AS8515-ZMFM [AMSCO]

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications; 数据采集​​系统的电源管理和LIN收发器,用于12V电池传感器的应用
AS8515-ZMFM
型号: AS8515-ZMFM
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
数据采集​​系统的电源管理和LIN收发器,用于12V电池传感器的应用

电池 传感器
文件: 总65页 (文件大小:557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS8515  
Data Acquisition System with Power Management and LIN Transceiver  
for 12V Battery Sensor Applications  
Internal temperature sensor  
1 General Description  
Synchronous acquisition for both ADC channels  
The AS8515 is designed for simultaneous measurement of shunt  
Reference-voltage source (high precision and high stability)  
current sensor signal and battery voltage by two independent ADC  
Offset auto zero architecture on both channels  
channels. Both channels can measure small signals up to ±219 mV  
versus ground through programmable gain amplifier or larger signals  
in the 1V range without amplifier. After analog to digital conversion  
and digital filtering, the resulting digital values are accessible through  
4-wire serial interface. The device is powered directly from the  
battery through LDO and provides a 3.3V supply for an external  
microcontroller. For communication with the next level ECU, the  
device offers a LIN 2.1 transceiver. Measurement of battery voltage  
is supported through resistive attenuator with disable for power  
saving in standby.  
Current monitoring comparator with interrupt signal generation  
and µC clock enable. Timer with 2 related outputs for single  
shot sampling of current and voltage channel in low power  
mode.  
Precision on chip RC oscillator or external clock. Low slew, low  
EMC clock output which can be used by external  
microcontroller which is enabled respectively disabled by mode  
control through SPI and interrupt from current monitor in low  
power mode.  
The device is a stacked die system providing a high voltage CMOS  
IC for power management and transceiver functions as a Top die  
and low voltage sensor interface functions as a Bottom die inside  
a 32-pin MLF (5x5 mm) package.  
The integrated circuit can execute measurements with internal and  
external sensors and sources for the voltage channel and with  
external sensor for the current channel.  
External Sensors:  
Current measurement via Shunt resistor (4 ranges)  
2 Key Features  
A precision voltage attenuator with power down facility  
Battery voltage (internal voltage divider to battery)  
ETR and ETS for external temperature sensor (with switchable  
LIN 2.1 transceiver  
current source)  
Power-On Reset with programmable reset timeout and brown-  
Internal Sensors:  
out detection through factory setting  
On chip temperature sensor  
A window Watchdog function in the normal mode and a timeout  
Watchdog in the device standby mode as a factory option  
Internal current sources for functional test of measurement path  
and the connection of shunt resistor  
Load dump protection (42V) for all battery supplied pins and  
Enable pin  
3 Applications  
The AS8515 is suitable for battery sensors, having shunt current  
sensor at minus pole. For lead acid, Li-Ion batteries up to 18V  
nominal, 42V over voltage capability.  
The device is also ideal as a general purpose sensor interface for  
automotive LIN slaves.  
Internal reverse polarity protection (up to -27V) for all battery-  
sensing pins, and LIN bus pin  
Over temperature warning & shutdown functions  
Two independent high resolution A/D converters with  
programmable over sampling ratio  
Programmable sampling rate up to 4kHz throughput  
Programmable gain, low noise amplifier for current channel with  
gain stages 5, 25, 40, 100  
www.ams.com  
Revision 0.7  
1 - 65  
AS8515  
Datasheet - Applications  
Figure 1. AS8515 Block Diagram  
AVDD  
VCC  
MEN  
DVDD  
To voltage  
Channel ADC  
Voltage Channel  
Multiplexer,  
VSUP  
LDO  
Current Source  
CHOP_CLK  
CLK  
AS8515  
Low  
Precision  
Clock  
LPM  
High  
Precision  
Clock  
Control  
Logic  
POR_VSUP  
POR_VCC  
Current Channel ADC  
DEC  
RSHH  
RSHL  
PGA  
Temperature  
Limiter  
VSENSE  
Voltage Channel ADC  
DEC  
VSENSE_IN  
PGA  
VSENSE_GND  
SPI,  
Diagnosis,  
WWD  
SPI,  
Comparator,  
Filter Option  
Reference  
Generator  
LIN  
LIN  
www.ams.com  
Revision 0.7  
2 - 65  
AS8515  
Datasheet - Contents  
Contents  
1 General Description ..................................................................................................................................................................  
2 Key Features.............................................................................................................................................................................  
3 Applications...............................................................................................................................................................................  
4 Pin Assignments .......................................................................................................................................................................  
4.1 Pin Descriptions....................................................................................................................................................................................  
5 Absolute Maximum Ratings ......................................................................................................................................................  
6 Electrical Characteristics...........................................................................................................................................................  
1
1
1
5
5
7
8
6.1 Operating Conditions............................................................................................................................................................................  
6.2 DC/AC Characteristics for Digital Inputs and Outputs..........................................................................................................................  
8
8
6.3 System Specifications ........................................................................................................................................................................ 10  
7 AS8515 Top Die Overview...................................................................................................................................................... 11  
7.1 Voltage Attenuator.............................................................................................................................................................................. 11  
7.2 Voltage Regulators (LDO) .................................................................................................................................................................. 11  
7.3 LIN Transceiver .................................................................................................................................................................................. 11  
7.4 Temperature Monitor/Limiter............................................................................................................................................................... 11  
7.5 VSUP Under-voltage Reset................................................................................................................................................................ 12  
7.6 Reset .................................................................................................................................................................................................. 12  
7.7 VCC Under-voltage Reset.................................................................................................................................................................. 12  
7.8 Window Watchdog (WWD)................................................................................................................................................................. 13  
7.9 Timeout Watchdog (TWD).................................................................................................................................................................. 13  
7.10 Modes of Operation.......................................................................................................................................................................... 14  
7.10.1 Normal Mode ........................................................................................................................................................................... 15  
7.10.2 Standby Mode.......................................................................................................................................................................... 15  
7.10.3 Temporary Shutdown Mode .................................................................................................................................................... 15  
7.10.4 Thermal Shutdown Mode......................................................................................................................................................... 15  
7.11 Initialization....................................................................................................................................................................................... 16  
7.12 Wake-up ........................................................................................................................................................................................... 17  
7.12.1 Remote Wake-up Event........................................................................................................................................................... 17  
7.13 LIN BUS Transceiver........................................................................................................................................................................ 18  
7.13.1 Transmit Mode......................................................................................................................................................................... 18  
7.13.2 Receive Mode.......................................................................................................................................................................... 18  
7.14 Rx and Tx Interface .......................................................................................................................................................................... 19  
7.14.1 Input Tx.................................................................................................................................................................................... 19  
7.14.2 Output Rx................................................................................................................................................................................. 19  
7.15 MODE Input EN................................................................................................................................................................................ 20  
7.16 Top Die Block Specifications ............................................................................................................................................................ 21  
7.16.1 Voltage Attenuator................................................................................................................................................................... 21  
7.16.2 Voltage Regulator (LDO) ......................................................................................................................................................... 22  
7.16.3 VCC Power-on-Reset .............................................................................................................................................................. 22  
7.16.4 VSUP Power-on-Reset............................................................................................................................................................ 22  
7.16.5 Window Watchdog Timer......................................................................................................................................................... 23  
7.16.6 LIN Transceiver ....................................................................................................................................................................... 23  
7.17 Timing Diagrams .............................................................................................................................................................................. 24  
www.ams.com  
Revision 0.7  
3 - 65  
AS8515  
Datasheet - Contents  
7.17.1 Tx Timeout Watchdog.............................................................................................................................................................. 26  
7.17.2 Temperature Limiter ................................................................................................................................................................ 26  
7.18 Top Die Registers ............................................................................................................................................................................. 26  
8 AS8515 Bottom Die Overview ................................................................................................................................................ 28  
8.1 Current Measurement Channel .......................................................................................................................................................... 28  
8.2 Voltage/Temperature Measurement Channel..................................................................................................................................... 28  
8.3 Digital Implementation of Measurement Path..................................................................................................................................... 29  
8.4 Reference-Voltage.............................................................................................................................................................................. 29  
8.5 Oscillators........................................................................................................................................................................................... 29  
8.6 Power-On Reset................................................................................................................................................................................. 29  
8.7 Modes of Operation............................................................................................................................................................................ 30  
8.7.1 Normal Mode 1 (NOM1) ............................................................................................................................................................ 31  
8.7.2 Normal Mode 2 (NOM2) ............................................................................................................................................................ 31  
8.7.3 Standby Mode1 (SBM1) ............................................................................................................................................................ 32  
8.7.4 Standby Mode2 (SBM2) ............................................................................................................................................................ 33  
8.8 Initialization Sequence at Power ON.................................................................................................................................................. 33  
8.8.1 Soft-reset of Device Using Bit D[7] of Reset Register 0x09....................................................................................................... 34  
8.8.2 Soft-reset of the Measurement Path Using Bit D[7] of Reset Register 0x09 ............................................................................. 35  
8.8.3 Reconfiguring Gain Setting of PGA .......................................................................................................................................... 35  
8.8.4 Configuring the Device During Normal Mode ............................................................................................................................ 35  
8.8.5 Standby Mode - Power Consumption........................................................................................................................................ 36  
8.9 Bottom Die Block Specifications......................................................................................................................................................... 36  
8.9.1 Current Measurement Ranges (across 100µΩ (±5%) shunt resistor)...................................................................................... 36  
8.9.2 System Specifications................................................................................................................................................................ 43  
9 4-Wire SPI Interface................................................................................................................................................................ 44  
9.1 SPI Timing Parameters ...................................................................................................................................................................... 44  
9.1.1 SPI Frame.................................................................................................................................................................................. 45  
9.1.2 Write Command......................................................................................................................................................................... 45  
9.1.3 Read Command......................................................................................................................................................................... 46  
9.1.4 Timing........................................................................................................................................................................................ 47  
9.2 Bottom Die Registers.......................................................................................................................................................................... 48  
10 Application Information ......................................................................................................................................................... 60  
11 Package Drawings and Markings.......................................................................................................................................... 61  
12 Ordering Information............................................................................................................................................................. 64  
www.ams.com  
Revision 0.7  
4 - 65  
AS8515  
Datasheet - Pin Assignments  
4 Pin Assignments  
Figure 2. Pin Assignments (Top View)  
RSHH  
32  
EN  
31  
RESET Rx  
Tx  
28  
CST  
27  
INT  
26  
30  
29  
25  
1
2
3
4
24  
23  
22  
CLK  
RSHL  
VREF  
VCM  
SDI  
MEN  
21  
20  
19  
CHOP_CLK  
AVDD  
AS8515  
DVDD  
DVSS  
5
6
7
8
AVSS  
ETR  
18  
17  
SDO  
ETS  
SCLK  
VSENSE_IN  
9
10  
11  
12  
13  
14  
15  
16  
VSS  
VSENSE_GND LIN  
VSENSE VSUP  
VCC  
CSB  
4.1 Pin Descriptions  
Table 1. Pin Descriptions  
Pin Name  
Pin Number  
Pin Type  
Description  
Negative differential input for current channel  
RSHL  
1
2
Analog input  
Internal reference voltage to Sigma Delta ADC;  
Connect 100nF to AVSS from this pin.  
VREF  
VCM  
Analog output  
Analog output  
Common mode voltage to the internal measurement path;  
Connect 100nF to AVSS from this pin.  
3
+3.3V Power-supply; Supplied by LDO output (VCC) in Top die;  
Should be shorted to pin 21 (VCC) externally.  
AVDD 1  
AVSS 2  
4
5
Analog input  
Power supply  
0V Power-supply Ground analog  
www.ams.com  
Revision 0.7  
5 - 65  
AS8515  
Datasheet - Pin Assignments  
Table 1. Pin Descriptions  
Pin Name  
ETR  
Pin Number  
Pin Type  
Description  
Voltage channel single ended input  
6
7
Analog input  
ETS  
Battery voltage attenuator output and voltage channel input  
Input signal for voltage channel (low)  
LIN BUS  
VSENSE_IN  
VSENSE_GND  
LIN  
8
Analog I/O  
Analog input  
Analog I/O  
9
10  
VSS 2  
0V Power-supply Ground analog  
11  
12  
Power supply  
Analog input  
Battery voltage input  
Connect 100nF to VSS from this pin.  
VSENSE  
Supply input from battery (through external reverse polarity  
protection device)  
VSUP  
-
13  
Power supply  
-
14  
15  
-
VCC 1  
CSB  
Regulated 3.3V output supply for loads up to 50mA  
Analog output  
Chip select for Bottom die  
Clock signal SPI  
16  
17  
18  
Digital input  
Digital input  
Digital output  
SCLK  
SDO  
Data signal SDO  
DVSS2  
0V Power-supply digital  
19  
Power supply  
+3.3V Power-supply; Supplied by LDO output (VCC) in Top die;  
Should be shorted to pin 21(VCC) externally.  
DVDD 1  
20  
21  
Analog input  
Digital output  
Chopper clock  
CHOP_CLK  
Digital output for Bottom die in SBM mode3 and input for Top  
die  
MEN  
22  
Digital I/O  
Data signal SDI  
SDI  
CLK  
-
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Digital input  
Digital I/O  
Internal/External digital clock signal  
-
-
Interrupt not: Wake-up, digital interrupt, ready flag 2  
Chip select for Top die  
INT  
Digital output  
Digital input  
Digital input  
Digital output  
Digital output  
Digital input  
Analog input  
CST  
Tx  
LIN transceiver transmit pin  
LIN transceiver receive pin  
Reset output (open drain)  
Enable input  
Rx  
RESET  
EN  
Positive differential input for current channel  
RSHH  
1. Pin #4, pin #20 and pin #15 needs to be shorted externally on the board. Pin #21 is the LDO output that supplies pin #4 and pin #20.  
2. Pin #5, pin #11 and pin #19 needs to be shorted externally on the board as they are the grounds.  
3. Use as output port only.  
www.ams.com  
Revision 0.7  
6 - 65  
AS8515  
Datasheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of  
the device at these or any other conditions beyond those indicated in Electrical Characteristics on page 8 is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 2. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Comments  
Electrical Parameters  
VSUP  
Supply voltages  
-0.3  
-27  
42  
42  
V
V
VSENSE  
Battery voltage inputs  
DC supply voltage  
Enable input  
AVDD,  
DVDD  
-0.3  
-0.3  
5
V
V
EN  
VCC  
LIN  
42  
VCC generated by Top die must not be larger  
than 5V on board level as it has to be  
connected with Bottom die AVDD and AVCC  
Regulated output supplies  
-0.3  
5
V
LIN bus  
-27  
-0.3  
-100  
40  
5
V
V
Analog & digital inputs and outputs  
Input current (latch-up immunity)  
100  
mA  
Norm: AEC-Q100-004  
Electrostatic Discharge  
±6  
±4  
±2  
kV  
kV  
kV  
LIN, VSS  
VSUP, VSENSE  
All other pins  
Electrostatic discharge  
Norm: AEC-Q100-002  
ESD  
Continuous Power Dissipation  
Total operating power dissipation  
MLF-32 in still air, soldered on JEDEC  
standard board @125º ambient,  
static operation = no time limit  
1
0.375  
W
Ptot  
(all supplies and outputs)  
Temperature Ranges and Storage Conditions  
RΘ  
Tstg  
TJ  
Package thermal resistance  
Storage temperature  
34  
40  
ºC/W  
ºC  
-55  
150  
130  
Junction temperature  
ºC  
The reflow peak soldering temperature (body  
temperature) specified is in accordance with  
IPC/JEDEC J-STD-020 “Moisture/Reflow  
Sensitivity Classification for Non-Hermetic  
Solid State Surface Mount Devices”.  
The lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
TBODY  
Package body temperature  
260  
85  
ºC  
%
Humidity non-condensing  
Moisture Sensitive Level  
5
Represents a maximum floor time of 168h  
MSL  
3
1. Total power dissipation cannot exceed 0.375W to avoid increase in junction temperature, i.e. greater than 130ºC. VCC LDO can supply  
current externally, which is not greater than 17mA at 18V VSUP and 20mA at 16V VSUP.  
www.ams.com  
Revision 0.7  
7 - 65  
AS8515  
Datasheet - Electrical Characteristics  
6 Electrical Characteristics  
Unless otherwise noted in this specification, all defined tolerances of parameters are assured over the whole operation conditions range and also  
over lifetime.  
6.1 Operating Conditions  
Table 3. Operating Conditions  
Symbol  
VSUP  
VSENSE  
AVDD  
AVSS  
DVDD  
DVSS  
LIN  
Parameter  
Supply voltages  
Min  
4.3  
4.5  
3.15  
0
Typ  
Max  
18  
Unit  
V
Note  
Battery voltage input  
Positive supply voltage  
Negative supply voltage  
Positive digital supply voltage  
Negative digital supply voltage  
LIN bus  
18  
V
3.45  
V
V
3.15  
0
3.45  
V
V
Referring to DVSS, Typical 10%  
0
18  
18  
V
EN  
Enable input  
0
V
VCC  
Regulated output supply  
Ambient temperature  
3.15  
-40  
3.45  
115  
V
TAMB  
ºC  
Maximum junction temperature (TJ) is 130ºC  
1
Supply current  
27  
mA  
ISUP  
When external clock is selected, internal clock  
will be 4.096 MHz  
fCLK  
System clock frequency  
8.192  
MHz  
1. Total power dissipation cannot exceed 0.375W to avoid increase in junction temperature, i.e. greater than 130ºC. VCC LDO can supply  
current externally, which is not greater than 17mA at 18V VSUP and 20mA at 16V VSUP.  
6.2 DC/AC Characteristics for Digital Inputs and Outputs  
All pull-up, pull-downs have been implemented with active devices. SDO have been measured with 10pF load.  
INT Output.  
Table 4. INT  
Symbol  
VOH  
VOL  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
High level output voltage  
Low level output voltage  
Output current  
2.5  
0.4  
4
V
IO  
mA  
CST, CSB, TxD.  
Table 5. CST, CSB  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
High level input voltage  
Low level input voltage  
Input leakage current  
Pull-up current  
0.8*VCC  
VIL  
0.2*VCC  
+1  
V
ILEAK  
IPU  
-1  
µA  
µA  
Pulled to GND  
-150  
-10  
www.ams.com  
Revision 0.7  
8 - 65  
AS8515  
Datasheet - Electrical Characteristics  
SDI, SCLK.  
Table 6. SDI, SCLK  
Symbol  
VIH  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
High level input voltage  
Low level input voltage  
Input leakage current  
0.8*VCC  
VIL  
0.2*VCC  
+1  
V
ILEAK  
-1  
µA  
SDO Output.  
Table 7. SDO  
Symbol  
VOH  
VOL  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
High level output voltage  
Low level output voltage  
Output current  
2.5  
0.4  
4
V
IO  
mA  
CHOP_CLK Output.  
Table 8. CHOP_CLK  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
V
High level output voltage  
Low level output voltage  
Output current  
2.5  
0.4  
4
V
IO  
mA  
EN Input.  
Table 9. EN  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
V
High level input voltage  
Low level input voltage  
Input leakage current  
Pull-down current  
0.8*VCC  
VIL  
0.2*VCC  
+1  
V
ILEAK  
Ipd_en  
EN = VSS  
-1  
µA  
µA  
Pulled up to VCC  
30  
100  
CLK I/O.  
Table 10. CLK I/O  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
VIH  
VIL  
High level input voltage  
Low level input voltage  
Input leakage current  
Pull-down current  
2.4  
1
+1  
100  
4
V
ILEAK  
IPD_EN  
IO  
-1  
µA  
µA  
mA  
V
10  
Output current  
VOH  
VOL  
High level output voltage  
Low level output voltage  
2.5  
0.4  
V
www.ams.com  
Revision 0.7  
9 - 65  
AS8515  
Datasheet - Electrical Characteristics  
MEN Output.  
Table 11. MEN  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
V
High level output voltage  
Low level output voltage  
Output current  
2.5  
0.4  
2
V
IO  
mA  
Rx Output.  
Table 12. Rx  
Symbol  
VOH  
Parameter  
High level output voltage  
Low level output voltage  
Output Current  
Conditions  
Min  
Typ  
Max  
Units  
V
VCC-0.5  
VOL  
VSS+0.4  
1
V
IO  
mA  
µA  
Ipu_reset  
Pull-up current  
Pulled down to VSS  
-30  
-100  
RESET Output.  
Table 13. RESET  
Symbol  
VOH  
VOL  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
V
High level output voltage  
Low level output voltage  
Output current  
2.5  
0.4  
8
V
IO  
Open Drain Pull-down  
mA  
6.3 System Specifications  
Table 14. System Specifications  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
No load on VCC, LIN bus in dominant  
state  
Ivsupnom  
Current consumption in normal mode  
Current consumption standby  
7
mA  
No load on VCC,  
LIN bus in recessive state  
Ivsupstdby  
80  
µA  
Note: Stand by mode power consumption is sum of stop mode power consumption and average of normal mode power consumption over a  
period of 2s (NOM1 time of device is low in Standby mode).  
www.ams.com  
Revision 0.7  
10 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7 AS8515 Top Die Overview  
The AS8515 Top die consists of a resistive divider, a low dropout regulator, and a LIN bus transceiver. Additionally integrated are a RESET unit  
with a power-on-reset delay, programmable window watchdog and timeout watchdog timers as a factory programming option. It also includes a  
watchdog timeout on LIN Tx node to indicate if the Microcontroller is stuck in a loop and the LIN bus remains in dominant time for more than the  
necessary time.  
7.1 Voltage Attenuator  
A resistive divider is used as a battery voltage attenuator. Like the amplifier, the attenuator can be enabled or disabled through SPI, and in the  
device standby mode, we additionally need logic high on MEN pin for enabling. Internal reverse polarity protection is provided for VSENSE pin.  
Figure 3. Attenuator Implementation  
VSENSE  
PD  
VSENSE_IN  
VSENSE_GND  
7.2 Voltage Regulators (LDO)  
The device has a low-dropout voltage regulator named LDO, 3.3V voltage outputs. The output of the LDO is VCC. The regulator is always ON  
except when the device enters the over-temperature shutdown.  
The regulator has in-built short-circuit current limitation feature. The regulator can be temporarily shut down for hard reset of the external circuitry  
by configuring the device to temporary shutdown mode through SPI.  
The LDO power-up happens when the POR-VSUP event occurs (RESET_VSUP_N switching from low to high). The LDO will be switched off if  
there is an under voltage on VCC, that is, when RESET_VCC_N switches back to low.  
7.3 LIN Transceiver  
The device has a LIN transceiver with slew-controlled bus driver for controlling the electromagnetic emissions from the LIN bus. Further, the slew  
rate is independent of the bus load. The transmitter relays the data from the LIN controller (Tx pin) to the bus (LIN pin), and the receiver provides  
the data on the bus to the controller (Rx pin). The transceiver conforms to the LIN 2.1 standard.  
The LIN transceiver has a timeout watchdog for Tx. After the timeout, the LIN bus will be released to the recessive state from the dominant state.  
The bus driver has an in-built short-circuit current limitation facility to protect the device from damage when there is a short between the bus and  
the supply. In addition to the data receiver, there is a low-power receiver active in the device standby mode which received a wake-up event from  
the LIN bus to bring the device to normal mode.  
7.4 Temperature Monitor/Limiter  
The temperature limiter circuit powers down the device when the junction temperature exceeds 170°C (nominal). It also issues an over-  
temperature warning at 160°C (nominal). The device is powered up again when the junction temperature falls below 140°C (nominal). The over-  
temperature warning flag is also cleared at this temperature.  
The temperature limiter circuit can be optionally disabled through SPI.  
www.ams.com  
Revision 0.7  
11 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.5 VSUP Under-voltage Reset  
When VSUP drops below VSUVR_ON, the RESET_VSUP_N switches back to low level. This is treated as a master reset and will have the  
highest priority over all other signals. In this case, the regulators, LIN transceiver, and all other blocks are shut off, and the device comes to a  
complete stop. The device returns to the normal mode when VSUP rises over VSUVR_OFF again irrespective of the mode it was in prior to this  
under-voltage condition.  
7.6 Reset  
RESET module generates an active-low reset signal for the external circuitry supplied by VCC. The behavior of the reset output is depicted in  
Figure 4 in different cases. As shown, RESET signal is affected by an under-voltage condition on VCC and Watchdogs which are described in  
detail in the subsequent sections.  
The reset period can be one-time programmed to 4, 16 and 32 ms with a default value of 8 ms.  
Figure 4. Reset Functionality  
VSUP  
T>Tj  
T<Tj  
t<trr  
VCC  
VUVR_OFF  
VUVR_ON  
tRes  
tRes  
tRes  
tRes  
trr  
tRes  
RESET  
Over-temp  
Shutdown  
Glitch in  
VSUP  
Reset by  
Watchdog  
SC Current  
Limitation Active  
Start-up  
VSUP UV  
7.7 VCC Under-voltage Reset  
When VCC drops below VUVR_ON, the RESET_VCC_N switches back to low level. This event generates a reset output. The reset output is  
released again only a reset period (tRes) later after VCC rises above VUVR_OFF. If the time difference between the VCC falling below VUVR_ON  
and rising above VUVR_OFF is less than trr, there will be no reset output. The reset output is affected in the conditions like over-temperature  
shutdown and temporary shutdown only through VCC under voltage.  
www.ams.com  
Revision 0.7  
12 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.8 Window Watchdog (WWD)  
The Window Watchdog ensures that the Microcontroller is properly functioning in the normal mode of the device. The Watchdog is started after a  
reset and the Microcontroller needs to send a trigger in the window of WD_TSV (service time). If the trigger occurs early, in the period WD_TCL,  
or after WD_TSV, a reset output is generated.  
The Microcontroller can access the trigger bit for the watchdog through SPI. The WWD can be enabled and the window times can be  
programmed through factory setting and enabled as a factory option.  
Figure 5. Window Watchdog Functionality  
Period  
Non-Service time (WD_TCL)  
Service time (WD_TSV)  
50 %  
100 %  
Trigger  
restart  
period  
Trigger  
via SPI  
Last trigger  
Earliest point for  
correct trigger  
(No RESET)  
Latest point for  
correct trigger  
(No RESET)  
Correct trigger  
(No RESET)  
Wrong trigger  
(RESET generation)  
Wrong trigger  
(RESET generation)  
7.9 Timeout Watchdog (TWD)  
The Timeout Watchdog ensures that the Microcontroller is in proper functional state in the device standby mode. The Watchdog timer will be  
started upon a rising edge on INT and will generate a reset output if the Microcontroller doesn’t send a trigger before the timeout.  
The Microcontroller can access the trigger bit for the watchdog through SPI. The TWD can be enabled by factory setting and the timeout interval  
can be programmed through SPI.  
www.ams.com  
Revision 0.7  
13 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.10 Modes of Operation  
The AS8515 Top die provides the following four main operating modes:  
Normal Mode  
Standby Mode  
Temporary Shutdown Mode  
Thermal Shutdown Mode  
The LIN transceiver can be programmed to operate with lower slew in the normal mode. See Figure 6 for a detailed state transition diagram. Soft  
states like “TxWD Wait”, “Standby Wait”, and other wait states have also been included in the state diagram for completeness.  
Figure 6. Finite State Machine Model of AS8515 Top Die  
INIT0  
por_vsup  
! temp170  
OVTEMP  
OTP LOAD  
otp_load  
temp170  
temp170  
128msec  
RESET TIMEOUT  
Temp Shut  
reset  
timeout  
! por_vcc ||  
wwdtimeout  
test_en  
RX=0  
WAIT_TEST  
NORMAL  
Standby &  
otp_mode  
temp170  
temp170  
STANDBY  
! por_vcc ||  
stdby_timeout  
WAIT_OTP  
Rwake / local wake  
! por_vcc ||  
wwdtimeout  
TXWD WAIT  
temp170  
temp170  
STANDBY WAIT  
! por_vcc ||  
stdby_timeout  
www.ams.com  
Revision 0.7  
14 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
Table 15. Transition Table  
Transition  
Interface  
Reg.  
0x05  
D0  
Flags  
UVSENSE  
OT  
Comments  
UVCC  
inactive inactive  
From Mode  
To Mode  
LIN  
Rx  
Tx  
EN  
Rwake  
Tx is high for  
TSTNDY_trigger  
X-H1 H2  
H-L2  
Stand-By  
X-RS  
L
H2  
L
X
X
X
The Control Bit is set  
through the 4-Wire SPI  
interface  
Temporary  
Shutdown  
X-H1  
X
X-RS  
X-RS  
H
X
X
X
inactive  
set  
set  
set  
Normal Mode  
Temperature monitor  
output asserted  
(covered by scan)  
Over-  
X-H1  
X
X
Temperature  
H-X1  
X
L-H2  
X
Normal (LW)  
Normal (RW)  
X
X
L
L
X
X
X
inactive inactive  
inactive inactive  
Remote Wake up Event  
occurred on LIN  
H-X1  
H
set  
The Control bit is set  
through the 4-Wire SPI  
interface  
Standby Mode  
Temporary  
Shutdown  
H1  
H2  
L
RS  
RS  
L
L
X
X
X
X
X
X
inactive  
set  
set  
set  
H
Temperature monitor  
output asserted  
(covered by scan)  
Over-  
Temperature  
H1  
H
Temporary  
Shutdown  
Mode  
Internal 128ms timer  
expired  
H-X1  
X
Normal  
RS-X  
X
L
inactive  
clear  
Over-  
temperature  
Mode  
Temperature monitor  
output de-asserted  
(covered by scan)  
H-X1  
X
Normal  
RS-X  
X
X
X
L
X
X
X
clear  
X
clear  
X
L-H2  
All States  
Power Off  
X
X
X
1. Effect of transition  
2. Cause for transition  
Note: L = Low state, H = High state, OT = Over temperature Reset, UVCC = Under-voltage VCC, UVSENSE = Under-voltage VSENSE,  
Rwake = Remote wake, X = don’t care.  
7.10.1 Normal Mode  
This is the mode after the power-up. In this mode, voltage regulator, LIN transceiver, window Watchdog is all active. The resistive divider can be  
enabled through SPI. LIN transceiver is capable of sending the Tx data from microcontroller to the LIN bus at a maximum rate of 20Kbps.  
7.10.2 Standby Mode  
Standby Mode is a functional low power mode and is entered by pulling EN to ground. The LIN transceiver, resistive divider, window watchdog,  
and Tx timeout watchdog circuits are disabled. But, it is possible to selectively enable the voltage and current measurement paths in this mode  
using an externally generated measurement enable (MEN) signal on the MEN pin. The timeout Watchdog can be enabled in this mode to make  
sure that the Microcontroller is active.  
7.10.3 Temporary Shutdown Mode  
In this mode, the regulator is powered down and the VCC is pulled down. This provides an alternative way to reset those components powered  
by AS8515. The feature has to be enabled by the factory programming option and can be invoked through SPI. The LIN transceiver along with  
the LIN wake-up circuits are powered down. No remote wake functionality possible. LIN bus enters into recessive state. The system goes out of  
this mode to normal mode after the timeout of an internal timer.  
7.10.4 Thermal Shutdown Mode  
If the junction temperature TJ is higher than Tsd, the device will be switched into the thermal shutdown mode. The regulator and the transceiver  
are completely disabled. Only the over-temperature monitor is active. As soon as the temperature returns back to TRET, the system enters  
normal mode.  
www.ams.com  
Revision 0.7  
15 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.11 Initialization  
When the power supply is switched on, when VSUP > VSUVR_OFF, RESET_VSUP_N becomes high. This starts the regulator LDO with 3.3V  
and Vuvr_off option of 2.75V. When VCC > Vuvr_off (2.75V), active-low PORN_2_OTP is generated. The rising edge of PORN_2_OTP loads  
contents of fuse onto the factory setting latch after load access time TLoad. LOAD_OTP_IN_PREREG signal loads contents of factory setting  
latch onto a register. This register provides the actual settings of LDO, Vuvr_off and Reset Timeout period TRes. This is done as the factory  
setting block is powered by the VCC. If VCC > Vuvr_off (phase 2), Reset timeout is restarted. RESET signal is de-asserted after Reset Timeout  
period TRes (phase 2) and then device enters into normal mode. The circuit also needs to initialize correctly for very slow ramp rates on VSUP (of  
the order of 0.5V/min).  
Figure 7. Initialization Sequence  
VSUP_POR_Threshold  
VSUP  
RESET_VSUP_N  
PHASE 2  
PHASE 1  
LDO On  
LDO On  
VCC Por Threshold = 2.75V  
LDO setting = 3.3V  
Reset Timeout = 4msec  
VCC Por Threshold = from OTP Block  
LDO setting = from OTP Block  
Reset Timeout = from OTP Block  
LDO Off  
Device Settings  
LDO settings to 5 V  
LDO settings to 3.3 V  
VCC_POR_Threshold  
VCC  
RESET_VCC_N  
PORN_2_OT  
P
6 Cycles of  
RC-Oscillator  
LOAD_OTP_IN_PREREG  
RESET  
If Phase 1 POR threshold != Phase 2 POR threshold  
Tres = Reset Timeout from OTP Block  
If Phase 1 POR threshold == Phase 2 POR threshold  
Tres = Reset Timeout from OTP Block  
Table 16. VSUP>Vsuvr_on and VCC<Vuvr_on  
Block  
Output Signal  
LIN=high-z, Rx=follows VCC…  
VCC=low…  
TRANSCEIVER=Enabled (disabled only during initial VSUP ramp-up)  
LDO=Enabled (disabled only during initial ramp-up)  
RESET BLOCK=Enabled  
RESET=high-z…  
RESISTIVE DIVIDER=Enabled  
VSENSE=high…, VSENSE_DIV=enabled  
www.ams.com  
Revision 0.7  
16 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
Table 17. VSUP<Vsuvr_on  
Block  
Output Signal  
LIN=high-z, Rx=high-z…  
VCC=low  
TRANSCEIVER=Disabled  
LDO=Disabled  
RESET BLOCK=Disabled  
RESISTIVE DIVIDER=Disabled  
RESET=high-z  
VSENSE=high, VSENSE_DIV=low  
7.12 Wake-up  
When the device enters standby mode, it can be brought back to the normal mode. A dominant state on the BUS for duration of tWAKE (see Table  
25) will result in the device wake-up which is termed as remote wake.  
7.12.1 Remote Wake-up Event  
In all low power modes of Top die, low power BUS receiver is ON. If BUS is in dominant state for longer than tWAKE then, remote wake is  
sensed on the BUS and REMOTE_WAKE_flag is set. Indication of wake-up is given to µC by setting a bit in interrupt register and giving interrupt  
on INTN pin.  
Figure 8. Remote Wake-up Event  
BUS  
>Twake  
REMOTE_WAKE_flag  
Remote wake detected  
www.ams.com  
Revision 0.7  
17 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.13 LIN BUS Transceiver  
The AS8515 has an integrated bi-directional bus interface device for data transfer between LIN bus and the LIN protocol controller. The  
transceiver consists of a driver with slew rate control, wave shaping and current limitation and a receiver with high voltage comparator followed  
by a de-bouncing unit.  
7.13.1 Transmit Mode  
During transmission the data at the pin Tx will be transferred to the BUS driver to generate a bus signal. To minimize the electromagnetic  
emission of the bus line, the BUS driver has an integrated slew rate control and wave shaping unit.  
Transmitting will be interrupted in the following cases:  
Thermal Shutdown active  
Master Reset (VSUP < Vsuvr_on)  
The recessive BUS level is generated from the integrated 30k pull up resistor in serial with an active diode This diode prevents the reverse  
current of VBUS during differential voltage between VSUP and BUS (VBUS>VSUP). No additional termination resistor is necessary to use the  
AS8515 in LIN slave nodes. If this IC is used for LIN master nodes it is necessary that the BUS pin is terminated via an external 1kΩ resistor in  
series with a diode to VSENSE.  
7.13.2 Receive Mode  
The data signals from the BUS pin will be transferred continuously to the pin Rx. Short spikes on the bus signal are suppressed by the  
implemented debouncing circuit. Including all tolerances the LIN specific receive threshold values of 0.4*VSUP and 0.6*VSUP will be securely  
observed.  
Figure 9. Receive Mode Impulse Diagram  
Vthr_max  
60%  
Vthr_cnt  
Vthr_hys  
50%  
40%  
BUS  
Vthr_min  
t < tdeb_BUS  
t < tdeb_BUS  
Rx  
www.ams.com  
Revision 0.7  
18 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.14 Rx and Tx Interface  
7.14.1 Input Tx  
The 3.3V input Tx controls directly the BUS level. LIN Transmitter acts like a slew-controlled level shifter. A dominant state (low) on Tx leads to  
the LIN bus being pulled low (dominant state) too. The Tx pin has an internal active pull up connected to VCC. This guarantees that an open Tx  
pin generates a recessive BUS level.  
Figure 10. Tx Interface  
VCC  
MCU  
AS8515  
VCC  
RC-Filter  
(10ns)  
Tx  
IPU_TxD  
7.14.2 Output Rx  
The received BUS signal will be output to the Rx pin:  
BUS < Vthr_cnt – 0.5 * Vthr_hys Rx = low  
BUS > Vthr_cnt + 0.5 * Vthr_hys Rx = high  
This output is a push-pull driver between VCC and GND with an output current of 1mA  
Figure 11. Rx Interface  
MCU  
AS8515  
VCC  
Rx  
www.ams.com  
Revision 0.7  
19 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.15 MODE Input EN  
The AS8515 Top die is switched from normal mode to the standby mode with a falling edge on EN and keeping Tx high for TSTNDY_trigger time.  
Device is switched from standby mode to normal mode with a rising edge at the EN pin. The mode change for Top die with a falling edge on EN  
can be done independently from the state of the transceiver bus. This ensures the direct control of device to enter into standby mode by  
microcontroller using EN pin.  
Figure 12. EN Pin Functionality  
EN  
Tx  
TSTNDY_trigger  
Ttx_hd  
Ttx_su  
Standby/Sleep  
Mode  
Normal  
Mode  
Normal Mode  
The EN input has an internal active pull down to secure that if this pin is not connected, a low level will be generated.  
Figure 13. Enable Interface  
CLOAD  
+
+3.3V  
EN  
VCC  
RESET  
Tx  
VBAT  
VSUP  
LIN  
+
CIN  
MCU  
VSS  
Rx  
VSENSE  
If the application doesn’t need the low-power modes of the device, a direct connection of EN to VCC is possible. In this case the Top die  
operates in permanent normal mode. Also possible is the external (outside of the module) control of the EN line via VSUP signal as shown  
below.  
www.ams.com  
Revision 0.7  
20 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
Figure 14. EN Connection for Permanent Normal Mode  
CLOAD  
+
+3.3V  
EN  
VCC  
RESET  
Tx  
VBAT  
VSUP  
LIN  
+
CIN  
MCU  
VSS  
Rx  
7.16 Top Die Block Specifications  
This section provides specification of design related key parameters.  
7.16.1 Voltage Attenuator  
Table 18. Voltage Attenuator  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RDIV  
Division ratio  
21  
V/V  
Input voltage range/  
Battery voltage range  
VSENSE  
4.5  
12  
18  
V
εp,RDIV  
Ratio error  
At room temperature, VSENSE=12V  
±1  
%
Temperature: -25 to +65º @VSENSE=12V  
Maximum values will be added after device  
evaluation (to be guaranteed by evaluation)  
εdt1,RDIV  
εdt2,RDIV  
εdv1,RDIV  
εdv2,RDIV  
±0.05  
±0.2  
Ratio drift  
(with reference to Temperature)  
%
%
Temperature: -40 to +125º @VSENSE=12V  
Maximum values will be added after device  
evaluation (to be guaranteed by evaluation)  
VSENSE: 11V to 13V @Temperature=27º  
Maximum values will be added after device  
evaluation (to be guaranteed by evaluation)  
±0.05  
±0.2  
Ratio drift  
(with reference to VSENSE)  
VSENSE: 6V to 18V @Temperature=27º  
Maximum values will be added after device  
evaluation (to be guaranteed by evaluation)  
www.ams.com  
Revision 0.7  
21 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.16.2 Voltage Regulator (LDO)  
Table 19. Voltage Regulator  
Symbol  
VSUP  
Parameter  
Condition  
Min  
4.3  
Typ  
12  
Max  
18  
Unit  
V
Input Supply Voltage  
Output Voltage Range  
LDO Load Current  
VCC  
3.15  
3.3  
3.45  
45  
V
ILOAD  
ICC_SH  
dVCC1  
mA  
mA  
mV/V  
Output Short Circuit Current  
Line Regulation  
Normal mode  
250  
8
ΔVCC / ΔVSUP for VSUP range  
ΔVCC / ΔICCn  
(0.5mA < ILOAD < 50mA)  
LOREG  
Load Regulation  
1
mV/mA  
CL1  
ESR1  
2.2  
1
10  
10  
220  
1
μF  
Ω
Output Capacitor 1 LDO  
Electrolytic  
Ceramic  
CL2  
100  
0.02  
22  
nF  
W
Output Capacitor 2 LDO  
Input capacitor (Electrolytic)  
Input capacitor (Ceramic)  
ESR2  
CSUP1E  
ESR1_CSUP  
CSUP2C  
ESR2_CSUP  
100  
10  
220  
1
μF  
Ω
1
For EMC suppression  
100  
0.02  
nF  
Ω
7.16.3 VCC Power-on-Reset  
Table 20. VCC  
Symbol  
Vuvr_off  
Vuvr_on  
Parameter  
Condition  
Min  
2.55  
2.3  
Typ  
Max  
2.95  
2.7  
Unit  
V
VCC under-voltage threshold OFF  
VCC under voltage threshold ON  
Rising edge of VCC  
Falling edge of VCC  
V
Hysteresis of under-voltage threshold  
on/off VCC  
Vhyst_vcc  
0.1  
0.25  
0.4  
V
7.16.4 VSUP Power-on-Reset  
Table 21. VSUP  
Symbol  
Vsuvr_off  
Parameter  
Condition  
Min  
4.8  
3.5  
1.1  
Typ  
5.1  
3.8  
Max  
5.4  
4.1  
1.5  
Unit  
V
VSUP under-voltage threshold OFF  
VSUP under-voltage threshold ON  
Hysteresis of VSUP under-voltage  
Rising edge of VSUP  
Falling edge of VSUP  
Vsuvr_on  
V
Vhyst_VSUP  
V
www.ams.com  
Revision 0.7  
22 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.16.5 Window Watchdog Timer  
Table 22. WWD  
Symbol  
WD_TCL  
Parameter  
Condition  
Min  
Typ  
0-100  
Max  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
WWD non-service time  
WWD Service time  
RESET will be generated  
RESET will not be generated  
RESET will be generated  
RESET will not be generated  
RESET will be generated  
RESET will not be generated  
RESET will be generated  
RESET will not be generated  
RESET will be generated  
RESET will not be generated  
RESET will be generated  
RESET will not be generated  
Factory  
setting 1  
WD_TSV  
WD_TCL1  
WD_TSV1  
WD_TCL2  
WD_TSV2  
WD_TCL3  
WD_TSV3  
WD_TCL4  
WD_TSV4  
WD_TCL5  
WD_TSV5  
100-200  
0-80  
WWD non-service time  
WWD Service time  
Factory  
setting 2  
80-160  
0-60  
WWD non-service time  
WWD Service time  
Factory  
setting 3  
60-120  
0-200  
WWD non-service time  
WWD Service time  
Factory  
setting 4  
200-400  
0-160  
WWD non-service time  
WWD Service time  
Factory  
setting 5  
160-320  
0-120  
WWD non-service time  
WWD Service time  
Factory  
setting 6  
120-240  
7.16.6 LIN Transceiver  
DC Electrical Characteristics.  
Table 23. Driver  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Current limitation in dominant state  
LIN = VSUP_max  
Ibus_lim  
40  
120  
200  
mA  
Output Voltage BUS (dominant state),  
ILIN = 40mA  
(short-circuit condition tested at VOL=2.5V)  
LIN_VOL  
2
V
Normal mode  
(recessive BUS level on Tx pin)  
Pull-up resistor  
20  
40  
60  
KΩ  
Driver OFF; 7.3V < VSUP < 18;  
8V < VBAT < 18,  
VSUP < VBUS < 1.08 * VSUP  
(to be tested at VBUS = 18V)  
Ibus_leak_rec  
20  
µA  
Table 24. Receiver  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Input Leakage current at receiver  
Driver OFF;  
Ibus_leak_dom  
Ibus_no_GND  
Ibus_no_bat  
-1  
mA  
VBUS = 0V; VSUP = 12V; VCC = 3.3V  
VSS = VSUP; VSUP = 12V;  
0V < VBUS < 18V, VCC = 3.3V  
(to be tested at VBUS = 18V)  
-1  
1
mA  
µA  
VSUP = VSS; 0V < VBUS < 18V,  
VCC = VSS  
(to be tested at VBUS = 18V)  
100  
0.4  
Vbus_dom  
Vbus_rec  
Vbus_cnt  
VSUP  
VSUP  
0.6  
1
0.475  
0.525  
0.175  
VSUP  
VSUP  
Vbus_cnt = (Vth_dom + Vth_rec)/2  
1
Vhys  
0.05  
Vhys = (Vth_dom – Vth_rec  
)
1. Vth_dom : Receiver threshold of the recessive to dominant LIN bus edge  
Vth_rec : Receiver threshold of the dominant to recessive LIN bus edge  
www.ams.com  
Revision 0.7  
23 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
AC Electrical Characteristics.  
LIN Driver, Bus load conditions (CBUS ; RBUS): 1nF; 1kΩ / 6, 8nF; 660Ω / 10nF; 500Ω  
Table 25. LIN Driver  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vth_rec(max) = 0.744 x VSUP;  
Vth_dom(max) = 0.581 x VSUP;  
VSUP = 6.0V...18V; tbit = 50µs;  
D1 = tbus_rec(min) / (2 x tbit)  
D1  
(worst case 20Kbps transmission)  
0.396  
Vth_rec (min) = 0.422 x VSUP;  
Vth_dom (min) = 0.284 x VSUP;  
VSUP = 6V...18V; tbit = 50µs;  
D2 = tbus_rec(max) / (2 x tbit)  
D2  
D3  
D4  
(worst case 20kbps transmission)  
(worst case 10.4kbps transmission)  
(worst case 10.4kbps transmission)  
0.581  
Vth_rec (max) = 0.778 x VSUP;  
Vth_dom (max) = 0.616 x VSUP;  
VSUP = 6.0V...18V; tbit = 96µs;  
D3 = tbus_rec(min) / (2 x tbit)  
0.417  
Vth_rec (min) = 0.389 x VSUP;  
Vth_dom (min) = 0.251 x VSUP;  
VSUP = 6V...18V; tbit = 96µs;  
D4 = tbus_rec(max) / (2 x tbit)  
0.59  
VCC = 3.3V;  
tdLR  
tdHR  
6
6
µs  
µs  
Propagation delay bus dominant to Rx LOW  
VCC = 3.3V;  
Propagation delay bus dominant to Rx HIGH  
tRS  
Receiver delay symmetry  
-2  
2
µs  
µs  
tWAKE  
Dominant time for wake-up via LIN bus  
30  
150  
Transition from standby mode to normal  
mode (clock frequency is 128KHz ±25%)  
Clock  
tsln  
4
6
cycles  
Transition from normal mode to standby  
mode (clock frequency is 128KHz ±25%)  
Clock  
cycles  
tnsl  
trec_deb  
Receiver de-bounce time  
0.6  
3
µs  
Internal capacitance of the LIN node  
configured as a slave with a 180pF cap on  
the LIN bus  
Cint  
220  
250  
pF  
7.17 Timing Diagrams  
Figure 15. Timing Diagram for Propagation Delays  
50%  
TxD  
tdf_TXD  
tdr_TXD  
VBUS  
100  
%
95%  
BUS  
50%  
50%  
5%  
0%  
tdf_RXD  
tdr_RXD  
RxD  
50%  
www.ams.com  
Revision 0.7  
24 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
Figure 16. Timing Diagram for Duty Cycle According to LIN 2.1 and J2602  
tBit  
tBit  
TxD  
tx_dom_max  
tx_rec_max  
tx_dom_min  
tx_rec_min  
trec(min)  
100  
%
VSUP  
tdom(max)  
74.4%  
77.8%  
tdom(min)  
58.1%  
61.6%  
58.1%  
61.6%  
BUS  
42.2%  
38.9%  
28.4%  
25.1%  
28.4%  
25.1%  
trec(max)  
0%  
VSS  
tbit  
tbit  
TxD  
LIN  
tbus_dom(max)  
tbus_rec(min)  
Vth_rec(max)  
Vth_dom(max)  
Vth_rec(min)  
Vth_dom(min)  
tbus_rec(max)  
tbus_dom(min)  
www.ams.com  
Revision 0.7  
25 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
7.17.1 Tx Timeout Watchdog  
Table 26. Tx Timeout Watchdog  
Symbol  
Parameter  
Timeout period for the dominant state  
Conditions  
Min  
Typ  
Max  
Units  
tlin_wdog  
0.5  
1
2
s
7.17.2 Temperature Limiter  
Table 27. Temperature Limiter  
Symbol  
Tsd  
Parameter  
Conditions  
Min  
155  
142  
125  
Typ  
170  
157  
140  
Max  
185  
172  
155  
Units  
ºC  
Shut down temperature  
Over-temperature warning  
Return temperature  
Totset  
Tret  
Junction temperature  
ºC  
ºC  
7.18 Top Die Registers  
The serial interface can be used for communication between AS8515 and an external microcontroller. The device is only a slave and the  
microcontroller has to initiate the communication. The device can be configured by writing into the control registers and the diagnostic  
information can be read out from the diagnostic registers. Pin CST is used as chip select for SPI communication.  
A total of 32 registers, each of 8-bits which include configuration, diagnostic, and backup are available. The registers can be accessed using the  
4-wire serial interface. Table 28 provides a description of all AS8515 Top die registers.  
Table 28. AS8515 Top Die Registers  
Address Register Name Default Value  
Configuration and Control Registers  
R/W  
Description  
0x00  
0x01  
0x02  
Reserved  
Reserved  
Reserved  
D0 Reserved  
D1 Voltage Attenuator Enable Bit.  
0 Disabled, 1 Enabled  
D2 Enable/Disable Over Temperature Monitor  
0 Disabled, 1 Enabled  
D3 Enable/Disable LIN Transceiver  
0 Disabled, 1 Enabled  
Device  
Configuration  
Register  
On POR_VCC  
0000_1100  
0x03  
R/W  
D4 Reserved  
D5-D7 Reserved  
D0 High-slew / Low-slew control  
1 High-slew, 0 Low-slew  
D1-D7 Reserved  
Device Control On POR_VSUP  
0x04  
0x05  
R/W  
R/W  
Register  
0000_0001  
D0 Temporary shutdown control bit  
1 Enter temporary shutdown  
D1-D7 Reserved  
Temporary  
Shutdown  
Register  
On POR_VCC  
0000_0000  
D0 Window Watchdog trigger bit  
D1 Timeout Watchdog trigger bit  
Upon a trigger, the bit will be cleared within 2 internal clock cycles.  
D2-D7 Reserved  
Window Watch  
Dog Trigger  
Register  
On POR_VCC  
0000_0000  
0x06  
W
0x07  
0x0A  
0x0B  
Reserved  
Reserved  
Reserved  
www.ams.com  
Revision 0.7  
26 - 65  
AS8515  
Datasheet - AS8515 Top Die Overview  
Table 28. AS8515 Top Die Registers  
Address Register Name Default Value  
R/W  
Description  
0x0C  
0x0D  
Reserved  
Reserved  
D0 Timer resolution  
0 1 second, 1 32 seconds  
Watchdog Timer On POR_VCC  
0x0E  
0x0F  
R/W D1-D7 Timeout period.  
If D0=1, then timeout period = D[7:1]*64*0.512 seconds, else timeout period  
= D[7:1]*0.512 seconds  
Control Register  
0000_0000  
Reserved  
Diagnostic Registers  
D7-D0 = DR[7:0], 8-LSB bits of the 24-bit Diagnostic Register.  
D0 POR-VSUP  
Set when VSUP < Vsuvr_on, cleared after µC read  
D1 Under voltage VCC (UVVCC)  
Set when VCC < Vuvr_on, cleared after µC read  
D2 Over-temperature Reset (OTEMP170)  
Set when temp > Tsd, cleared after µC read  
D3 Over-temperature warning (OTEMP160)  
Set when temp > Totset, cleared after µC read  
D4 Overvoltage VSENSE (OVVSENSE)  
Set when VSUP > Vovthh, cleared after µC read  
D5 Reserved  
Diagnostic  
Register-1  
On POR_VSUP  
0000_0011  
0x08  
R
D6 Remote wakeup (RWAKE)  
Set on remote wakeup event on LIN Bus, cleared after µC read  
D7 Set on failure of window Watchdog trigger, cleared after µC read  
D7-D0 = DR[15:8], Next 8-LSB bits of the 24-bit Diagnostic Register.  
D0 Tx timeout of 1sec (TXTIMEOUT)  
Set on Tx low > 1sec, cleared after µC read  
D1 TEMPSHUT  
This bit is set on entering temporary shutdown state and cleared after µC read.  
D2 Set on failure of timeout Watchdog trigger, cleared after µC read  
D3 Load Dump Flag  
Diagnostic  
Register-2  
On POR_VSUP  
0000_0000  
0x09  
R
D7-D4 Reserved  
www.ams.com  
Revision 0.7  
27 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
8 AS8515 Bottom Die Overview  
The AS8515 Bottom die consists of two independent high resolution 16-bit SD analog to digital conversion channels. The measurement path  
of these two channels integrates a programmable gain amplifier, chopper and de-chopper, sigma-delta modulator, decimator and a digital filter  
for simultaneous measurement of Current and Voltage/Temperature.  
The two measurement channels, namely the Current and Voltage/Temperature measurement channels have identical data path.  
The input signal is amplified in the Programmable Gain Amplifier (PGA) with any of the selected gains of 1, 5, 25, 40 and 100 facilitating  
measurement of a wide range of Current, voltage and temperature levels. Gain Settings for different input ranges and any associated restrictions  
are explained in the Table 30.  
Offset in the measurement path is minimized with the use of a chopper and a de-chopper at appropriate stages in the data path. By default the  
chopper/de-chopper is ON in the measurement path. It may be disabled by programming the appropriate register.  
The amplified input signal is converted into a single-bit pulse-density modulated stream by the Σ-Δ Modulator. A decimator acting as a low-pass  
filter filters out the quantization noise and generates 16-bit data corresponding to the input signal. The decimation ratios of 64, 128 may be  
selected in the first filter stage. For reducing data rate further, the second stage decimation can be used.  
An optional FIR Filter is provided to offer matched low pass filter response typically required in lead acid battery sensor systems.  
8.1 Current Measurement Channel  
The voltage across a Shunt Resistor, connected in series with the Battery negative terminal, forms the input signal to the Current Measurement  
channel. RSHH and RSHL are the Current measurement input pins. Offset in the input signal is nullified with the use of a chopper and a de-  
chopper at appropriate stages in the data path. The programmable gain amplifier in the data path with programmable settings of 1, 5, 25, 40 and  
100 enables measurement of current ranges from ±1A to ±1500A on a 100µΩ shunt. The sampled input signal is converted into a single-bit  
pulse-density modulated stream by the Σ-Δ Modulator. A decimator acting as a low-pass filter filters out the quantization noise and generates 16-  
bit data equivalent to the input current signal. The programmable input sampling rate and the decimation ratio determine the output data rates.  
The data path can be programmed to provide sub 1Hz to 4kHz rates in the various modes available. An optional FIR filter specifically designed  
for 1KHz sample rate is provided to offer matched low pass filter response typically required in lead acid battery sensor systems.  
After enabling the current measurement channel, the delay for the availability of the first sample is two conversion cycles.  
8.2 Voltage/Temperature Measurement Channel  
The other two parameters of the Battery for measurement are Voltage and its Temperature. The second channel accepts signals from four  
independent sources through a Multiplexer as listed below:  
An attenuator battery voltage obtained through internal resistor divider from Top die, (or)  
A signal from the external temperature sensor, (or)  
A signal from external reference, (or)  
A signal from the internal temperature sensor.  
Apart from this difference in the multiplexing of four input signals, the rest of the data path is identical to the Current measurement channel.  
RSHH and RSHL are the Current measurement input pins.  
The Battery Voltage which can go up to 18V is attenuated through a Resistor Divider externally and is applied to the Voltage Channel. For  
Automotive Battery measurement, the PGA is to be bypassed to connect battery voltage attenuated by a factor of 21 directly to the ADC input.  
The latency for the first result from the voltage measurement channel is two conversion cycles.  
A second option on this measurement channel is to measure Temperature. Internally generated constant current is pumped through the  
Temperature Sensor with positive temperature coefficient, and, a high- precision resistor. The voltages across the sensor and the resistor form  
the inputs to the measurement channel one at a time. The difference between the two voltages which is independent of the magnitude of the  
current is used to determine the temperature accurately. The voltage across the sensor is applied between the ETS and VSS pins and, the  
voltage across the high-precision resistor is applied between ETR and VSS. External temperature measurement involves the acquisition of two  
signals one after the other using the same constant current source. The latency for the first result from the temperature measurement channel is  
two conversion cycles.  
A third option on the measurement channel is to measure the internal temperature. Hence, one of the three options for measurement of Battery  
Voltage, External Temperature and, internal temperature may be carried out by selection of appropriate inputs through the internal multiplexer  
selection.  
ETR and ETS inputs can optionally be used to measure other signal sources like external resistive attenuators for battery voltages different to  
12V nominal.  
ETR and ETS are single ended inputs and referenced to AVSS. Voltage drop on internal bond wire causes ~100 digits of offset with systematic  
temperature dependency of another 50 LSB’s over temperature.  
www.ams.com  
Revision 0.7  
28 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
8.3 Digital Implementation of Measurement Path  
Figure 17. Block Diagram of Digital Implementation  
R2  
FIR_MA_SEL  
FIR / MA  
R1  
fchop * 2 / R2  
fchop * 2 / R2  
DATAOUT  
fchop * 2  
MOD_I  
N
fmod / R1  
CIC1  
64 / 128  
Dechopper  
CIC2  
fmod  
R1  
MOD_CLK  
fchop  
R1 = First decimation ratio (64 or 128)  
R2 = Second decimation ratio (1 to 32768)  
CHP_CLK  
CLK DIVISION  
BLOCK  
MOD_CLK  
Figure 17 shows the digital implementation of the decimator and filter to process the 1-bit output of the Modulator. This block receives a 1-bit  
pulse density modulated output (MOD_IN) from the second order sigma delta modulator along with the oversampling frequency clock  
(MOD_CLK). The MOD_CLK directly goes to a clock division block, which generates chopper clock (CHOP_CLK). The CHOP_CLK can be one  
of 2kHz or 4kHz selected by Register CLK_REG in Table 49. The MOD_CLK can be either 1MHz or 2MHz. The Decimation is a two phase  
process. In the first phase, the R1 down sampling rate can be obtained by selecting either 64 or 128 in Registers DECREG_R1_I,  
DECREG_R1_V in Table 49. The 16-bit CIC1 output is dechopped with respect to CHOP_CLK. The output of Dechopper is passed through the  
CIC2 filter with a decimation ratio of 1to 32768 in steps of power of 2. This output is then processed through a FIR or Moving Average (MA) filter.  
FIR Filter is provided to offer matched low pass filter response typically required in lead acid battery sensor systems. MA filter is used to provide  
averaged output and the number of samples for averaging can be any integer value from 1 to 15.  
8.4 Reference-Voltage  
Band gap-reference voltage is used for the ADC as a reference and for the generation of the current for external temperature measurement.  
8.5 Oscillators  
A High-speed oscillator (HS) generates the oversampling clock. For internal state machine and Interrupt generation, a low-speed Oscillator (LS)  
is also available.  
8.6 Power-On Reset  
The AS8515 has PORs, APOR and DPOR on analog and digital power supplies respectively. On PORs of both supplies, initialization sequence  
happens and the system status is shown in state diagram (see Figure 18).  
As shown in the state diagram, the system is in RESET state until DPOR output goes to logic HIGH and subsequently until APOR output goes to  
logic HIGH. Once analog power supply is available, the system goes into OTP_INT state and loads the default values into the control and data  
registers and goes into STOP state. If analog POR, APOR goes low at any time, the system goes into RESET state. In the STOP state, the  
AS8515 can be programmed and by giving start command it starts working following the state machine.  
www.ams.com  
Revision 0.7  
29 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
8.7 Modes of Operation  
The device operates in four different modes, namely,  
Normal Mode 1 (NOM1)  
Normal Mode 2 (NOM2)  
Standby Mode 1 (SBM1)  
Standby Mode 2 (SBM2)  
The Normal Modes are full-power modes with the exception that in Normal Mode 2, sampling is normally at a programmed lower frequency and  
is increased to a higher rate only when a measured input signal level crosses the programmed threshold in the current measurement channel.  
The Standby Modes are lower power modes. Sampling is normally at a very low frequency interval. In Standby Mode 2, data sampling can be  
carried out only when the internal comparator detects the input current to be greater than the programmed threshold and it generates interrupt on  
the INT pin.  
The device enters into the “Stop” state on Power On. This is a state where in the data path is inactive and can be entered into from any of the  
four Modes. The State transition Diagram involving the state of Stop and the four Modes is illustrated in the Figure 18.  
Figure 18. Finite State Machine Model of AS8515 Bottom Die  
RESET  
Wait for otp_load  
Completes in 32 cycles  
OTP_INT  
of lp_clk  
STOP  
1.5msec &  
Analog Stablization  
NORM  
A_STB  
NORM  
period  
Wait for 1.5msec  
NORM  
or  
stop  
Wait for x  
number of  
conversions  
Wait for TT1  
timeout  
SBM  
SBM_ON  
SBM_OFF  
www.ams.com  
Revision 0.7  
30 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Figure Notes:  
1. Device soft reset can be written in any of the following states STOP, A_STB, SBM_ON, SBM_OFF by writing “0” into D[7] of the RESET  
_REG (Address 0X09).  
2. Measurement path of soft reset should be written in any the states, STOP, SBM_OFF by writing “0” into D[6] of the RESET _REG (Address  
0X09).  
3. When soft reset is used for the measurement path or for the device, external clock needs to be disabled if the system clock is external  
clock in the application.  
8.7.1 Normal Mode 1 (NOM1)  
On Power-on-reset of the device, AS8515 goes into STOP State.  
Transition to Normal mode1 (NOM1) occurs when the “START BIT” D0 of Mode Control Register MOD_CTL_REG in Table 49 is set to “1”  
through the serial port SPI. Data Rate of voltage and current channels can be independently programmed and both the channels generate  
interrupts for every output available from ADC. The interrupt signal is generated on the INT pin. The width of the interrupt pulse is eight cycles of  
lp_clk. The data is stable up to the next interrupt. If the data rate is different for the two channels, the interrupt rate would follow the higher rate  
among the two channels. Data update can be known by reading the status register. The functionality is explained in the waveform shown in  
Figure 19. When the device is configured to NORMAL Mode1 from any mode the configuration should be through the STOP state only.  
Figure 19. Normal Mode 1  
I
IDATA  
Sampling with f1  
t
V,T  
V,TDATA  
Sampling with f2  
STOP  
t
START  
Current Channel  
DATA Register  
Voltage Channel  
DATA Register  
INT at f1 rate from  
current channel  
T
INT  
Interrupt from the current channel is at f1 rate which is integer multiple of f2 rate from voltage channel  
8.7.2 Normal Mode 2 (NOM2)  
NOM2 differs from NOM1 in such a way that it allows for a relaxed data rate at a period of TMC by programming the corresponding register as  
long as the amplitude of current is less than a programmed threshold ITHC. However, when, the measured input signal exceeds the programmed  
threshold, the data rate is changed to the rate of NOM1 mode.  
Transition to NOM2 occurs when the “START BIT” D0 of Mode Control register MOD_CTL_REG in Table 49 is set to 1 and mode control bits to  
01 through SPI. In this mode the data rate should be programmed with the time of TMC. An interrupt signal is generated on INT at the rate of TMC  
secs with a pulse width of eight cycles of lp_clk. The data is stable up to the next interrupt. The data sample is compared against the programmed  
threshold and when it is exceeded, the data sampling rate is changed to provide data at the data rate of NOM1 mode. However, as soon as the  
data sample amplitude falls below the programmed threshold, the sampling rate is restored to provide data at the rate of TMC. The functionality is  
illustrated in the waveform Figure 20.  
www.ams.com  
Revision 0.7  
31 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Figure 20. Normal Mode 2  
I
I < I THS  
V,I,T  
V,I,T  
V,I,T  
V,I,T  
V,I,T  
IDD  
TMC  
TMC  
ITHS  
t
Sampling with f  
I > ITHS  
INT  
T
INT  
8.7.3 Standby Mode1 (SBM1)  
The low-power Standby Mode can be entered only through the STOP state. Transition to SBM1 mode occurs when the “START BIT” D0 of Mode  
Control register MOD_CTL_REG in Table 49 is set to “1” and Mode Control Bits to “10” through SPI. In this mode the date rate is programmable  
with the time of Ta. An interrupt signal is generated on INT at the rate of Ta seconds, and with a pulse width of eight cycles of lp_clk. The data is  
stable up to the next interrupt. The functionality is illustrated in Figure. During the period of Ta, only one data sample is made available and,  
during the rest of the period, the device is maintained in STOP state to reduce power consumption. The microcontroller which receives the data  
on the Interrupt, is also expected to be processing the data for a short time as shown clearly in the Figure 21 to ensure the overall low-power  
consumption of the data acquisition and processing system.  
Figure 21. Standby Mode 1  
I DD  
MCU  
MCU  
MCU  
V, I, T  
V, I, T  
ADC  
t
Ta sec.  
Ta sec.  
Ta sec.  
T
conv  
T
conv  
T
conv  
Start SBM1  
Channel  
DATA Register  
DATA – A0  
DATA – A1  
DATA – A2  
DATA – A3  
INT  
T
INT  
www.ams.com  
Revision 0.7  
32 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
8.7.4 Standby Mode2 (SBM2)  
Standby Mode 2 is an extension of the Standby Mode1 to achieve even a lower power in the data acquisition system by providing interrupt to the  
microcontroller only when the data sample exceeds the set current threshold. The Standby Mode can be entered only through the STOP state.  
Transition to SBM2 mode occurs when the “START BIT” D0 of Mode Control register MOD_CTL_REG in Table 49 is set to “1” and Mode Control  
Bits D7,D6 to “1,1” through SPI. In this mode the date rate is programmable with the time of Ta in the Ta control registers B, C. The data sample  
is made available and an interrupt signal is generated on INT pin only when the input signal exceeds the threshold set in Current Threshold  
Registers D,E. It should be noted here that the data is stable for Ta seconds. The functionality is illustrated in Figure 22.  
Figure 22. Standby Mode 2  
IDD  
MCU  
|I| > I Threshold I  
I
ADC  
t
T
a
sec.  
Ta sec.  
Ta sec.  
T
conv  
T
conv  
Tconv  
Start SBM2  
Channel  
DATA Register  
DATA – A3  
DATA – A0  
DATA – A1  
DATA – A2  
INT  
T
INT  
8.8 Initialization Sequence at Power ON  
Figure 23. Bottom Die Device Initialization Sequence at Power ON  
VPORHID/VPORHIA  
DVDD/AVDD  
POR_N  
INT  
Start  
ADC  
1.5mS  
TADC  
D2  
500µS  
D3  
D4  
D3  
D4  
D3  
D4  
D1  
D1  
D2  
D1  
D2  
Configure  
Device  
CHOP_CLK  
Channel Data  
Register  
0x0000  
DATA1  
DATA2  
TDATA_INVALID  
TDATA_STATUS_RD  
TDATA_VALID  
Device initialization starts if the DVDD and AVDD supplies are switched ON and DVDD > VPORHID. The duration period of Initialization is 500μsec  
and during this period, INT pin toggles at the rate of internal low power oscillator. Toggling on INT during the period of initialization should be  
ignored in the system. Device configuration and activation should be carried out only after the initialization period.  
On ADC start, device enters into analog stabilization state and takes 1.5msec for oscillator and Reference to settle. After this 1.5msec period, the  
first interrupt will occur after a time period of TADC  
.
www.ams.com  
Revision 0.7  
33 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
TDATA_STATUS_RD is the time period during which the micro-controller should complete reading of data and status from the device. If reading is  
carried out beyond this time period, then, ADC performance will degrade for next sample generation. Status register gets cleared automatically  
only when micro-controller reads this register. Data in the channel registers is changed after TDATA_VALID duration. Ensure that data channel  
registers and status registers are not read during the TDATA_INVALID duration.  
Example:  
Configuration registers are set as follows:  
CLK_REG = 8’b0010_0000  
DEC_REG_R1_I = 0100_0101  
DEC_REG_R2_I = 1100_0101  
FIR_CTL_REG_I = 0000_0100  
ADC is configured to a data rate of 1KHz, CHOP_CLK to 2KHz, and Modulator clock to 1MHz, Decimation ratio of CIC1 = 64, and Decimation  
ratio of CIC2 = 4. With these settings the various time periods as shown in the Figure 23 are as follows:  
TDATA_STATUS_RD = 100 μsec  
(TDATA_STATUS_RD = (1/mod_clk) * R1 * [((mod_clk/(2*chop_clk))*(1/R1)) - 2.5)  
TDATA_INVALID = 8 μsec  
TADC = 1msec  
TDATA_VALID = TADC - TDATA_INVALID = 1msec - 8 μsec  
CHOP_CLK and POR_N are internal signals of the device.  
Table 29 provides valid combinations of Modulator clock, Chopper clock and Decimation R1 and the corresponding values of TDATA_STATUS_RD and  
TADC  
.
Table 29. Valid Combinations of Modulator Clock, Chopper Clock and Decimation Ratio R1  
TADC  
Chopper Frequency  
TDATA_STATUS_RD  
Modulator Clock  
Decimation Ratio R1  
R2/(2*CHOP_CLK)  
for R2=4  
CHOP_CLK  
1.024MHz  
2.048MHz  
2KHz  
64  
64  
1usec * 64 * [4 - 2.5] = 96usec  
1mSec  
1mSec  
0.5usec * 64 * [8 - 2.5] = 176usec  
2KHz  
0.5usec * 128 * [4 - 2.5] = 96usec  
0.5usec * 64 * [4 - 2.5] = 48usec  
2.048MHz  
2.048MHz  
2KHz  
4KHz  
128  
64  
1mSec  
0.5mSec  
8.8.1 Soft-reset of Device Using Bit D[7] of Reset Register 0x09  
It is possible to soft-reset the device by writing “0” into D[7] bit of Reset Register at 0x09. On applying soft-reset, the device enters into  
initialization state and D[6] bit changes back to “1”. The duration period of Initialization is 500μsec, and, during this period, INT pin toggles at the  
rate of internal low power oscillator. Toggling on INT during the period of initialization should be ignored in the system. Device configuration and  
activation should be carried out only after the initialization period. See Figure 24 for the timing details of the sequence of device initialization on  
soft-reset.  
www.ams.com  
Revision 0.7  
34 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Figure 24. Bottom Die Device Initialization Sequence at Soft-reset  
Start  
ADC  
1.5mS  
INT  
500µS  
D4  
D3  
D4  
D
3
D4  
D3  
D4  
D3  
D4  
D1  
D2  
D1 Soft Reset  
D1  
D2  
D1  
D2  
D1  
D2  
Re-Configure  
Device  
Using D7  
CHOP_CLK  
Channel Data  
Register  
0x0000  
DATA-N  
DATA-N+1  
TDATA_INVALID  
DATA1  
DATA2  
TDATA_STATUS_RD  
TDATA_STATUS_RD  
TDATA_VALID  
TDATA_INVALID  
TDATA_VALID  
8.8.2 Soft-reset of the Measurement Path Using Bit D[7] of Reset Register 0x09  
Measurement path also can be reset by using D[6] bit of Reset Register at 0x09. On applying soft-reset only signal measurement path registers  
will be reset. For applying this reset, device should be in STOP state. If the device is working with external clock, at the time of soft-reset the  
clock needs to be disabled.  
8.8.3 Reconfiguring Gain Setting of PGA  
Only PGA gain settings can be changed dynamically while ADC conversions are in progress. When PGA gain settings are changed, the first  
sample from the ADC is invalid. Ignore the first interrupt after the gain re-configuration. Valid data starts from the second interrupt onwards.  
Figure 25. Bottom Die - Re-configuration of Gain Setting of PGA  
Gain Re-Configuration can be  
carried out in this slot, skip next  
interrupt and Channel Data.  
Read Channel  
data in this slot  
VALID  
DATA  
TDATA_STATUS_RD  
INT  
D3  
D4  
D4  
D3  
D4  
D3  
D4  
D3  
D4  
D1  
D2  
D1  
D2  
D1  
D2  
D1  
D2  
CHOP_CLK  
Channel Data  
Register  
DATA-N  
DATA-N+1  
DATA1  
TDATA_STATUS_RD  
DATA2  
TDATA_STATUS_RD  
TDATA_INVALID  
TDATA_INVALID  
TDATA_VALID  
TDATA_VALID  
8.8.4 Configuring the Device During Normal Mode  
Following registers can be programmed dynamically when the device is in operational mode (Normal mode).  
ACH_CTL_REG address is 0x17 for channel selection on the voltage measurement path  
PGA_CTL_REG address is 0x13 for gain setting  
PD_CTL_REG2 address is 0x15 for PGA Bypass  
ISC_CTL_REG address is 0x18 for current source programmability  
During the operation (Normal mode) of the device, if any of the registers need to be programmed or changed other than the above mentioned  
registers, then it is required to STOP the device by writing into MOD_CTL_REG “STOP” bit and configure the device as per the requirements and  
start the device.  
www.ams.com  
Revision 0.7  
35 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
8.8.5 Standby Mode - Power Consumption  
In Standby Mode 1 there is a timer based accurate measurement every Ta seconds. The device itself stays in idle-mode as long as it does not  
get a different command from the SPI interface. Internal oscillator frequency is typically foscint=262 kHz to reduce power consumption as long as  
the timer runs. After every time out of Ta seconds, it performs accurate measurement of current, voltage/ temperature. Data ready is signaled to  
microcontroller through an interrupt signal on INT and goes into STOP state.  
In the SBM the following equations hold:  
T  
sbm1  
= Ta= 10s (default value is 10secs); the power consumption is valid for this setting. This is the period of the repetition rate in SBM 1  
and SBM2.  
Tsett 2ms (depending on external capacitors). This is the time required by the analog part to settle when the new measuring period is  
started. Any measurements performed during Tsett produce invalid results.  
T1 = 3ms (by default setting, every third measurement is sent to microcontroller in the SBM mode 1) is the time needed to perform the first  
measurement.  
Tmeas =Tsett +T1 is the total active time needed to get a valid result.  
DRSBM = Tmeas/Tsbm 5ms/10s. This is the ratio of repetition time versus the active time (Device in NOM mode).  
Power consumption = (DRSBM*NOM mode power consumption) + ((10s-5ms)/10s)*Stop mode power consumption)  
8.9 Bottom Die Block Specifications  
This section provides specification of design related key parameters.  
8.9.1 Current Measurement Ranges (across 100µΩ (±5%) shunt resistor)  
Table 30. Current Measurement Ranges  
PGA  
Gain  
Nominal  
1
PSR2  
[dB]  
Imax  
[A]  
Vsh  
[mV]  
Data Rate  
(fOUT  
VINADC  
[mV]  
Symbol  
Parameter  
)
I70  
I200  
I400  
I1500  
Input current range of 70A in NOM  
Input current range of 200A in NOM  
Input current range of 400A in NOM  
±77  
±235  
±400  
±8.1  
±24.7  
±42  
100  
40  
25  
5
@ 1 kHz  
@ 1 kHz  
@ 1 kHz  
@ 1 kHz  
890  
1088  
1137  
1204  
60  
60  
60  
60  
Input current range of 1500A in NOM +2076/-1523 +218/-160  
1. V  
= V * Gain, gain deviations to be considered according to Table 32 and Table 33.  
sh  
INADC  
2. AVDD, DVDD of 3.3V with ±5% variation.  
Note: The Data Rate at the output can be calculated according to the formula:  
fsout=2*fchop /R2 (R2 is down sampling ratio taking values 1, 2, 4 up to 32768 as powers of 2)  
Table 31. Valid Combinations of the Chopper Clock, Oversampling Clock and Decimation Ratios  
Over Sampling Frequency  
1.024MHz  
Chopper Frequency  
Decimation Ratio  
2kHz  
2kHz  
2kHz  
4kHz  
64  
64  
2.048MHz  
2.048MHz  
128  
64  
2.048MHz  
www.ams.com  
Revision 0.7  
36 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Differential Input Amplifier for Current Channel.  
Table 32. Differential Input Amplifier for Current Channel  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VIN_AMP  
Input voltage range  
RSHH and RSHL  
-160  
+160  
mV  
RSHH and RSHL@ +160mV input  
voltage at 125ºC with PGA  
Input current 1, 11  
I _AMP  
IN  
-50  
2
50  
nA  
-160  
+300  
Absolute input voltage range 2  
ICM  
mV  
Gain1 3, 4, 9  
Gain2 3, 4, 9  
Gain3 3, 4, 9  
G = G1  
G = G2  
G = G3  
I10  
100  
40  
25  
5
I200  
I400  
Gain4 3, 4, 9  
G = G4  
e
I1500  
Gain deviation  
i = 1, 2, 3, 4  
0.9 * Gi  
15  
1.1 * Gi  
±0.5  
Pole frequency 4, 5  
Gain drift with temperature 6  
Offset drift with temperature 7, 10  
Input referred offset 7, 10  
f _AMP  
P
kHz  
%
-20ºC to +65ºC  
Gain 5, 25, referenced to room  
temperature  
εT1  
VOSDRIFT  
350  
µV  
µV  
V
os  
After trim at -20deg  
Chopping enabled  
350  
V
os_ch  
0
LSB  
nV/Hz  
dB  
Noise density 4, 8  
V
25  
70  
Ndin  
THD  
Total harmonic distortion  
For 150 Hz input signal  
Notes:  
1. Leakage test accuracy is limited by tester resource accuracy and tester hardware.  
2. For gain 100 PGA input common mode is 0V and the minimum supply is 3.15V.  
3. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-  
grammed independently.  
4. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-  
teed by design.  
5. Pole frequency of input amplifier changes with GAIN. The number is valid for the gain at G1, while the bandwidth will be higher for other  
ranges. This parameter is not measured in production.  
6. Based on device evaluation. Not tested.  
7. These offsets are cancelled if chopping enabled (default).  
8. Noise density calculated by taking system bandwidth as 150Hz.  
9. Refer to Measurement Ranges shown in Table 30.  
10. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.  
11. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of  
protection diode.  
www.ams.com  
Revision 0.7  
37 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Differential Input Amplifier for Voltage Channel.  
Table 33. Differential Input Amplifier for Voltage Channel  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Input voltage range 1, 10  
V
IN_AMP  
-160  
+160  
mV  
VBAT_IN, ETR, ETS @ +160mV input  
voltage at 125ºC with PGA  
Input resistance 2, 10  
I
12.5  
kΩ  
IN_RES  
-160  
+300  
Absolute input voltage range 3  
ICM  
mV  
Gain1 4, 5  
Gain2 4, 5  
Gain3 4, 5  
G = G1  
G = G2  
G = G3  
100  
40  
25  
5
Gain4 4, 5  
G = G4  
e
Gain deviation  
i = 1, 2, 3, 4  
0.9 * Gi  
15  
1.1 * Gi  
Pole frequency 5, 6  
fP_AMP  
kHz  
Noise density 5, 7  
VNDIN  
THD  
25  
70  
nV/Hz  
Total harmonic distortion  
For 150Hz input signal  
dB  
-20ºC to +65ºC  
Gain 5, 25, referenced to room  
temperature  
Gain drift with temperature 8  
εT1  
±0.5  
350  
%
VOS  
After trim at -20ºC  
Chopping enabled  
µV  
LSB  
µV  
Input referred offset 9  
V
0
os_ch  
Offset drift with temperature 9  
VOSDRIFT  
350  
Notes:  
1. Input for the voltage channel can be as high as 1220mV, in this high input case PGA will be bypassed.  
2. Leakage test accuracy is limited by tester resource accuracy and tester hardware, especially at low temperatures due to condensing  
moisture.  
3. For gain 100 PGA input common mode is 0V and the minimum supply is 3.15V.  
4. The measurement ranges are referred only by the gain of input amplifier, while other parameters such as bandwidth etc. are pro-  
grammed independently.  
5. This parameter is not measured directly in production. It is measured indirectly via gain measurements of the whole path. It is guaran-  
teed by design.  
6. Pole frequency of input amplifier changes with changing the GAIN. The number is valid for the gain at G1, while the bandwidth will be  
higher for other ranges. This parameter is not measured in production.  
7. Noise density calculated by taking system bandwidth as 150Hz.  
8. Based on device evaluation. Not tested.  
9. No impact on the measurement path. If the chopping is enabled, both the offset and offset drift will be eliminated.  
10. For negative input voltages up to -160mV below ground, Input leakage is typically -20nA @ 65ºC due to forward conductance of  
protection diode.  
www.ams.com  
Revision 0.7  
38 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Sigma Delta Analog to Digital Converter.  
Table 34. Sigma Delta Analog to Digital Converter  
Symbol  
Parameter  
Reference voltage 6  
Conditions  
Min  
Typ  
Max  
Units  
V
REF  
1.225  
V
Input range 1  
V
At V  
= 1.22V  
REF  
0
±1.22  
128  
V
INADC  
Oversampling ratio/Decimation Ratio 2  
R1  
64  
128  
1024/  
2048  
Oversampling frequency 3  
f
kHz  
OVS  
RES  
BW  
16  
bits  
Hz  
dB  
Number of bits  
Bandwidth 4  
1
500  
Signal to noise ratio 5  
S/N  
90  
Notes:  
1. Production test at ±800mV. Maximum VIN can be 1.22V with VREF=1.225V.  
2. Programmable. It is defined with respect to the first decimator in the ΣΔ ADC.  
3. Programmable: Internal clock is 1024/2048 kHz; external clock max is 8192 kHz.  
4. Dependent on fovs, R1 and R2. The bandwidth is calculated according to the formula:  
BW=fovs/(2*R1*R2); the sampling frequency at the output of the A/D converter is 2*BW.  
5. Defined at maximum input signal, BW=500 Hz (1Hz to 500 Hz), fovs=1024 kHz, R1=64, fchop=2 kHz and R2=2.  
6. Reference voltage might be forced from external.  
Bandgap Reference Voltage.  
Table 35. Bandgap Reference Voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Voltage after trim 1, 2, 3  
Reference Voltage Initial Accuracy 1, 2, 3  
V
Trim at 65ºC  
1.225  
V
REFTRIM  
V
At 65ºC (0 Hour data)  
±3.5  
±0.4  
mV  
%
REFACC  
Temperature range  
-20ºC to 65ºC  
V
Reference Voltage Temperature drift  
REFDRIFT  
Temperature range  
-40ºC to 125ºC  
+0.4/  
-0.6  
%
PSRRREF  
SUTAVDD  
PSR @ dc  
80  
5
dB  
ms  
Start Up Time with supply ramp 4  
Start Up Time from power down 4  
Output resistance of band gap  
SUTPD  
RNDVREF  
VNDVREF  
CLVREF  
1
ms  
Ω
500  
100  
1000  
300  
Bandgap reference thermal noise density 4  
nV/Hz  
nF  
Output Capacitor (Ceramic)  
ESRVREF  
0.02  
1
Ω
Notes:  
1. Accuracy at 65ºC. No DC current is allowed from this pin.  
2. Specification does not include solder shift and life time drift.  
3. Please refer Figure 26 for typical life time drift based on system level measurements.  
4. This is a design parameter and not production tested.  
www.ams.com  
Revision 0.7  
39 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Figure 26. Typical System-level VREF Drift  
AS8515  
1.2265  
1.2260  
1.2255  
1.2250  
1.2245  
1.2240  
1.2235  
1.2230  
DUT1  
DUT2  
DUT3  
DUT4  
0.10%  
-0.10%  
0
50  
100  
150  
200  
250  
300  
System Level Operating Time in Normal mode at 115ºC ambient [h]  
www.ams.com  
Revision 0.7  
40 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Internal (Programmable) Current Source for External Temperature Measurement.  
Table 36. External Temperature Measurement  
Symbol  
ICURON  
Parameter  
Conditions  
Min  
Typ  
270  
10  
Max  
Units  
µA  
5-bit current source enabled 1  
5-bit current source disabled  
5-bit programmable current source  
Limited by leakage  
0
320  
ICUROFF  
nA  
ppm  
/ ºK  
Temperature coefficient of current source 2  
Voltage on pin ETR 3  
TK_CS  
1000  
VMAXETR  
1000/G  
1.22  
mV  
V
Max voltage on pin ETR when PGA is  
bypassed 4  
VMAXETRMOD  
VMAXETS  
Voltage on pin ETS for resistor sensor 3  
1000/G  
1.22  
V
Max. Voltage on pin ETS when PGA is  
bypassed 5  
VMAXETSMOD  
V
Notes:  
1. Current value can be programmed through stop mode in steps of 8μA from 0 to 256μA with a process error of 30%.  
2. Temperature coefficient is not important since external temperature measurement is a 2 step measurement. The value specified is  
guaranteed by design and will not be tested in production.  
3. Maximum voltage on pin ETR (reference) can be calculated by given formula, where G is the gain of PGA (G=100).  
4. Maximum voltage on pin ETR, if PGA is bypassed.  
5. Maximum voltage on pin ETS, if PGA is bypassed.  
CMREF Circuit (VCM).  
Table 37. CMREF Circuit  
Symbol  
VVCM  
CL  
Parameter  
Output voltage  
Load capacitance  
Min  
Typ  
1.7  
Max  
Units  
V
1.6  
1.8  
100  
nF  
Internal AVDD Power-on Reset.  
Table 38. Internal AVDD Power-on Reset  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Power On Reset Threshold  
VPORHIA  
2.2  
2.4  
2.6  
V
POR time - The duration from Power ON till  
the time, internal Power On Reset signal  
tPORA  
1
µs  
1
goes HIGH  
2
IPORA  
1.5  
µA  
Current consumption in POR block  
1. POR pulse is always longer than tPORA whatever the slope of the supply.  
2. IPORA can not be switched off.  
www.ams.com  
Revision 0.7  
41 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Internal DVDD Power-on Reset.  
Table 39. Internal DVDD Power-on Reset  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Power On Reset Threshold  
VPORHID  
VHYST  
2.2  
2.4  
2.7  
V
1
0.2  
1
0.25  
0.4  
V
Hysteresis  
POR time - The duration from Power ON till the  
time, internal Power On Reset signal goes  
tPORD  
µs  
µA  
2
HIGH  
3
IPORD  
1.5  
Current  
1. VPORLO = VPORHI - VHYST where VPORLO is the lower threshold of POR.  
2. VPORLO = VPORHI - VHYST where VPORLO is the lower threshold of POR.  
3. IPORD can not be switched off.  
Low Speed Oscillator.  
Table 40. Low Speed Oscillator  
Symbol  
fLS  
Parameter  
Frequency  
Min  
Typ  
Max  
Units  
kHz  
%
262.144  
fLS_ACC  
ILS  
Accuracy  
± 7  
5
Supply current  
µA  
High Speed Oscillator.  
Table 41. High Speed Oscillator  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
fHS  
Frequency  
4.096  
MHz  
Accuracy 1  
fHSACC  
IHS  
±4  
%
Supply current  
300  
µA  
Notes:  
1. Accuracy after trimming.  
External Clock.  
Table 42. External Clock  
Symbol  
Parameter  
Clock frequency  
Conditions  
Min  
Typ  
Max  
Units  
2048/  
4096/  
8192  
fCLKEXT  
kHz  
to be programmed in Register 08  
CLK_REG through the serial bus SPI.  
DIVCLKEXT  
DCCLKEXT  
Clock division factor  
2/4/8  
Duty Cycle of external clock  
40  
60  
%
www.ams.com  
Revision 0.7  
42 - 65  
AS8515  
Datasheet - AS8515 Bottom Die Overview  
Internal Temperature Sensor.  
Table 43. Internal Temperature Sensor  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
ºC  
TINTRNG  
Temperature sensor range  
Temperature measurement accuracy  
-40  
125  
Δ
TIN  
3
ºC  
Guaranteed by design; at PGA gain 5  
which is the recommended Gain for  
internal temperature measurement.  
TINTSLP  
Temperature sensor slope  
27  
Digits/C  
Digits  
TINT65G5  
Temperature sensor output at gain 5  
40660  
41807  
43012  
8.9.2 System Specifications  
Table 44. System Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Channel to channel isolation 1  
IS  
-90  
dB  
dB  
Difference in channel to channel attenuation  
@600Hz 1, 2  
At  
3
5
Difference in phase shift between the two  
channels @600Hz 1, 2  
Ph  
Deg  
System Measurement Error Budget for Voltage and Current Channel.  
Temperature Range: -20ºC to +65ºC; Output data rate is 1kHz, VCC = 3.3V, chopping enabled.  
Table 45. System Measurement Error Budget for Gains 5 and 25  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
System measurement error 3, 4  
Err  
±0.6  
1
%
%
From device evaluation  
±0.5  
Measurement error due to PGA gain drift  
Measurement error due to VREF drift  
±0.4  
%
%
Measurement error due to non-linearity of PG Tested by distortion measurements  
±0.025  
Notes:  
1. These specifications are defined by taking one channel as reference and measured on the other channel.  
2. Guaranteed by design.  
3. System measurement error due to noise, individual block parameter drifts and non linearity. Based on evaluation, not tested.  
4. System error due to offset is neglected because of chopper architecture.  
www.ams.com  
Revision 0.7  
43 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
9 4-Wire SPI Interface  
The SPI interface can also be used as interface between the AS8515 and an external micro-controller to configure the device and access the  
status information. Micro-controller begins communication with the SPI configured as a slave. The SPI protocol is very simple and the length of  
each frame is an integer multiple of byte except when a transmission is started. Basically each frame has 1 command bits, 5 address/  
configuration bits, 1 or more data bytes. SPI clock polarity settings depend on the value of the SCLK on the CS falling edge. This setting is done  
on each start of the SPI transaction. During the transaction SPI clock polarity will be fixed to the settings done. On the CS falling edge the values  
on SCLK signal decide setting of the active SPI clock edge for data transfer (see Table 46).  
Table 46. CS and SCLK  
CS1  
SCLK  
Description  
Serial data transferred on rising edge of SPI clock.  
Sampled at falling edge of SPI clock.  
FALL  
LOW  
Serial data transferred on falling edge of SPI clock.  
Sampled at rising edge of SPI clock.  
FALL  
ANY  
HIGH  
ANY  
Serial data transfer edge is unchanged.  
1. Pin CST is used to program top device and pin CSB is used to program bottom device.  
9.1 SPI Timing Parameters  
Table 47. 4-Wire Serial Port Interface  
Symbol  
General  
BR  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Bit rate  
250  
Kbps  
µs  
SPI  
T
Clock high time  
Clock low time  
2
2
SCLKH  
T
µs  
SCLKL  
Write Timing  
t
Data in setup time  
Data in hold time  
CS hold time  
20  
10  
20  
ns  
ns  
ns  
DIS  
t
DIH  
T
CSH  
Read Timing  
t
Data out delay  
80  
80  
ns  
ns  
DOD  
t
Data out to high impedance delay  
Time for the SPI to release the SDO bus  
DOHZ  
Timing parameters when entering 4-Wire SPI mode (for determination of CLK polarity)  
Clock setup time  
(CLK polarity)  
Setup time of SCLK with respect to  
CS falling edge  
t
20  
20  
ns  
ns  
CPS  
Clock hold time  
(CLK polarity)  
Hold time of SCLK with respect to  
CS falling edge  
t
CPHD  
www.ams.com  
Revision 0.7  
44 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
9.1.1 SPI Frame  
A frame is formed by a first byte for command and address/configuration and a following bit stream that can be formed by an integer number of  
bytes. Command is coded on the 1 first bit, while address is given on LSB 5 bits (see Table 48).  
Table 48. Command Bits  
Command Bits  
Register Address or Transmission Configuration  
C0  
Reserved  
Reserved  
<A4:A0>  
A4  
A3  
A2  
A1  
A0  
C0  
0
Command  
WRITE  
Description  
ADDRESS  
ADDRESS  
Writes data byte on the given starting address  
Reads data byte from the given starting address  
1
READ  
If the command is read or write, one or more bytes follow. When the micro-controller sends more bytes (keeping CS LOW and SCLK toggling),  
the SPI interface increments the address of the previous data byte and writes/reads data to/from consecutive addresses.  
9.1.2 Write Command  
For Write command C0 = 0.  
After the command code C0 and two reserved bits, the address of register to be written has to be provided from the MSB to the LSB. Then one  
or more data bytes can be transferred, always from the MSB to the LSB. For each data byte following the first one, used address is the  
incremented value of the previously written address. Each bit of the frame has to be driven by the SPI master on the SPI clock transfer edge and  
the SPI slave on the next SPI clock edge samples it. These edges are selected as per clock polarity settings. In the following figures two  
examples of write command (without and with address self-increment.  
Figure 27. Protocol for Serial Data Write with Length = 1  
CS  
SCLK  
0
RES0  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RES1  
SDI  
SDO  
Data D7 – D0 is moved to  
Address A4..A0 here  
Transfer edge  
Sampling edge  
www.ams.com  
Revision 0.7  
45 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Figure 28. Protocol for Serial Data Write with Length = 4  
CS  
SCLK  
D D  
7 6  
D
5
D D D  
D
1
D
0
A
4
D D  
7 6  
D
5
D D D D D  
A
3
A
2
A
1
A
0
D D  
7 6  
D
5
D D D  
D
1
D D D  
7 6  
D
5
D D D  
D
1
D
0
D D  
7 6  
D
5
D D D  
4 3 2  
D
1
D
0
RERE  
S1 S0  
0
SDI  
4
3 2  
4
3 2 1 0  
4
3
2
0
4
3
2
SDO  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
Data D7-D0 is  
moved to Address  
A4-A0 +1 here  
moved to Address  
A4-A0 +2 here  
moved to Address  
A4-A0 +3 here  
moved to Address  
A4-A0 here  
moved to Address  
A4-A0 +4 here  
9.1.3 Read Command  
For Read command C0=1.  
After the command code C0 and two reserved bits, the address of register to be read has to be provided from the MSB to the LSB. Then one or  
more data bytes can be transferred from the SPI slave to the master, always from the MSB to the LSB. To transfer more bytes from consecutive  
addresses, SPI master has to keep active the SPI CS signal and the SPI clock as long as it desires to read data from the slave. Each bit of the  
command and address sections of the frame have to be driven by the SPI master on the SPI clock transfer edge and the SPI slave on the next  
SPI clock edge samples it. Each bit of the data section of the frame has to be driven by the SPI slave on the SPI clock transfer edge and the SPI  
master on the next SPI clock edge samples it. These edges are selected as per clock polarity settings. In the following figures, two examples of  
read command (without and with address self-increment) have been shown.  
Figure 29. Protocol for Serial Data Read with Length = 1  
CS  
SCLK  
RES1  
1
RES0  
A4  
A3  
A2  
A1  
A0  
SDI  
SDO  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Data D7 – D0 at Address A4..A0  
is read here  
Transfer edge  
Sampling edge  
Transfer edge  
Sampling edge  
www.ams.com  
Revision 0.7  
46 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Figure 30. Protocol for Serial Data Read with Length = 4  
CS  
SCLK  
A A A  
A
1
A
0
RE  
S1  
RE  
S0  
1
SDI  
4
3 2  
D
7
D
6
D D D D D D D D  
D
5
D D D D D D D D D D D D D D D  
D
5
D D D D  
4 3  
D
0
D D D D D D D  
7 6 5 4 3 2 1  
D
0
SDO  
5
4
3
2
1
0
7
6
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
2
1
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Data D7-D0 at  
Address A4-A0  
is read here  
Address A4-A0 +1  
is read here  
Address A4-A0 +2  
is read here  
Address A4-A0 +3  
is read here  
Address A4-A0 +4  
is read here  
9.1.4 Timing  
In the following figures timing waveforms and parameters are exposed.  
Figure 31. Timing for Writing  
CS  
...  
t
t
t
t
SCLKL  
CPS  
CPHD  
SCLKH  
t
CSH  
SCLK  
CLK  
polarity  
...  
...  
...  
t
t
DIH  
DIS  
SDI  
DATAI  
DATAI  
DATAI  
SDO  
www.ams.com  
Revision 0.7  
47 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Figure 32. Timing for Reading  
CS  
t
t
SCLKL  
SCLKH  
SCLK  
SDI  
DATAI  
DATAI  
t
t
DOHZ  
DOD  
SDO  
DATAO (D7)  
DATAO (D0)  
9.2 Bottom Die Registers  
This section describes the control registers used in AS8515 Bottom die. Registers can be broadly classified into the following categories.  
Data access registers  
Status Registers  
Digital signal path control registers  
Digital Control registers  
Analog Control Registers  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Data Access Registers  
DREG_I1  
(ADC Data Register for Current)  
00  
0000_0000  
0000_0000  
0000_0000  
0000_0000  
R
R
R
R
D[7:0]  
D[7:0]  
D[7:0]  
D[7:0]  
Denotes the Current ADC MSB Byte (ADC_I[15:8])  
Denotes the Current ADC LSB Byte (ADC_I[7:0])  
Denotes the Voltage ADC MSB Byte (ADC_V[15:8])  
Denotes the Voltage ADC LSB Byte (ADC_V[7:0])  
DREG_I2  
(ADC Data Register for Current)  
01  
02  
03  
DREG_V1  
(ADC Data Register for Voltage)  
DREG_V2  
(ADC Data Register for Voltage)  
www.ams.com  
Revision 0.7  
48 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Status Registers  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
NOM1/NOM2 Data Ready  
NOM2 Threshold Crossover  
SBM1 Data Ready  
SBM2 Threshold Crossover  
APOR status  
04  
STATUS_REG  
0000_0000  
R
Data from current channel updated  
Data from voltage channel updated  
Reserved  
www.ams.com  
Revision 0.7  
49 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Signal Path Control Registers for Current Channel  
This bit selects decimation rate is used for current  
channel. Default is 0 (Down Sampling Rate is 64)  
D[7]  
0
1
Down Sampling Rate is 64  
Down Sampling Rate is 128  
These two bits select division ratio of oversampling  
frequency clock MOD_CLK to be used as chopper  
clock, CHOP_CLK.  
Default is “10” (divide by 512)  
00  
01  
10  
11  
Chopper Clock Always High  
Divide by 256  
D[6:5]  
Divide by 512  
Divide by 1024  
These four bits select the decimation ratio of second  
CIC stage. Default is “0010” (equal to 4)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
4
8
05  
DEC_REG_R1_I  
0100_ 0101 R/W  
16  
32  
64  
D[4:1]  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
CIC1 Saturation Interrupt Mask Control.  
Default is 1  
D[0]  
0
1
Unmask  
Mask  
www.ams.com  
Revision 0.7  
50 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
D[7]  
D[6]  
I-Channel Enable, Default 1=enable  
V-Channel Enable, Default 1=enable  
Interrupt polarity  
D[5]  
D[4]  
0
1
Active high  
Active low  
. Interrupt Mask Control for Current Channel Data  
Ready Interrupt on INT pin (Default is 0)  
0
1
Unmasked  
Masked  
These two bits select the source of output 16-bit data in  
Normal mode from Current channel. Default is 01  
06  
DEC_REG_R2_I  
1100_0101  
R/W  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
D[3:2]  
D[1:0]  
Dechop/Demod Output  
CIC1 Output  
These two bits select the source of output 16-bit data in  
SBM mode from Current channel. Default is 01  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
Dechop/Demod Output  
CIC1 Output  
www.ams.com  
Revision 0.7  
51 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
This bit selects FIR / MA Filter in Current channel.  
Default is 0 (FIR)  
D[7]  
0
1
FIR  
MA Filter  
These bits select the number of data samples for  
averaging in MA filter in Current channel.  
Default is 0000 (bypass)  
0000  
0001  
0011  
0111  
1111  
bypass  
D[6:3]  
1
3
7
07  
FIR CTL_REG_I  
0000_0100  
R/W  
15  
These two bits select the Measurement Path  
architecture in both Current and Voltage channels.  
Default is 10 (Dechopper after CIC)  
00  
01  
Demodulator after CIC1  
Demodulator before CIC1  
D[2:1]  
D[0]  
Dechopper after CIC1  
(preferred and suggested)  
10  
11  
Demodulator before CIC1 with settled  
sample  
Reserved. Default 0. Do not change  
www.ams.com  
Revision 0.7  
52 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Control Registers  
Oversampling frequency clock selection. Default is 00  
(high speed (HS) internal Clock)  
00  
01  
10  
Internal HS Clock with No Clock Output  
Internal HS Clock with Clock Output  
External Clock  
D[7:6]  
D[5:4]  
These two bits select the division ratio for HS clock/  
external clock. Default is 10 (division by 4)  
00  
01  
10  
11  
No division  
Divide by 2  
Divide by 4  
Divide by 8  
CLK_REG  
(Clock Control Register)  
08  
0010_0000  
R/W  
These two bits select the division ratio of HS clock, by  
which it should be divided before providing it on CLK  
pin. Default is 00 (No Division)  
00  
01  
10  
11  
No Division  
Divide by 2  
Divide by 4  
Divide by 8  
D[3:2]  
D[1]  
This bit selects the division ratio of LS clock  
LS _CLK undivided (Low Speed clock)  
LS _CLK divide by 2  
0
1
D[0]  
D[7]  
Reserved  
Entire device can be soft reset by writing “0” into this  
register bit. This bit will take a default 1 value on coming  
out of Reset  
RESET_REG  
(Reset Control Register)  
09  
1100_0000  
R/W  
Measurement Path can be soft reset by writing “0” into  
this register bit. This bit will take a default 1 value after  
Measurement Path is reset.  
D[6]  
D[5:0]  
Reserved  
www.ams.com  
Revision 0.7  
53 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
These two bits select the operating mode of the Device.  
Default is 00 (Normal Mode 1)  
00  
01  
10  
11  
Normal Mode 1  
Normal Mode 2  
Standby Mode 1  
Standby Mode 2  
D[7:6]  
These three bits select the number of cycles to be  
ignored before comparison with the set threshold in  
Standy Mode. Default is 000 (3 cycles of data)  
000  
001  
010  
011  
100  
101  
110  
111  
3 cycles of data  
4 cycles of data  
5 cycles of data  
6cycles of data  
7 cycles of data  
8 cycles of data  
9 cycles of data  
10 cycles of data  
D[5:3]  
MOD_CTL_REG  
(Mode Control Registers)  
0A  
0000_0000  
R/W  
This bit controls the CHOP_CLK availability on  
CHOP_CLK pin.  
Default is 0  
D[2]  
D[1]  
0
1
Disabled  
Enabled  
Enabling the MEN pin to indicate transition from  
Standby to Normal Mode.  
0
1
Disabled  
Enabled  
This bit is used to take the device from STOP state to  
any of the Modes based on D[7:6] selection of this  
register.  
D[0]  
D[7]  
0
1
Retain in STOP state  
Enables transition to Normal or Standby  
Modes.  
Unit of Ta in SBM1/SBM2. Default is 1  
Unit is in milliseconds  
Unit is in seconds  
0
1
MOD_Ta_REG1  
(Ta Control Register)  
0B  
1000_0000  
D[6:0]  
D[7:0]  
MSB value of Ta  
MOD_Ta_REG2  
(Ta Control Register)  
Unit of Ta in SBM1/SBM2  
LSB value of Ta  
0C  
0D  
0E  
0000_0000  
0000_0000  
0000_0000  
R/W  
R/W  
R/W  
MOD_ITH_REG1  
(Current Threshold Register)  
D[7:0]  
D[7:0]  
MSB bits of 16 bits SBM2 threshold register  
LSB bits of 16 bits SBM2 threshold register  
MOD_ITH_REG2  
(Current Threshold Register)  
www.ams.com  
Revision 0.7  
54 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
Register Name  
POR Value  
0000_0000  
0000_0000  
R/W  
R/W  
R/W  
8-bit Control / Status Data  
HEX  
MOD_TMC_REG1  
(TMC Control Registers)  
MSB value of number of data samples to be dropped  
from ADC before sending Interrupt in NOM2  
0F  
D[7:0]  
D[7:0]  
MOD_TMC_REG2  
(TMC Control Register)  
LSB value of number of data samples to be dropped  
from ADC before sending Interrupt in NOM2  
10  
11  
12  
NOM_ITH_REG1  
NOM_ITH_REG2  
0000_0000  
0000_0000  
R/W  
R/W  
D[7:0]  
D[7:0]  
Eight MSB bits of NOM2 current threshold register  
Eight LSB bits of NOM2 current threshold register  
Analog Control Registers  
Setting of Gain G of Current Channel PGA. Default is  
01 (G = 25)  
00  
01  
10  
11  
5
D[7:6]  
25  
40  
100  
PGA_CTL_REG  
(PGA Control Registers)  
13  
0101_0000  
R/W  
Setting of Gain G in Voltage channel. Default is 01 (G =  
25)  
00  
01  
10  
11  
5
D[5:4]  
D[3:0]  
25  
40  
100  
Reserved  
0
1
0
1
Disable Chopper clock to Current channel  
Enable Chopper clock to Current channel  
Disable Chopper clock to Voltage channel  
Enable Chopper clock to Voltage channel  
Reserved  
D[7]  
D[6]  
D[5]  
D[4]  
Reserved  
PD_CTL_REG_1  
(Power Down Control Register)  
14  
1100_1111  
R/W  
0
1
0
1
0
1
0
1
Disable Current channel PGA  
D[3]  
D[2]  
D[1]  
D[0]  
Enable Current channel PGA  
Disable Current channel ΣΔ Modulator  
Enable Current channel ΣΔ Modulator  
Disable Voltage channel PGA  
Enable Voltage channel PGA  
Disable Voltage channel ΣΔ Modulator  
Enable Voltage channel ΣΔ Modulator  
www.ams.com  
Revision 0.7  
55 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Disable CIC1 of both channels  
0
1
0
1
0
1
0
1
D[7]  
D[6]  
D[5]  
D[4]  
Enable CIC1 of both channels  
Disable CIC2 of both channels  
Enable CIC2 of both channels  
Disable Dechopper in both channels  
Enable Dechopper in both channels  
Disable FIR in both channels  
Enable FIR in both channels  
Do not bypass PGA in Current Channel  
Default 0  
0
1
0
D[3]  
PD_CTL_REG_2  
(Power Down Control Register)  
Bypass PGA in Current Channel  
15  
1111_0011  
R/W  
Do not bypass PGA in Voltage Channel  
Default 0  
Bypass PGA in Voltage Channel  
Note: For Automotive Battery  
measurement, ensure that the PGA is  
bypassed to connect battery voltage  
(attenuated by factor of 21) directly to the  
ADC input.  
D[2]  
1
0
1
0
1
0
1
0
1
0
1
Disable Current Channel Chopper  
Enable Current Channel Chopper  
Disable Voltage Channel Chopper  
Enable Voltage Channel Chopper  
Disable Common Mode Reference  
Enable Common Mode Reference  
Disable Internal Current Source  
D[1]  
D[0]  
D[7]  
D[6]  
D[5]  
Enable Internal Current Source  
Disable Internal temperature sensor  
Enable Internal temperature sensor  
Reserved. (Default 1) Do not change  
Reserved. (Default 1) Do not change  
Data Output in binary numbering system  
PD_CTL_REG_3  
(Power Down Control Register)  
16  
1111_1000  
D[4]  
D[3]  
0
1
D[2]  
Data Output in 2’s complement numbering  
system  
D[1]  
D[0]  
Reserved. (Default 0) Do not change  
Reserved  
www.ams.com  
Revision 0.7  
56 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
These bits specify the selection of voltage/temperature  
in Voltage Channel  
Default is 00 (Voltage Channel)  
00  
01  
10  
11  
Voltage Channel  
External Temperature Channel ETR  
External Temperature Channel ETS  
Internal Temperature Channel  
D[7:6]  
D[5]  
D[4]  
Reserved. (Default 0) Do not change  
Internal current source switch enable. Default is 0  
Note: D4 bit is used for Enabling current source to  
the channel selected by bits D[7,6] of this  
register.  
ACH_CTL_REG  
(Analog Channel Selection  
Register)  
17  
0000_0000  
R/W  
0
1
Disabled  
Enabled  
Enable/disable Internal current source to RSHH pin of  
Current channel  
D[3]  
0
1
Disabled  
Enabled  
Enable/disable current source switch to RSHL pin of  
Current channel  
D[2]  
0
1
Disabled  
Enabled  
D[1:0]  
Reserved  
These three bits specify the selection of magnitude of  
current from the Internal current source. Default is  
00000 (0µA).  
00000  
00001  
00010  
00100  
01000  
10000  
11111  
0µA  
8.5µA  
17µA  
D[7:3]  
ISC_CTL_REG  
(Current Source Setting Register)  
18  
0000_0000  
R/W  
34.5µA  
68µA  
135µA  
270µA  
D[2:0]  
D[7]  
Reserved  
1
Reserved (default = 1) Do not change  
Reserved  
19  
44  
OTP_EN_REG  
0000_0000  
0000_0000  
R/W  
R
D[6:0]  
D[7]  
Status indicating data saturation in Current channel  
Status indicating data saturation in Voltage channel  
Reserved  
STATUS_REG_2  
D[6]  
D[5:0]  
www.ams.com  
Revision 0.7  
57 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
Digital Signal path control registers for Voltage Channel  
Selection of Decimation ratio for Voltage/Temperature  
channel.  
Default is 0 (Down Sampling Rate is 64)  
D[7]  
0
1
Down Sampling Rate is 64  
Down Sampling Rate is 128  
Division of oversampling clock, which is used as  
Chopper Clock. Default is 10 (divide by 512)  
00  
01  
10  
11  
Chopper Clock Always High  
Divide by 256  
D[6:5]  
Divide by 512  
Divide by 1024  
Decimation ratio of CIC2. Default is 0010 (4)  
0000  
1
2
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4
8
45  
DEC_REG_R1_V  
0100_ 0101 R/W  
16  
32  
64  
D[4:1]  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
CIC1 Saturation Interrupt Mask Control.  
Default is 1  
D[0]  
0
1
Unmasked  
Masked  
www.ams.com  
Revision 0.7  
58 - 65  
AS8515  
Datasheet - 4-Wire SPI Interface  
Table 49. Control Registers  
Addr in  
HEX  
Register Name  
POR Value  
R/W  
8-bit Control / Status Data  
D[7:5]  
D[4]  
Reserved  
Interrupt Mask Control for Voltage channel data Ready  
Interrupt on INT pin (Default is 0)  
0
1
Unmasked  
Masked  
These two bits select the source of output 16-bit data in  
Normal mode from Voltage channel. Default is 01  
46  
DEC_REG_R2_V  
R/W  
0000_0100  
00  
01  
10  
11  
FIR / MA Output  
CIC2 Output  
D[3:2]  
Dechop/Demod Output  
CIC Output  
D[1:0]  
D[7]  
Reserved  
This bit selects FIR / MA Filter in Voltage channel.  
Default is 0 (FIR)  
0
1
FIR  
MA Filter  
These bits select the number of data samples for  
averaging in MA filter in Voltage channel.  
Default is 0000 (bypass)  
47  
FIR CTL_REG_V  
0000_0000  
R/W  
0000  
0001  
0011  
0111  
1111  
bypass  
D[6:3]  
D[2:0]  
1
3
7
15  
Reserved  
Note: All the registers from address 0x19 to 0x2C are read-only.  
www.ams.com  
Revision 0.7  
59 - 65  
AS8515  
Datasheet - Application Information  
10 Application Information  
Figure 33. Application Diagram  
32  
30  
29  
28  
27  
26  
25  
31  
1
24  
23  
22  
21  
20  
Optional  
RSHH  
2
VREF  
SDI  
100nF  
3
VCM  
MEN  
4
100nF  
AVDD  
CHOP_CLK  
DVDD  
3.3V  
AS8515  
5
AVSS  
3.3V  
19  
18  
17  
6
ETR  
DVSS  
SDO  
7
ETS  
8
VSENSE_IN  
CSB  
16  
14  
10  
11  
12  
13  
15  
9
200nF  
22µF  
VBAT  
SUP  
Diode  
µC  
Load  
+
-
100µohm  
12V  
Battery  
Note: VSENSE_IN, VSENSE_GND, MEN, and CHOP_CLK should be left unconnected.  
Note: Keep the differential input signal lines short, symmetric, and as close as possible. Use of PCB shielding layers is recommended, but  
consider Eddy currents for fast changes in shunt current and related parasitic signal / ground shift generation.  
www.ams.com  
Revision 0.7  
60 - 65  
AS8515  
Datasheet - Package Drawings and Markings  
11 Package Drawings and Markings  
The devices are available in a 32-pin MLF (5x5 mm) package.  
Figure 34. Package Drawings and Dimensions  
AS8515  
YYWWVZZ  
@
www.ams.com  
Revision 0.7  
61 - 65  
AS8515  
Datasheet - Package Drawings and Markings  
Symbol  
Min  
0.80  
0
Nom  
0.90  
Max  
1.00  
0.05  
1.00  
Symbol  
D2  
Min  
Nom  
3.50  
3.50  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
32  
Max  
A
A1  
A2  
A3  
L
3.40  
3.60  
0.02  
E2  
3.40  
3.60  
-
0.65  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
0.20 REF  
0.40  
0.30  
0º  
0.50  
14º  
θ
b
-
0.18  
0.25  
0.30  
D
5.00 BSC  
5.00 BSC  
0.50 BSC  
4.75 BSC  
4.75 BSC  
E
N
e
D1  
E1  
Notes:  
1. Dimensions and tolerancing conform to ASME Y14.5M -1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Bilateral coplanarity zone applies to the exposed pad as well as the terminal.  
4. Radius on terminal is optional.  
5. N is the total number of terminals.  
Marking: YYWWVZZ.  
YY  
WW  
V
ZZ  
Traceability Code  
@
Last two digits of the  
manufacturing year  
Manufacturing Week  
Plant Identifier  
Sublot identifier  
www.ams.com  
Revision 0.7  
62 - 65  
AS8515  
Datasheet - Revision History  
Revision History  
Revision  
Date  
Owner  
Description  
0.1  
Dec 16, 2011  
zmo/mbr  
Initial draft  
Updated table information on LIN Driver (page 24)  
Pins 10, 11 updated in the file (Pin Assignments, Figure 33)  
0.2  
Jan 25, 2012  
zmo  
Updated power dissipation info in Absolute Maximum Ratings (page 7)  
Updated Table 14, Figure 33.  
0.3  
0.4  
Mar 07, 2012  
Aug 14, 2012  
Updated Operating Conditions, Electrical Characteristics, Ordering  
Information, Figure 12. Table 30, Table 32, Table 33, Table 45.  
0.5  
0.6  
Nov 22, 2012  
Mar 22, 2013  
Jul 26, 2013  
Jul 31, 2013  
zmo/mbr  
Table 1 and Table 6 updated.  
zmo  
mbr  
Updated Table 30, added Figure 26 and notes to Table 35, modified  
Table 30, updated information in Figure 26.  
0.7  
Updated AS8515 Block Diagram Figure 1.  
Note: Typos may not be explicitly mentioned under revision history.  
www.ams.com  
Revision 0.7  
63 - 65  
AS8515  
Datasheet - Ordering Information  
12 Ordering Information  
The devices are available as the standard products shown in Table 50.  
Table 50. Ordering Information  
Ordering Code  
AS8515-ZMFP  
AS8515-ZMFM  
Description  
Delivery Form  
Package  
Tape & Reel (5000 pcs)  
Tape & Reel (500 pcs)  
Data acquisition system with power management  
and LIN transceiver  
32-pin MLF (5x5 mm)  
Note: All products are RoHS compliant and ams green.  
Buy our products or get free samples online at ICdirect: http://www.ams.com/ICdirect  
Technical Support is available at http://www.ams.com/Technical-Support  
For further information and requests, please contact us mailto: sales@ams.com  
or find your local distributor at http://www.ams.com/distributor  
www.ams.com  
Revision 0.7  
64 - 65  
AS8515  
Datasheet - Copyrights  
Copyrights  
Copyright © 1997-2013, ams AG, Tobelbaderstrasse 30, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights  
reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the  
copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. ams AG makes no  
warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described  
devices from patent infringement. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in normal  
commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability  
applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing  
by ams AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by ams AG is believed to be correct and accurate. However, ams AG shall not be liable to recipient or any third  
party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the  
technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other  
services.  
Contact Information  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
A-8141 Unterpremstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.ams.com/contact  
www.ams.com  
Revision 0.7  
65 - 65  

相关型号:

AS8515-ZMFP

Data Acquisition System with Power Management and LIN Transceiver for 12V Battery Sensor Applications
AMSCO

AS8520

LIN Transceiver with Voltage Regulator, Attenuator, Relay Drivers, MCU Interface for Automotive Applications
AMSCO

AS8520-AQFT

LIN Transceiver with Voltage Regulator, Attenuator, Relay Drivers, MCU Interface for Automotive Applications
AMSCO

AS8525

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8525-AQFM

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8525-AQFP

LIN Transceiver with Voltage Regulators, Programmable Gain High Side Amplifier, and Voltage Attenuator
AMSCO

AS8530

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOM

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOP

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOT

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOT-001

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO

AS8530-ASOT-002

LIN Transceiver with Integrated Voltage Regulator and MCU Interface for Automotive Applications
AMSCO