C2012X5R1C226K [AMSCO]

Wide input voltage range (2.4V to 5.5V);
C2012X5R1C226K
型号: C2012X5R1C226K
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

Wide input voltage range (2.4V to 5.5V)

文件: 总26页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AS1313  
Ultra Low Quiescent Current, DC-DC  
Step Down Converter  
The AS1313 is an ultra-low quiescent current hysteretic  
step-down DC-DC converter optimized for light loads and with  
efficiencies of up to 95%.  
General Description  
AS1313 operates from a 2.4V to 5.5V supply and supports  
output voltages between 1.2V and 3.6V. Besides the available  
AS1313 standard variants, any variant with output voltages in  
50mV steps are available.  
In order to save power the AS1313 features a shutdown mode,  
where it draws less than 100nA. During shutdown mode the  
battery is disconnected from the output.  
In light load operation, the device enters an idle mode when  
most of the internal operating blocks are turned off in order to  
save power. This mode is active approximately 100μs after a  
current pulse provided that the output is in regulation. The  
capacitor connected to the REF pin is an essential part of this  
feature.  
The AS1313 is available in an 8-pin MLPD (2mm x 2mm) and a  
6-pin WL-CSP (0.4mm pitch).  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of AS1313, Ultra Low Quiescent  
Current, DC-DC Step Down Converter are listed below:  
Figure 1:  
Added Value of Using AS1313  
Benefits  
Features  
Ideal for single Li-Ion battery powered applications  
Extended battery life  
Wide input voltage range (2.4V to 5.5V)  
High efficiency up to 95%  
Low quiescent current of typ. 1μA  
Low shutdown current of less than 100nA  
Less power consumption  
Fixed output voltage range (1.2V to 3.6V)  
Output current of 150mA  
Supports a variety of end applications  
Over–temperature protection and shutdown  
Cost effective, small package  
Integrated temperature monitoring  
6-pin WL-CSP with 0.4mm pitch  
8-pin MLPD (2mm x 2mm)  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 1  
Document Feedback  
AS1313 − General Description  
Applications  
The AS1313 is an ideal solution for Li-Ion and coin cell powered  
devices as:  
Blood glucose meters  
Remote controls  
Hearing aids  
Wireless mouse or any light-load application  
Block Diagram  
The functional blocks of this device for reference are  
shown below:  
Figure 2:  
AS1313 Block Diagram  
VIN 2.4V to 5.5V  
CIN  
VIN  
EN  
AS1313  
PDRV  
22µF  
ON  
UVLO  
OFF  
L1 6.8µH  
LX  
Logic  
VOUT  
Int  
LDO  
NDRV  
Ipk Det  
Zero  
Cross  
Det  
REF  
REF  
OUT  
CREF  
100nF  
COUT  
22µF  
Overtemp  
Shdn  
GND  
Page 2  
Document Feedback  
amsDatasheet  
[v1-43] 2015-Jul-23  
AS1313 − Pin Assignment  
The AS1313 pin assignment is described below.  
Pin Assignment  
Figure 3:  
Pin Assignment for MLPD and WL-CSP  
Pin A1  
indicator  
PWR_GND  
LX  
1
2
3
4
8
7
6
5
GND  
REF  
OUT  
EN  
AS1313  
MLPD 8-pin 2x2mm  
A1  
A2  
A3  
LX  
OUT  
REF  
Exposed pad: GND  
PWR_VIN  
VIN  
B1  
EN  
B2  
VIN  
B3  
GND  
9
Pin Assignment: Shows the TOP view pin assignment of the AS1313.  
Figure 4:  
Pin Description  
Pin Number  
Pin  
Pin  
Description  
Name  
Type  
MLPD WL-CSP  
1
-
PWR_GND  
LX  
GND  
DO  
Ground. Connect to GND; only available in MLPD package  
Switch Node Connection to Coil. This pin connects to the  
drains of the internal main and synchronous power MOSFET  
switches.  
2
A3  
Power Input Supply. Connect to VIN; only available in MLPD  
package  
3
4
-
PWR_VIN  
VIN  
S
S
Battery Voltage Input. Decouple VIN with a 22μF ceramic  
capacitor as close as possible to VIN and GND.  
B2  
(1)  
Enable Input. Logic controlled shutdown input.  
5
6
B1  
A1  
EN  
DI  
AI  
1 = Normal Operation  
0 = Shutdown  
Output Voltage. An internal resistor divider steps the output  
voltage down for comparison to the internal reference  
voltage.  
OUT  
7
8
A2  
B3  
REF  
AIO  
Reference. Connect a 100nF capacitor to this pin  
GND  
GND  
Ground  
Exposed Pad. This pad is not connected internally. This pin  
also functions as a heat sink. Solder it to a large pad or to the  
circuit-board ground plane to maximize power dissipation.  
9
-
GND  
Note(s) and/or Footnote(s):  
1. This pin should not be left floating.  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 3  
Document Feedback  
AS1313 − Absolute Maximum Ratings  
Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any  
other conditions beyond those indicated under Electrical  
Characteristics is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Absolute Maximum Ratings  
Figure 5:  
Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Electrical Parameters  
Supply voltage to ground  
5V pins  
Applicable for pins:  
VIN, PWR_VIN, VOUT, EN  
-0.3  
-0.3  
7.0  
V
V
Supply voltage to ground  
5V pins  
Applicable for pins:  
LX, REF  
V
+ 0.3  
OUT  
Applicable for pins:  
GND, PWR_GND,  
Exposed Pad  
Voltage difference between  
ground terminals  
-0.3  
0.3  
V
Input current  
(latch-up immunity)  
-100  
100  
mA  
Norm: JEDEC JESD78  
Electrostatic Discharge  
V
Human Body Model  
2
kV  
Norm: JEDEC JESD22-A114F  
ESD-HBM  
Page 4  
Document Feedback  
amsDatasheet  
[v1-43] 2015-Jul-23  
AS1313 − Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
Max  
Units  
Comments  
Temperature Ranges and Storage Conditions  
WL-CSP  
MLPD  
95  
36  
°C/W  
°C/W  
°C  
(1)  
Thermal resistance  
θ
JA  
T
Operating temperature  
-40  
-55  
85  
AMB  
WL-CSP  
MLPD  
25  
°C  
Junction  
temperature  
T
J
150  
125  
°C  
T
T
Storage temperature range  
WL-CSP  
°C  
STRG  
(2)  
(2)  
Norm IPC/JEDEC J-STD-020  
Package body  
temperature  
Norm IPC/JEDEC J-STD-020  
The lead for Pb-free leaded  
packages is matte tin  
(100% Sn)  
260  
85  
°C  
%
BODY  
MLPD  
Relative humidity  
non-condensing  
RH  
5
NC  
Represents an unlimited floor  
life time  
WL-CSP  
MLPD  
1
1
Moisture sensitivity  
level  
MSL  
Represents an unlimited floor  
life time  
Note(s) and/or Footnote(s):  
1. Junction-to-ambient thermal resistance is very dependent on application and board-layout. In situations where high maximum  
power dissipation exists, special attention must be paid to thermal dissipation during board design.  
2. The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020 “Moisture/Reflow Sensitivity  
Classification for Nonhermetic Solid State Surface Mount Devices.  
ams Datasheet  
Page 5  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Electrical Characteristics  
All limits are guaranteed. The parameters with min and max  
values are guaranteed with production tests or SQC (Statistical  
Quality Control) method.  
Electrical Characteristics  
Figure 6:  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
Input voltage  
VIN, PWR_VIN  
3.6V ≤ V ≤ 5.5V  
2.4  
5.5  
V
IN  
IN  
1.2  
1.2  
-3  
3.6  
V
V
(V ≥ V  
+ 0.5V)  
OUT  
IN  
V
Regulated output voltage  
Output voltage tolerance  
OUT  
2.4V < V < 3.6V  
V – 0.5V  
IN  
IN  
I
T
= 10mA,  
= 25°C  
OUT  
+3  
+4  
2
%
%
μA  
AMB  
V
OUT_TOL  
I
= 10mA  
-4  
OUT  
V
= 1.03 x V  
OUTNOM  
OUT  
I
Quiescent current  
Shutdown current  
0.35  
1
Q
no load, T  
= 25°C  
AMB  
V
= 0V  
EN  
I
100  
nA  
SHDN  
T
= 25°C  
AMB  
Vin = 2.4V to 5.5V  
= 100mA  
0.2  
0.05  
0.02  
400  
%/V  
%/V  
I
OUT  
LNR  
LDR  
Output voltage line regulation  
Vin = 3.5V to 5.5V  
I
= 100mA  
OUT  
Output voltage load  
regulation  
I
= 0 to 100mA  
%/mA  
mA  
OUT  
V
V
= 3V, T  
= 25°C  
IN  
AMB  
I
Peak coil current  
Load current  
PK  
= 0.9 x V  
OUT  
OUTNOM  
I
V
I
≥ V  
+ 0.5V  
OUT  
150  
mA  
Ω
LOAD  
IN  
R
P-Channel FET R  
= 100mA  
0.4  
0.4  
PMOS  
DS(ON)  
LX  
R
N-Channel FET R  
I = -100mA  
LX  
Ω
NMOS  
DS(ON)  
Page 6  
Document Feedback  
amsDatasheet  
[v1-43] 2015-Jul-23  
AS1313 − Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
= 0V,  
= 0V or 5V  
EN  
LX  
I
LX leakage  
0.01  
μA  
LX  
V
1.2  
V
V
ENH  
logic threshold  
pin EN  
V
0.2  
ENL  
EN = 3.6V  
I
EN input bias current  
REF input bias current  
100  
nA  
nA  
EN  
T
= 25°C  
AMB  
REF = 0.99 x V  
OUTNOM  
I
100  
REF  
T
= 25°C  
AMB  
T
Thermal shutdown  
150  
25  
°C  
°C  
SHDN  
ΔT  
Thermal shutdown hysteresis  
SHDN  
Electrical Characteristics: Shows the Electrical Characteristics of the DC-DC Converter. V = EN = 3.6V,  
IN  
T
= –40°C to 85°C (unless otherwise specified).  
AMB  
ams Datasheet  
Page 7  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Typical Operating Characteristics  
Typical Operating  
Characteristics  
Figure 7:  
Efficiency vs. Output Current, V  
= 1.8V  
OUT  
Efficiency vs. Output Current: These figures show the Efficiency vs. the Output Current for various Input  
Voltages. All measurements were done with V  
= 1.8V at T  
= 25°C with the coil LPS4018-682.  
OUT  
AMB  
Figure 8:  
Efficiency vs. Output Current, V  
= 3.0V  
OUT  
Efficiency vs. Output Current: This  
figure shows the Efficiency vs. the  
Output Current for various Input  
Voltages. All measurements were done  
with V  
= 3.0V at T  
= 25°C with the  
OUT  
AMB  
coil LPS4018-682.  
Page 8  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Typical Operating Characteristics  
Figure 9:  
Maximum Output Current vs. Input Voltage  
Maximum Output Current vs. Input  
0,3  
0,25  
0,2  
Voltage: This figure shows the I  
OUT_MAX  
vs. the Input Voltage for V  
= 1.8V and  
OUT  
V
= 3.0V at T  
= 25°C with the coil  
OUT  
AMB  
LPS4018-682.  
0,15  
0,1  
Ioutmax @ 1.8V  
0,05  
0
Ioutmax @ 3.0V  
2
3
4
5
6
Input Voltage (V)  
Figure 10:  
Efficiency vs. Input Voltage, V  
= 1.8V  
OUT  
Efficiency vs. Input Voltage: This figure  
shows the Efficiency vs. the Input  
Voltage for various Output Currents. All  
measurements were done with a  
100  
90  
80  
70  
60  
50  
40  
30  
V
= 1.8V at T  
= 25°C with the coil  
OUT  
AMB  
LPS4018-682.  
20  
Iout = 10uA  
Iout = 100uA  
Iout = 10mA  
Iout = 1mA  
10  
Iout = 100mA  
0
2
3
4
5
6
Input Voltage (V)  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 9  
Document Feedback  
AS1313 − Typical Operating Characteristics  
Figure 11:  
Efficiency vs. Input Voltage, V  
= 3.0V  
OUT  
Efficiency vs. Input Voltage: This figure  
shows the Efficiency vs. the Input  
Voltage for various Output Currents. All  
measurements were done with a  
100  
90  
80  
70  
60  
50  
V
= 3.0V at T  
= 25°C with the coil  
OUT  
AMB  
LPS4018-682.  
40  
Iout = 10uA  
30  
Iout = 100uA  
Iout = 1mA  
20  
Iout = 10mA  
10  
Iout = 100mA  
0
2
3
4
5
6
Input Voltage (V)  
Figure 12:  
Quiescent Current vs. Input Voltage, V  
= 1.8V  
OUT  
Quiescent Current vs. Input Voltage:  
This figure shows the Quiescent Current  
vs. the Input Voltage for VOUT = 1.8V.  
The measurement was done at  
1,1  
1
T
= 25°C with the coil LPS4018-682.  
AMB  
0,9  
0,8  
0,7  
0,6  
0,5  
0,4  
0,3  
0,2  
2
2,5  
3
3,5  
4
4,5  
5
5,5  
6
Input Voltage(V)  
Page 10  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Detailed Description  
The AS1313 is a hysteretic converter and has no continuously  
operating fixed oscillator, providing an independent timing  
reference. This means the triggering of the on-off switching of  
the internal switches depends only on comparators measuring  
the output voltage and the coil current measurement. This lead  
to a very low quiescent current. In addition, because there is no  
fixed timing reference, the operating frequency is determined  
by external components (inductor and capacitors) and the  
loading on the output.  
Detailed Description  
Ripple at the output is an essential operating behavior. A power  
cycle is initiated when the output regulated voltage drops  
below the nominal value of V  
.
OUT  
Figure 13:  
Simplified Synchronous Step-Down DC-DC Architecture  
L1  
SW1  
ICOIL_on  
ICOIL_on  
ICOIL_off  
VIN  
VCOIL_on  
VCOIL_off  
VOUT  
IPK  
RLOAD  
VIN  
VOUT  
COUT  
CIN  
SW2  
GND FB  
IZERO  
0V  
0V  
When SW1 is closed and SW2 is open, the current is flowing from  
VIN through the coil to R . With neglecting the resistive  
LOAD  
voltage drop over SW1 the voltage across the coil is:  
VCOIL  
= VIN – VOUT  
on  
Based on the expression, which shows the correlation between  
voltage across the coil and the coil current, it's easy to rearrange  
this equation to get the coil current I  
generated while SW1  
COIL  
is closed (t ).  
ON  
VIN – VOUT  
------------------------------  
L
di  
dt  
(EQ1)  
----  
u = L ICOIL  
=
tON  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 11  
Document Feedback  
AS1313 − Detailed Description  
When SW1 is open and SW2 is closed, the coil gets discharged,  
works like a voltage supply and forces the current through  
R
and SW2. With neglecting the resistive voltage drop over  
LOAD  
SW2 the voltage across the coil is:  
VCOIL  
= VOUT  
off  
Similar to the expression above, the I  
generated while SW2  
COIL  
is closed (t ) can be expressed as:  
OFF  
VOUT  
(EQ2)  
--------------  
tOFF  
ICOIL  
=
L
The increasing coil current during the charging (SW1 closed)  
and the decreasing coil current during the discharging of the  
coil (SW2 closed) must be the same. Hence, it’s easy to calculate  
the duty cycle of SW1.  
VIN – VOUT  
------------------------------  
L
VOUT  
--------------  
L
VOUT  
tON  
(EQ3)  
(EQ4)  
-------------- --------------------------  
ICOIL  
=
tON  
=
tOFF  
=
VIN  
tON + tOFF  
Based on the EQ1, the on time of SW1 can be given by:  
L
------------------------------  
VIN – VOUT  
tON  
=
ICOIL  
Figure 14:  
Simplified Voltage and Current Diagram  
V
VIN  
VIN  
VCOIL  
A
VOUT_ripple  
A
VOUT_nom  
VIDLE  
0
VCOIL  
B
C
D
B
-VOUT  
t
I
IPK  
400mA  
ICOIL  
ILOAD  
0
t
tON  
SW1 on  
SW2 off  
tOFF  
SW1 off  
SW2 on  
tWAIT  
tIDLE  
SW1 off  
SW2 off  
tON  
SW1 on  
SW2 off  
tOFF  
SW1 off  
SW2 on  
Timing Diagram: This figure shows the relationship between the current and the voltages inside the loop within  
the switching cycle.  
Page 12  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Detailed Description  
If the V  
falls below the V  
, SW1 closes and the coil  
OUT_nom  
OUT  
current increases until the max. coil current of 400mA is  
reached. During this time t , the V increases. With reaching  
ON  
OUT  
the 400mA, the switch SW1 opens immediately, the SW2 closes  
and the coil current decreases down till it reaches the zero line.  
After this, SW2 opens and if the V  
is then above the  
OUT  
V
, no further pulse is needed, both switches remain in  
OUT_nom  
their open position, hence no coil current is flowing. In this  
phase the needed output power only comes out of the C  
.
OUT  
This time is called t  
, which takes ~100us. If the V  
falls  
OUT  
WAIT  
below V  
within the time t  
, the SW1 closes and the  
WAIT  
OUT_nom  
charging cycle starts again.  
If the V is still higher than V  
after t is elapsed,  
WAIT  
OUT  
OUT_nom  
then the AS1313 falls into an idle mode, which results in a  
reduction of the quiescent current. Once, the AS1313 is in this  
idle mode, the idle-comparator is comparing V  
with V  
OUT  
IDLE  
(98% of V  
) and SW1 closes as soon as the V  
reaches  
OUT  
OUT_nom  
this threshold.  
ams Datasheet  
Page 13  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Detailed Description  
External Component Selection  
Inductors  
For best efficiency, choose an inductor with high frequency core  
material, such as ferrite, to reduce core losses. The inductor  
should have low DCR (DC resistance) to reduce the I²R losses,  
and must be able to handle the peak inductor current without  
saturating. A 6.8ꢀH inductor with at least 500mA current rating  
and DCR of 500mΩ (max) is recommended.  
Figure 15:  
Recommended Inductors  
Current  
Rating  
Size in mm  
(L/W/H)  
Part Number  
L
DCR  
Manufacturer  
ELLVEG6R8N  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
6.8μH  
0.35Ω  
0.23Ω  
0.23Ω  
0.24Ω  
0.24Ω  
0.252Ω  
0.252Ω  
0.186Ω  
0.498  
0.48  
0.58A  
0.6A  
3x3x1  
3x3x1.2  
3x3x1.5  
3x3x1.4  
3x3x1.4  
3x3x1.1  
3x3x1.1  
3x3x1.1  
2x2x1.2  
2.5x2x1.5  
3x3x1  
Panasonic  
www.industrial.panasonic.com  
ELLVFG6R8MC  
ELLVGG6R8N  
1A  
LQH3NPN6R8MM0  
LQH3NPN6R8NM0  
LQH3NPN6R8MJ0  
LQH3NPN6R8NJ0  
LQH3NPN6R8MMR  
VLS2012ET-6R8M  
VLS252015ET-6R8M  
VLS3010ET-6R8M  
VLS3012ET-6R8M  
VLS3015ET-6R8M  
1A  
1A  
Murata  
www.murata.com  
0.85A  
0.85A  
1.25A  
0.57A  
0.85A  
0.69A  
0.81A  
0.92A  
TDK  
www.tdk.com  
0.312  
0.228  
0.216  
3x3x1.2  
3x3x1.5  
Coilcraft  
www.coilcraft.com  
LPS4018-682ML  
6.8μH  
0.15  
1.2A  
4x4x1.7  
Page 14  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Detailed Description  
Capacitors  
The AS1313 requires 3 capacitors. Recommended ceramic X5R  
or X7R types will minimize ESL and ESR while maintaining  
capacitance at rated voltage over temperature.  
The input capacitor supports the triangular current during the  
on-time of SW1 and maintains a broadly constant input voltage  
during this time. The capacitance value is obtained from  
choosing a ripple voltage during the on-time of SW1.  
ICOIL  
(EQ5)  
---------------------  
tON  
CIN  
=
VRIPPLE  
Using t = 1μs, I  
= 400mA and V = 50mV, EQ5 yields:  
RIPPLE  
ON  
COIL  
C
= 8μF.  
IN  
Because ceramic capacitors lose a lot of their initial capacitance  
at their maximum rated voltage, it is recommended that either  
a higher input capacity or a capacitance with a higher rated  
voltage is used. A 22μF cap for C is recommended.  
IN  
Additionally, ripple voltage is generated by the equivalent  
series resistance (ESR) of the capacitor.  
VRIPPLE  
ICOIL R  
ESR  
(EQ6)  
(EQ7)  
=
ESR  
The output capacitor supports the triangular current during the  
off-time SW1 (coil discharge period), and also the load current  
during the wait time (Region C) and the idle time (Region D).  
IOUT  
-------------------------------------------  
COUT  
=
⋅ (tWAIT + tIDLE  
)
0.02 VOUT  
nom  
Using t  
= 100μs, t  
= 500μs, I  
= 1mA and  
OUT  
WAIT  
IDLE  
V
= 3.3V, EQ7 yields:  
OUT_nom  
C
= 9μF.  
OUT  
Due to the DC bias of the cap and to sustain also load steps, the  
should be between 22μF and 47μF. A larger output  
C
OUT  
capacitor should be used if lower peak to peak output voltage  
ripple is desired. A larger output capacitor will also improve  
load regulation on V  
.
OUT  
ams Datasheet  
Page 15  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Detailed Description  
Figure 16:  
Recommended Input & Output Capacitors  
TC  
Code  
Voltage  
Rating  
Size in mm  
(L/W/H)  
Part Number  
C
Manufacturer  
GRM21BR60J226ME39L  
GRM31CR61A226ME19L  
12066D226KAT_A  
22μF  
22μF  
22μF  
22μF  
22μF  
22μF  
22μF  
22μF  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
X5R  
6.3V  
10V  
6.3V  
10V  
16V  
6.3V  
10V  
16V  
2x1.25x1.25  
3.2x1.6x1.6  
3.2x1.6x1.78  
3.2x1.6x1.78  
3.2x1.6x1.78  
2x1.2x1.25  
2x1.2x1.25  
2x1.2x1.25  
Murata  
www.murata.com  
AVX  
www.avx.com  
1210ZD226KAT_A  
1210YD226KAT_A  
C2012X5R0J226K/1.25  
C2012X5R1A226K/1.25  
C2012X5R1C226K  
TDK  
www.tdk.com  
For C  
a 100nF cap (X5R or better) is recommended.  
REF  
Page 16  
Document Feedback  
amsDatasheet  
[v1-43] 2015-Jul-23  
AS1313 − Application Information  
The AS1313 is an ideal solution for Li-ion and coin cell powered  
devices as blood glucose meters, remote controls, hearing aids,  
wireless mouse or any light-load application.  
Application Information  
Figure 17:  
Typical Application Circuit  
L1  
6.8µH  
VIN  
PWR_VIN  
EN  
LX  
VIN  
VOUT  
1.2V to 3.6V  
2.4V to 5.5V  
AS1313  
OUT  
REF  
ON  
OFF  
CREF  
COUT  
100nF  
22µF  
GND  
CIN  
22µF  
PWR_GND  
8-pin MLPD  
0V  
0V  
L1  
6.8µH  
VIN  
EN  
LX  
VIN  
VOUT  
1.2V to 3.6V  
2.4V to 5.5V  
AS1313  
ON  
OUT  
REF  
OFF  
GND  
CIN  
COUT  
22µF  
22µF  
CREF  
100nF  
0V  
0V  
6-pin WL-CSP  
Typical Application: This figure shows the typical application of the DC-DC Step Down Converter for 8-pin MLPD  
package and 6-pin WL-CSP.  
ams Datasheet  
Page 17  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Package Drawings & Markings  
Package Drawings & Markings  
Figure 18:  
MLPD-8 2x2 0.5mm Pitch Package Drawing  
Symbol Min  
Nom Max  
A
A1  
A3  
L
0.51  
0.00  
0.55  
0.02  
0.60  
0.05  
0.15 REF  
0.325  
0.25  
0.225  
0.18  
0.425  
0.30  
b
D
2.00 BSC  
2.00BSC  
0.50 BSC  
1.60  
E
e
D2  
E2  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
1.45  
1.70  
0.75  
0.90  
1.00  
-
-
-
-
-
-
0.15  
-
-
-
-
-
-
0.10  
0.10  
0.05  
0.08  
0.10  
N
8
Note(s) and/or Footnote(s):  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Coplanarity applies to the exposed heat slug as well as the terminal.  
4. Radius on terminal is optional.  
5. N is the total number of terminals.  
Page 18  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Package Drawings & Markings  
Figure 19:  
WL-CSP6 0.4mm Pitch Package Drawing  
Bottom view (ball side)  
Top through view  
Note(s) and/or Footnote(s):  
1. ccc Coplanarity.  
2. All dimensions are in ꢀm.  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 19  
Document Feedback  
AS1313 − Package Drawings & Markings  
Figure 20:  
MLPD and WL-CSP Markings  
MLPD package  
WL-CSP  
XXX  
zz  
XXXX  
ZZZZ  
AS1313 Marking: Shows the package marking of the MLPD and the WL-CSP product version  
Figure 21:  
Package Codes  
XXXX  
XXX  
ZZ  
ZZZZ  
Trace Code for WL-CSP  
Trace Code for MLPD  
Marking Code for MLPD  
Marking Code for WL-CSP  
Package Codes: Shows the package codes of the MLPD and WL-CSP product versions.  
Page 20  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Ordering & Contact Information  
Ordering & Contact Information  
Figure 22:  
Ordering Information  
Ordering Code Marking  
Output  
Package  
Delivery Form Delivery Quantity  
MLPD-8lead  
(2mm x 2mm)  
AS1313-BTDM-18  
AS1313-BTDM-30  
AS1313-BTDM-33  
AS1313-BTDT-ES  
AS1313-BWLT-ES  
AS1313-BWLT-12  
BT  
BV  
1.8V  
3.0V  
3.3V  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tray  
1000  
1000  
MLPD-8lead  
(2mm x 2mm)  
MLPD-8lead  
(2mm x 2mm)  
BU  
1000  
Engineering  
sample  
MLPD-8lead  
(2mm x 2mm)  
ES  
see note (1)  
see note (1)  
10000  
Engineering 6-pin WL-CSP  
ASU8  
ASU9  
Tray  
sample  
0.4mm pitch  
6-pin WL-CSP  
0.4mm pitch  
1.2V  
Tape & Reel  
Note(s) and/or Footnote(s):  
1. Engineering sample quantities are according to customer needs.  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
Provide feedback about this document at:  
www.ams.com/Document-Feedback  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten  
Austria, Europe  
Tel: +43 (0) 3136 500 0  
Website: www.ams.com  
ams Datasheet  
Page 21  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams AG products  
fully comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams AG knowledge and belief as of the  
date that it is provided. ams AG bases its knowledge and belief  
on information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams AG has taken and continues  
to take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams AG  
and ams AG suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Page 22  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141  
Copyrights & Disclaimer  
Unterpremstaetten, Austria-Europe. Trademarks Registered. All  
rights reserved. The material herein may not be reproduced,  
adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner.  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its General Terms of  
Trade. ams AG makes no warranty, express, statutory, implied,  
or by description regarding the information set forth herein.  
ams AG reserves the right to change specifications and prices  
at any time and without notice. Therefore, prior to designing  
this product into a system, it is necessary to check with ams AG  
for current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This product is provided by ams AG “AS IS”  
and any express or implied warranties, including, but not  
limited to the implied warranties of merchantability and fitness  
for a particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet  
Page 23  
[v1-43] 2015-Jul-23  
Document Feedback  
AS1313 − Document Status  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
Page 24  
amsDatasheet  
Document Feedback  
[v1-43] 2015-Jul-23  
AS1313 − Revision Information  
Revision Information  
Changes from 1-41 (2013-Oct) to current revision 1-43 (2015-Jul-21)  
1-41 (2013-Oct) to 1-42 (2014-Jun-12)  
Content was updated to the latest ams design  
Updated Figure 22  
Page  
21  
1-42 (2014-Jun-12) to 1-43 (2015-Jul-23)  
Content was updated to the latest ams design  
Updated Figure 21  
20  
21  
Updated Figure 22  
Note(s) and/or Footnote(s):  
1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.  
2. Correction of typographical errors is not explicitly mentioned.  
ams Datasheet  
[v1-43] 2015-Jul-23  
Page 25  
Document Feedback  
AS1313 − Content Guide  
1
1
2
2
General Description  
Key Benefits & Features  
Applications  
Content Guide  
Block Diagram  
3
4
6
8
Pin Assignment  
Absolute Maximum Ratings  
Electrical Characteristics  
Typical Operating Characteristics  
11 Detailed Description  
14 External Component Selection  
14 Inductors  
15 Capacitors  
17 Application Information  
18 Package Drawings & Markings  
21 Ordering & Contact Information  
22 RoHS Compliant & ams Green Statement  
23 Copyrights & Disclaimer  
24 Document Status  
25 Revision Information  
Page 26  
Document Feedback  
amsDatasheet  
[v1-43] 2015-Jul-23  

相关型号:

C2012X5R1C226K125AC

CAP CER 22UF 16V X5R 0805
TDK

C2012X5R1C226M

Application Main Feature
TDK

C2012X5R1C226M085AC

CAP CER 22UF 16V X5R 0805
TDK

C2012X5R1C226M125AC

CAP CER 22UF 16V X5R 0805
TDK

C2012X5R1C226M125AC_16

Commercial Grade ( General (Up to 50V) )
TDK

C2012X5R1C226M125AC_17

Multilayer Ceramic Chip Capacitors
TDK

C2012X5R1C335K060AC

CAP CER 3.3UF 16V X5R 0805
TDK

C2012X5R1C335K085AB

CAP CER 3.3UF 16V X5R 0805
TDK

C2012X5R1C335K125AC

Commercial Grade ( General (Up to 50V) )
TDK

C2012X5R1C335M060AC

CAP CER 3.3UF 16V X5R 0805
TDK

C2012X5R1C335M085AB

CAP CER 3.3UF 16V X5R 0805
TDK

C2012X5R1C335M125AC

Commercial Grade ( General (Up to 50V) )
TDK