢂꢇ  
ꢓꢛꢐꢑꢄꢒꢄꢓꢔꢕꢖꢗꢓꢛꢐꢑ  
ꢃꢂꢈꢉꢆꢇꢂꢃꢄꢃꢂꢆꢂꢇ  
ꢊꢋꢌꢄꢍꢅꢎꢄꢏꢐꢑꢐꢄꢒꢄꢓꢔꢕꢖꢗꢔꢘꢖꢙ  
ꢚꢃꢀ3ꢄꢍꢅ4ꢄꢆꢇꢍꢇꢂ  
ꢚꢀꢃꢄꢇꢔꢕꢖꢗꢏꢘꢛ  
ꢍꢅꢎ  
ꢆꢜꢝꢇꢎꢀꢁꢅꢗꢂꢅꢍ !ꢂꢄ"ꢄ#  
ꢓꢛꢐꢑꢄꢓꢔꢕꢖꢗꢓꢛꢐꢑ  
$ꢇꢍꢃꢇꢝ%ꢄꢐ$&'('  
ꢊꢏꢐꢂꢉꢈꢑꢌꢆꢇꢈꢉꢅ  
ꢛꢐꢑ"ꢙ$89ꢑꢏꢕ6-  
ꢊꢋꢌꢄꢍꢅꢎꢄꢏꢐꢑꢐꢄ,  
ꢔꢕꢖꢗꢔꢘꢖꢙ  
ꢃꢂꢈꢉꢆꢇꢂꢃꢄꢃꢂꢆꢂꢇ  
ꢕꢅꢂꢄꢀꢚꢄꢇꢜꢂꢄꢚꢀ!!ꢀꢁꢉꢅꢈꢄ !ꢀ*+ꢆꢄꢍꢃꢂꢄ/ꢕ-01  
ꢄ2ꢄ*ꢜꢍꢃꢈꢂꢄ%ꢝ3%  
ꢄ2ꢄꢆꢇꢂ%ꢄꢝ%ꢄꢃꢂꢈꢝ!ꢍꢇꢀꢃ  
ꢀꢁꢄꢅꢆꢇꢈꢉꢅ  
ꢊꢂꢋꢌꢉꢍꢎꢆ
ꢄ2ꢄꢍꢅ4ꢄ*ꢝꢃꢃꢂꢅꢇꢄꢆꢉꢅ+  
ꢛꢐꢑ"ꢙꢐꢊꢑꢙꢓꢘ  
)
ꢒꢂꢅꢍ !ꢂꢎꢄ !ꢀ*+ꢄ*ꢝꢃꢃꢂꢅꢇ,  
ꢐꢑ"ꢙ$ꢑꢐ-ꢏ.  
ꢄ2ꢄꢐꢏꢊꢄ*ꢀꢅ5ꢂꢃꢆꢉꢀꢅꢄꢆꢇꢍꢃꢇꢂꢎ  
ꢄ2ꢄꢔ67ꢄꢍ*ꢇꢉ5ꢂ  
2ꢄꢔꢍꢇꢇꢂꢃꢅꢄ3ꢀꢎꢂꢄꢍ*ꢇꢉ5ꢂ  
ꢐ!!ꢄꢀꢚꢄꢇꢜꢂꢄꢚꢀ!!ꢀꢁꢉꢅꢈꢄ !ꢀ*+ꢆꢄꢍꢃꢂꢄ/ꢕ::01  
ꢄ2ꢄ*ꢜꢍꢃꢈꢂꢄ%ꢝ3%  
ꢄ2ꢄꢆꢇꢂ%ꢄꢝ%ꢄꢃꢂꢈꢝ!ꢍꢇꢀꢃ  
ꢄ2ꢄꢍꢅ4ꢄ*ꢝꢃꢃꢂꢅꢇꢄꢆꢉꢅ+  
ꢄ2ꢄꢐꢏꢊꢄ*ꢀꢅ5ꢂꢃꢆꢉꢀꢅꢄꢆꢇꢍꢃꢇꢂꢎ  
ꢄ2ꢄꢔ67ꢄꢍ*ꢇꢉ5ꢂ  
ꢄ2ꢄꢔꢍꢇꢇꢂꢃꢅꢄ3ꢀꢎꢂꢄꢍ*ꢇꢉ5ꢂ  
www.austriamicrosystems.com/AS3677  
1v3-1  
59 - 67  
AS3677  
Datasheet - Register Map  
9 Register Map  
Table 98. Registermap  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
step_up  
_on  
cp_on  
ldo_on  
Reg control  
00h  
00  
curr2_mode  
rgb2_mode  
ldo_voltage  
curr1_mode  
rgb1_mode  
curr12 control  
curr rgb control  
LDO Voltage  
Curr1 current  
Curr2 current  
Rgb1 current  
Rgb2 current  
Rgb3 current  
Pwm control  
Pwm code  
01h 00h  
02h 00h  
07h 00h  
09h 00h  
0Ah 00h  
0Bh 00h  
0Ch 00h  
0Dh 00h  
16h 00h  
17h 00h  
curr6_mode  
rgb3_mode  
curr1_current  
curr2_current  
rgb1_current  
rgb2_current  
r3_current  
pw_dim_speed  
pwm_cod
softdim
pwmdim_mode  
pattern_delay  
pattern_  
color  
Pattern control  
18h 00h  
paern  
pattern_dta_0  
parn_data_1  
attern_data_2  
pattern_data_3  
Pattern data0  
Pattern data1  
Pattern data2  
Pattern data3  
GPIO control  
GPIO control 3  
19h 00h  
1Ah 00h  
1Bh 00h  
1Ch 00h  
1Eh 4Ch  
1Fh 04h  
gpio1_pulls  
gpio3_pulls  
gpio3_lo gpio2_lo  
gpio1_mode  
io2_pulls  
pio2_mode  
gpio3_mode  
gpio1_lo  
w_curr  
GPIO driving cap 20h 00h  
w_curr w_curr  
step_up  
_frequ  
step_up_vmax  
step_up_fb  
skip_fast  
DCDC control1  
DCDC control2  
21h 02h  
22h 88h  
step_
_fb_auto  
step_up step_up  
_ov _lowcur  
cp_start  
_deboun  
ce  
cp_auto  
_on  
cp_mode_switchin  
g
cp_mode  
cp_clk  
CP control  
23h 40h  
rgb3_on rgb2_on rgb1_on  
_cp _cp _cp  
CP mode Switch1 4h 70h  
CP mode Switch2 5h 00h  
curr6_on  
_cp  
curr2_on curr1_on  
_cp  
_cp  
start_co  
nversion  
adc_select  
adc_result_msb  
ADCntrol  
26h 02h  
result_n  
ot_ready  
AC_MSB result 27h  
ADC_LSB result 28h  
NA  
NA  
adc_result_lsb  
shutdwn  
_enab  
rst_ov_t  
emp  
ov_temp  
_on  
ov_temp  
Overtemp control 29h 11h  
curr6_lo rgb3_low rgb2_low rgb1_low  
w_v _v _v _v  
Curr low voltage  
2Ah NA  
status1  
www.austriamicrosystems.com/AS3677  
1v3-1  
60 - 67  
AS3677  
Datasheet - Register Map  
Table 98. Registermap  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
curr2_lo curr1_lo  
w_v w_v  
Curr low voltage  
2Bh NA  
status2  
pattern_  
slow  
pattern_  
delay2  
Gpio current  
Curr6 current  
2Ch 80h  
2Fh 00h  
curr6_current  
adder_current1  
(can be enabled for CURR1)  
Adder Current 1 30h 00h  
Adder Current 2 31h 00h  
Adder Current 3 32h 00h  
adder_current2  
(can be enabled for CURR2)  
adder_current3  
(can be enabled for CURR6)  
rgb3_ad rgb_ad rgb1_ad  
dder der  
Adder Enable 1  
Adder Enable 2  
33h 00h  
34h 00h  
curr6_acurr2_ad curr1_ad  
der  
der  
der  
ASIC ID1  
ASIC ID2  
3Eh A6h  
3Fh 5Xh  
1
0
0
1
0
1
0
1
1
0
revision  
gpio3_o gpio2_o gpio1_o  
GPIO output 2  
GPIO signal 2  
Pattern End  
50h 00h  
51h 00h  
54h 00h  
ut ut ut  
gpio3_ in gpio2_ in gpio1_in  
pattern_  
end  
DLS mode  
control1  
ds_nal rgb3_on rgb2_n rgb1_on  
_dls dls1 _dls  
56h 00h  
57h 00h  
90h 00h  
curr1_on  
_dls  
DLS mode  
control2  
curr6_on curr6_dl _dl  
curr2_on  
_dls  
_dls  
s2  
s2  
amb_ke  
ep  
amb_gain  
amb_on  
ALS control  
amb_filter_down  
amb_filter_up  
ALS filter  
ALS offset  
ALS result  
91h 00h  
92h 00h  
93h 00h  
amb_offset  
amb_result  
curr2_amb_group curr1_amb_group  
rgb2_amb_group rgb1_amb_group  
group1_y0  
ALS curr12 group 94h 00
curr6_amb_group  
rgb3_amb_group  
ALS rgb group  
ALS group 1 Y0  
ALS group 1 Y3  
95h 0h  
8h 00h  
99h 00h  
group1_y3  
group1_x1  
group1_k1  
group1_x2  
group1_k2  
group2_y0  
group2_y3  
group2_x1  
ALS group X1 9Ah 00h  
ALS g1 K1 9Bh 00h  
LS grup 1 X2 9Ch 00h  
ALgroup 1 K2 9Dh 00h  
ALS group 2 Y0 9Eh 00h  
ALS group 2 Y3 9Fh 00h  
ALS group 2 X1 A0h 00h  
www.austriamicrosystems.com/AS3677  
1v3-1  
61 - 67  
AS3677  
Datasheet - Register Map  
Table 98. Registermap  
Register  
Content  
b4 b3  
Definition  
Name  
b7  
b6  
b5  
b2  
b1  
b0  
group2_k1  
group2_x2  
group2_k2  
group3_y0  
group3_y3  
group3_x1  
group3_k1  
group3_x2  
group3_k2  
ALS group 2 K1 A1h 00h  
ALS group 2 X2 A2h 00h  
ALS group 2 K2 A3h 00h  
ALS group 3 Y0 A4h 00h  
ALS group 3 Y3 A5h 00h  
ALS group 3 X1 A6h 00h  
ALS group 3 K1 A7h 00h  
ALS group 3 X2 A8h 00h  
ALS group 3 K2 A9h 00h  
ALS group output  
amb_group1  
ab_group2  
AAh 00h  
1
ALS group output  
ABh 00h  
2
ALS group output  
amb_group
ACh 00h  
3
ALS range high  
ADh 00h  
amb_rang_int_igh  
ambnge_int_low  
interrupt threshold  
ALS range low  
AEh 00h  
interrupt threshold  
amb_too amb_too  
Interrupt Status  
AFh 00h  
_low  
_high  
Note: If writing to register, write 0 to used bits  
Write to read only bits will be ignored  
yellow color = read only  
www.austriamicrosystems.com/AS3677  
1v3-1  
62 - 67  
AS3677  
Datasheet - Application Information  
10 Application Information  
10.1 External Components  
Table 99. External Components List  
Value  
Package  
(min.)1  
tol.  
(min.)  
Rating  
(max)  
Part Number  
Min  
Max  
Notes  
Typ  
Ceramic, X5R (Vana1 output)  
(e.g. Taiyo Yuden  
C1  
2.2µF  
±20%  
±20%  
6.3V  
25V  
JMK107BJ225MA-T or  
LMK107BJ225MA)  
0603  
only required if LDO is used  
Ceramic, X5R, X7R (Step Up  
DCDC output)  
106  
(0805)  
3.2x6x0.  
85mm  
C2  
4.7µF  
(e.g. Taiyo Yuden  
TMK316BJ475KD)  
Ceramic, X5R (LDO outut  
capacitor) (e.g. Taiyo Yude
JMK063BJ10KP-F
C3  
C4  
C5  
100nF  
470nF  
1µF  
±20%  
±20%  
±20%  
6.3V  
.3V  
6.3V  
0402  
0402  
0402  
Ceramic, X5R (ChargPump  
flying capacior) (e.g. Taiyo  
Yuden JMK105BJ74KV-F)  
CeramX5R (Charge Pump  
output) e.g. Taiyo Yuden  
JK105BJ105KV-F)  
DATPullup resistor – usually  
already inside master  
R1  
R2  
0201  
0201  
1-10kΩ  
CLK Pullup resistor – usually  
already inside master  
Recommended Type:  
Murata LQH3NPN100NJ0 or  
Panasonic ELLSFG100MA  
or TDK VLF3012A or Taiyo  
Yuden NRH3012T100MN  
(7µH min. at 600mA)  
3x3x  
1.2mm (H  
is max)  
L1  
10µH  
±2
SOT666  
1.6x1.6x0.  
6mm  
D1  
PMEG4010BEA  
Schottky diode  
e.g. Rohm BH1620FVC or  
Toshiba TPS856  
1.6x1.6x  
0.55mm  
X1  
Light Sensor  
LED  
D2:D10  
As required by application  
1. in 1/100 inch (unless oherwe specified)  
10.2 Layout Recommendations  
1. GND Planes: Connect the VSS pins (B4, B5) to the low noise GND-plane.  
VSS_CDC (A4) should be connected to a separated GND-plane. Connect also the charge pump output  
acitor (C5) and the DCDC-caps (C1, C2) to this separated GND-plane. Connect all other blocking caps to  
tlow noise GND-plane. Keep the area of the separated GND plane as small as possible and connect it to  
the star point of the low noise GND plane. Do not connect VSS (B4, B5) directly to VSS_DCDC (A4).  
2. Supplies: The pins VBAT (B3) and VBAT_CP (A3) can be connected directly together. Put a blocking Cap  
close to VBAT_CP.  
3. DCDC: Put L1, D1, C1 and C2 close together and also close to the pins SW (A5) and VSS_DCDC (A4).  
4. LDO: Put C3 close to pin VANA (C1)  
www.austriamicrosystems.com/AS3677  
1v3-1  
63 - 67  
AS3677  
Datasheet - Package Drawings and Markings  
11 Package Drawings and Markings  
Figure 38. WL-CSP25 2.2x2.2x0.6mm 5x5 Balls Package Drawing  
ꢅꢙꢃꢕꢚ  
ꢛꢙꢔꢅꢜꢑꢉꢁꢋ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢃꢈꢉꢊꢋꢁꢌꢍꢊꢎ  
ꢏꢁꢉꢉꢁꢐꢃꢄꢅꢆꢇꢃꢈꢏꢑꢒꢒꢃꢓꢅꢔꢆꢎ  
"
!      
 
!
"
AS3677  
<Code>  
 
!
"
"
!
 
Note:  
Line 1:  
Line 2:  
Line 3:  
austriamicrosystems logo  
AS3677  
<Code>  
Encoded datecode 4 characters  
Figure 39. WL-CSP25 2.2x2.2x0.6mm 5x5 Balls Detail Dimensions  
ꢛꢐꢜꢄꢑꢒꢓꢔꢄꢕꢝ ꢐ!"ꢝꢚ  
ꢏꢐꢑꢑꢐꢊꢄꢑꢒꢖꢗꢗꢄꢘꢒꢓꢚ  
ꢘꢒꢙꢓꢄꢑꢒꢓꢔ  
ꢀꢈꢈ  
(ꢜꢎ  
ꢉꢊ  
#ꢒ$ꢄ%ꢁ  
&$ꢙꢒ'ꢖ  
ꢀꢍꢀꢎꢃ  
ꢉꢊ  
ꢀꢍꢀꢎꢃ  
ꢉꢊ  
ꢌꢈꢈꢉꢊ  
ꢈꢈ  
ꢌꢈꢈꢉꢊ  
ꢌꢈꢈꢉꢊ  
%ꢁ  
ꢏꢁ  
*ꢁ  
+ꢁ  
,ꢁ  
%ꢀ  
ꢏꢀ  
*ꢀ  
+ꢀ  
,ꢀ  
%)  
ꢏ)  
*)  
+)  
%ꢌ  
ꢏꢌ  
*ꢌ  
 
,ꢌ  
%ꢃ  
ꢏꢃ  
+ꢃ  
,ꢃ  
%ꢌ  
ꢏꢌ  
*ꢌ  
+ꢌ  
,ꢌ  
%)  
ꢏ)  
*)  
+)  
,)  
%ꢀ  
ꢏꢀ  
*ꢀ  
+ꢀ  
,ꢀ  
%ꢁ  
ꢏꢁ  
*ꢁ  
+ꢁ  
,ꢁ  
ꢏꢃ  
*ꢃ  
+ꢃ  
,ꢃ  
,)  
ꢀꢁꢅꢆꢇꢀꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢀꢈꢉꢊ  
ꢋꢈꢈꢄꢅꢆꢇ)ꢈꢉꢊ  
The coplrity of the balls is 40µm.  
www.austriamicrosystems.com/AS3677  
1v3-1  
64 - 67  
AS3677  
Datasheet - Package Drawings and Markings  
11.1 Tape & Reel Information  
Figure 40. Tape & Reel Dimensions  
www.austriamicrosystems.com/AS3677  
1v3-1  
65 - 67  
AS3677  
Datasheet - Ordering Information  
12 Ordering Information  
The devices are available as the standard products shown in Table 100.  
Table 100. Ordering Information  
Model  
Description  
Delivery Form  
Package  
AS3677  
25pin WL-CSP  
(2.2x2.2x0.6mm)  
RoHS compliant / Pb-Free  
Wafer Level Chip Scale Package,  
size 2.2x2.2x0.6mm, 5x5 balls, 0.4mm pitch,  
Green, Pb-Free  
AS3677-ZWLT  
Tape & Reel  
Note: AS3677-ZWLT  
AS3677-  
Z
Temperature Range: -30ºC - 85ºC  
WL Package: Wafer Level Chip Scale Package (WL-CSP) 2.2x2.2x0.6mm  
Delivery Form: Tape & Reel  
T
www.austriamicrosystems.com/AS3677  
1v3-1  
66 - 67  
AS3677  
Datasheet - Ordering Information  
Copyrights  
Copyright © 1997-2011, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, trans-  
lated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regadin
the information set forth herein or regarding the freedom of the described devices from patent infringement. autria
crosystems AG reserves the right to change specifications and prices at any time and without notice. Therefre, prior  
to designing this product into a system, it is necessary to check with austriamicrosystems AG for curent information.  
This product is intended for use in normal commercial applications. Applications requiring extendetemperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical le-support or life-  
sustaining equipment are specifically not recommended without adional processing by auramrosystems AG for  
each application. For shipments of less than 100 parts the manufcturiflow might show deviaons from the standard  
production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems Abelieved to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or ahird party for any dmages, including but not limited to  
personal injury, property damage, loss of profits, loss of use, nterruption of busess indirect, special, incidental or  
consequential damages, of any kind, in connection with or arising out of the rnishng, performance or use of the tech-  
nical data herein. No obligation or liability to recipor any third party l arie or flow out of  
austriamicrosystems AG rendering of technicl r other services.  
Contact Informatio
Headquarters  
austriamicrosysteAG  
Tobelbaderstrsse 30  
Schloss Premtaeten  
A-8141 ria  
Te+43 (0) 3136 500 0  
Fax: 43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com/AS3677  
1v3-1  
67 - 67  

相关型号:

AS3677-ZWLT

Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver
AMSCO

AS3681

Power AND Lighting Management Unit
AMSCO

AS3682

480mA Camera Lighting Management Unit
AMSCO

AS3682-EA1

480mA Camera Lighting Management Unit
AMSCO

AS3682-EA2

480mA Camera Lighting Management Unit
AMSCO

AS3682-EB1

480mA Camera Lighting Management Unit
AMSCO

AS3682-EB2

480mA Camera Lighting Management Unit
AMSCO

AS3682-PDM

480mA Camera Lighting Management Unit
AMSCO

AS3683

1A Backlight and Camera LED Power Charge Pump
AMSCO

AS3684E

POT 2M OHM 1/2W CARBON LINEAR
OHMITE

AS3685A

Ultra Small High Efficiency 700mA Charge Pump for White LED Flash
AMSCO

AS3685A

Ultra Small High Efficiency 1000mA Charge Pump
TAOS