AS5011 [AMSCO]

Low Power Integrated Hall IC for Human Interface Applications; 低功耗集成霍尔IC,适用于人机界面的应用
AS5011
型号: AS5011
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Low Power Integrated Hall IC for Human Interface Applications
低功耗集成霍尔IC,适用于人机界面的应用

文件: 总16页 (文件大小:546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS5011  
Data Sheet  
Low Power Integrated Hall IC for Human Interface Applications  
3 Key Features  
1 General Description  
2.7 to 3.6V operating voltage  
The AS5011 is a complete Hall Sensor IC for smart  
navigation key applications to meet the low power  
requirements and host SW integration challenges for  
products such as cell phones and smart handheld  
devices.  
Down to 1.8V peripheral supply voltage  
Less than 200µA current consumption in Low  
Power mode  
Due to the on chip processing engine, system  
designers are not tasked with integrating complex SW  
algorithms on their host processor thus leading to  
rapid development cycles.  
The AS5011 single-chip IC includes 4 integrated Hall  
sensing elements for detecting up to ±2mm lateral  
displacement, high resolution ADC, XY coordinate  
and motion detection engine combined with a smart  
power management controller.  
The X and Y positions coordinates and magnetic field  
information for each Hall sensor element is  
transmitted over a 2-wire I²C compatible interface to  
the host processor.  
Less than 50µA current consumption in Shutdown  
mode  
Lateral magnet movement radius up to 2mm  
I²C interface up to 4MHz  
Configurable interrupt output for motion detection  
Three operating modes:  
Shutdown mode  
Low Power mode  
Full Power mode  
The AS5011 is available in  
a
small 16-pin  
5x5x0.55mm QFN package and specified over an  
operating temperature of  
-20 to +80°C.  
4 Applications  
The AS5011 is ideal for small factor manual input  
devices in battery operated equipment, such as  
Figure 1 Typical Arrangement of AS5011 and Axial  
Magnet  
Mobile phones  
MP3 players  
PDA’s  
GPS receivers  
Gaming consoles  
2 Benefits  
Complete system-on-chip  
High reliability due to non-contact sensing  
Low power consumption  
Figure 2 AS5011 Block Diagram  
www.austriamicrosystems.com  
Revision 3.10  
1 – 16  
 
AS5011  
Data Sheet  
5 Package and pinout  
Figure 3: QFN-16 package and pinout (TOP view)  
Pin#  
Symbol  
Type  
Description  
QFN16  
1
SDA  
SCL  
DIO_OD  
DI  
I²C bus data  
2
I²C bus clock  
3
Sample  
INTn  
tb0  
DI  
Test pin. Connect to VSS  
Interrupt output. Active LOW  
Test pin. Leave unconnected  
Test pin. Leave unconnected  
Test pin. Leave unconnected  
Test pin. Leave unconnected  
Test pin. Connect to VSS  
Peripheral power supply, 1.8 ~ 3.6V  
Test pin. Connect to VSS  
Core power supply, 2.7 ~ 3.6V  
Supply ground  
4
DO_OD  
AIO  
AIO  
AIO  
AIO  
-
5
6
tb1  
7
tb2  
8
tb3  
9
Test coil  
VDDp  
ScanTest  
VDD  
VSS  
10  
11  
12  
13  
14  
15  
16  
Epad  
S
DI  
S
S
Wakeup  
Extclk  
Kill  
DIO  
DIO  
DIO  
-
Test pin. Leave unconnected  
Test pin. Leave unconnected  
Test pin. Leave unconnected  
Center pad not connected  
-
Table 1: AS5011 pinout in QFN-16 package  
PIN Types:  
S
DI  
...  
supply pad  
digital input  
digital output open drain DIO  
AIO  
DIO_OD...  
...  
analog I/O  
digital input / output open drain  
digital input / output  
DO_OD ...  
...  
www.austriamicrosystems.com  
Revision 3.10  
2 – 16  
 
AS5011  
Data Sheet  
6 Operating the AS5011  
6.1 Typical application  
The AS5011 requires only a few external components in order to operate immediately when connected to the  
host microcontroller.  
Only 4 wires are needed for a simple application using a single power supply: two wires for power and two wires  
for the I²C communication. A fifth connection can be added in order to send an interrupt to the host CPU when  
the magnet is moving away from the center and to inform that a new valid coordinate can be read.  
Figure 4: Electrical connection of AS5011 with microcontroller  
6.2 XY coordinates interpretation  
On Figure 5 the top view of the AS5011 is represented, with a round magnet (scaled) gliding over its surface. The  
magnet can be placed under the sensor too, with the PCB between them.  
Magnet on position 1:  
The magnet is in its initial position, centered on the  
sensor. The AS5011 is in Shutdown mode. X and Y  
register values are (0,0)  
Magnet on position 2:  
The center of the magnet has been moved upon the  
horizontal wakeup threshold Xp. An interrupt is sent  
to the host microcontroller which sets the AS5011 to  
Low Power mode. Wakeup thresholds are  
programmable independently for the four directions.  
Magnet on position 3:  
The magnet is at the X and Y limit over the sensor  
surface (2mm, 2mm) but still in range.  
Figure 5: Position range of the magnet  
www.austriamicrosystems.com  
Revision 3.10  
3 – 16  
 
 
AS5011  
Data Sheet  
6.3 Magnet-chip surface airgap range  
The relation between the magnet physical position and the resulting XY registers depends on the magnet  
type/size/shape, and the airgap between the magnet and the top (or bottom) surface of the AS5011.  
The measurements on Figure 6, Figure 6 Figure 8 have been processed with the AS5000-MA2H-1 d2x0.8mm  
cylinder magnet, available on austriamicrosystems website. For those magnets, used in EasyPoint modules EP40  
and EP50, the airgap range is typically 0~3mm.  
The following diagrams show the relation between the X register value and the physical X coordinate (±2mm  
horizontal displacement, 0mm is the center of the chip package) of the magnet at different airgaps. The resulting X  
value range decreases when the airgap increases  
The Y axis measurements are the same as the X axis ones.  
80  
60  
40  
30  
Airgap 1500um  
Airgap 500um  
20  
40  
10  
20  
0
-2.500 -2.000 -1.500 -1.000 -500  
0
500  
1.000 1.500 2.000 2.500  
0
-10  
-20  
-30  
-40  
-50  
-2500 -2000 -1500 -1000  
-500  
0
500  
1000  
1500  
2000  
2500  
-20  
-40  
-60  
-80  
Magnet position (um)  
Magnet position (um)  
Figure 6: X register / X displacement (500um airgap)  
Figure 7: X register / X displacement (1500um airgap)  
30  
Airgap 2500um  
20  
10  
0
-2.500 -2.000 -1.500 -1.000 -500  
0
500  
1.000 1.500 2.000 2.500  
-10  
-20  
-30  
Magnet position (um)  
Figure 8: X register / X displacement (2500um airgap)  
www.austriamicrosystems.com  
Revision 3.10  
4 – 16  
 
 
 
AS5011  
Data Sheet  
6.4 Power modes  
The AS5011 can operate in three different power modes, depending on the power consumption requirements of the  
whole system.  
Power Mode  
Sleep phase  
[0x76] Register Description  
Power state between wakeups in Shutdown and Low Power modes  
RC clock and analog part OFF  
Digital part in static mode  
Shutdown mode  
1001_x00x  
Default mode after power on  
<50µA current consumption  
LP_Pulsed = 1  
LP_Active = 0  
LP_Continue =  
0
INT_wup_en =  
1
Wake up every 80ms from Sleep phase  
Hall elements in reduced power during wake up  
RC clock ON  
Interrupt LOW on INTn if the magnet is away from the center above the  
Xp Xn Yp Yn threshold values (1)  
Low Power mode  
110x_100x  
<200µA current consumption  
Wake up every 20ms from Sleep phase  
Hall elements in high power during wake up for better accuracy  
RC clock ON  
LP_Pulsed = 1  
LP_Active = 1  
LP_Continue =  
0
Interrupt LOW on INTn when XY coordinates are ready to be read (1)  
INT_act_en = 1  
010x_y00x  
Full Power mode  
<8mA current consumption  
Continuous read  
LP_Pulsed = 0  
LP_Active = 1  
LP_Continue =  
0
Hall elements in high power permanently  
RC clock ON  
Interrupt LOW on INTn when XY coordinates are ready to be read (1)  
If INT_act_en = 1, after reading the XY coordinate, the next sample is  
INT_act_en = y stored and won’t be updated until the next read of XY with interrupt  
release.  
If INT_act_int_en = 0, the last converted XY coordinate is read in real  
time.  
(1) The interrupt will be released to HIGH by reading the X_res_int or Y_res_int registers, or by switching the  
device into a different power mode.  
Table 2: Overview of typical power modes  
www.austriamicrosystems.com  
Revision 3.10  
5 – 16  
 
 
AS5011  
Data Sheet  
6.4.1 Shutdown mode  
LP_Pulsed = 1, LP_Active = 0, LP_Continue = 0, INT_wup_en = 1 [0x76] = 1001_x00x  
This is the default operating mode when powering up the device, giving the lowest power consumption when the  
whole system is in idle mode.  
The analog part of the AS5011 is powered off (sleep mode). It is waked up every 80ms by an internal low power  
logic, the hall sensors are read and the XY coordinate of the magnet is computed.  
If the magnet position is above the threshold limits Xp, Xn, Yp, Yn, an interrupt will be generated on the INTn pin  
and the device returns to sleep mode waiting for the next wake up after 80ms. As the host microcontroller receives  
the interrupt, it can read the X and Y positions or configure the AS5011 to Low Power mode (see 6.4.2 below) in  
order to track the magnet position until it returns to its initial position on the center.  
INT_n remains LOW until X_int/Y_int have been read, or after a power mode change. The typical coordinates read  
application after an interrupt is to read X first then Y_int.  
6.4.2 Low Power mode  
LP_Pulsed = 1, LP_Active = 1, LP_Continue = 0, INT_act_en = 1 [0x76] = 110x_100x  
The Low Power mode is used to track the magnet coordinates when it has been moved from its initial center  
position.  
The AS5011 is in sleep mode and is waked up every 20ms. As soon as the XY position of the magnet is computed,  
an interrupt is sent on the INTn pin to the microcontroller indicating that a valid coordinate is available, then the  
sensor returns to sleep mode waiting for the next wake up after 20ms. INT_n remains LOW until X_int/Y_int have  
been read, or after a power mode change. The typical coordinates read application after an interrupt is to read X  
first then Y_int.  
This mode generates a higher power consumption than the Shutdown mode because of the faster sampling rate  
and the higher hall sensor current to provide an optimal accuracy of the coordinates.  
When the microcontroller detects that the magnet has returned to the initial center position, it has to configure the  
AS5011 back to Shutdown mode (see 6.4.1).  
6.4.3 Full Power mode  
LP_Pulsed = 0, LP_Active = 1, LP_Continue = 0 [0x76] = 010x_y00x  
This mode allows the fastest coordinates reading. The sensor stays at its full capability, and never enters in sleep  
mode.  
The interrupt output goes LOW each time a new X and Y result has been computed and the valid data are ready to  
be read by the host microcontroller. INT_n remains LOW until X_int/Y_int have been read, or after a power mode  
change. The typical coordinates read application after an interrupt is to read X first then Y_int.  
The INT_act_en bit (y):  
If INT_act_en = 1, after reading the X_int or Y_int register, the next sampled XY coordinate is stored and  
won’t be updated until the next read of X_int or Y_int.  
If INT_act_en = 0, the last converted XY coordinate is read in real time.  
www.austriamicrosystems.com  
Revision 3.10  
6 – 16  
 
 
AS5011  
Data Sheet  
6.4.4 Switching the power modes  
The following sequence example would be used for a typical mobile application (mobile phone, PDA, MP3 player):  
Figure 9: Typical application sequence for mobile device  
After a complete system power up, a soft reset should be applied by sending the I²C commands  
[0x76] = 0x9A then [0x76] = 0x98.  
If needed the host microcontroller writes the configuration once to the AS5011, for example the  
inv_spinning register if the magnet is inverted (see 7.2) or the Xp Xn Yp Yn wakeup threshold values. The  
cursor is normally centered X,Y = (0,0) as the magnet position 1 on Figure 5 . The AS5011 is in Shutdown  
mode by default.  
The cursor is moved by the user above the Yp threshold. An interrupt is generated and remains LOW  
until an X_int/Y_int read or a power mode changing.  
The microcontroller configures the AS5011 in Low Power mode ( [0x76] = 110x_100x ) for faster  
reading. The interrupt is released to HIGH automatically by the power mode change.  
Interrupts are generated automatically every 20ms when the XY coordinates are ready for reading.  
The microcontroller reads the X register [0x41] then Y_int register [0x52] which releases INTn to HIGH.  
During this phase, the cursor is still moving and stays out of the wakeup thresholds range.  
If the microcontroller doesn’t read X_int or Y_int immediately after an interrupt, the INTn pin remains  
LOW until the next read of X_int or Y_int. The last new converted (a new sample every 20ms) coordinate  
will be transferred.  
The cursor has been released by the user, and returns to the center of the AS5011 (magnet position  
1 on Figure 5). The microcontroller will read X,Y = (0,0), and will configure the sensor to Shutdown mode  
([0x76] = 1001_x00x).  
Note:  
Firmware application notes with source code example for AS5011 and EasyPoint modules are available on  
www.austriamicrosystems.com website.  
www.austriamicrosystems.com  
Revision 3.10  
7 – 16  
AS5011  
Data Sheet  
7 I²C interface  
The AS5011 supports the 2-wire I²C protocol without “repeat start” as a slave device, the host CPU (master) has to  
initiate the data transfers. The 7-bit device address of the AS5011 is ‘1000 000’.  
The SDA signal is bidirectional and is used to read and write the serial data. The SCL signal is the clock generated  
by the host CPU, to synchronize the SDA data in read and write mode. The maximum I²C clock frequency is 4MHz,  
data are triggered on the rising edge of SCL.  
7.1 Interface operation  
For both read and write data transfers consist of three phases:  
1. The master sends a START command by pulling down SDA while SCL remains high. Then the 7-bit device  
address is sent followed by a read/write bit indicator. In READ mode (r/w = ‘1’), the slave has to send the  
data from its selected register. In WRITE mode (r/w = ‘0’), the master writes the data in the selected  
register. The slave has to acknowledge by sending ‘0’ after the r/w bit from the master.  
2. The slave register is selected by the second data sent by the master. The address has an 8-bit format. The  
slave has to acknowledge by sending ‘0’ after the bit R0.  
3. The 8-bit data is transferred from/to the slave selected register, depending on the r/w bit. At the end of the  
8-bit data transfer, the master (read mode) or the slave (write mode) acknowledges by sending ‘1’. The  
transfer ends when the master sends a STOP command by sending a low to high transition while SCL  
remains high.  
The AS5011 does not send any acknowledge after the device address or register address (ACK remains High) in  
the following cases:  
- Wrong address  
- Write access to a read-only register  
Figure 10: I²C bus Read and Write operation  
www.austriamicrosystems.com  
Revision 3.10  
8 – 16  
 
AS5011  
Data Sheet  
7.2 I²C Registers  
The following registers / functions are accessible over the serial I²C interface.  
Acces  
s
Register  
size  
Address  
Format  
Reset Value  
Bit  
Description  
Control Register 1  
LP_pulsed  
LP_active  
LP_continue  
1
1
1
R/W 0x76  
R/W 0x76  
R/W 0x76  
1
0
0
<7>  
<6>  
<5>  
Low Power control register. See Table 2.  
Low Power control register. See Table 2.  
For test only. Must be 0.  
Interrupt control register.  
If set, the interrupt pin goes low in Shutdown mode when  
the magnet has moved away from the center, above the  
xp, xn, yp yn threshold values.  
INT_wup_en  
1
R/W 0x76  
1
<4>  
Interrupt control register.  
If set, the interrupt pin goes LOW in Low Power mode  
when a new XY value is ready for reading. Stores  
coordinate until next read in full power mode,  
For test only. Must be 0.  
Soft Reset.  
soft_rst = 0: normal mode  
INT_act_en  
ext_clk_en  
soft_rst  
1
1
1
R/W 0x76  
R/W 0x76  
R/W 0x76  
1
0
0
<3>  
<2>  
<1>  
soft_rst = 1: all registers return to their respective reset  
value  
Data valid.  
data_valid  
1
R
0x76  
0
<0>  
data_valid = 0: no valid XY coordinates  
data_valid = 1: valid data are ready to be read  
Control Register 2  
Test 7  
Test 6  
Test 5  
Test 4  
ext_sample_en  
rc_bias_on  
1
1
1
1
1
1
R/W 0x75  
R/W 0x75  
R/W 0x75  
R/W 0x75  
R/W 0x75  
R/W 0x75  
0
1
0
0
0
0
<7>  
<6>  
<5>  
<4>  
<3>  
<2>  
For test only. Must be 0.  
For test only. Must be 1.  
For test only. Must be 0.  
For test only. Must be 0.  
For test only. Must be 0.  
For test only. Must be 0.  
Invert the channel voltage.  
Set if the magnet polarity is reversed.  
For test only. Must be 0.  
inv_spinning  
pptrim_en  
1
1
R/W 0x75  
R/W 0x75  
0
0
<1>  
<0>  
Range and position values  
0x28  
Xp  
Xn  
Yp  
Yn  
X
8
8
8
8
8
8
R/W 0x43 2’ comp  
R/W 0x44 2’ comp  
R/W 0x53 2’ comp  
R/W 0x54 2’ comp  
Wakeup threshold on the positive X direction.  
(40d)  
0xD8  
(-40d)  
0x28  
(40d)  
0xD8  
(-40d)  
Wakeup threshold on the negative X direction.  
Wakeup threshold on the positive Y direction.  
Wakeup threshold on the negative Y direction.  
X position. The zero value means the horizontal center  
position on the AS5011.  
Y position. The zero value means the vertical center  
position on the AS5011.  
R
R
0x41 2’ comp  
0x42 2’ comp  
0x00  
0x00  
Y
X_res_int  
Y_res_int  
8
8
R
R
0x51 2’ comp  
0x52 2’ comp  
0x00  
0x00  
X position. Releases INT_n to ‘1’  
Y position. Releases INT_n to ‘1’  
Table 3: I²C Registers  
www.austriamicrosystems.com  
Revision 3.10  
9 – 16  
 
 
AS5011  
Data Sheet  
8 Device specifications  
8.1 Absolute maximum ratings (non operating)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
These are stress ratings only. Functional operation of the device at these or any other conditions beyond those  
indicated under “Operating Conditions” is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Parameter  
DC supply voltage  
Symbol  
VDD  
Min  
-0.3  
-0.3  
Max  
Unit  
V
Note  
5
Peripheral supply voltage  
VDDp  
5
VDD +0.3  
VDDp +0.3  
3.6  
V
Input pin voltage  
Vin  
Vin  
-0.3  
V
V
Input pin voltage  
-
-100  
-
Norm: JEDEC 78  
Input current (latchup immunity)  
Electrostatic discharge  
Iscr  
100  
mA  
kV  
Norm: MIL 883 E method  
3015  
ESD  
±1  
Velocity=0, Multi Layer  
PCB; JEDEC Standard  
Testboard  
Package Thermal Resistance  
ΘJA  
-
30  
°C/W  
Total power dissipation  
Storage temperature  
Pt  
36  
mW  
°C  
Tstrg  
Tbody  
-55  
5
125  
260  
Norm: IPC/JEDEC J-STD-  
020C  
Package body temperature  
°C  
Humidity non-condensing  
85  
%
www.austriamicrosystems.com  
Revision 3.10  
10 – 16  
 
AS5011  
Data Sheet  
8.2 Operating conditions  
(operating conditions: Tamb = -20 to +80°C, VDD = 3.3V)  
Parameter  
Symbol Min  
VDD 2.7  
Typ  
Max  
Unit  
Note  
Core Supply voltage  
3.6  
V
VDD  
+0.3  
open drain outputs : SCL, SDA,  
INT/  
Peripheral Supply voltage  
VDDp 1.8  
IDDs  
V
average current pin VDD  
Current consumption on core  
supply,  
50  
µA  
pulsed current IDDf during tconv  
with period tP,W  
Shutdown mode  
average current pin VDD  
Current consumption on core  
supply,  
IDDl  
IDDf  
200  
8
µA  
pulsed current IDDf during tconv  
with period tP,A  
Low Power mode  
Current consumption on core  
supply,  
mA  
µA  
continuous current pin VDD  
Full Power mode  
average current pin VDDp, 20ms  
i²C polling, 47k pullup resistor on  
SDA  
Current consumption on IO supply IDDp  
Polling clock rate, Shutdown mode tP,W  
1
65.6  
16.4  
80  
20  
94.4  
23.6  
ms  
ms  
µs  
internal  
Polling clock rate, Low Power  
mode  
tP,A  
internal  
Coordinate conversion time  
tconv  
330 380 455  
Full Power mode  
vertical magnetic field at magnet  
centre, measured at the chip  
surface  
dx  
dy  
lateral movement radius  
±1.8  
2
2
±2.3  
3
mm  
type of magnet  
d
mm  
mm  
cylindrical; axial magnetized  
Hall array diameter  
RH  
2.2  
vertical magnetic field at magnet  
center; measured at chip surface  
magnetic field strength  
BZ  
30  
120  
+80  
mT  
°C  
bit  
bit  
Ambient temperature range  
Tamb  
-20  
Magnetic field measurement  
resolution  
11  
Internal  
Resolution of XY displacement  
IC package  
8
over 2*dx and 2*dy axis  
QFN16  
5x5x0.55mm  
100  
100  
nF  
nF  
Ceramic capacitor VDD - VSS  
Ceramic capacitor VDDp - VSS  
Power supply filtering capacitors  
www.austriamicrosystems.com  
Revision 3.10  
11 – 16  
 
AS5011  
Data Sheet  
8.3  
Digital IO pads DC/AC characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Inputs: SCL, SDA (receiver)  
High level input voltage  
Low level input voltage  
VIH  
0.7 *  
VDDp  
V
0.3 *  
VDDp  
VDDp 2.7V  
VDDp < 2.7V  
VDDp = 3.6V  
VIL  
V
0.25 *  
VDDp  
Input leakage current  
Capacitive load  
ILEAK  
CL  
1
µA  
pF  
35  
Outputs: INTn, SDA (transmitter)  
High level output voltage  
Low level output voltage  
VOH  
VOL  
Open drain  
VSS + 0.4  
Leakage current 1 µA  
-2mA  
V
www.austriamicrosystems.com  
Revision 3.10  
12 – 16  
 
AS5011  
Data Sheet  
9 Package Drawings  
DIM  
(mm)  
A
MIN  
NOM  
0.55  
MAX  
0.60  
0.50  
A1  
b
0.152 REF  
0.35  
0.40  
0.45  
D
E
D1  
E1  
e
5.00 BSC  
5.00 BSC  
3.5  
3.15  
0.80 BSC  
0.35  
3.6  
3.7  
3.25  
3.35  
L
0.40  
0.45  
0.10  
L1  
0.00  
www.austriamicrosystems.com  
Revision 3.10  
13 – 16  
 
AS5011  
Data Sheet  
10 Recommended footprint  
DIM  
(mm)  
C1  
C2  
E
X1  
X2  
Y1  
Y2  
Typ  
4.8  
4.8  
0.8  
0.45  
3.7  
0.9  
3.7  
RED: Top layer (AS5011 side)  
BLUE: Bottom layer (mechanics side)  
YELLOW: Top overlay  
www.austriamicrosystems.com  
Revision 3.10  
14 – 16  
 
AS5011  
Data Sheet  
Table of contents  
1
2
3
4
5
6
General Description........................................................................................................................................ 1  
Benefits.......................................................................................................................................................... 1  
Key Features.................................................................................................................................................. 1  
Applications ................................................................................................................................................... 1  
Package and pinout........................................................................................................................................ 2  
Operating the AS5011.................................................................................................................................... 3  
Typical application ..................................................................................................................................... 3  
XY coordinates interpretation..................................................................................................................... 3  
Magnet-chip surface airgap range.............................................................................................................. 4  
Power modes............................................................................................................................................. 5  
I²C interface ................................................................................................................................................... 8  
Interface operation..................................................................................................................................... 8  
I²C Registers.............................................................................................................................................. 9  
Device specifications.................................................................................................................................... 10  
Absolute maximum ratings (non operating) .............................................................................................. 10  
Operating conditions................................................................................................................................ 11  
Digital IO pads DC/AC characteristics...................................................................................................... 12  
Package Drawings ....................................................................................................................................... 13  
Recommended footprint ............................................................................................................................... 14  
6.1  
6.2  
6.3  
6.4  
7
8
7.1  
7.2  
8.1  
8.2  
8.3  
9
10  
Table of contents .................................................................................................................................................. 15  
Revision History.................................................................................................................................................... 15  
Revision History  
Revision  
Date  
Description  
3.10  
November.3.2009  
Added recommended footprint  
Added 0x75 register description  
Added AS5000-MA2H-1 Magnet reference  
QFN 5x5x0.55mm package  
I²C @ 4MHz max.  
3.6  
3.5  
July. 3. 2009  
June. 8.2009  
www.austriamicrosystems.com  
Revision 3.10  
15 – 16  
 
AS5011  
Data Sheet  
Copyrights  
Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged,  
translated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions  
appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by  
description regarding the information set forth herein or regarding the freedom of the described devices from patent  
infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and  
without notice. Therefore, prior to designing this product into a system, it is necessary to check with  
austriamicrosystems AG for current information. This product is intended for use in normal commercial  
applications. Applications requiring extended temperature range, unusual environmental requirements, or high  
reliability applications, such as military, medical life-support or lifesustaining equipment are specifically not  
recommended without additional processing by austriamicrosystems AG for each application.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited  
to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special,  
incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or  
use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
A-8141 Schloss Premstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact  
www.austriamicrosystems.com  
Revision 3.10  
16 – 16  

相关型号:

AS5013

Low Power Integrated Hall IC for Human Interface Applications
AMSCO

AS5013-IQFT

Low Power Integrated Hall IC for Human Interface Applications
AMSCO

AS5020

6-BIT MAGNETIC ANGULAR POSITION ENCODER WITH SERIAL INTERFACE
AMSCO

AS5020T

6-BIT MAGNETIC ANGULAR POSITION ENCODER WITH SERIAL INTERFACE
AMSCO

AS5030

8-BIT PROGRAMMABLE HIGH SPEED ABSOLUTE MAGNETIC ROTARY ENCODER
AMSCO

AS5030-ATST

8-Bit Programmable High Speed Magnetic Rotary Encoder
AMSCO

AS5030-ATSU

8-Bit Programmable High Speed Magnetic Rotary Encoder
AMSCO

AS5030ATST

8 BIT PROGRAMMABLE HIGH SPEED MAGNETIC ROTARY ENCODER
AMSCO

AS5030ATSU

8 BIT PROGRAMMABLE HIGH SPEED MAGNETIC ROTARY ENCODER
AMSCO

AS5030_07

8-Bit Programmable High Speed Magnetic Rotary Encoder
AMSCO

AS5030_1

8 BIT PROGRAMMABLE HIGH SPEED MAGNETIC ROTARY ENCODER
AMSCO

AS5035

PROGRAMMABLE 64 PPR INCREMENTAL MAGNETIC ROTARY ENCODER
AMSCO