AS5263 [AMSCO]

12-Bit Redundant Automotive Angle Position Sensor; 12位冗余汽车角度位置传感器
AS5263
型号: AS5263
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

12-Bit Redundant Automotive Angle Position Sensor
12位冗余汽车角度位置传感器

传感器
文件: 总38页 (文件大小:2755K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
austriamicrosystems AG  
is now  
ams AG  
The technical content of this austriamicrosystems datasheet is still valid.  
Contact information:  
Headquarters:  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
e-Mail: ams_sales@ams.com  
Please visit our website at www.ams.com  
Datasheet  
AS5263  
12-Bit Redundant Automotive Angle Position Sensor  
1 General Description  
The AS5263 is a contactless magnetic angle position sensor for  
accurate angular measurement over a full turn of 360º. A sub range  
can be programmed to achieve the best resolution for the  
2 Key Features  
360º contactless high resolution angular position encoding  
User programmable start and end point of the application region  
User programmable clamping levels and programming of the  
transition point  
application. The AS5263 includes two AS5163 in one QFN package.  
It is a system-on-chip, combining integrated Hall elements, analog  
front-end, digital signal processing and best in class automotive  
protection features in a single device.  
Powerful analog output  
- Short circuit monitor  
- High driving capability for resistive and capacitive load
Wide temperature range: -40ºC to +150ºC  
To measure the angle, only a simple two-pole magnet, rotating over  
the center of the chip, is required. The magnet may be placed above  
or below the IC.  
Small Pb-free package: 32-pin QFN (7x7m)  
The absolute angle measurement provides instant indication of the  
magnet’s angular position with a resolution of 0.087º = 4096  
positions per revolution. The start and end point of the sub segment  
will be programmed with a resolution of 14-bit (0.022º= 16384 steps  
per revolution). According to this resolution the adjustment of the  
application specific mechanical positions are possible. The angular  
output data is available over a 12-bit PWM signal or 12-bit ratiometric  
analog output.  
Broken GND and VDD detectioover a wide ange of different  
load cnditions  
Simplifid programming duto provided programming hardware  
and software  
Failure detection me for magnet placement monitoring and  
loss of power suply  
Indication of gh voltage condition  
An internal voltage regulator with over voltage protection and evrs
polarity protection allows the AS5263 to operate in automtive  
application up to a voltage to 27V. Programmability ovr the utput  
pin reduces the number of pins on the application onneor. The  
AS5263 is the ideal solution for safety critical applicaons due to the  
redundant approach.  
3 Appcations  
The AS5263 is ideal for automotive applications like transmission  
earboposition sensor, headlight position control, torque sensing,  
vae position sensing, pedal position sensing, throttle position  
ensing, and non-contact potentiometers.  
Figure 1. AS5263 Block Diagram  
VDD5_B  
VDD3_B  
VDD5_T VDD3_T  
VDD_T  
VDD_B  
High voltage/  
Reverse polar
protection  
AS5263  
OTP  
Register  
Single pin  
Interface  
Zero  
Position  
HArray  
Full Turn Output  
Sin  
12-bit  
PWM  
OUT  
Driver  
M
U
X
Frontend  
Amplifier  
CORDIC  
14-bit  
OUT_T  
OUT_B  
Angle  
Cos  
Output  
DSP  
12  
12-bit  
DAC  
ADC  
Programmable  
Angle  
KDOWN_T  
KDOWN_B  
Top Silicon Die  
Bottom Silicon Die  
_T …… Pin of the Top Device  
_B …… Pin of the Bottom Device  
GND_T GND_B  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
1 - 37  
AS5263  
Datasheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 Pin Descriptions....................................................................................................................................................................................  
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
1
1
1
3
3
5
6
6.1 Operating Conditions...........................................................................................................................................................................  
6.2 Magnetic Input Specification...............................................................................................................................................................  
6.3 Electrical System Specifications........................................................................................................................................................  
6.4 Timing Characteristics........................................................................................................................................................................  
7 Detailed Description...............................................................................................................................................................  
7
7
8
7.1 Operation..........................................................................................................................................................................................  
9
7.1.1 VDD Voltage Monitor............................................................................................................................................................. 9  
7.2 Analog Output.............................................................................................................................................................................. 10  
7.2.1 Programming Parameters.................................................................................................................................................... 10  
7.2.2 Application Specific Angular Range Programming.................................................................................................... 10  
7.2.3 Application Specific Programming of the Break Point ........................................................................................................ 11  
7.2.4 Full Scale Mode.................................................................................................................................................................... 11  
7.2.5 Inverted Dual Channel Output ...................................................................................................................................... 12  
7.2.6 Resolution of the Parameters ......................................................................................................................................... 12  
7.2.7 Analog Output Diagnostic Mode.......................................................................................................................................... 14  
7.2.8 Analog Output Driver Parameters........................................................................................................................................ 14  
7.3 Pulse Width Modulation (PWM) Outp......................................................................................................................................... 15  
7.4 Kick Down Function............................................................................................................................................................ 16  
8 Application Information ........................................................................................................................................................... 18  
8.1 Programming the AS5263 .............................................................................................................................................................. 18  
8.1.1 Hardware Setup....................................................................................................................................................................... 18  
8.1.2 Protocol Timing and Commands SingPin Interface ........................................................................................................... 19  
8.1.3 UNBLOCK .......................................................................................................................................................................... 21  
8.1.4 WRITE128 ............................................................................................................................................................................... 22  
8.1.5 READ128............................................................................................................................................................................... 23  
8.1.6 DOWNLOAD............................................................................................................................................................................ 24  
8.1.7 UPLOAD.............................................................................................................................................................................. 24  
8.1.8 FUSE .................................................................................................................................................................................... 24  
8.1.9 PASSFUNC ............................................................................................................................................................................ 25  
8.1.10 READ...................................................................................................................................................................................... 25  
8.1.11 WRE ..................................................................................................................................................................................... 26  
8.2 Programming Data..................................................................................................................................................................... 27  
82.1 Read / Write User Data.............................................................................................................................................................. 32  
8.2.2 Programming Procedure............................................................................................................................................................ 32  
8.2.3 Physical Placement of the Magnet ............................................................................................................................................ 33  
8.2.4 Magnet Placement..................................................................................................................................................................... 33  
9 Package Drawings and Markings ........................................................................................................................................... 34  
10 Ordering Information............................................................................................................................................................. 36  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
2 - 37  
AS5263  
Datasheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Top View)  
30 29  
28 27  
26  
25  
32  
31  
24  
23  
GNDP_B  
GNDP_T  
NC  
NC  
1
2
22  
21  
20  
19  
KDOWN_B  
KDOWN_T  
NC_B  
NC_T  
NC_B  
3
4
AS5263  
5
6
VDD3_T  
VDD3_B  
NC_
NC  
NC  
18  
17  
7
8
GNDA_T  
GNDA_B  
9
10  
11  
12  
13  
14 15  
16  
4.1 Pin Descriptions  
Table 1 provides the description of each pin of the stanard 32-pin QFN (7x7mm) package. It is recommended to keep the electrical separation  
as well on the printed circuit board (PCB) in the appcation (see Table 1).  
Table 1. Pin Descriptions  
Pin Number  
Pin Name  
NC  
Pin Type  
Description  
Not bonded  
Not bonded  
1
2
3
4
-
-
C  
Test pin for fabrication. Connected to top ground in the application.  
Test pin for fabrication. Connected to bottom ground in the application.  
C_T  
NC_B  
DIO/AIO  
multi purpose pin  
3.45V- Regulator output, internally regulated from VDD5. This pin  
needs an external ceramic capacitor of 2.2μF. Connect second terminal of  
capacitor to GND intended for the top die.  
5
6
VDD3_T  
VDD3_B  
3.45V- Regulator output, internally regulated from VDD5. This pin  
needs an external ceramic capacitor of 2.2μF. Connect second terminal of  
capacitor to GND intended for the bottom die.  
Supply pin  
Analog ground pin. Connected to GND for the top die in the application.  
7
8
GNDA_T  
GNDA_B  
Analog ground pin. Connected to GND intended for the bottom die in the  
application.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
3 - 37  
AS5263  
Datasheet - Pin Assignments  
Table 1. Pin Descriptions  
Pin Number  
Pin Name  
Pin Type  
Description  
Test pin for fabrication. Connected to GND intended for the top die in  
the application.  
9
NC_T  
NC_B  
Test pin for fabrication. Connected to GND intended for the bottom die  
in the application.  
DIO/AIO  
multi purpose pin  
10  
Test pin for fabrication. Open in the application.  
Test pin for fabrication. Open in the application.  
11  
12  
NC  
NC  
Digital ground pin. Connected to GND intended for the top die in the  
application.  
13  
14  
15  
16  
GNDD_T  
GNDD_B  
NC_T  
Supply pin  
Digital ground pin. Connected to GND intended for the bottom de in
application.  
Test pin for fabrication. Connected to GND intended for the top die in  
the application.  
DIO/AIO  
multi purpose pin  
Test pin for fabrication. Connected to GND intendefor the bottom die  
in the application.  
NC_B  
Not boned  
Not bonde
17  
18  
NC  
NC  
-
-
Tor fabrication. Concted to GND intended for the top die in  
the pplication.  
19  
20  
21  
NC_T  
NC_B  
DIO/AIO  
multi purpose pin  
Test pin for fabricationConected to GND intended for the bottom die  
in the application.  
Kick down funcnaliy. Open drain user pull-up resistor connected to  
the intendeDD top supply.  
KDOWN_T  
Digital otput open  
drai
Kick dowfunctionality. Open drain user pull-up resistor connected to  
the innded VDD bottom supply.  
22  
23  
24  
KDOWN_B  
GNDP_T  
GNDP_B  
og ground pin. Connected to GND for the top die in the application.  
Supply pin  
log ground pin. Connected to GND intended for the bottom die in the  
application.  
Test pin for fabrication. Connected to GND intended for the top die in  
the application.  
25  
26  
27  
28  
NC_T  
NC_B  
Test pin for fabrication. Connected to GND intended for the bottom die  
in the application.  
O/AIO  
multi purpose pin  
Output pin. Can be programmed as analog output or PWM output. Over  
this pin the programming of the top die is possible.  
OUT_T  
OT_B  
Output pin. Can be programmed as analog output or PWM output. Over  
this pin the programming of the bottom die is possible.  
Positive supply pin. This pin is over voltage protected.  
Positive supply pin. This pin is over voltage protected.  
29  
30  
VD_T  
VDD_B  
4.5V- Regulator output, internally regulated from VDD. This pin needs  
an external ceramic capacitor of 2.2μF. Connect second terminal of  
capacitor to GND intended for the top die.  
3
32  
VDD5_T  
VDD5_B  
Supply pin  
4.5V- Regulator output, internally regulated from VDD. This pin needs  
an external ceramic capacitor of 2.2μF. Connect second terminal of  
capacitor to GND intended for the bottom die.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
4 - 37  
AS5263  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 6 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Electrical Parameters  
DC supply voltage at pin VDD  
Overvoltage  
VDD  
-18  
27  
V
No operation  
permanent  
Output voltage OUT  
VOUT  
VKDOWN  
VDD3  
VDD5  
Iscr  
-0.3  
-0.3  
-0.3  
-0.3  
-100  
27  
27  
5
V
V
Output voltage KDOWN  
DC supply voltage at pin VDD3  
DC supply voltage at pin VDD5  
Input current (latchup immunity)  
V
7
V
100  
mA  
Norm: JEDC 78  
Electrostatic Discharge  
Norm: MIL 88E method 3015  
This value is pplcble to pins VDD, GND, OUT,  
ad KDOWN.  
Electrostatic discharge  
ESD  
±4  
V  
ºC  
All other pins ±2 kV.  
Temperature Ranges and Storage Conditions  
Tstrg  
Storage temperature  
-55  
+150  
Min -67ºF; Max +257ºF  
t=20 to 40s,  
The reflow peak soldering temperature (body  
temperature) specified is in accordance with  
IPC/JEDEC J-STD-020 “Moisture/Reflow  
Sensitivity Classification for Non-Hermetic Solid  
State Surface Mount Devices”.  
TBody  
Body temperature (Lead-free pacge)  
260  
85  
ºC  
%
The lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
Humidity non-condensing  
Moisture Sensitive Level  
H
5
MSL  
3
Represents a maximum floor life time of 168h  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
5 - 37  
AS5263  
Datasheet - Electrical Characteristics  
6 Electrical Characteristics  
6.1 Operating Conditions  
In this specification, all the defined tolerances for external components need to be assured over the whole operation conditions range and also  
over lifetime.  
TAMB = -40 to +150ºC, VDD = +4.5V to +5.5V, CLREG5 = 2.2µF, CLREG3 = 2.2µF, RPU = 1KΩ, RPD = 1KΩ to 5.6KΩ (Analog only),  
CLOAD = 0 to 42nF, RPUKDWN = 1KΩ to 5.6KΩ, CLOAD_KDWN = 0 to 42nF, unless otherwise specified. A positive current is intended to flow into  
the pin.  
Table 3. Operating Conditions  
Symbol  
TAMB  
Isupp  
Parameter  
Ambient temperature  
Supply current  
Conditions  
-40ºF…+302ºF  
Min  
Typ  
Max  
+150  
20  
Unit
ºC  
-40  
Lowest magnetic input field  
mA  
6.2 Magnetic Input Specification  
TAMB = -40 to +150ºC, VDD5 = 4.5 - 5.5V (5V operation), unless otherwise noted.  
Two-pole cylindrical diametrically magnetized source:  
Table 4. Magnetic Input Specification  
Symbol  
Bpk  
Parameter  
itions  
Min  
Typ  
Max  
Units  
Required vical component of the  
magnetic field stngth on the die’s srfac,  
measured along a concentric circle with a  
radius of 1.1mm  
Magnetic input field amplitude  
30  
70  
mT  
Boff  
Magnetic offset  
Constant magntic strfiel
Including offset gdient  
±10  
5
mT  
%
Field non-linearity  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
6 - 37  
AS5263  
Datasheet - Electrical Characteristics  
6.3 Electrical System Specifications  
TAMB = -40ºC to +150ºC, VDD = 4.5V - 5.5V (5V operation), Magnetic Input Specification; unless otherwise noted.  
Table 5. Electrical System Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
RES  
Resolution Analog and PWM Output  
Angular operating range 90ºC  
12  
bit  
Maximum error with respect to the best line fit.  
Centered magnet without calibration,  
TAMB=25ºC  
Integral non-linearity (optimum)  
360 degree full turn  
INLopt  
±0.5  
±0.9  
deg  
deg  
Maximum error with respect to the best line fit.  
Centered magnet without calibration,  
TAMB = -40 to +150ºC  
Integral non-linearity (optimum)  
360 degree full turn  
INLtemp  
Best line fit = (Errmax – Errmin) / 2  
Over displacement tolerance with 6mm  
diameter magnet, without calibration,  
TAMB = -40 to +150ºC  
Integral non-linearity  
360 degree full turn  
INL  
±14  
0.06  
deg  
Note: This parameter is a system parameter  
and is dependent on the selected magnet.  
1 sigma;  
Note: The noise perforance is dependent  
on the programof the output  
characteristic.  
Deg  
RMS  
TN  
Transition noise  
VDD5LowTH  
VDD5HighTH  
tPwrUp  
Undervoltage lower threshold  
Undervoltage higher threshold  
Power-up time  
3.1  
3.6  
3.4  
3.9  
3.7  
4.2  
10  
VDD5 = 5V  
V
ms  
System propagation delay  
absolute output: delay of ADC,  
DSP and absolute inteac
Fast mode, times 2 in ow mode  
tdelay  
100  
µs  
Note: The INL performance is specified over the full turn of 360 d. An operation in an angle segment increases the accuracy. A two  
point linearization is recommended to achieve the bst INL performance for the chosen angle segment.  
6.4 Timing Characteristics  
Table 6. Timing Conditions  
Symbol  
FRCOT  
TCLK  
Parameter  
Conditions  
Min  
4.05  
202  
Typ  
4.5  
Max  
4.95  
247  
12  
Units  
MHz  
ns  
Internal Master lock  
Interface ClocTime  
TCLK = 1/ FRCOT  
222.2  
TDETWD  
WatchDog error etection time  
ms  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
7 - 37  
AS5263  
Datasheet - Detailed Description  
7 Detailed Description  
The AS5263 is manufactured in a CMOS process and uses a spinning current Hall technology for sensing the magnetic field distribution across  
the surface of the chip.  
The integrated Hall elements are placed around the center of the device and deliver a voltage representation of the magnetic field at the surface  
of the IC.  
Through Sigma-Delta Analog / Digital Conversion and Digital Signal-Processing (DSP) algorithms, the AS5263 provides accurate high-resolution  
absolute angular position information. For this purpose a Coordinate Rotation Digital Computer (CORDIC) calculates the angle and the  
magnitude of the Hall array signals.  
The DSP is also used to provide digital information at the outputs that indicate movements of the used magnet towards or away from the device’s  
surface.  
A small low cost diametrically magnetized (two-pole) standard magnet provides the angular position information (see Figure 26).  
The AS5263 senses the orientation of the magnetic field and calculates a 14-bit binary code. This code is mapped to a programmable oput  
characteristic. The type of output is programmable and can be selected as PWM or analog output. This signal is available at the pins 27, 8  
(OUT_T, OUT_B).  
The analog output and PWM output can be configured in many ways. The application angular region can be programmed a usr friendly way.  
The starting angle T1 and the end point angle T2 can be set and programmed according the mechanical range of the aplicaon with a  
resolution of 14 bits. In addition the T1Y and T2Y parameter can be set and prorammed according the applicationThe transition point 0 to 360  
degree can be shifted using the break point parameter BP. This point is progrmmable h a high resolution of 14 bits of 360 degrees. The  
voltage for clamping level low CLL and clamping level high CLH can be programmed wth a resolution of 7 itBh levels are individually  
adjustable.  
These parameters are also used to adjust the PWM duty cycle.  
The AS5263 provides also a compare function. The internal angular code is compared to a programmable level using hysteresis. The function is  
available over the output pins 21, 22 (KDOWN_T, KDOWN_).  
The output parameters can be programmed in an OTP reister. No additional voltage quired to program the AS5263. The setting may be  
overwritten at any time and will be reset to default whepowr is cycled. To make setng permanent, the OTP register must be programmed  
by using a lock bit the content could be frozen for ver.  
The AS5263 is tolerant to magnet misalignmenand uwanted external manetic flds due to differential measurement technique and Hall  
sensor conditioning circuitry.  
It is also tolerant to air gap and temperature variations due to Sin-/Cal evaluation.  
The AS5263 is tolerant to magnet misalignment and magnetistray fields due to differential measurement technique and Hall sensor  
conditioning circuitry.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
8 - 37  
AS5263  
Datasheet - Detailed Description  
7.1 Operation  
The AS5263 operates at 5V ±10%, using two internal Low-Dropout (LDO) voltage regulators. For operation, the 5V supply is connected to pin  
VDD. While VDD3 and VDD5 (LDO outputs) must be buffered by 2.2µF capacitors, the VDD requires a 1µF capacitor. All capacitors (low ESR  
ceramic) are supposed to be placed close to the supply pins (see Figure 3).  
The VDD3 and VDD5 outputs are intended for internal use only. It must not be loaded with an external load.  
Figure 3. External Circuitry for the AS5263 (figure shows only one sensor die)  
5V Operation  
2.2µF  
2.2µF  
VDD5_T  
VDD3_T  
LDO  
1µF  
VDD_T  
LDO  
Inteal  
VDD4.5V  
Internal  
VD3.45V  
4.5 - 5.5V  
GNDD_T  
GNDA_T  
GNDP_T  
Notes:  
1. The pins VDD3 and VDD5 must lways be buffered by a capacitor. These pins must not be left floating, as this may  
cause unstable internal supply voltges, which may lead to larger output jitter of the measured angle.  
2. Only VDD is overvoltage protectup to 27V. In addition, the VDD has a reverse polarity protection.  
7.1.1 VDD Voltae Montor  
VDD Overvoltage Management. If the voltage applied to the VDD pin exceeds the overvoltage upper threshold for longer than the detection  
time, then the deice eters a low power mode reducing the power consumption. When the overvoltage event has passed and the voltage  
applied to DD pin falls below the overvoltage lower threshold for longer than the recovery time, then the device enters the normal mode.  
VD5 Undervoltage Management. When the voltage applied to the VDD5 pin falls below the undervoltage lower threshold for longer than  
the V5_detection time, then the device stops the clock of the digital part and the output drivers are turned off to reduce the power  
consumption. When the voltage applied to the VDD5 pin exceeds the VDD5 undervoltage upper threshold for longer than the VDD5_recovery  
time, then the clock is restarted and the output drivers are turned on.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
9 - 37  
AS5263  
Datasheet - Detailed Description  
7.2 Analog Output  
The reference voltage for the Digital-to-Analog converter (DAC) is taken internally from VDD. In this mode, the output voltage is ratiometric to the  
supply voltage.  
7.2.1 Programming Parameters  
The Analog output voltage modes are programmable by OTP. Depending on the application, the analog output can be adjusted. The user can  
program the following application specific parameters:  
Mechanical angle start point  
Mechanical angle end point  
Voltage level at the T1 position  
Voltage level at the T2 position  
Clamping Level Low  
T1  
T2  
T1Y  
T2Y  
CLL  
CLH  
BP  
Clamping Level High  
Break point (transition point 0 to 360 degree)  
The above listed parameters are input parameters. Over the provided programming software and programmer, tese paameters are converted  
and finally written into the AS5263 128-bit OTP memory. More details about thconverion can be found in the ANAS5163+AS5263_V1.0  
application note.  
7.2.2 Application Specific Angular Range Programming  
The application range can be selected by programming T1 with a related Y and T2 with a related T2into the AS5263. The internal gain factor  
is calculated automatically. The clamping levels CLL and CLH can be progammed independent frm the T1 and T2 position and both levels can  
be separately adjusted.  
Figure 4. Programming of an Individual Application Rang
90 degree  
plication range  
electrical range  
T2  
mechanical range  
clamping range  
high  
T1  
100%VDD  
CLH  
T2Y  
0 degree  
CLL  
180 degree  
T1Y  
CLH  
BP  
CLL  
0
clamping range  
low  
T1  
T2  
70 degree  
Figure 4 sha simple example of the selection of the range. The mechanical starting point T1 and the mechanical end point T2 define the  
mehanicang. A sub range of the internal Cordic output range is used and mapped to the needed output characteristic. The analog output  
igal has 12 bit, hence the level T1Y and T2Y can be adjusted with this resolution. As a result of this level and the calculated slope the clamping  
region ow is defined. The break point BP defines the transition between CLL and CLH. In this example, the BP is set to 0 degree. The BP is also  
the end point of the clamping level high CLH. This range is defined by the level CLH and the calculated slope. Both clamping levels can be set  
independently form each other. The minimum application range is 12 degrees.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
10 - 37  
AS5263  
Datasheet - Detailed Description  
7.2.3 Application Specific Programming of the Break Point  
The break point BP can be programmed as well with a resolution of 14 bits. This is important when the default transition point is inside the  
application range. In such a case, the default transition point must be shifted out of the application range. The parameter BP defines the new  
position. The function can be used also for an on-off indication.  
Figure 5. Individual Programming of the Break Point BP  
90 degree  
Application range  
electrical range  
T2  
clamping range  
high  
mechanical range  
T1  
100%VDD  
CLH  
CLH  
T2Y  
0 degree  
180 degree  
T1Y  
CLL  
CLL  
BP  
ping range  
low  
T1  
T2  
clamping range  
low  
270 degree  
7.2.4 Full Scale Mode  
The AS5263 can be programmed as well in he ll scale mode. The BP parmeter defines the position of the transition.  
Figure 6. Full Scale Mode  
100 % VDD  
0
360  
For simplification, Figure 6 describes a linear output voltage from rail to rail (0V to VDD) over the complete rotation range. In practice, this is not  
feasible due to saturation effects of the output stage transistors. The actual curve will be rounded towards the supply rails (as indicated Figure 6).  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
11 - 37  
AS5263  
Datasheet - Detailed Description  
7.2.5 Inverted Dual Channel Output  
The AS5263 can be programmed as described in Figure 7.  
Figure 7. Inverted Slope Output  
electrical range  
mechanical range  
100%VDD  
CLH  
CLH  
T2Y  
T1Y  
CLL  
CLL  
0
100%VDD  
CLH  
CLH  
T1Y  
T2Y  
C
0
CLL  
T1  
T2  
7.2.6 Resolution of the Parametes  
The programming parameters have a wide esolution of up to 14 bits.  
Table 7. Resolution of the Progaming Parameters  
Symbol  
T1  
Parameter  
Resolution  
Note  
Mechanical angle start point  
Mechanical angle stop point  
Mechanical start voltage level  
Mechanical stop voltage level  
Clamping level low  
14 bits  
14 bits  
12 bits  
12 bits  
7 bits  
T2  
T1Y  
T2
CLL  
CLH  
BP  
4096 LSBs is the maximum level  
31 LSBs is the minimum level  
Clamping level high  
7 bits  
Break point  
14 bits  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
12 - 37  
AS5263  
Datasheet - Detailed Description  
Figure 8. Overview of the Angular Output Voltage  
100  
96  
Failure Band High  
Clamping Region High  
CLH  
T2Y  
ApplicaRegion  
T1Y  
CLL  
Clampegion Low  
Failure Band Low  
4
0
Figure 8 gives an overview of the different ranges. The failure bands are used to indicate a wrong operation of the AS5263. This can be caused  
due to a broken suppllne. Busing the specified load resistors, the output level will remain in these bands during a fail. It is recommended to  
set the clamping level CLabove the lower failure band and the clamping level CLH below the higher failure band.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
13 - 37  
AS5263  
Datasheet - Detailed Description  
7.2.7 Analog Output Diagnostic Mode  
Due to the low pin count in the application, a wrong operation must be indicated by the output pin OUT_T, OUT_B. This could be realized using  
the failure bands. The failure band is defined with a fixed level. The failure band low is specified from 0% to 4% of the supply range. The failure  
band high is defined from 100% to 96%. Several failures can happen during operation. The output signal remains in these bands over the  
specified operating and load conditions. All the different failures can be grouped into the internal alarms (failures) and the application related  
failures.  
CLOAD 42 nF, RPU= 2k…5.6kΩ  
R
PD= 2k…5.6kΩ load pull-up  
Table 8. Different Failure Cases of AS5263  
Type  
Failure Mode  
Symbol  
Failure Band  
Note  
Out of magnetic range  
(too less or too high magnetic  
input)  
Could be switched off by one OTP bit  
EXT_RANGE.  
Programmable by OTP bit DIAGIGH  
MAGRng  
High/Low  
Cordic overflow  
Programmable by OTbit DIAG_HIGH  
Programmable by TP bit DIAG_HIGH  
Programle by OTP bit DIAG_HIGH  
Programmable by OTP bit DIAG_HIGH  
COF  
OCF  
WDF  
OF  
High/Low  
High/Low  
High/Low  
Hgh/Low  
Internal alarms (failures)  
Offset compensation finished  
Watchdog fail  
Oscillator fail  
Overvoltage condition  
Broken VDD  
O
Dependent on the load resistor  
Pull up failure band high  
Pull down failure band low  
BVD
BVSS  
SCO  
High/Lw  
gh/Low  
Application related  
failures  
Broken VSS  
Short circuit output  
Switch off short circuit dependent  
For efficient use of diagnostics it is recommended tprogram to clamping leels CLL and CLH.  
7.2.8 Analog Output Driver Paramete
The output stage is configured in a push-pull output. Therefore it is to sink and source currents.  
CLOAD 42 nF, RPU= 2k…5.6kΩ  
R
PD= 2k…5.6kΩ load pull-up  
Table 9. General Parameters for the Output Driver  
Symbol  
IOUTSCL  
IOUTSCH  
TSCDET  
TSCREC  
ILEAKOUT  
BGNDPU  
BGND
BVDDU  
BDDPD  
Parameter  
Min  
8
Typ  
Max  
32  
Unit  
Note  
Short circuit output crrent (low side driver)  
Short circuit outpucurrent (high side driver)  
Short cicuit detection time  
mA  
mA  
VOUT=27V  
-8  
20  
2
-32  
600  
20  
VOUT=0V  
µs  
output stage turned off  
output stage turned on  
VOUT=VDD=5V  
RPU = 2k…5.6k  
RPD = 2k…5.6k  
RPU = 2k…5.6k  
RPD = 2k…5.6k  
Shocircuit recovery time  
ms  
Output Leakage current  
-20  
96  
0
20  
µA  
Output voltage broken GND with pull-up  
Output voltage broken GND with pull-down  
Output voltage broken VDD with pull-up  
Output voltage broken VDD with pull-down  
100  
4
%VDD  
%VDD  
%VDD  
%VDD  
96  
0
100  
4
Note: A Pull-Up/Down load is up to 1kΩ with increased diagnostic bands from 0%-6% and 94%-100%.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
14 - 37  
AS5263  
Datasheet - Detailed Description  
Table 10. Electrical Parameters for the Analog Output Stage  
Symbol  
Parameter  
Min  
4
Typ  
Max  
96  
Unit  
Note  
Output Voltage Range  
VOUT  
% VDD  
6
94  
Valid when 1k RLOAD < 2k  
Output Integral nonlinearity  
Output Differential nonlinearity  
Output Offset  
VOUTINL  
VOUTDNL  
VOUTOFF  
VOUTUD  
10  
LSB  
LSB  
mV  
µs  
-10  
-50  
10  
50  
At 2048 LSB level  
Info parameter  
Update rate of the Output  
100  
Between 10% and 90%RPD  
=1kΩ, CLOAD=1nF; VD=5V  
Output Step Response  
VOUTSTEP  
550  
µs  
%
Output Voltage Temperature drift  
Output ratiometricity error  
VOUTDRIFT  
VOUTRATE  
2
2
Of valat mid code  
-1.5  
1.5  
%VDD 0.04*VDD VOT 0.96*VDD  
1Hz…30kHz;  
mVpp  
Noise1  
VOUTNOISE  
10  
at 2048 LSB level  
1. Not tested in production; characterization only.  
7.3 Pulse Width Modulation (PWM) Output  
The AS5263 provides a pulse width modulated output (PWM), whose duty cycle is proportionl to thmeasured angle. This output format is  
selectable over the OTP memory. If output pins OUT_T, OU_B rconfigured as open drain cnfiguration, then an external load resistor (pull  
up) is required. The PWM frequency is internally trimmed to an accuracy of ±10% ovetemperature range. This tolerance can be cancelled  
by measuring the ratio between the on and off state. In additin, the programmed ampig levels CLL and CLH will also adjust the PWM signal  
characteristic.  
Figure 9. PWM Output Signal  
PWmax  
P
Position 0  
Position 1  
Posn 4094  
Positn 4095  
TPWM = 1/fPWM  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
15 - 37  
AS5263  
Datasheet - Detailed Description  
The PWM frequency can be programmed by the OTP bits PWM_frequency (1:0). Therefore, four different frequencies are possible.  
Table 11. PWM Signal Parameters  
Symbol  
fPWM1  
fPWM2  
fPWM3  
fPWM4  
Parameter  
Min  
Typ  
Max  
Unit  
Hz  
Note  
PWM_frequency (1:0) = “00”  
PWM_frequency (1:0) = “01”  
PWM_frequency (1:0) = “10”  
PWM_frequency (1:0) = “11”  
PWM frequency1  
PWM frequency2  
PWM frequency3  
PWM frequency4  
123.60  
247.19  
494.39  
988.77  
137.33  
274.66  
549.32  
1098.63  
151.06  
302.13  
604.25  
1208.50  
Hz  
Hz  
Hz  
(1+1)*1/  
fPWM  
PWMIN  
PWMAX  
MIN pulse width  
MAX pulse width  
µs  
(1+4094)*1/  
fPWM  
ms  
Taking into consideration the AC characteristic of the PWM output including load, it is recommended to use the clamping funion. The  
recommended range is 0% to 4% and 96% to 100%.  
Table 12. Electrical Parameters for the PWM Output Mode  
Symbol  
PWMVOL  
ILEAK  
Parameter  
Output voltage low  
Output leakage  
Min  
0
Typ  
Max  
0.4  
20  
Unit  
V
Note  
IOUT=8mA  
VOUT=VDD=5V  
-20  
4
µA  
%
PWMDC  
PWM duty cycle range  
96  
Between 75% and 25%  
PU/RPD = 1kΩ,  
CLOAD = 1nF, VDD = 5V  
R
PWMSRF  
PWM slew rate  
1
2
4
V/µs  
7.4 Kick Down Function  
The AS5263 provides a special compare functThis function is implenteusing a programmable angle value with a programmable  
hysteresis. It will be indicated over the open drain output pin KDOWOWN_B. If the actual angle is above the programmable value plus  
the hysteresis, the output is switched to low. The output will remain at level until the value KD is reached in the reverse direction.  
Figure 10. Kick Down Hysteresis Implementation  
KDHYS  
DOWN  
KD(5:0)+KDHYS  
KD(5:0)  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
16 - 37  
AS5263  
Datasheet - Detailed Description  
Table 13. Programming Parameters for the Kick Down Function  
Symbol  
Parameter  
Resolution  
Note  
KD  
Kick Down angle  
6 bits  
KDHYS (1:0) = “00” 8 LSB hysteresis  
KDHYS (1:0) = “01” 16 LSB hysteresis  
KDHYS (1:0) = “10” 32 LSB hysteresis  
KDHYS (1:0) = “11” 64 LSB hysteresis  
KDHYS  
Kick Down Hysteresis  
2 bits  
Pull-up resistance 1k to 5.6K to VDD  
CLOAD max 42nF  
Table 14. Electrical Parameters of the KDOWN Output  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Note  
VKDOWN = 2V  
Short circuit output current  
(Low Side Driver)  
IKDSC  
6
24  
mA  
Short circuit detection time  
Short circuit recovery time  
Output voltage low  
outpt stage turned off  
outut stage turned on  
TSCDET  
TSCREC  
KDVOL  
20  
2
600  
20  
µs  
ms  
V
IKDOWN = 6mA  
0
1.1  
20  
VKDOWN = 5V  
Output leakage  
KDILEAK  
-20  
µA  
Between 75% and 25%,  
KDOWN slew rate (falling edge)  
RPUKDWN = 1kΩ, CLOAD_KDWN  
KDSRF  
1
2
4
V/µs  
= 1nF, VDD = 5V  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
17 - 37  
AS5263  
Datasheet - Application Information  
8 Application Information  
The benefits of AS5263 are as follows:  
Unique fully differential patented solution  
Best protection for automotive applications  
Easy to program  
Flexible interface selection PWM, analog output  
Ideal for applications in harsh environments due to contactless position sensing  
Robust system, tolerant to magnet misalignment, airgap variations, temperature variations and external magnetic fields  
No calibration required because of inherent accuracy  
High driving capability of analog output (including diagnostics)  
8.1 Programming the AS5263  
The AS5263 programming is a one-time-programming (OTP) method, based on polysilicon fuses. The advantage of this ethois that no  
additional programming voltage is needed. The internal LDO provides the current for programming.  
The OTP consists of 128 bits, wherein several bits are available for user programming. In addition, factory settingare stoed in the OTP  
memory. Both regions are independently lockable by built-in lock bits.  
A single OTP cell can be programmed only once. By default, each cell is “0”; a prorammed cell will contain a “1”. While it is not possible to reset  
a programmed bit from “1” to “0”, multiple OTP writes are possible, as lonly unprogrammed “0”-bits are programmed to “1”.  
Independent of the OTP programming, it is possible to overwrite the OTP gister temporarily with an OTP write command. This is possible only  
if the user lock bit is not programmed.  
Due to the programming over the output pin, the device will itially art in the communication mde. In this mode, the digital angle value can be  
read with a specific protocol format. It is a bidirectional communication possible. Paramcan be written into the device. A programming of the  
device is triggered by a specific command. With anothr command (pass2funciothe dvice can be switched into operation mode (analog or  
PWM output). In case of a programmed user lock b, the AS5263 automatically startup in the functional operation mode. No communication of  
the specific protocol is possible after this.  
8.1.1 Hardware Setup  
The pin OUT and the supply connection are required for OTP memorss. Without the programmed Mem_Lock_USER OTP bit, the device  
will start up in the communication mode and will remain into aIDLE operation mode. The pull up resistor RCommunication is required during  
startup. Figure 1 shows the configuration of an AS5263.  
Figure 11. Programming Schematic of the AS5263  
SENSOR PCB  
VDD_X  
VDD_X  
1uF  
Programmer  
AS5263  
VDD  
DIO  
RCommunication  
VDD5_X  
VDD3_X  
OUT_X  
KDOWN_X  
2.2uF  
(low ESR)  
0.3 ohm  
2.2uF  
(low ESR)  
GNDA_X GNDD_X GNDP_X  
GND  
GND  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
18 - 37  
AS5263  
Datasheet - Application Information  
8.1.2 Protocol Timing and Commands of Single Pin Interface  
During the communication mode, the output level is defined by the external pull up resistor RCommunication. The output driver of the device is in tri-  
state. The bit coding (see Figure 18) has been chosen in order to allow the continuous synchronization during the communication, which can be  
required due to the tolerance of the internal clock frequency. Figure 18 shows how the different logic states '0' and '1' are defined. The period of  
the clock TCLK is defined with 222.2 ns.  
The voltage levels VH and VL are CMOS typical.  
Each frame is composed by 20 bits. The 4 MSB (CMD) of the frame specifies the type of command that is passed to the AS5263. The 16 data  
bits contain the communication data. There will be no operation when the ‘not specified’ CMD is used. The sequence is oriented in such a way  
that the LSB of the data is followed by the command. The number of frames vary depending on the command. The single pin programming  
interface block of the AS5263 can operate in slave communication or master communication mode. In the slave communication mode, the  
AS5263 receives the data organized in frames. The programming tool is the driver of the single communication line and can pull down the levl.  
In case of the master communication mode, the AS5263 transmits data in the frame format. The single communication line can be pulled ow
by the AS5263.  
Figure 12. Bit Coding of the Single Pin Programming Interface  
Bit “0”  
Bit “1”  
V
H
V
H
V
L
T
T
2
T
1
T
1
T = 1* T  
1
T
BIT  
= T + T = 512 * T  
1 2 CLK  
T = 384
2
Figure 13. Protocol Definition  
IE STAT  
PACKET  
IDLE START  
DATA  
COMMAND  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
19 - 37  
AS5263  
Datasheet - Application Information  
Table 15. OTP Commands and Communication Interface Modes  
AS5263  
Communication Mode  
Possible Interface  
Description  
Command Number of  
Commands  
CMD  
Frames  
UNBLOCK  
WRITE128  
Resets the interface  
SLAVE  
SLAVE  
0x0  
1
0x9  
(0x1)  
Writes 128 bits (user + factory settings) into the device  
8
READ128  
UPLOAD  
DOWNLOAD  
FUSE  
Reads 128 bits (user + factory settings) from the device  
Transfers the register content into the OTP memory  
Transfers the OTP content to the register content  
Command for permanent programming  
SLAVE and MASTER  
SLAVE  
0xA  
0x6  
0x5  
0x4  
0x7  
xB  
0xC  
9
1
1
1
1
2
1
SLAVE  
SLAVE  
PASS2FUNC  
READ  
Change operation mode from communication to operation  
Read related to address the user data  
SLAVE  
SLAVE and MASTER  
SLAVE  
WRITE  
Write related to address the user data  
Note: Other commands are reserved and shall not be used.  
When single pin programming interface bus is in high impedance statee logical level of the bus is held by the pull up resistor RCommunication  
.
Each communication begins by a condition of the bus level which is calART. This is done by cing the bus in logical low level (done by  
the programmer or AS5263 depending on the communication mode). Aftwards the bit information of e command is transmitted as shown in  
Figure 14.  
Figure 14. Bus Timing for the WRITE128 Command  
START  
IDLE  
DATA1  
DATA0  
DATA2  
DATA14  
1
0 0 1  
1
0 0 0  
1
0 0 0  
20*TBIT  
Figure 15. Bus Timing for the READ12Command  
START  
IDLE  
DO NOT CARE  
20*TBIT  
DO NOT ARE  
DATA1  
DATA0  
DATA3  
DATA14  
0
1
0
1
IDLE  
0
0 0 P  
0
0 0 P  
Slave Communication Mode  
Master Communication Mode  
TSW  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
20 - 37  
AS5263  
Datasheet - Application Information  
In case of READ or READ128 command (see Figure 15) the idle phase between the command and the answer is 10 TBIT (TSW).  
Figure 16. Bus Timing for the READ Commands  
START  
IDLE  
ADDR2  
ADDR1  
DATA1  
DATA0  
0
1
0
1
IDLE  
0
0 0 P  
20*TBIT  
Slave Communication Mode  
TSW  
Master Communication Mode  
In case of a WRITE command, the device stays in slave communication mode nd will ot switch to master commuication mode.  
When using other commands like DOWNLOAD, UPLOAD, etc. instead of REAor WRE, it does not mater wht is written in the address  
fields (ADDR1, ADDR2).  
8.1.3 UNBLOCK  
The Unblock command can be used to reset only the one-wire interface of the AS5263 in order to rcover the possibility to communicate again  
without the need of a POR after a stacking event due to noison the bus line or misalignment ith the AS5263 protocol.  
The command is composed by a not idle phase of at leas6 TBIT followed by a packeh all 20 bits at zero (see Figure 17).  
Figure 17. Unblock Sequence  
VH  
PACKET[19:0] = 0x00000  
NOT IDLE  
START  
IDLE  
IDLE  
VL  
= 6 * TBIT => 3072* TCLK  
512*TK = 512*TCLK  
20*TBIT => 10240*TCLK  
= 512*TCLK  
COMMAND FROM EXT MASTER  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
21 - 37  
AS5263  
Datasheet - Application Information  
8.1.4 WRITE128  
Figure 18 illustrates the format of the frame and the command.  
Figure 18. Frame Organization of the WRITE128 Command  
DATA1  
DATA0  
DATA2  
DATA4  
DATA6  
DATA8  
ATA10  
DATA12  
DATA14  
CMD  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSLSB  
MSB LSB  
SB LSB  
MSB LSB  
MSB LSB  
MSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
1
0
0
1
DATA3  
DATA5  
DATA7  
DATA9  
DATA11  
DATA13  
DATA15  
CMD  
MSB LSB  
MSB  
1
0
0
0
CMD  
MSB LSB  
MSB  
0
0
0
CMD  
MSB LSB  
MSB  
1
0
0
0
CMD  
MSB LSB  
MSB  
1
0
0
0
CMD  
MSB LSB  
MSB  
1
0
0
0
CMD  
MSB LSB  
MSB  
1
0
0
0
CMD  
MSB LSB  
MSB  
1
0
0
0
The command cntain8 frames. With this command, the AS5263 receives only frames. This command will transfer the data in the special  
function rers (SFRs) of the device. The data is not permanent programmed using this command.  
Tle 16 dcribe the organization of the OTP data bits.  
The acess is performed with CMD field set to 0x9. The next 7 frames with CMD field set to 0x1. The 2 bytes of the first command will be written  
at address 0 and 1 of the SFRs; the 2 bytes of the second command will be written at address 2 and 3; and so on, in order to cover all the 16  
bytes of the 128 SFRs.  
Note: It is important to always complete the command. All 8 frames are needed. In case of a wrong command or a communication error, a  
power on reset must be performed. The device will be delivered with the programmed Mem_Lock_AMS OTP bit. This bit locks the  
content of the factory settings. It is impossible to overwrite this particular region. The written information will be ignored.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
22 - 37  
AS5263  
Datasheet - Application Information  
8.1.5 READ128  
Figure 19 illustrates the format of the frame and the command.  
Figure 19. Frame Organization of the READ128 Command  
DO NOT CARE  
DO NOT CARE  
DATA0  
CMD  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSLSB  
MSB LSB  
B LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
0
1
0
1
DATA1  
DATA3  
DATA5  
DATA7  
DATA9  
DATA11  
DATA13  
DATA15  
CMD DUMMY  
MSB  
0
0
0
P
P
P
P
P
P
P
P
DATA2  
CMD DUMY  
MSB  
0
0
DATA4  
CMD DUMMY  
MSB  
0
0
0
DATA6  
CMD DUMMY  
MSB  
0
0
0
DATA8  
CMD DUMMY  
MSB  
0
0
0
DATA10  
DATA12  
DATA14  
CMD DUMMY  
MSB  
0
0
0
CMD DUMMY  
MSB  
0
0
0
CMD DUMMY  
MSB  
0
0
0
The command is composed by a first frame transmitted to the AS5263. The device is in slave communication mode. The device remains for the  
time TSWITCH in IDLE mode before changing into the master communication mode. The AS5263 starts to send 8 frames. This command will read  
the SFRs. The numbering of the data bytes correlates with the address of the related SFR.  
An even parity bit is used to guarantee a correct data transmission. Each parity (P) is related to the frame data content of the 16 bit word. The  
MSB of the CMD dummy (P) is reserved for the parity information.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
23 - 37  
AS5263  
Datasheet - Application Information  
8.1.6 DOWNLOAD  
Figure 20 shows the format of the frame.  
Figure 20. Frame Organization of the DOWNLOAD Command  
DO NOT CARE  
DO NOT CARE  
CMD  
MSB LSB  
MSB LSB  
MSB  
LSB  
1
0
1
0
The command consists of one frame received by the AS5263 (slave communication mode). The OTP cell fuse content will be downloadinto  
the SFRs.  
The access is performed with CMD field set to 0x5.  
8.1.7 UPLOAD  
Figure 21 shows the format of the frame.  
Figure 21. Frame Organization of the UPLOAD Command  
DO NOT CARE  
DO NOT CARE  
CMD  
MSLSB  
MSB LSB  
MSB  
LSB  
0
1
1
0
The command consists of one frame received by the AS5263 (slave unication mode) and transfers the data from the SFRs into the OTP  
fuse cells. The OTP fuses are not permanent programmed ung this command.  
The access is performed with CMD field set to 0x6.  
8.1.8 FUSE  
Figure 22 shows the format of the frame.  
Figure 22. Frame Organization of the FUE Command  
O NOT CARE  
DO NOT CARE  
CMD  
MSB LSB  
MSB LSB  
MSB  
LSB  
0
0
1
0
The command consists of one frame received by the AS5263 (slave communication mode) and it is giving the trigger to permanent program the  
non volatile fuse elements.  
The access is performed with CMD field set to 0x4.  
Note: After this command, the device automatically starts to program the built-in programming procedure. It is not allowed to send other com-  
mands during this programming time. This time is specified to 4ms after the last CMD bit.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
24 - 37  
AS5263  
Datasheet - Application Information  
8.1.9 PASS2FUNC  
Figure 23 shows the format of the frame.  
Figure 23. Frame Organization of the PASS2FUNCTION Command  
DO NOT CARE  
DO NOT CARE  
CMD  
MSB LSB  
MSB LSB  
MSB  
LSB  
1
1
1
0
The command consists of one frame received by the AS5263 (slave communication mode). This command stopthe communication receiving  
mode, releases the reset of the DSP of the AS5263 device and starts to work ifunctial mode with the values of e SFR currently written.  
The access is performed with CMD field set to 0x7.  
8.1.10 READ  
Figure 24 shows the format of the frame.  
Figure 24. Frame Organization of the READ Command  
ADDR2  
DATA2  
ADDR1  
DATA1  
CMD  
MSB LSB  
MSLSB  
MSB LSB  
MSB  
LSB  
LSB  
1
1
0
1
CMD DUMMY  
MSB  
0
0
0
P
The command is compoed by a first frame sent to the AS5263. The device is in slave communication mode. The device remains for the time  
TSWITCH in IDLE mode before changing into the master communication mode. The AS5263 starts to send the second frame transmitted by the  
AS5263.  
The acceperformed with CMD field set to 0xB.  
Whn the AS5263 receives the first frame, it sends a frame with data value of the address specified in the field of the first frame.  
Table 1shows the possible readable data information for the AS5263 device.  
An even parity bit is used to guarantee a correct data transmission. The parity bit (P) is generated by the 16 data bits. The MSB of the CMD  
dummy (P) is reserved for the parity information.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
25 - 37  
AS5263  
Datasheet - Application Information  
8.1.11 WRITE  
Figure 25 shows the format of the frame.  
Figure 25. Frame Organization of the WRITE Command  
DATA  
ADDR  
CMD  
MSB LSB  
MSB LSB  
MSB  
LSB  
0
0
1
1
The command consists of one frame received by the AS5263 (slave communition moe). The data byte will be written to the address. The  
access is performed with CMD field set to 0xC.  
Table 17 shows the possible write data information for the AS5263 devi
Note: It is not recommended to access OTP memory addresses using his command.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
26 - 37  
AS5263  
Datasheet - Application Information  
8.2 OTP Programming Data  
Table 16. OTP Data Organization  
Data Byte  
Bit Number  
Symbol  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
AMS_Test  
ChipID<0>  
ChipID<1>  
ChipID<2>  
ChipID<>  
CipID4>  
ChipD<5>  
ChipID<6>  
ChipID<7>  
ChipID<8>  
ChipID<
CipID<10>  
hipID<11>  
ipID<12>  
ChipID<13>  
ChipID<14>  
ChipID<15>  
ChipID<16>  
ChipID<17>  
ChipID<18>  
ChipID<19>  
Default  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
S  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
Description  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
5
6
7
DATA15  
(0x0F)  
AMS Test Area  
DATA14  
(0x0E)  
DATA13  
(0x0D)  
Chip ID  
DATA12  
(0x0C)  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
27 - 37  
AS5263  
Datasheet - Application Information  
Table 16. OTP Data Organization  
Data Byte  
Bit Number  
Symbol  
ChipID<20>  
MemLock_AMS  
KD<0>  
Default  
Description  
Chip ID  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
FS  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Lock of the Factory Setting Area  
KD<1>  
DATA11  
(0x0B)  
KD<2>  
Kick Down Threshold  
KD<3>  
KD<4>  
KD<5>  
ClampLow<0>  
ClampLow<1>  
ClampLow<2>  
ClampLow<3>  
ClampLow<4>  
ClampLow<5>  
ClampLow<6>  
DAC_MODE  
ClampHi0>  
Clampi<1>  
ClapHi<2>  
CampHi<3>  
ClampHi<4>  
ClampHi<5>  
ClampHi>  
Clamping vel Lo
DAC12/DAC10 Mode  
Clamping Level High  
DATA10  
(0x0A)  
DATA9  
(0x09)  
Diagnostic Mode, default=0 for  
Failure Band Low  
7
DG_HIGH  
0
0
1
2
3
4
5
6
7
setIn<0>  
OffsetIn<1>  
OffsetIn<2>  
OffsetIn<3>  
OffsetIn<4>  
OffsetIn<5>  
OffsetIn<6>  
OffsetIn<7>  
0
0
0
0
0
0
0
0
DATA8  
(0x08)  
Offset  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
28 - 37  
AS5263  
Datasheet - Application Information  
Table 16. OTP Data Organization  
Data Byte  
Bit Number  
Symbol  
OffsetIn<8>  
OffsetIn<9>  
OffsetIn<10>  
OffsetIn<11>  
OffsetIn<12>  
OffsetIn<13>  
OP_Mode<0>  
OP_Mode<1>  
OffsetOut<0>  
OffsetOut<1>  
OffsetOut<2>  
OffsetOut<3>  
OffsetOut<4>  
OffsetOut<5>  
OffsetOut<6>  
OffsetOut<7>  
OffsetOu8>  
Offsetut<9>  
ffseOut<10>  
OfetOut<11>  
KDHYS<0>  
KDHYS<1>  
PWM Frequecy<0>  
PWM Frequency<1>  
BP0>  
Default  
Description  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Offset  
DATA7  
(0x07)  
Selection of Analog=‘00’ or PWM  
Mode=‘01’  
DATA6  
(0x06)  
Output Offset  
DATA5  
(0x05)  
Kick Down Hysteresis  
Select the PWM frequency (4  
frequencies)  
BP<1>  
BP<2>  
BP<3>  
DATA4  
(0x04)  
Break Point  
BP<4>  
BP<5>  
BP<6>  
BP<7>  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
29 - 37  
AS5263  
Datasheet - Application Information  
Table 16. OTP Data Organization  
Data Byte  
Bit Number  
Symbol  
BP<8>  
Default  
Description  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BP<9>  
BP<10>  
Break Point  
BP<11>  
DATA3  
(0x03)  
BP<12>  
BP<13>  
FAST_SLOW  
EXT_RANGE  
Gain<0>  
Gain<1>  
Gain<2>  
Gain<3>  
Gain<4>  
Gain<5>  
Gain<6>  
Gain<7>  
Gain<8
Gain9>  
Gan<10>  
ain<11>  
Gain<12>  
Gain<13>  
Output Data Rate  
Enables a wider z-Range  
DATA2  
(0x02)  
Gain  
Gain  
DATA1  
(0x01)  
Clockwise /Counterclockwise  
rotation  
6
Invert_Sloe  
0
7
0
1
2
3
4
5
6
7
Lock_OTPCUST  
rndancy<0>  
rdundancy<1>  
redundancy<2>  
redundancy<3>  
redundancy<4>  
redundancy<5>  
redundancy<6>  
redundancy<7>  
0
0
0
0
0
0
0
0
0
Customer Memory Lock  
DATA0  
(0x00)  
Redundancy Bits  
te: Fatory settings (FS) are used for testing and programming at AMS. These settings are locked (only read access possbile).  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
30 - 37  
AS5263  
Datasheet - Application Information  
Data Content.  
Redundancy (7:0): For a better programming yield, a redundancy is implemented. In case the programming of one bit fails, then this  
function can be used. With an address (7:0) one bit can be selected and programmed.  
Lock_OTPCUST = 1, locks the customer area in the OTP and the device, from hereon, starts in operating mode.  
Redundancy Code  
OTP Bit Selection  
Redundancy <7:0>  
in decimal  
0
1
none  
OP_Mode<1>  
2
DIAG_HIGH  
3
PWM Frequency<0>  
ClampHi<6> - ClampHi<0>  
ClampLow<6> - ClampLow<0>  
OP_Mode<0>  
4 - 10  
11 - 17  
18  
19 - 32  
33 - 46  
47 - 60  
61 - 72  
73  
OffsetIn<13> - OffsetIn<0>  
Gain<13> - Gain<0>  
BP<13> - BP<0>  
OffsetOut<11> - OffsetOut<0>  
Invert_Slope  
74  
FAST_SLOW  
75  
EXT_RANGE  
76  
DAC_MODE  
77  
Lock_OTPCUST  
78 - 83  
84 - 85  
86  
KD<5> - KD<0>  
KDHYS<1> - KDHS<0>  
PWM Frequenc>  
Invert_Slope = 1, inverts the output characteristic in analog output mode  
Gain (7:0): With this value, the steepness of the output slpe an be adjusted  
EXT_RANGE = 1, provides a wider z-Range of thmagnet by turning off the alarm function  
FAST_SLOW = 1, improves the noise perfrmce due to internal filtering  
BP (13:0): The breakpoint can be set with retion of 14-bit  
PWM Frequency (1:0): Four differenfreqency settings are possible. Please refer to Table 11.  
KDHYS (1:0): Avoids flickering at thKDOWN output (pin 11). For settings, refer to Table 12.  
OffsetOut (11:0): Output haracteristic parameter  
ANALOG_PWM = 1, sects the PWM output mode  
OffsetIn (13:0): Outut characteristic parameter  
DIAG_HIGH = 1: case of an error, the signal goes into high failure-band.  
Clam(6:0): Sets the clamping level high with respect to VDD.  
DAC_MODE disables filter at DAC  
ClmpLow (6:0): Sets the clamping level low with respect to VDD  
KD (5:0): Sets the kick-down level with respect to VDD  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
31 - 37  
AS5263  
Datasheet - Application Information  
8.2.1 Read / Write User Data  
Table 17. Read / Write Data  
Area  
Address  
Address  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Region  
0x10  
0x11  
0x12  
0x17  
16  
17  
18  
23  
CORDIC_OUT[7:0]  
CORDIC_OUT[13:8]  
0
0
OCF  
COF  
0
0
0
0
DSP_RES R1K_10K  
AGC_VALUE[7:0]  
Read only  
Read and Write  
Data Content:  
Data only for read:  
CORDIC_OUT(13:0): 14-bit absolute angular position data  
OCF (Offset Compensation Finished): logic high indicates the finished Offset Compensation Algorithm. As n as his bit is set, the  
AS5263 has completed the startup and the data is valid.  
COF (Cordic Overflow): Logic high indicates an out of range error in the CRDIC part. When this bit is et, hCORDIC_OUT(13:0) data is  
invalid. The absolute output maintains the last valid angular values alarm may be resolved by bringing the magnet within the X-Y-Z  
tolerance limits.  
AGC_VALUE (7:0): Magnetic field indication  
Data for write and read:  
DSP_RES resets the DSP part of the AS5263 the default value is 0. This is activ. The interface is not affected by this reset.  
R1K_10K defines the threshold level for the OTP ses. This bit can be changd for verification purpose. A verification of the programming  
of the fuses is possible. The verification is madatory after programming.  
8.2.2 Programming Procedure  
Note: After programming the OTP fuses, a verification is mandate procedure described below must be strictly followed to ensure  
properly programmed OTP fuses.  
Pull-up on OUT pin  
VDD=5V  
Wait startup time, device enters communicatiode.  
Write128 command: The trimming bs are written in the SFR memory.  
Read128 command: The trimminbits are read back.  
Compare read data to previos writtn data. If the data matches, then proceed further.  
Upload command: The SFmemory is transferred into the OTP RAM.  
Fuse command: The OTRAM is written in the Poly Fuse cells.  
Wait fuse time (6ms)  
Write commnd (R1K_10K=1): Poly Fuse cells are transferred into the RAM cells compared with 10KΩ resistor.  
Dowd command: The OTP RAM is transferred into the SFR memory.  
Read128 command: The fused bits are read back.  
Cmpare read data to previous written and read data. If the data matches, then proceed further.  
Write command (R1K_10K=0): Poly Fuse cells are transferred into the RAM cells compared with 1KΩ resistor.  
Download command: The OTP RAM is transferred into the SFR memory.  
Read128 command: The fused bits are read back.  
Compare read data to previous written and two times read data. If the data matches, then proceed further.  
Pass2Func command or POR: Go to Functional mode.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
32 - 37  
AS5263  
Datasheet - Application Information  
An equal output of all read out data is sufficient to verify the OTP programming. If the data output is a mismatch, then the programming of the  
OTP was not successful and can cause a change of the OTP register content during operation over temperature and life time.  
8.2.3 Physical Placement of the Magnet  
The best linearity can be achieved by placing the center of the magnet exactly over the defined center of the chip as shown in Figure 26.  
Figure 26. Defined Chip Center and Magnet Displacement Radius  
Defined  
center  
Rd  
Area of recommended maium  
magnet misalignment  
8.2.4 Magnet Placement  
The magnet’s center axis should be aligned within a diplacement radius Rd of 0mm arger magnets allow more displacement) from the  
defined center of the IC.  
The magnet may be placed below or above the evicThe distance shoube chsen such that the magnetic field on the die surface is within  
the specified limits (see Figure 26). The typicaance “z” between the magnt and the package surface is 0.5mm to 1.5mm, provided the  
recommended magnet material and dimension(6mm x 3mm) are rger distances are possible, as long as, the required magnetic field  
strength stays within the defined limits.  
However, a magnetic field outside the specified range may stprodce usable results, but the out-of-range condition will be indicated by an  
alarm forcing the output into the failure band.  
Figure 27. Vertical Placement of the Magnet  
N
S
Package surface  
Die surface  
z
Die 1  
Die 2  
0.561mm  
±0.075mm  
0.850mm  
nom.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
33 - 37  
AS5263  
Datasheet - Package Drawings and Markings  
9 Package Drawings and Markings  
The device is available in a 32-pin QFN (7x7mm) package.  
Figure 28. Package Drawings and Dimensions  
YYWWIZZ  
AS5263  
Symbol  
A
Min  
0.80  
0
Typ  
0.90  
Max  
1.00  
0.05  
1.00  
-
A1  
A2  
A3  
L
0.02  
-
0.65  
-
0.20 REF  
0.60  
0.50  
0º  
0.75  
14º  
Θ
b
0.23  
0.28  
7.00 BSC  
7.00 BSC  
0.65 BSC  
6.75 BSC  
6.75 BSC  
4.80  
0.35  
D
E
e
D1  
E1  
D2  
E2  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
4.70  
4.0  
4.70  
4.80  
.90  
Notes:  
1. Dimensions and tolerancing conform to ASME Y14.5M-  
-
-
-
-
-
0.15  
-
-
-
-
-
-
0.10  
1994.  
0.0  
2. All dimensions are in miilimeters. Angles are in degrees.  
0.05  
3. Coplanarity applies to the exposed heat slug as well as the  
terminal.  
0.08  
0.10  
4. Radius on terminal is optional.  
N
32  
5. N is the total number of terminals.  
Marking: YYWWIZZ.  
YY  
WW  
I
ZZ  
Last two digits of the Manufacturing Year  
Manufacturing Week  
Plant Identifier  
Traceability Code  
Note: IC’s marked with a white dot or the letters “ES” denote Engineering samples.  
www.austriamicrosystems.com/AS5263 Revision 1.4  
34 - 37  
AS5263  
Datasheet - Revision History  
Revision History  
Revision  
Date  
Owner  
Description  
1.0  
1.1  
May 31, 2010  
apg/rfu  
Initial version  
Updated Absolute Maximum Ratings, Operating Conditions, Magnetic Input  
Specification, Electrical System Specifications, Figure 3, Table 5, Table 6,  
Table 9, Table 10, Table 14, Table 15, page 31, Programming Procedure,  
Figure 26, Figure 27, Package Drawings and Markings.  
Oct 14, 2010  
rfu  
Deleted chapter on “Choosing the Proper Magnet”.  
Updated Absolute Maximum Ratings, Package Drawings and Markings.  
Dec 14, 2010  
Jan 12, 2011  
1.2  
Updated Figure 26 and Figure 28. Removed “AS5263 Stacked Die  
Technology” diagram.  
mub  
Updated Electrical System Specifications, Application Specific Angular ange  
Programming.  
1.3  
1.4  
Apr 08, 2011  
May 11, 2011  
Updated Programming Procedure.  
Note: Typos may not be explicitly mentioned under revision history.  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
35 - 37  
AS5263  
Datasheet - Ordering Information  
10 Ordering Information  
The devices are available as the standard products shown in Table 18.  
Table 18. Ordering Information  
Ordering Code  
Description  
Delivery Form  
Package  
AS5263-HQFT  
Redundant 12-bit Magnetic Rotary Encoder  
Tape & Reel  
32-pin QFN (7x7mm)  
Note: All products are RoHS compliant and austriamicrosystems green.  
Buy our products or get free samples online at ICdirect: http://www.austriamicrosystems.com/ICdirect  
Technical Support is available at http://www.austriamicrosystems.com/Technical-Support  
For further information and requests, please contact us mailto: sales@austriamicrosystems.com  
or find your local distributor at http://www.austriamicrosystems.com/distributor  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
36 - 37  
AS5263  
Datasheet - Copyrights  
Copyrights  
Copyright © 1997-2011, austriamicrosystems AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®.  
All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of  
the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale.  
austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding  
the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and pries
any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG fo
current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature rae,  
unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment ar
specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100  
parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamirosysms AG shall not  
be liable to recipient or any third party for any damages, including but not limiteto personal injury, property dam, loss f profits, loss of use,  
interruption of business or indirect, special, incidental or consequential damags, of any ind, in connection with or arig out of the furnishing,  
performance or use of the technical data herein. No obligation or liability to recient or ny third party shall risoflow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales OfficeDistributors and Representatives, please visit:  
http://www.austriaicrosystems.com/contact  
www.austriamicrosystems.com/AS5263  
Revision 1.4  
37 - 37  

相关型号:

AS5263-HQFT

12-Bit Redundant Automotive Angle Position Sensor
AMSCO

AS52A10

Step Recovery Diode, Silicon,
ASI

AS52A42

Step Recovery Diode, Silicon,
ASI

AS52A51

Step Recovery Diode, Silicon,
ASI

AS52A52

Step Recovery Diode, Silicon,
ASI

AS52B10

Step Recovery Diode, Silicon,
ASI

AS52B42

Step Recovery Diode, Silicon,
ASI

AS52B51

Step Recovery Diode, Silicon,
ASI

AS52B52

Step Recovery Diode, Silicon,
ASI

AS52C10

Step Recovery Diode, Silicon,
ASI

AS52C42

Step Recovery Diode, Silicon,
ASI

AS52C51

Step Recovery Diode, Silicon,
ASI