SL900A-ASWB [AMSCO]

EPC Class 3 Sensory Tag Chip - For Automatic Data Logging;
SL900A-ASWB
型号: SL900A-ASWB
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

EPC Class 3 Sensory Tag Chip - For Automatic Data Logging

PC
文件: 总90页 (文件大小:856K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL900A  
EPC Class 3 Sensory Tag Chip - For  
Automatic Data Logging  
The SL900A is an EPC global Class 3 sensory tag chip optimized  
for single-cell and dual-cell, battery-assisted smart labels with  
sensor functionality. The chip is ideal for applications using thin  
and flexible batteries but can also be powered from the RF field  
(electromagnetic waves from an RFID reader).  
General Description  
The chip has a fully integrated temperature sensor with a typical  
nonlinearity of 0.ꢀ5C over the specified temperature range.  
The external sensor interface provides a flexible way of adding  
additional sensors to the system and supports up to 2 external  
sensors.  
Ordering Information and Content Guide appear at end of  
datasheet.  
Key Benefits & Features  
The benefits and features of SL900A, EPC Class 3 Sensory Tag  
Chip - For Automatic Data Logging are listed below:  
Figure 1:  
Added Value of using SL900A  
Benefits  
Versatile temperature and data logging  
Worldwide EPC compliant  
Features  
High Temperature Range: -40°C to +12ꢀ°C  
Frequency: 860 to 960 MHz  
Battery supply: 1.ꢀV or 3V  
Works fully passive or in BAP mode  
Data logging from:  
Programmable logging modes with various sensors  
• On-chip temperature sensor  
• 2 external sensors  
Works with EPC readers  
EPC Class 1 and Class 3 Compliant  
Energy harvesting from reader field  
Real-time clock for data logging  
External sensor interrupt capability  
Serial peripheral interface  
Provides supply for external sensors  
Autonomous data logging with timestamp  
Sensor alert function  
Supports fast communication via SPI  
Storage for up to 841 events with timestamps  
Alert for shelf life expiration  
On-chip 9k bit EEPROM  
Integrated dynamic shelf life calculation  
Advanced logging with 4 user-selectable limits  
Programmable sensor limits  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 1  
Package Options  
The available SL900A package options are:  
• 16-pin QFN (ꢀ x ꢀ mm)  
• Tested wafer (8”)  
Applications  
The SL900A device is ideal suited for:  
• Monitoring and tracking of temperature-sensitive  
products  
• Temperature monitoring of medical products  
• Pharmaceutical logistics  
• Monitoring of fragile goods transportation  
• Dynamic Shelf Life applications  
• RFID to SPI interface  
Block Diagram  
The functional blocks of this device for reference are  
shown below:  
Figure 2:  
SL900A Block Diagram  
VBAT  
EXT1  
Power  
Management  
Temperature  
Sensor  
VDD  
1.5V  
or 3V  
VSS  
EXT2  
External  
Sensor  
Front-End  
VPOS  
VSSA  
Battery Voltage  
EXC  
VREF  
860 - 960 MHz  
AFE  
Processing  
Digital Control  
ANT  
EPC Gen2  
Class 3  
MUX  
DIN  
DOUT  
SCLK  
SEN  
(cool-Log™)  
SPI  
Port  
(Slave)  
FIFO  
10-Bit A/D  
Converter  
MEAS  
1152 x 8 Bit  
EEPROM  
Oscillator  
with RTC  
ANA TEST  
DIGI TEST  
SL900A  
SL900A Block Diagram: Basic block diagram of SL900A  
SL900A – 2  
ams Datasheet: 2014-May-06 [v1-01]  
Pin Assignment  
The SL900A pin assignments are described below.  
Pin Assignment  
Figure 3:  
Pin Layout  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
VPOS  
DOUT  
VSSA  
DIN  
SL900A  
ANT  
SCLK  
SEN  
DIGI_TEST  
5
6
7
8
Figure 4:  
Pin Description  
Pin Number  
Pin Name  
Description  
V
1
RF rectifier output  
POS  
V
2
3
4
6
7
Chip substrate ground – connect to antenna ground  
Antenna coil  
SSA  
ANT  
DIGI_TEST  
Test input – must be left open  
V
Reference voltage output (Vo2)  
REF  
EXT1  
EXT2  
Analog input for external sensor  
Analog input for external sensor  
Chip substrate ground – connect to negative battery  
V
8
SS  
terminal. Recommended to connect to V  
!
SSA  
9
SEN  
Enable input for the SPI interface  
SPI clock  
10  
11  
SCLK  
D
SPI data input  
IN  
D
12  
SPI data output  
OUT  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 3  
B a r e D i e P a d L a y o u t  
Pin Number  
Pin Name  
Description  
V
13  
14  
Positive supply input  
BAT  
MEAS  
EXC  
Test pin for use during test – must be left open  
Supply voltage for the external sensors or a AC signal source  
for external sensors  
1ꢀ  
16  
ANA-TEST  
Analog test pin – must be left open  
Pin Description: This table shows a detailed pin description of the SL900A.  
Bare Die Pad Layout  
Figure 5:  
Pad Location Diagram  
SL900A – 4  
ams Datasheet: 2014-May-06 [v1-01]  
Bare Die Pad Layout  
Figure 6:  
Pad Parameters  
Pad name X position (μm) Y position (μm) Pad window (μm)  
Type  
V
77.ꢀ  
77.ꢀ  
77.ꢀ  
77.ꢀ  
2040.ꢀ  
1787.ꢀ  
1098.ꢀ  
223.ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
Analog Output  
REF  
EXT1  
EXT2  
Analog Input/Output  
Supply  
V
SS  
S
1822.ꢀ  
200ꢀ.ꢀ  
2271.ꢀ  
24ꢀ4.ꢀ  
26ꢀ3.ꢀ  
26ꢀ7.ꢀ  
2648.3  
26ꢀ7.ꢀ  
26ꢀ7.ꢀ  
26ꢀ7.ꢀ  
77.ꢀ  
77.ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
8ꢀ x 8ꢀ  
EN  
Digital Input  
SCLK  
SDATAI  
77.ꢀ  
SDATAO  
E_SDATAO  
77.ꢀ  
Digital Output  
Test Pad  
82.ꢀ  
V
27ꢀ.ꢀ  
ꢀ09.1ꢀ  
2144.ꢀ  
2327.ꢀ  
2ꢀ10.ꢀ  
Supply  
BAT  
MEAS  
EXC  
Test Pad  
Analog Output  
Test Pad  
ANA_TEST  
V
Analog Output  
POS  
V
2292  
1396  
1177  
9ꢀꢀ  
2689.ꢀ  
2696  
8ꢀ x 8ꢀ  
Supply  
Radio-frequency Pad,  
Test Pad  
SSA  
ANT2  
ANT1  
See RF pad drawing  
See RF pad drawing  
8ꢀ x 8ꢀ  
2694  
DIGI_TEST  
2707.ꢀ  
Pad locations: Pad locations are measured from lower left chip edge to pad centre.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 5  
A b s o l u t e M a x i m u m R a t i n g s  
Stresses beyond those listed under “Absolute Maximum  
Absolute Maximum Ratings  
Ratings” may cause permanent damage to the device. These are  
stress ratings only. Functional operation of the device at these  
or any other conditions beyond those indicated under  
“Operating Conditions” is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Figure 7:  
Absolute Maximum Ratings (Operating free-air temperature range, unless otherwise noted)  
Parameter  
Min  
Max  
Units  
Comments  
All voltage values are with respect to  
Input Voltage Range  
-0.3  
3.7  
V
substrate ground terminal V  
SS  
Maximum Current V , ANT  
100  
2
mA  
kV  
V
POS  
ESD Rating, HBM (all pins except ANT)  
ESD Rating, HBM (RF input pin ANT)  
Maximum Operating Virtual Junction  
ꢀ00  
+1ꢀ0  
°C  
Temperature, T  
J
Storage Temperature Range, T  
-6ꢀ  
+1ꢀ0  
+260  
°C  
°C  
stg  
Lead Temperature (soldering, 10 sec.)  
Absolute Maximum Ratings: This figure shows the absolute maximum ratings of the SL900A.  
This integrated circuit can be damaged by ESD. We recommend  
that all integrated circuits are handled with appropriate  
precautions. Failure to observe proper handling and installation  
procedures can cause damage. ESD damage can range from  
subtle performance degradation to complete device failure.  
Electrical Discharge Sensitivity  
Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause  
the device not to meet the published specifications. RF  
integrated circuits are also more susceptible to damage due to  
use of smaller protection devices on the RF pins, which are  
needed for low capacitive load on these pins.  
Operating Conditions  
Figure 8:  
Operating Conditions  
Symbol  
Parameter  
Min  
1.2  
Typ  
Max  
3.6  
Units  
V
Input Supply Voltage  
1.ꢀ  
V
BAT  
T
Operating ambient temperature range  
-40  
+12ꢀ  
°C  
A
SL900A – 6  
ams Datasheet: 2014-May-06 [v1-01]  
Elec trical Charac teristics  
All limits are guaranteed. The parameters with min and max  
values are guaranteed with production tests or SQC (Statistical  
Quality Control) methods.  
Electrical Characteristics  
T = -40°C to +12ꢀ°C, V = 1.ꢀV, unless otherwise noted.  
A
BAT  
(1)  
Typical values are at T = 2ꢀ°C  
.
A
Figure 9:  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
V
T = 2ꢀ°C  
Operating Input Voltage  
1.2  
3.6  
V
V
BAT  
A
V
T = 2ꢀ°C  
Minimum Start-Up Input Voltage  
1.3  
BAT(SU)  
A
Temperature  
conversion,  
I
Operating Current into V  
200  
2ꢀ0  
3ꢀ0  
μA  
μA  
BAT-OP1ꢀ  
BAT  
V
=1.ꢀV  
BAT  
Temperature  
conversion, V =3V  
I
Operating Current into V  
290  
BAT-OP30  
BAT  
BAT  
V
= 1.ꢀV; timer  
BAT  
I
Quiescent Current into V  
1.6  
0.ꢀ  
μA  
μA  
μA  
BAT-Q  
BAT  
running  
V = 1.ꢀV  
BAT  
I
Shutdown Current into V  
BAT-SD  
BAT  
In electromagnetic  
field  
I
Maximum Current from V  
pin  
POS  
200  
EXT  
In electromagnetic  
field  
V
V
limiter point  
POS  
3.4  
V
POS-l  
Measured at  
900MHz, QFN  
package for PCB  
assembly  
31-j3  
20  
ANTI-QFN Antenna pad impedance  
Ω
Measured at  
900MHz, bare die for  
inlay assembly  
9-j33  
0
ANTI-DIE  
ANTS  
Antenna pad impedance  
Antenna pad sensitivity  
Ω
Measured at  
900MHz, battery  
assisted mode  
-1ꢀ  
dBm  
V
V
V
V
= 1.ꢀV  
= 3V  
0.4  
1
V
V
V
V
BAT  
BAT  
BAT  
BAT  
Voltage Input Threshold, Low  
(SEN, SCLK, DIN)  
V
IL  
= 1.ꢀV  
= 3V  
1
Voltage Input Threshold, High  
(SEN, SCLK, DIN)  
V
IH  
2.1  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 7  
E l e c t r i c a l C h a ra c t e r i s t i c s  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
V
1mA  
= 1.ꢀV, I  
=
=
BAT  
DOUT  
V
4ꢀ0m  
300m  
V
V
V
V
SS  
Voltage Output Threshold, Low  
V
OL  
D
pin  
OUT  
V
1mA  
= 3V, I  
=
BAT  
DOUT  
V
SS  
V
= 1.ꢀV, I  
DOUT  
BAT  
V
1
BAT  
-1mA  
Voltage Output Threshold, High  
pin  
V
OH  
D
OUT  
V
= 3V, I =  
DOUT  
BAT  
V
2.7  
BAT  
-1mA  
V
V
= 1.ꢀV  
1
MHz  
MHz  
MHz  
5C  
BAT  
BAT  
f
SCLK serial data clock  
SCLK  
= 3V  
f
Carrier Frequency  
860  
-20  
960  
60  
c
T
Temperature Sensor Range  
S-R  
Extended temperature sensor  
range with reduced accuracy  
T
-40  
+12ꢀ  
5C  
S-R EXT  
T
Inside T  
Inside T  
Temperature sensor nonlinearity  
Temperature Sensor Accuracy  
Measurement interval  
0.ꢀ  
1
S-NL  
S-R  
T
5C  
S-A  
S-R  
t
Programmable  
1
32,768  
Sec  
Sec  
sens  
t
Real-Time Clock, Interval  
1
RTC-I  
Over specified T  
temperature range  
S-R  
t
Real-Time Clock, Accuracy  
-3  
+3  
%
%
RTC-A  
Real-Time Clock, Calibration  
Accuracy  
t
T = 3ꢀ°C  
-0.2  
+0.2  
RTC-CA  
A
SL900A – 8  
ams Datasheet: 2014-May-06 [v1-01]  
Shor t Description  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Units  
t
t
V
V
=1.3V ~ 3V  
BAT  
Real-time Clock, Accuracy  
3
%
RTC-B  
= 1.2V~1.3V;  
BAT  
Real time clock, Accuracy  
-7  
+ꢀ  
%
RTC-C  
3V~3.6V  
EW  
T = 2ꢀ°C  
EEPROM Erase/Write Cycles  
EEPROM Data Retention Time  
EEPROM Erase/Write Speed  
100,000  
Cycles  
Years  
ms  
CYC  
A
t
T = 12ꢀ°C  
20  
7
DR  
A
t
7.ꢀ  
E/W  
EXC internally  
connected to V  
for ext. sensor  
supply  
BAT  
r
EXC pin output resistance  
400  
200  
Ω
Ω
EXC  
External sensor interface pads  
r
EXT  
resistance (EXT1, EXT2, V  
)
REF  
Note(s) and/or Footnote(s):  
1. Limits are 100% production tested at TA = 3ꢀ°C. Limits over the operating temperature range are guaranteed by design.  
The SL900A is designed for use in smart active labels (SAL),  
semi-passive labels and passive labels. Smart active labels are  
defined as thin and flexible labels that contain an integrated  
circuit and a power source. SAL includes in its definition both  
“fully active” smart labels, and semi-active smart labels, also  
known as battery-assisted back-scattered passive labels, both  
of which enable enhanced functionality and performance over  
passive labels. The IC includes sensor functionality and logging  
of sensor data (see Figure 10 below).  
Short Description  
The SL900A is operating at 860 to 960 MHz and is fully EPC  
global Class 1 compliant. The chip is supplied from a single-cell  
battery of typically 1.ꢀV, or from a dual cell battery (3V). The  
on-chip temperature sensor and real-time clock (RTC)  
accommodate temperature data logging.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 9  
S h o r t D e s c r i p t i o n  
Supply Arrangement  
The SL900A is supplied from either the battery or through the  
electromagnetic waves from a reader. The device is normally  
supplied from the battery unless there is no battery attached  
(passive label), or when the battery is drained.  
Figure 10:  
Block Diagram  
VBAT  
EXT1  
Power  
Management  
Temperature  
Sensor  
VDD  
1.5V  
or 3V  
VSS  
EXT2  
External  
Sensor  
Front-End  
VPOS  
VSSA  
Battery Voltage  
EXC  
VREF  
860 - 960 MHz  
AFE  
Processing  
Digital Control  
ANT  
EPC Gen2  
Class 3  
MUX  
DIN  
DOUT  
SCLK  
SEN  
(cool-Log™)  
SPI  
Port  
(Slave)  
FIFO  
10-Bit A/D  
Converter  
MEAS  
1152 x 8 Bit  
EEPROM  
Oscillator  
with RTC  
ANA TEST  
DIGI TEST  
SL900A  
Analog Front End (AFE)  
The analog front end is designed according to EPC Gen 2. The  
forward link (reader to tag) is amplitude modulated and the  
backward link (tag to reader) is amplitude modulated (load  
modulation is used).  
Processing and Digital Control  
The SL900A is fully EPC Class 1 compliant, with additional  
custom commands for extended functions. The maximum  
transponder to interrogator data rate according to Class  
1/Gen.2 is 640 kbit/s. The maximum interrogator to  
transponder data rate is 160 kbit/s.  
Figure 11:  
Supported Data Rates  
Data Rate  
Min  
Max  
Interrogator to transponder  
Transponder to interrogator  
40 kbit/s  
ꢀ kbit/s  
160 kbit/s  
640 kbit/s  
SL900A – 10  
ams Datasheet: 2014-May-06 [v1-01]  
Shor t Description  
Serial Interface (SPI)  
The integrated serial interface (SPI) can be used to initialize the  
chip and to set the parameters. The logging procedure can be  
started and stopped with the SPI. The SPI bus can also be used  
for the communication between a microcontroller that is  
attached to the SL900A and the RFID reader.  
Real-Time Clock (RTC)  
The on-chip real-time clock (RTC) is started through the START  
LOG command in which the start time is programmed in UTC  
format. The interval for sensing and data logging can be  
programmed in the range from 1 second up to 9 hours. The  
accuracy of the timer is 3%. The timer oscillator is calibrated  
at 3ꢀ 5C within 0.2%.  
Temperature Sensor  
The on-chip temperature sensor can measure the temperature  
in the range from -205C to 605C with a typical accuracy of 15C.  
The full temperature range of -405C to +12ꢀ5C has a reduced  
accuracy.  
External Sensors  
The on-chip external sensor front end provides a flexible  
interface for analog external sensors. It has an auto-range and  
interrupt function. It supports various types of analog sensors  
from pressure, humidity, temperature, light …  
Analog to Digital Converter  
The chip has an integrated 10-bit analog to digital converter  
with selectable voltage references. It is used for conversion of  
temperature, external sensors and battery voltage.  
External Sensor Interrupt  
The external sensor inputs EXT1 and EXT2 can be used for  
event-triggered logging. In this mode, the logging is not  
triggered in predefined time intervals from the internal timer,  
but can be triggered externally, either with a sensor, switch or  
a microcontroller.  
The interrupt source can be the EXT1, EXT2 input or both, were  
the EXT1 input has the higher priority. The user application can  
select which measurements are triggered by the interrupt  
event.  
In the interrupt mode, the sensor value is stored together with  
the 32-bit real time clock value. For a correct real-time clock  
value, the correct Start time has to be supplied. The interrupt  
mode is started with the START LOG command and the correct  
setting in the registers (SET LOG MODE command).  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 11  
S h o r t D e s c r i p t i o n  
Data Protection  
Additional to the Gen2 lock protection, the SL900A offers  
read/write protection using 3 password sets for 3 memory  
areas. Each 32-bit password is divided into 2 16-bit passwords,  
where the lower 16 bits are reserved for the Write protection  
and the higher 16 bits are reserved for the Read/Write  
protection.  
Shelf Life  
The SL900A device has an integrated shelf life algorithm that  
can dynamically calculate the remaining shelf life of the  
product. It has an automatic alarm function for the shelf life  
expiration. This can be used to directly drive a LED or as an  
interrupt for an external microcontroller.  
Memory arrangement  
The SL900A device has an integrated 9kbit EEPROM. It is  
organized into ꢀ memory banks shown below.  
Figure 12:  
Memory Arrangement  
Memory Bank  
Bank Size (bits)  
Comments  
System parameters like calibration data and log  
parameters  
SYSTEM  
ꢀ12  
RESERVED  
EPC  
64  
Access and Kill password  
PC and EPC value  
144  
Unique identifier – programmed and locked during  
production  
TID  
80  
USER  
8416  
User and measurement data  
SL900A – 12  
ams Datasheet: 2014-May-06 [v1-01]  
System D escription  
Figure 14 shows the different states and their interactions.  
Figure 22 shows the command overview.  
System Description  
Initializing the Chip  
A virgin chip (not initialized) can be initialized either through  
the SPI port or through the electromagnetic field from a reader  
in the standby mode. The power source is either from a battery  
(V ) or extracted from the RF field via the AFE circuit. After  
BAT  
the initializing procedure, the chip will enter the ready mode.  
Power Modes  
Ready Mode  
In the ready mode, all parameters can be set, read and changed  
through a reader with the appropriate passwords.  
Active Mode  
In active mode, the real-time clock (RTC) is running, the desired  
parameters are set, and the on-chip temperature sensor is in  
standby.  
Logging Mode  
A log flag from the timer will enable the logging mode in which  
the sensor and the A/D converter will be activated, and the  
measured value will be stored in the EEPROM together with the  
time of the event. If the external sensor flag is set, the external  
sensors will also be activated and the measured data stored.  
The A/D converter can be multiplexed between internal  
temperature sensor, external sensors or battery voltage. After  
the event, the chip will return to the active mode.  
Interrupt Mode  
In the interrupt mode, the external sensor interrupt block is  
running with minimal power consumption. When the external  
sensor value exceeds a specified threshold, the chip goes into  
the logging mode where the selected sensor values and real  
time of the event are stored to the EEPROM.  
Stand-by Mode  
In passive mode, all blocks in the chip are turned off and only  
the leakage current is flowing. When the label enters an RF field,  
it will go from Stand-by mode to Ready mode. If the SEN pin  
rises high, the chip will go from the Stand by mode to the serial  
mode  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 13  
S y s t e m D e s c r i p t i o n  
Figure 13:  
Modes of Operation  
Mode  
Description  
IBAT (Typ.) Power from AFE  
In passive mode the chip is turned off and only the  
leakage current is flowing  
Stand-by  
Serial  
0.1 μA  
ꢀ0 μA  
ꢀ0 μA  
2 μA  
No  
No  
Yes  
No  
No  
Enables initializing and executing of all commands via  
the SPI bus  
Chip is initialized and all commands can be executed  
via the reader  
Ready  
• RTC running  
• Sensor standby  
Active  
• RTC running  
• External sensor minimum supply  
Interrupt  
2.ꢀ μA  
• Sensor reading (on-chip temperature sensor,  
battery voltage level and/or external sensor  
through the MMI pin)  
Logging  
180 μA  
No  
• Measured data stored in EEPROM  
• RTC time stored in EEPROM  
State Diagram  
Figure 14:  
State Transition Diagram  
SPI REQUEST:  
ALL  
LOG-TIMER or  
IRQ  
SPI Stop  
logging  
SEN=0  
Serial  
SPI Start  
Logging  
SEN=1  
Active or  
Interrupt  
Logging  
Stand-by  
SEN=1  
SEN=0  
START-LOG  
END-LOG  
RF on  
LOG-FINISHED  
Ready  
READER REQUEST:  
ALL EPC standard  
COMMANDS  
SET PASSWORD  
GET MEASUREMENT SETUP  
SET PASSIVE  
RF off  
Temperature  
measurement.  
Battery  
measurement.  
Limits comparison.  
Shelf life.  
External sensor  
measurement.  
Log to EEPROM.  
READER REQUEST:  
ALL COMMANDS  
GET LOG STATE  
GET CALIBRATION DATA  
GET BATTERY LEVEL  
OPEN AREA  
GET SENSOR VALUE  
SL900A – 14  
ams Datasheet: 2014-May-06 [v1-01]  
System D escription  
Data Protection  
Additional to the Gen2 lock protection, the SL900A offers  
read/write protection using 3 password sets for 3 memory  
areas. The System area is protected by the System password,  
the Application area is protected by the Application password,  
and the Measurement area is protected by the Measurement  
password. Each 32-bit password is divided into 2 16-bit  
passwords, where the lower 16 bits are reserved for the Write  
protection and the higher 16 bits are reserved for the  
Read/Write protection.  
The password can be set either with the custom RFID command  
SET PASSWORD, or through the SPI, by writing the password to  
the password locations.  
The password protection is activated immediately after the SET  
PASSWORD command. In case the passwords are written with  
the SPI interface, the protection is activated when the  
transponder re-enters an RF field.  
Password protection does not block any read/write operation  
on the SPI interface; it is active only for the RFID interface.  
Figure 15:  
Password Storage in System Memory  
Address  
Data  
Function  
0x000  
0x001  
0x002  
0x003  
0x004  
0x00ꢀ  
0x006  
0x007  
0x008  
0x009  
0x00A  
0x00B  
System Password [31:24]  
System Password – read/write protect  
System Password - write protect  
System Password [23:16]  
System Password [1ꢀ:8]  
System Password [7:0]  
Application Password [31:24]  
Application Password [23:16]  
Application Password [1ꢀ:8]  
Application Password [7:0]  
Measurement Password [31:24]  
Measurement Password [23:16]  
Measurement Password [1ꢀ:8]  
Measurement Password [7:0]  
Application Password – read/write protect  
Application Password - write protect  
Measurement Password – read/write protect  
Measurement Password - write protest  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 15  
S y s t e m D e s c r i p t i o n  
Data Log Functions  
The SL900A device supports various flexible data log formats.  
The data log format depends on the Logging form. The data log  
formats are defined in Figure 23.  
The Logging form is set with the SET LOG MODE command and  
is stored in “Logging form [2:0]” (SPI address 0x026) bits in the  
EEPROM.  
Figure 16:  
Supported Logging Formats  
Bit 2  
Bit 1  
Bit 0  
Logging From  
Description  
All values are stored to the measurement area. No  
additional time information is stored to the measurement  
area.  
0
0
0
Dense  
All values that are out of the specified limits are stored to  
the measurement area. Additional to the sensor value,  
also the measurement number is stored, so the  
All values out of  
limits  
0
0
1
1
1
0
1
0
1
1
1
1
1
0
1
application can reconstruct the time-sensor points.  
Only the crossing point of each limit boundary is stored.  
Additional to the sensor value, also the measurement  
number is stored, so the application can reconstruct the  
time-sensor points.  
Limits crossing  
IRQ, EXT1  
Interrupt triggered on the EXT1 external sensor input. At  
each trigger event the selected sensor values are stored.  
Additional to the sensor values, also the real-time clock  
offset is stored.  
Interrupt triggered on the EXT2 external sensor input. At  
each trigger event the selected sensor values are stored.  
Additional to the sensor values, also the real-time clock  
offset is stored.  
IRQ, EXT2  
Interrupt triggered on the EXT1 and EXT2 external sensor  
input. At each trigger event the selected sensor values are  
stored. Additional to the sensor values, also the real-time  
clock offset is stored.  
IRQ, EXT1, EXT2  
When the “IRQ + timer enable” bit (Initialize command, SPI  
address 0x02A) is set to 1, the logging will be triggered on the  
selected time interval (timer) and also on an interrupt from  
external sensor1, sensor 2 or both – depending on the selected  
logging mode.  
The Storage rule bit defines what happens when the logging  
area in the EEPROM is full.  
SL900A – 16  
ams Datasheet: 2014-May-06 [v1-01]  
System D escription  
Figure 17:  
Storage Rule  
Bit  
Storage Rule  
Description  
When the logging area in the EEPROM is full, the chip does not store any new  
sensor data to the EEPROM, but it will still increment the measurement counter  
and RTC.  
0
Normal  
Rolling  
When the logging area is full, the chip continues with writing new sensor data  
to the EEPROM form the beginning of the logging area. Thus the chip  
overwrites the old stored data and increments the “Number of memory  
replacements [ꢀ:0]” field in the System status group.  
1
Limits Counter  
The Limits counter can be used as an advanced alarm  
mechanism. It is enabled in all log formats and it will display  
the cumulative number of measurements that are outside  
limits. The application does not have to read the whole EEPROM  
content in order to determine if the temperature limits have  
been exceeded, just the Limits counter block. The Limits  
counter block can be read out with the GET LOG STATE  
command.  
The system uses 4 limits that can be set by the user:  
• Extreme upper limit  
• Upper limit  
• Lower limit  
• Extreme lower limit  
There is a dedicated 8-bit counter for each of the 4 limits in the  
Limits counter block. The appropriate counter will increment  
each time a sensor value is outside a limit.  
The user can select which sensor will be used in the limits  
comparison. The internal temperature sensor is selected by  
default. Other sensors can be selected with the SET SFE  
PARAMETERS command with the “Verify sensor ID[1:0]” field  
(SPI address 0x018):  
Figure 18:  
Modes of Operation  
Verify Sensor ID Bit 1 Verify Sensor ID Bit 0 Sensor Selected for Limits Comparison  
0
0
1
1
0
1
0
1
Internal temperature sensor - DEFAULT  
External sensor 1  
External sensor 2  
Battery voltage  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 17  
S y s t e m D e s c r i p t i o n  
Logging Timer  
The SL900A device has an integrated RC oscillator that is  
calibrated to 1024Hz. This oscillator drives the logging timer.  
The logging timer resolution is 1 second. The maximum period  
is 9.1 hours (32768 seconds). The logging interval is  
programmed with the SET LOG MODE command.  
The measurement real time is derived from 4 parameters - the  
Start time (ST), the Delay time (DT), the log interval (LT), and  
the # of the measurement (NM). This value has to be calculated  
in the reader by the equation:  
Real time = ST+DT+LT*NM  
Delay Time  
The SL900A supports delayed start of the logging procedure.  
The Delay time has a resolution of 8 minutes - 32 seconds (ꢀ12  
seconds) and a maximum value of ꢀ82 hours (12 bits). The delay  
time value is set with the Initialize command, while the Delay  
time counter starts counting when the device receives the  
START LOG command.  
The delay time can also be disabled and an external push button  
can be used for starting the logging procedure.  
Analog to Digital Conversion  
The chip has an integrated analog to digital converter with  
10-bit resolution and selectable voltage references. By default,  
the references are selected as: Vo1 = 0V and Vo2 = 310mV. This  
results in a voltage input range of 310mV ~ 620mV, for the  
temperature conversion this is -89.35C ~ +94.65C.  
The voltage references are individually selectable in ꢀ0mV steps  
with a fine adjustment for offset calibration. Additionally, the  
Vo1 reference voltage can be tied directly to ground if the bit  
“gnd_switch” in the SET CALIBRATION DATA command is set to  
1 (SPI address 0x012).  
SL900A – 18  
ams Datasheet: 2014-May-06 [v1-01]  
System D escription  
Figure 19:  
AD Reference Voltages  
Calib. Code  
0b000  
Vo1  
Vo2  
160mV  
210mV  
260mV  
310mV  
360mV  
410mV  
460mV  
ꢀ10mV  
260mV  
310mV  
360mV  
410mV  
460mV  
ꢀ10mV  
ꢀ60mV  
610mV  
0b001  
0b010  
0b011  
0b100  
0b101  
0b110  
0b111  
The Vo2 voltage defines the lower temperature limit for the  
temperature conversion – note that normal operation is not  
guaranteed below -40 5C.  
Figure 20:  
Theoretical Lower Temperature Limit  
Vo2  
Low. Temp. Lim.  
-118.9 5C  
-89.3 5C  
260mV  
310mV  
360mV  
410mV  
460mV  
ꢀ10mV  
ꢀ60mV  
610mV  
-ꢀ9.6 5C  
-29.0 5C  
0.3 5C  
29.3 5C  
ꢀ9.0 5C  
88.7 5C  
The voltage difference between the Vo2 and Vo1 references  
define the resolution and temperature range.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 19  
S y s t e m D e s c r i p t i o n  
Figure 21:  
Temperature Conversion Resolution and Range  
Vo2 - Vo1  
310mV (default)  
ꢀ0mV  
Resolution  
Range  
0.18 5C  
0.029 5C  
0.0ꢀ8 5C  
0.086 5C  
0.116 5C  
0.14ꢀ 5C  
0.1ꢀ1 5C  
0.174 5C  
0.203 5C  
0.209 5C  
0.232 5C  
183.9 5C  
29.7 5C  
100mV  
ꢀ9.3 5C  
1ꢀ0mV  
88.0 5C  
200mV  
118.6 5C  
148.3 5C  
1ꢀ4.2 5C  
177.9 5C  
207.6 5C  
213.ꢀ 5C  
237.2 5C  
2ꢀ0mV  
260mV  
300mV  
3ꢀ0mV  
360mV  
400mV  
Example:  
Vo1 = 310mV, Vo2 = 410mV -> A/D conversion temperature  
range = -29.35C ~ 30.0 5C.  
Temperature resolution = 0.0ꢀ8 5C.  
The converted voltage can be calculated from the following  
equation:  
Vo2 – Vo1  
---------------------------  
VSENS = code   
+ Vo2  
1024  
SL900A – 20  
ams Datasheet: 2014-May-06 [v1-01]  
System D escription  
Temperature Conversion  
The calibration data does not have to be included in the  
temperature conversion equation. The temperature value  
calculation is dependent on the selected voltage references  
(See “Analog to Digital Conversion” on page 18.):  
T ⋅ (°C) = code Resolution – Low temp limit  
By default (factory setting), the voltage references are set: Vo1  
= 0V, Vo2 = 310mV. This yields a theoretical temperature  
conversion range of -89.35C ~ +94.65C. The temperature  
conversion equation for this setting is:  
T ⋅ (°C) = code 0.18°C – 89.3°C  
LSB = 0.18°C  
Offset = (–89.3C  
When the reference voltages are set to some other value, the  
following equation needs to be used for temperature  
conversion:  
Vo2[mV] ⋅ (code + 1024) – code Vo1[mV]  
-----------------------------------------------------------------------------------------------------------------  
T ⋅ (°C) =  
– 273.15  
1024 1.686  
The Vo1 and Vo2 in the above equation have to be in mV.  
Battery Voltage Conversion  
The battery voltage conversion is dependent on the initial  
battery voltage (1.ꢀV or 3V) and on the selected voltage  
references (See “Analog to Digital Conversion” on page 18.). The  
conversion equations with factory selected voltage references  
(Vo1 = 0V, Vo2 = 310mV) are:  
For 1.ꢀV battery, the equation is:  
• V = code*0.8ꢀmV + 873mV  
• LSB = 0.8ꢀmV  
• Offset = 873mV  
For 3V battery:  
• V = code*1.6ꢀmV + 1.69V  
• LSB = 1.6ꢀmV  
• Offset = 1.69V  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 21  
Commands  
Some commands can be password protected by 3 different  
passwords: System password (S), Application password (A) or  
Measurement password (M).  
Commands  
Figure 22:  
EPC Gen2 and Cool-Log™ Command Overview  
Allowed in Modes  
Command  
Code  
Mode  
Change  
Security  
Level  
#
Command  
Definition  
EPC Gen2  
01  
02  
03  
04  
0ꢀ  
06  
07  
QueryRep  
ACK  
0b00  
0b01  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
No  
Yes  
No  
No  
No  
No  
No  
/
/
/
/
/
/
/
anticollision round  
command  
EPC Gen2  
anticollision round  
command  
EPC Gen2  
anticollision round  
command  
Query  
0b1000  
0b1001  
0b1010  
0xC0  
EPC Gen2  
anticollision round  
command  
QuaryAdjust  
Select  
EPC Gen2  
anticollision round  
command  
EPC Gen2  
anticollision round  
command  
NAK  
Request for a new  
16-bit random  
number  
Req_RN  
0xC1  
Reads the selected  
block in the  
specified memory  
bank  
08  
09  
Read  
Write  
0xC2  
0xC3  
-
-
-
-
No  
No  
A or M  
A or M  
Writes the selected  
block in the  
specified memory  
bank  
Kills the transponder  
– no RFID access is  
possible after this  
command (SPI  
10  
Kill  
0xC4  
-
-
No  
/
remains active)  
SL900A – 22  
ams Datasheet: 2014-May-06 [v1-01]  
Co mmands  
Allowed in Modes  
Command  
Code  
Mode  
Change  
Security  
Level  
#
Command  
Definition  
Locks the selected  
memory banks  
11  
12  
Lock  
0xCꢀ  
0xC6  
-
-
-
-
No  
No  
/
/
Puts the transponder  
to the secured state  
Access  
Writes the selected  
block in the  
specified memory  
bank  
13  
14  
BlockWrite  
BlockErase  
0xC7  
0xC8  
-
-
-
-
No  
No  
A or M  
A or M  
Erases the selected  
block in the  
specified memory  
bank  
Note: The cool-Log commands are defined as EPC custom commands. All custom commands have a 16-bit  
st  
command code, where the 1 command code is defined as 0xE0, the second command code is in the  
table below.  
Sets the passwords  
to EEPROM  
1ꢀ  
16  
Set Password  
Set Log Mode  
0xA0  
0xA1  
-
-
-
-
-
No  
No  
S, M or A  
S
Sets logging mode  
Sets the  
Set Log  
Limits  
measurement limits  
for limits logging  
mode  
17  
0xA2  
-
-
-
No  
S
Reads 4 system  
blocks - Start time,  
Log limits, Log  
mode, and Delay  
time + application  
area size  
Get  
measurement  
setup  
18  
0xA3  
-
-
No  
S
Sets parameter for  
the External sensor  
front end  
Set SFE  
parameters  
19  
20  
0xA4  
0xAꢀ  
-
-
-
-
-
-
No  
No  
S
S
Sets the calibration  
data for the  
temperature sensor  
and timer  
Set  
Calibration  
Data  
Stops the log  
procedure and  
returns the chip to  
Standby mode  
21  
End Log  
0xA6  
-
-
-
Yes  
S
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 23  
Commands  
Allowed in Modes  
Command  
Code  
Mode  
Change  
Security  
Level  
#
Command  
Definition  
Starts the timer and  
the selected log  
procedure  
22  
23  
24  
Start Log  
0xA7  
0xA8  
0xA9  
-
-
-
-
-
-
-
Yes  
No  
No  
S
S
S
Gets the log state of  
the chip  
Get Log State  
Get  
calibration  
data  
Reads the internal  
and external  
calibration data  
Get Battery  
level  
Measures the  
battery voltage  
2ꢀ  
26  
0xAA  
0xAB  
-
-
-
-
-
No  
No  
/
/
Set the shelf life  
parameters  
Set Shelf Life  
Initializes the chip  
and sets the  
27  
28  
Initialize  
0xAC  
0xAD  
-
-
-
-
-
No  
No  
S
/
aapplication area  
size and the logging  
delay  
Measures the  
specified sensor –  
temperature, ext.  
sensor1 or ext.  
sensor 2  
Get Sensor  
Value  
Opens access to the  
specified EEPROM  
area  
29  
30  
Open Area  
0xAE  
0xAF  
-
-
-
-
No  
No  
/
/
Reads or writes the  
8-byte FIFO register  
(for fast SPI to RFID  
data transfer)  
Access FIFO  
SL900A – 24  
ams Datasheet: 2014-May-06 [v1-01]  
Co mmands  
Supported EPC Gen2 Commands  
QuerryREP - #01  
The QUERRY_REP command instructs tags to decrement their  
slot counter and is specified for one out of 4 sessions. If the slot  
counter becomes 0 after decrementing, the tag will backscatter  
its RN16.  
ACK - #02  
When a tag receives the ACK command in the Reply state, it will  
transition to the Acknowledged state and backscatter the EPC.  
The EPC can be truncated if this has been requested by the  
reader in the SELECT command. The ACK command can also be  
processed in the Open or Secured states, but in this case no  
state transition will occur.  
Query - #03  
The QUERY command initiates and specifies an inventory  
round. It sets the TX and RX data rates. It also defines the  
number of slots used for the inventory round. When the tag  
receives the QUERY command, it will calculate a random RN16  
if it has a matching Sel and Target. The tag will backscatter the  
RN16 value in case the slot counter is loaded with 0.  
QueryAdjust - #04  
The QUERY_ADJUST command increments or decrements the  
Q number (number of slots) for the current inventory round.  
Select - #05  
The SELECT command selects a tag population that will  
participate in the inventory round, based on user-defined  
criteria. The tag can receive any number of successive SELECT  
commands.  
NAK - #06  
When a tag receives the NAK command, it will transition to the  
Arbitrate state, unless it is in the Kill or Ready states. The tag  
will not send any reply to the NAK command.  
Req_RN - #07  
The REQ_RN command will instruct the tag to backscatter a new  
RN16. When a tag in the Acknowledged state receives a correct  
REQ_RN command, it will transition to the Open or Secured  
state. When the tag is in the Open or Secured state, it will  
backscatter a new RN16 and no state transition will occur.  
Read - #08  
The Read command instructs the tag to read and backscatter a  
part or all of the Reserved, EPC, TID or User memory.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 25  
Commands  
Write - #09  
The WRITE command allows the interrogator to write a word (16  
bits) in the tags Reserved, EPC, TID or User memory. Prior to  
sending the Write command, the interrogator has to send the  
REQ_RN command in order to receive a new RN16 that will be  
used for cover-coding the data by EXOR-ing it with the RN16.  
In case the data writing has been successful, the tag will  
backscatter the response within 20ms after receiving the  
command.  
Kill - #10  
The KILL command is used to permanently disable a tag. When  
the tag receives the correct multi-step Kill procedure, it will  
transition to the Killed state and will not send any response  
thereafter.  
Lock - #11  
The LOCK command instructs the tag to lock the specified block  
of the EEPROM memory. The Kill and Access passwords can be  
Read/Write locked, while the EPC, TID and User block can only  
be Write locked. The command will only be executed in the  
Secured state.  
Access - #12  
The ACCESS command with a correct password and correct  
multi-step procedure instructs the tag to transition from the  
Open to the Secured state. When the tag has successfully  
received the multi-step access procedure, it will backscatter its  
handle.  
BlockWrite - #13  
The BLOCK_WRITE command writes a single word of data (16  
bits) to the specified memory address. It provides faster data  
writing than the WRITE command as it does not need a new  
RN16 for every word of data that has to be written. In case the  
data writing has been successful, the tag will backscatter the  
response within 20ms after receiving the command.  
BlockErase - #14  
The BLOCK_ERASE command erases a single word in the  
specified memory bank. In case the erase has been successful,  
the tag will backscatter the response within 20ms after  
receiving the command.  
SL900A – 26  
ams Datasheet: 2014-May-06 [v1-01]  
Co mmands  
Cool-Log Custom Commands  
Set Password - #15  
The SET PASSWORD command sets the password for the  
specified memory area. This is the System area, Application area  
and Measurement area. The System area is in the Reserved  
memory bank. The Application and Measurement areas are in  
the User memory bank. In case the command has executed  
successfully, the tag will backscatter the response within 20ms  
after receiving the command.  
Set Log Mode - #16  
The SET LOG MODE command sets various parameters for the  
logging procedure. In case the command has executed  
successfully, the tag will backscatter the response within 20ms  
after receiving the command.  
Set Log Limits - #17  
The SET LOG LIMITS command write the 4 limits that are going  
to be used for logging measurement data. The limits are:  
Extreme upper limit, Upper limit, Lower limit and Extreme lower  
limit. In case the command has executed successfully, the tag  
will backscatter the response within 20ms after receiving the  
command.  
Get Measurement Setup - #18  
The GET MEASUREMENT SETUP command reads 4 system blocks  
- Start time, Log limits, Log mode and Delay time.  
Set SFE Parameters - #19  
The SET SFE PARAMETERS command sets the parameters for the  
External sensor front end.  
Set Calibration Data - #20  
The SET CALIBRATION DATA command sets the calibration  
values for the internal temperature sensor.  
WARNING – the factory preset calibration data can be  
overwritten. It is advised to read the calibration data, change  
only the required bits and write back with the SET CALIBRATION  
DATA command.  
End Log - #21  
The END LOG command stops the logging procedure and  
returns the chip to passive mode. It also stops the timer.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 27  
Commands  
Start Log - #22  
The START LOG command starts the logging procedure and sets  
the Start time in UTC format. In logging state the chips  
automatically performs the measurements and data logging in  
the specified time intervals. Supported is also a delayed start,  
which means that the chip will start with the logging procedure  
with a specified delay after it receives the START LOG command.  
This command also starts the Interrupt mode of operation  
where the measurements and data-logging are driven from  
external events.  
Get Log State - #23  
The GET LOG STATE command gets the log state of following  
parameters: measurement status and out of limits counter. This  
gives the ability to quickly check the state of the package  
without the need to read the whole temperature data log.  
Get Calibration Data - #24  
The GET CALIBRATION DATA command reads the calibration  
data for the internal and external sensors.  
Get Battery Level - #25  
The GET BATTERY LEVEL command measures and reads the  
voltage level of the battery.  
Set Shelf Life - #26  
The SET SHELF LIFE command writes the shelf life algorithm  
parameters and enables the dynamic shelf life calaculation.  
Initialize - #27  
The INITIALIZE command sets the size of the application data  
area and sets the delay time. The command clears the  
measurement status and limits counter blocks.  
Get Sensor Value - #28  
The GET SENSOR VALUE command measures and backscatters  
the value of the specified sensor – internal, external 1 or  
external 2.  
Open Area - #29  
The OPEN AREA command opens the specified area of the  
memory (System, Application, and Measurement). The  
password is stored in a RAM location and compared with the  
password in EEPROM. When the tag leaves the RF field, this RAM  
location is cleared.  
Access FIFO - #30  
The ACCESS FIFO command can read or write the 8-byte FIFO.  
The FIFO can also be accessed from the SPI so this command  
can be used for fast data transfer between a microcontroller  
connected to the SPI and an RFID reader.  
SL900A – 28  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
Upon receiving a valid command, the tag always transmits a  
reply. If the command can not be executed, the tag replies with  
the following error message:  
Custom Command Description  
Reply Structure (error):  
SOF  
Header  
Error code  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [1]  
8 bits  
16 bits  
16 bits  
Dummy bit [1]  
The error codes are defined as:  
Error Code  
Error Name  
Error Description  
Condition  
For error s that are not covered by  
the other specified error codes  
00000000  
Other error  
The EBV address is outside the  
physical address of the EEPROM  
or outside the specified memory  
bank.  
The specified memory location  
does not exist or the EPC length  
field is not supported by the tag  
00000011  
Memory overrun  
The specified memory location is  
locked and/or permalocked and  
can not be read or written.  
The lock bit for the specified  
memory bank or password is  
set.  
00000100  
00001011  
Memory locked  
The tag has insufficient power to  
perform the memory write  
operation.  
This error code can only be set in  
fully passive mode when the  
supply voltage is to low.  
Insufficient power  
The password is incorrect – tag is  
not open.  
The IDS custom password  
protection is active.  
10100000  
10100010  
Incorrect password  
Battery  
The battery measurement can not  
measurement error be started.  
The tag is fully passive and there  
is no battery attached.  
Custom commands that can  
modify logging and calibration  
parameters are not allowed  
when the tag is in active state  
(RTC running).  
Command not  
allowed  
Command is not allowed in active  
state.  
10100011  
10100110  
The memory can not be accessed  
This error is reported when the  
EEPROM is used by the SPI or  
measurement unit.  
EEPROM busy error as the measurement unit or SPI is  
accessing the EEPROM.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 29  
C u s t o m C o m m a n d D e s c r i p t i o n  
Set Password  
The SET PASSWORD command writes a 32 - bit password to the  
EEPROM. The password protection for the specified area is  
automatically enabled if the password is any other value  
except 0.  
Command Structure:  
SOF  
Custom Command Code Password Level Password Handle  
CRC  
Frame-sync  
0xE0  
0xA0  
8 bits  
32 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Password Level” bits are:  
Password Level Bits  
b1  
0
b0  
0
Passw. level  
Not allowed  
System  
0
1
Bits b7 - b2 are X  
1
0
Application  
Measurement  
1
1
When the System area is open for writing, the Set password can  
change the passwords for all 3 password levels. When the  
System area is write-protected, the Set password command can  
not change the System password, but it can change the  
Application password, if the Application area is open, and the  
Measurement password when the Measurement area is open.  
Set Log Mode  
The SET LOG MODE command sets the logging form, storage  
rule, enables sensors that are used in the logging process and  
sets the logging interval (in 1 second steps).  
Command Structure:  
SOF  
Custom  
Command Code  
Log Mode  
Handle  
CRC  
Frame - sync  
0xE0  
0xA1  
24 bits  
16 bits  
16 bits  
SL900A – 30  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
In case the operation is successful, the following reply will be  
sent:  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Log mode” field is composed as:  
Bit  
Number  
23 … 21  
20  
19  
18  
17  
16  
1ꢀ … 1  
0
Logging  
form [2:0]  
Storage Ext.1sensor Ext.2sensor Temp. sensor Batterycheck  
Log interval  
[14:0]  
RFU  
Function  
rule  
enable  
enable  
enable  
enable  
Set Log Limits  
The SET LOG LIMITS command writes the 4 limits that are used  
in the logging process. All 4 limits are 10 bits long.  
Command Structure:  
SOF  
Custom  
Command Code  
Log Limits  
Handle  
CRC  
Frame - sync  
0xE0  
0xA2  
40 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Log Limits” field is composed as:  
39 … 30  
29 ... 20  
19 … 10  
Upper limit  
9 … 0  
Extreme upper limit  
Bit Number  
Function  
Extreme lower limit  
Lower limit  
Get Measurement Setup  
The GET MEASUREMENT SETUP command will read the current  
system setup of the chip.  
Command Structure:  
SOF  
Custom  
Command Code  
Handle  
CRC  
Frame - sync  
0xE0  
0xA3  
16 bits  
16 bits  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 31  
C u s t o m C o m m a n d D e s c r i p t i o n  
Successful Reply Structure:  
Applic  
ation  
Data  
Hea Start  
SOF  
Log  
Log  
Log  
Delay  
Han  
dle  
CRC EOF  
der Time Limits Mode Interval Time  
Pilot tone  
+
preamble  
Dum  
my  
bit [1]  
1 bit  
[0]  
32  
bits  
40  
bits  
8
bits  
16  
bits  
16  
bits  
16  
bits  
16  
bits  
16  
bits  
The “Log Limits” field is composed as:  
39 … 30  
29 ... 20  
19 … 10  
9 … 0  
Bit Number  
Function  
Extreme lower limit  
Lower limit  
Upper limit  
Extreme upper limit  
The “Log Mode” field is composed as:  
7 ... ꢀ  
4
3
2
Bit Number  
Function  
Logging form [2:0]  
Storage rule  
Ext.1 sensor enable  
Ext.2 sensor enable  
The “Log Interval” field is composed as:  
1ꢀ … 1  
Log interval [14:0]  
0
Bit Number  
Function  
RFU  
The “Delay Time” field is composed as:  
1ꢀ … 4  
3 … 2  
1
0
Bit Number  
Function  
Delay mode [0 – timer, 1 –  
external switch]  
Delay time [11:0]  
RFU [1:0]  
IRQ+timer enable  
The “Application Data” field is composed as:  
1ꢀ … 7  
Number of words for application data [8:0]  
6 … 3  
2 … 0  
Bit Number  
Function  
RFU [3:0]  
Broken word pointer [2:0]  
SL900A – 32  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
Set SFE Parameters  
The SET SFE PARAMETERS command writes the Sensor Front  
End parameters to the memory. Those parameters include the  
range preset values for the external sensor inputs, external  
sensor types and the also the sensor that will be used for limits  
comparison.  
Command Structure:  
SOF  
Custom  
Command Code  
SFE Parameters  
Handle  
CRC  
Frame - sync  
0xE0  
0xA4  
16 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “SFE Parameters” field is composed as:  
1ꢀ … 11  
10 … 6  
ꢀ … 4  
3
2
1 … 0  
Bit Number  
Function  
Autorange  
disable  
Verify sensor  
ID [1:0]  
Rang [4:0]  
Seti [4:0]  
EXT1 [1:0]  
EXT2  
Set Calibration Data  
The SET CALIBRATION DATA write to the calibration block in the  
EEPROM memory. The calibration data is preset during  
manufacturing, but can also be changed in the application if  
needed. The SET CALIBRATION DATA will write only to the  
EEPROM, but it will not update the calibration values in the  
calibration registers. The calibration registers are automatically  
updated with each START LOG command.  
Command Structure:  
SOF  
Custom  
Command Code  
Calibration Data  
Handle  
CRC  
Frame - sync  
0xE0  
0xAꢀ  
ꢀ6 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
Note: The “Calibration data” field is composed of 7 bytes (See “Calibration Bits” on page 63.).  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 33  
C u s t o m C o m m a n d D e s c r i p t i o n  
End Log  
The END LOG command stops the logging procedure and turns  
off the real time clock. It also clears the Active flag that is store  
in the “System status” field in the EEPROM.  
Command Structure:  
SOF  
Custom  
Command Code  
Handle  
CRC  
Frame - sync  
0xE0  
0xA6  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
Start Log  
The START LOG command starts the logging process. It  
refreshes the data in the calibration registers, enables the RTC,  
writes the Start time and sets the Active bit in the “System  
status” field in the EEPROM.  
Command Structure:  
SOF  
Custom  
Command Code  
Start Time  
Handle  
CRC  
Frame - sync  
0xE0  
0xA7  
32 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Start Time” field is composed as:  
31 … 26  
Year [ꢀ:0]  
2ꢀ … 22  
Month [3:0]  
21 … 17  
Day [4:0]  
16 … 12  
Hour [4:0]  
11 … 6  
ꢀ … 0  
Bit Number  
Function  
Minute [ꢀ:0]  
Second [ꢀ:0]  
SL900A – 34  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
Get Log State  
The GET LOG STATE command reads the status of the logging  
process. The command can be used to quickly determine the  
current state of the product, together with the Shelf life and the  
Limit counter.  
Command Structure:  
SOF  
Custom  
Command Code  
Handle  
CRC  
Frame - sync  
0xE0  
0xA8  
16 bits  
16 bits  
Successful Reply Structure:  
Current  
Shelf  
Life  
Hea  
der  
Limit  
Counter  
System SL-bloc  
Status Han  
SOF  
CRC EOF  
Status  
k 0&1  
Flags  
dle  
Pilot tone  
+
preamble  
Dum  
1 bit  
[0]  
32  
bits  
32  
bits  
64 bits  
(see Note) (see Note)  
24 bits  
8
bits  
16  
bits  
16  
my  
bits  
bit [1]  
OPTIONAL - only when Shelf Life flag is set in the EEPROM.  
The “Limit Counter” field is composed as:  
31 … 24  
23 … 16  
1ꢀ … 8  
Upper [7:0]  
7 … 0  
Bit Number  
Function  
Extreme lower [7:0]  
Lower [7:0]  
Extreme upper [7:0]  
The “System Status” field is composed as:  
31 … 22  
21 … 16  
1ꢀ … 1  
0
Bit Number  
Function  
Measurement address  
pointer [9:0]  
Number of memory  
replacements [ꢀ:0]  
Number of  
measurements [14:0]  
Active  
The “Status Flags” field is composed as:  
7
6
4
3
2
Shelf life  
1
0
Bit Number  
Function  
Active  
(logging  
process)  
Measure  
ment  
area full  
Shelf life  
high  
error  
Shelf  
Life  
expired  
Measurement  
overwritten  
AD  
Low  
error battery low error  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 35  
C u s t o m C o m m a n d D e s c r i p t i o n  
Get Calibration Data  
The GET CALIBRATION DATA command reads the calibration  
data field and the SFE parameters field.  
Command Structure:  
SOF  
Custom  
Command Code  
Handle  
CRC  
Frame - sync  
0xE0  
0xA9  
16 bits  
16 bits  
Successful Reply Structure:  
Calibration Data & SFE  
SOF  
Header  
Handle  
CRC  
EOF  
Parameters  
Pilot tone +  
preamble  
1 bit [0]  
72 bits  
16 bits  
16 bits  
Dummy bit [1]  
The content of the Calibration data field and the SFE parameters  
field is displayed in the Memory map in “SPI Interface” on  
page 4ꢀ.  
Get Battery Level  
The GET BATTERY LEVel command starts the AD conversion on  
the battery voltage and returns the voltage level with the  
battery type (1.ꢀV or 3V).  
Command Structure:  
SOF  
Custom  
Command Code  
Battery retrigger  
Handle  
CRC  
Frame - sync  
0xE0  
0xAA  
8 bits  
16 bits  
16 bits  
Successful Reply Structure:  
A/D  
Error  
Battery  
Type  
Battery  
Level  
SOF  
Header  
Zeros  
Handle CRC  
EOF  
Pilot tone  
+
preamble  
1 bit -  
error [1]  
1 bit - [0 =  
1.ꢀV, 1 = 3V]  
4 bits  
[0000]  
Dummy  
bit [1]  
1 bit [0]  
10 bits  
16 bits  
16 bits  
The application can also request the battery type re-check if  
the Battery retrigger field has the value “00000001, otherwise  
the Battery retrigger field needs to have the value “00000000.  
SL900A – 36  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
Set Shelf Life  
The SET SHELF LIFE command programs parameters for the  
dynamic shelf life algorithm.  
Command Structure:  
SOF  
Custom Command Code  
SL Block 0  
SL Block 1 Handle  
CRC  
Frame - sync  
0xE0  
0xAB  
32 bits  
32 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “SL Block 0” field is composed as:  
31 … 24  
23 … 16  
Tmin [7:0]  
1ꢀ … 8  
Tstd [7:0]  
7 … 0  
Bit Number  
Function  
Tmax [7:0]  
Ea [7:0]  
The “SL Block 1” field is composed as:  
31 … 16  
1ꢀ … 6  
ꢀ … 4  
3
2
1 … 0  
Bit Number  
Function  
Enable  
negative  
shelf life  
Shelf life  
algorithm  
enable  
Shelf life  
sensor ID [1:0]  
SLinit [1ꢀ:0]  
Tinit [9:0]  
RFU [1:0]  
Initialize  
The INITIALIZE command clears the System status field, the  
Limit counters and sets the Delay time field and the Application  
data field. The Initialize command is needed before the START  
LOG command as it will clear the pointers and counters. If the  
application needs to run the logging process from the previous  
point on, the Initialize command ca be left out.  
Command Structure:  
SOF  
Custom Command Code Delay Time Application time Handle CRC  
16  
bits  
Frame - sync  
0xE0  
0xAC  
16 bits  
16 bits  
16 bits  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 37  
C u s t o m C o m m a n d D e s c r i p t i o n  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Delay Time” field is composed as:  
1ꢀ … 4  
3 … 2  
1
0
Bit Number  
Function  
Delay mode [0 – timer, 1 –  
external switch]  
Delay time [11:0]  
RFU [1:0]  
IRQ+timer enable  
The “Application Data” field is composed as:  
1ꢀ … 7  
6 … 3  
2 … 0  
Bit Number  
Function  
Number of words for application data [8:0]  
RFU [3:0]  
Broken word pointer [2:0]  
Get Sensor Value  
The GET SENSOR VALUE command starts the AD conversion on  
the specified sensor and returns the value.  
Command Structure:  
SOF  
Custom  
Command Code  
Sensor Type  
Handle  
CRC  
Frame - sync  
0xE0  
0xAD  
8 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header A/D Error Range/Limit Sensor Value Handle CRC  
EOF  
Pilot tone +  
preamble  
1 bit - error  
[1]  
10  
bits  
16  
bits  
16  
bits  
Dummy  
bit [1]  
(1), (2)  
1 bit [0]  
ꢀ bits  
Note(s) and/or Footnote(s):  
1. RANGE - for external sensors  
2. LIMIT CURRENT - for self heating compensation.  
The “Sensor Type” field is composed as:  
7 … 2  
1 … 0  
Bit Number  
Sensor type:  
• 00 – Temperature sensor  
• 01 – External sensor 1  
• 10 – External sensor 2  
• 11 – Battery voltage  
RFU [ꢀ:0] – all 0’s  
Function  
SL900A – 38  
ams Datasheet: 2014-May-06 [v1-01]  
Custom Comm and Description  
Open Area  
The OPEN AREA command opens the specified area (System,  
Application, and Measurement) that is protected by a password.  
Command Structure:  
SOF  
Custom Command Code Password Level Password Handle CRC  
Frame - sync  
0xE0  
0xAE  
8 bits  
32 bits  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Handle  
CRC  
EOF  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits  
Dummy bit [1]  
The “Password Level” field is composed as:  
Password Level Bits  
b1  
0
b0  
0
Passw. level  
Not allowed  
System  
0
1
Bits b7 - b2 are X  
1
0
Application  
Measurement  
1
1
Access FIFO  
The ACCESS FIFO command can read and write data from the  
FIFO and can also read the FIFO status register.  
Command Structure:  
SOF  
Custom Command Code Sub-command  
Payload  
Handle CRC  
Frame - sync  
0xE0  
0xAF  
8 bits  
0 ~ 8 bytes  
16 bits  
16 bits  
Successful Reply Structure:  
SOF  
Header  
Payload  
Handle CRC  
EOF  
0 ~ 8 bytes (data from FIFO or  
FIFO status register)  
Pilot tone + preamble  
1 bit [0]  
16 bits  
16 bits Dummy bit [1]  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 39  
C u s t o m C o m m a n d D e s c r i p t i o n  
Possible Subcommand codes are defined as:  
Subcommand bits  
Function  
Comment  
7
6
5
The bits 3-0 specify the number of bytes that will  
be read from FIFO  
1
0
0
Read data from FIFO  
The bits 3-0 specify the number of bytes that will  
be written to FIFO  
1
1
0
1
1
0
Write data to FIFO  
Read status register  
The FIFO status register is defined as:  
Bit #  
Function  
7
6
4
3
2
1
0
FIFO busy  
Data ready  
No data  
0 – data from SPI, 1 – data from RFID  
Number of valid bytes in FIFO register (0000 – FIFO empty, 0001 – 1 byte,  
1000 – 8 bytes)  
Access FIFO command example:  
• Frame sync + E0 AF Aꢀ 11 22 33 44 ꢀꢀ + Handle + CRC  
• This example command will write ꢀ bytes to the FIFO.  
SL900A – 40  
ams Datasheet: 2014-May-06 [v1-01]  
Logging Formats  
The logging format is selected with the SET LOG MODE  
command in the “Logging Mode[2:0]” field.  
Logging Formats  
Figure 23:  
Supported Logging Formats  
Logging Mode [2:0]  
Logging Form  
Description  
Bit 2 Bit 1 Bit 0  
All values are stored to the measurement area. No additional  
time information is stored to the measurement area.  
0
0
0
Dense  
All values that are out of the specified limits are stored to the  
measurement area. Limits comparison is done on the  
selected sensor (“Verify sensor ID [1:0]”). The measurement  
number is stored, additional to the sensor value.  
All values out of  
limits  
0
0
0
0
1
1
1
0
1
RFU  
Reserved for future use – this setting is not allowed  
Only the crossing point of each limit boundary is stored.  
Limits comparison is done on the selected sensor (“Verify  
sensor ID [1:0]”). The measurement number is stored,  
additional to the sensor value.  
Limits crossing  
1
1
1
0
0
1
0
1
0
RFU  
Reserved for future use – this setting is not allowed  
Interrupt triggered on the EXT1 external sensor input  
Interrupt triggered on the EXT2 external sensor input  
IRQ, EXT1  
IRQ, EXT2  
Interrupt triggered on the EXT1 and EXT2 external sensor  
input  
1
1
1
IRQ, EXT1, EXT2  
Dense Logging Form  
The dense logging form provides maximum usage of the  
non-volatile memory space. 8 sensor values are stored into ꢀ  
words of memory when only the internal temperature sensor is  
used:  
Figure 24:  
Dense Form - Only Internal Temperature Sensor  
Bits  
Block #  
0x00  
0x01  
0x02  
0x03  
0x04  
1ꢀ  
14  
13  
12  
11  
10  
9
8
7
6
4
3
2
1
0
Temp. 1  
Temp. 2  
Temp. 2  
Temp. 3  
Temp. 4  
Temp. 4  
Temp. ꢀ  
Temp. ꢀ  
Temp. 6  
Temp. 7  
Temp. 7  
Temp. 8  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 41  
Lo g gi n g Fo r m a t s  
In case external sensors are used for logging, the chip will use  
the following storage format:  
Figure 25:  
Dense Form with External Sensors  
Bits  
Block #  
0x00  
1ꢀ  
1
14  
13  
12  
11  
10  
9
8
7
6
4
3
2
1
0
Range ꢀ bits  
Range ꢀ bits  
External sensor 1 - 10 bits  
External sensor 2 - 10 bits  
Temperature meas. - 10 bits  
0x01  
1
0x02  
Bat. meas. 6 bits  
In the dense logging form, no time information is stored in the  
measurement area of the EEPROM in order to maximize the  
number of stored sensor values. The real time of a particular  
measurement can be calculated by using the Start time and Log  
interval.  
Out-of-Limits Logging Form  
This logging form uses the limits that are set by the user. The  
limits can be set with the SET LOG LIMITS command. The storage  
data format is the same for the “All values out-of-limits” form  
and the “Limits crossing” form.  
Figure 26:  
Limits Mode with Internal Sensor Only  
Bits  
Block #  
0x00  
1ꢀ  
14  
13  
12  
11  
10  
9
8
7
6
4
3
2
1
0
Battery voltage  
Temperature  
0x01  
Measurement #  
Figure 27:  
Limits Mode with External Sensors  
Bits  
Block #  
0x00  
0x01  
0x02  
0x03  
1ꢀ  
1
14  
13  
12  
11  
10  
9
8
7
6
4
3
2
1
0
Range ꢀ bits  
Range ꢀ bits  
External sensor 1 - 10 bits  
External sensor 2 - 10 bits  
Temperature meas. - 10 bits  
1
Bat. meas. 6 bits  
Measurement #  
SL900A – 42  
ams Datasheet: 2014-May-06 [v1-01]  
Logging Formats  
Interrupt Logging Form  
This logging form is used when the interrupts from external  
sensors are enabled. In this case, the real time clock is stored  
together with the sensor values.  
Figure 28:  
Interrupt Mode  
Bits  
Block #  
0x00  
0x01  
0x02  
0x03  
0x04  
1ꢀ  
1
14  
13  
12  
11  
10  
9
8
7
6
4
3
2
1
0
Range ꢀ bits  
Range ꢀ bits  
External sensor 1 - 10 bits  
External sensor 2 - 10 bits  
Temperature meas. - 10 bits  
1
Bat. meas. 6 bits  
Real time clock - Higher 16 bits  
Real time clock - Lower 16 bits  
Note(s) and/or Footnote(s):  
1. The interrupt source can either be the external sensor 1, external sensor 2 or both external sensors. The limits are ignored in the  
interrupt mode.  
Storage Capacity  
The storage capacity is the number of measurement points that  
can be stored to the EEPROM. It is dependent on the selected  
logging form.  
Figure 29:  
Storage Capacity:  
Selected Sensors  
Dense  
841  
Limits (both modes)  
Event Triggered  
Only temperature  
263  
263  
263  
17ꢀ  
17ꢀ  
17ꢀ  
131  
131  
17ꢀ  
17ꢀ  
17ꢀ  
131  
131  
131  
10ꢀ  
10ꢀ  
Temperature + battery  
1 External  
ꢀ26  
ꢀ26  
Temperature + External  
Temperature + External + Battery  
2 External  
263  
263  
263  
Temperature + 2 external  
All 4 sensors  
17ꢀ  
17ꢀ  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 43  
S t o r a g e R u l e  
The Storage rule defines how the device handles a completely  
full Measurement area. The device has 2 storage rules – normal  
or rolling.  
Storage Rule  
Normal storage rule  
In this storage rule, the logging of new data is stopped when  
the memory is completely full. When this happens, the bit 6 in  
the Status Flags (Measurement area full) is set to 1 and no new  
data is stored to the EEPROM. However, the timer is still active  
and the Number of measurements counter will still be  
incremented.  
Rolling storage rule  
In this mode, the device will overwrite the old data with new  
data once the measurement area is completely full. When this  
happens, the bit 6 (Measurement area full) and bit ꢀ  
(Measurement overwritten) in the Status Flags are set to 1 and  
the Number of memory replacements counter is incremented.  
The new measurement is stored to the beginning of the  
Measurement area.  
When the dense logging mode with temperature sensor is used  
with the rolling storage mode and the memory is overwritten,  
the new data is stored from the beginning of the Measurement  
area starting with a fresh ꢀ-block 8-measurements super-block.  
It does not matter if the last super-block at the end of the  
memory was not completed due to the end of the memory.  
When more sensors are enabled or the limits mode is used, it  
can happen that the last measurement at the end of the  
memory can not be written, because there is not enough space.  
An example for this is if all 4 sensors are enabled in dense  
logging mode. In this case, 1 measurement is 3 blocks long. If  
it happens that there are only 2 blocks free in the memory, the  
measurement will be written to the beginning of the  
Measurement area, so the last 2 blocks are not used.  
When the Number of memory replacement counter reaches its  
maximum value, the logging is stopped and no new data is  
written to the EEPROM. However, the timer will still be active  
and the Number of measurements counter will still be  
incremented.  
SL900A – 44  
ams Datasheet: 2014-May-06 [v1-01]  
SPI I nter face  
Full and unlimited EEPROM access is possible through the SPI  
interface. The primary function of the SPI interface is  
production calibration and UID programming, but it can also  
be used in application, for the data transmission between the  
interrogator and a microcontroller attached to the SPI interface.  
The chip has a basic arbitration implemented that controls the  
EEPROM access from the RFID interface, the automatic data  
logger and the SPI interface. The RFID interface has the highest  
priority, second is the automatic data logger, and last is the SPI  
interface.  
SPI Interface  
The first 2 bits in the frame are the MODE bits, which define the  
SPI operation (00 – Write memory, 01 – Read memory, 10 – Test,  
11 – Direct command). The EEPROM address is an 11-bit address  
that point to the physical locations in the EEPROM. The write  
command can be executed on a single byte, or any number of  
successive bytes on a single page (up to 16 bytes). The minimum  
number of bytes in the Page write operation is 2. The Read  
operation is a continuous operation, so any number of bytes  
can be read with a single frame. The address is the starting  
address and is automatically incremented in the chip.  
The Test MODE is reserved for production testing and cannot  
be used in application.  
The maximum SCLK frequency is 10MHz at 3V battery supply  
(dual cell). With a 1.ꢀV battery supply the maximum frequency  
is 2MHz.  
Figure 30:  
SPI Communication Modes  
Data  
Byte  
MODE  
EEPROM Address / Command Code  
A15 A14 A13 A12 A11  
A10...A0  
D7...D0  
0
0
0
0
0
0
0
0
0
1
Physical EEPROM address DI7 … DI0  
Write Mode  
Page Write  
Mode  
Physical EEPROM address DI7 … DI0 ...16 data bytes  
...Continuous  
Physical EEPROM address DO7...DO0  
read (n*8 bits)  
0
1
0
0
0
Read Mode  
Test Mode  
RESERVED for PRODUCTION  
Cꢀ...C0  
Command  
Mode  
1
1
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 45  
S P I I n t e r f a c e  
Figure 31:  
SPI Timings  
t
sc  
tch  
t
cl  
t
ds  
t
dh  
Figure 32:  
SPI Timing for 3V Supply Voltage  
Symbol  
Min  
1ꢀ0us  
100ns  
100ns  
ꢀ0ns  
Max  
Description  
t
-
-
-
-
-
SEN to first SCLK rising edge setup time  
SCLK high period  
sc  
t
ch  
t
SCLK low period  
cl  
t
Data setup time  
ds  
t
ꢀ0ns  
Data hold time  
dh  
Figure 33:  
SPI Timing for 1.5V Supply Voltage  
Symbol  
Min  
1ꢀ0us  
ꢀ00ns  
ꢀ00ns  
ꢀ0ns  
Max  
Description  
SEN to first SCLK rising edge setup time  
SCLK high period  
t
-
-
-
-
-
sc  
t
ch  
t
SCLK low period  
cl  
t
Data setup time  
ds  
t
ꢀ0ns  
Data hold time  
dh  
SL900A – 46  
ams Datasheet: 2014-May-06 [v1-01]  
SPI I nter face  
Figure 34:  
SPI Write Mode  
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 35:  
SPI Read Mode  
A10  
A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 36:  
SPI Command Mode - Start Log and Stop Log, Reset command  
C5 C4 C3 C2 C1 C0  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 47  
S P I I n t e r f a c e  
Figure 37:  
SPI Command Mode – Get Temperature, Get Ext. Sensor, Get Battery, Read Fifo, Read Remaining Shelf  
Life  
C5 C4 C3 C2 C1 C0  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
Figure 38:  
SPI Write FIFO Command  
Figure 39:  
SPI Read FIFO Status Command  
SL900A – 48  
ams Datasheet: 2014-May-06 [v1-01]  
SPI Direc t Command s  
SPI Direct Commands  
Figure 40:  
SPI Direct Commands  
Command Code  
Command  
Comment  
Reset command - same  
effect as POR  
0x00  
0x01  
0x02  
0x03  
0x04  
All calibration registers are refreshed from the EEPROM  
After SDATAO signal goes high send additional 16 clock  
pulses for conversion data read-out  
Get temperature  
Get battery  
After SDATAO signal goes high send additional 16 clock  
pulses for conversion data read-out  
After SDATAO signal goes high send additional 16 clock  
pulses for conversion data read-out  
Get Ext. sensor 1  
Get Ext. sensor 2  
After SDATAO signal goes high send additional 16 clock  
pulses for conversion data read-out  
Starts the timer or IRQ mode - generates the sta_log  
pulse signal - the start time has to be written before with  
the SPI Write mode  
0x0ꢀ  
0x06  
Start Logging  
Stop Logging  
Stops the timer or IRQ mode - generates the end_log  
pulse signal  
0x07  
0x08  
0x20  
0x21  
Read FIFO status  
Read Remaining shelf life  
Read FIFO  
Read the FIFO status byte (8-bit)  
Reads the remaining shelf life (24-bit)  
Reads up to 8 bytes from the FIFO  
Writes up to 8 bytes to the FIFO  
Write FIFO  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 49  
S P I D i r e c t C o m m a n d s  
FIFO  
The SL900A device has an integrated 8-byte FIFO register that  
can be used for fast data transmission between the RFID reader  
and the microcontroller that is connected to the SPI port.  
The FIFO status can be determined by reading the FIFO status  
register:  
Bit #  
Function  
7
6
4
3
2
1
0
FIFO busy  
Data ready  
No data  
0 – data from SPI, 1 – data from RFID  
Number of valid bytes in FIFO register (0000 – FIFO empty, 0001 – 1 byte, 1000  
– 8 bytes)  
The FIFO can be read and written from the SPI and the RFID  
interface. From the RFID interface, the ACCESS FIFO command  
is used to access the FIFO register and the FIFO status. From the  
SPI interface, 3 commands are used – 0x07, 0x20 and 0x21. The  
0x07 commands reads the FIFO status byte. Up to 8 bytes can  
be read from the FIFO with the 0x20 command and up to 8 bytes  
written with the 0x21 command.  
SL900A – 50  
ams Datasheet: 2014-May-06 [v1-01]  
Alternate Pad Func tions  
Some functions are multiplexed on same pads, so some  
functions of the device can not be used in parallel.  
Alternate Pad Functions  
Manual Log Start with Button  
The SL900A device supports 2 delayed start possibilities for the  
logging. Delayed start means that the logging is not started  
immediately when the device receives the Start Log command,  
but some time after the reception of this command. The  
application can set a fixed delay for the logging, or the logging  
can be started manually (without a RFID reader).  
Figure 41 shows the external push button connection for the  
manual delayed start function. The DIN pin has an integrated  
pull-down resistor, so the only required external component is  
the button. When the DIN pin is connected to V , the logging  
BAT  
will be started.  
Figure 41:  
Push Button Connection  
VBAT  
DIN  
R=  
100k  
In order to enable this function, the application needs to set  
the “Delay mode” bit to 1. This is done with the “Initialize”  
command on page 37  
External Shelf Life Alarm Function  
The SL900A device can generate an alarm when the Shelf Life  
algorithm is used and the shelf life expires. The EXC pin is used  
for this function.  
This signal can be used as an interrupt on a microcontroller, or  
can be directly used to drive a LED diode. The EXC driver  
resistance is 400Ω.  
Figure 42 shows how to connect an LED diode to the EXC pin.  
This is possible only when the transponder uses a 3V battery  
supply as most of the LED diodes have a threshold above 1.ꢀV.  
Depending on the type of the LED diode, also an external  
current-limiting resistor needs to be used.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 51  
A l t e r n a t e Pa d Fu n c t i o n s  
Figure 42:  
LED Connection for Shelf Life Alarm  
VBAT  
EXC  
400 Ohm  
VSS  
Gnd  
The external alarm function is activated automatically when the  
Shelf Life algorithm is used. The “sw_ext_en” bit in Calibration  
data has to be 0. If the “sw_ext_en” bit is set to 1, the EXC pin  
is used for external sensor supply.  
SL900A – 52  
ams Datasheet: 2014-May-06 [v1-01]  
Ex ternal Sensor Front-End (SFE)  
The SL900A device can process the internal temperature sensor,  
the battery voltage and up to 2 external sensors. The result of  
the A/D conversion can be logged to the EEPROM or sent  
directly back to the interrogator (if the GET SENSOR VALUE  
command is used). The external sensors and the integrated  
temperature sensor can only be processed in serial manner. This  
is done through a multiplex amplifier, as the SL900A device has  
only one A/D converter integrated.  
External Sensor Front-End (SFE)  
Figure 43:  
External Sensor Front End  
ext_sw  
Vbat  
Pre-  
drive  
current  
1
4
5
2
REFERENCES  
IRQ  
SFE CONTROLS  
6
9
EXT2  
V-AGC  
7
EXT1  
11  
VREF  
EXC  
I-AGC  
S/H  
8
Programmable Current  
Sources  
3
ARC  
TIMING, IRQ  
REFERENCE  
10  
MEMORY  
Vbat  
shelf_life  
SFE Interface  
The external sensor interface consists of 4 pads:  
• EXT1 – connection for external sensor 1 that can be a  
linear-resistive sensor, a DC voltage source (sensor with  
external analog processing), capacitive and resistive  
sensors with AC driving,  
• EXT2 – connection for external sensor 2 that can be a  
linear-conductive sensor, a reverse-polarized diode, DC  
voltage source with serial resistance or a DC current  
source to V  
,
SS  
• EXC – supply voltage for the external sensors or a AC signal  
source for external sensors that do not allow a DC voltage.  
• V  
– reference voltage (Vo2) pin used for capacitive and  
REF  
resistive sensors with AC excitation.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 53  
E x t e r n a l S e n s o r Fr o n t - E n d ( S F E )  
The SFE can be used for measurements with resistive sensors  
with linear resistance or conductance. It can be used for  
capacitive sensors and optical sensors (diode). It can also be  
used for connecting integrated sensors with voltage output  
(high impedance input).  
The SFE allows a connection of a resistor bridge sensor  
arrangement, where the bridge is supplied by the EXC pad  
(battery voltage) and the 2 sensing points are attached to the  
EXT1 and EXT2 inputs. The 4th point of the resistive bridge has  
to be attached to the V point. The AD conversion for the 2  
SS  
sensing points is done with 2 successive measurements. First  
the EXT1 point and next the EXT2 point. The final calculation  
has to be done in the application software.  
Also a capacitive or resistive sensor that does not allow a DC  
voltage can be attached to the SFE. In this case, the sensing  
point is the EXT1 input, the AC stimulus signal is provided by  
the EXC pin and the V  
pad outputs an adjustable DC  
REF  
reference voltage.  
SFE Interface  
Figure 44:  
Sensor Front End Setting Bits  
SFE Group Bits  
Function  
Description  
rang[4:0]  
seti[4:0]  
External sensor 2 range  
External sensor 1 range  
Resistor feedback ladder – see application note for SFE  
Current source value – see application note for SFE  
00 – linear resistive sensor  
01 – high impedance input (voltage follower), bridge  
10 – reserved  
EXT1[1:0]  
external sensor 1 type  
11 – capacitive or resistive sensor without DC (AC signal  
on EXC pin)  
0 – linear conductive sensor, opto sensor, current source  
sensor  
EXT2  
external sensor 2 type  
Use preset range  
1 - high impedance input (voltage follower), bridge  
Autorange function is turned off  
00 – first selected sensor  
Range preset  
Sensor used in limit check  
01 – second selected sensor  
Verify sensor ID[1:0] (sensor enable bits in log  
mode group)  
10 – third selected sensor  
11 – fourth selected sensor  
SL900A – 54  
ams Datasheet: 2014-May-06 [v1-01]  
Ex ternal Sensor Front-End (SFE)  
The external sensor interface has an auxiliary output pin (EXC)  
that can be used for supplying the external sensor either with  
a constant voltage or with an AC voltage signal (for capacitive  
sensor).  
Figure 45:  
EXC Output Pin Operation  
EXC Pin Controls  
EXT1 [1:0] sw_ext_en stand-by mode EXC Signal Output  
Comment  
The output drivers are  
disconnected  
00  
00  
11  
0
0
X
0
1
X
HI-Z  
HI-Z  
The output drivers are  
disconnected  
AC signal during external Is to be used only with  
sensor conversion  
capacitive sensors  
The output is connected to  
the battery voltage for the  
duration of the conversion  
V
00  
00  
00  
00  
1
1
1
1
0
1
0
1
BAT  
The output drivers are  
disconnected  
HI-Z  
The output is connected to  
the battery voltage for the  
duration of the conversion  
V
BAT  
The output drivers are  
disconnected  
HI-Z  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 55  
E x t e r n a l S e n s o r Fr o n t - E n d ( S F E )  
External Sensor 1 Interface  
The external sensor 1 interface (EXT1 pin) can be used for  
measurements with linear resistive sensors and capacitive  
sensors with AC excitation. It can also be used to measure 1  
point of a resistive bridge (with the second point connected to  
the EXT2 pad).  
The processing of an external capacitive sensor without DC  
voltage is possible in case an external reference capacitor is  
used. The external sensor in this case is excitated with an AC  
signal from the EXC pin. The connection for this kind of sensors  
is shown on Figure 46.  
Figure 46:  
External Capacitive Sensor with AC Excitation (EXT1[1:0] = 11)  
EXC  
SENS  
VREF  
REF.  
CAP.  
EXT1  
EXT2  
VSS  
Cap. No_DC  
sensor  
SL900A  
SL900A – 56  
ams Datasheet: 2014-May-06 [v1-01]  
Ex ternal Sensor Front-End (SFE)  
The external capacitive sensor in Figure 46 is excitated with a  
square wave signal around the reference voltage V . The  
REF  
amplitude of the AC signal is equal to the V  
AC amplitude:  
voltage. Input  
REF  
CREF CAP  
(CREF CAP + CSENS  
------------------------------------------------------  
VEXT1 = VEXC  
)
The selection of the reference capacitor depends on the AD  
converter input voltage range. The input AC amplitude V  
at  
EXT1  
minimum capacitance C_SENS must be at a maximum AD level:  
VAD 2 Vvo2 – Vvo1  
=
max  
The input AC amplitude V  
at minimum capacitance C_SENS  
EXT1  
must be close to minimum AD level:  
VAD Vvo2  
=
min  
The external sensor interface can also be used for resistive  
sensor with linear resistance and with resistive sensor that do  
not allow any DC voltage (AC excitation). The connection  
diagrams are on Figure 47 and Figure 48.  
For a resistive sensor with AC excitation The following relation  
is valid:  
VVREF  
--------------------------------------------------------  
VVREF < VVREF  
+
RREF RES VVREF + vo1  
RR SENS + RREF RES  
The proper ratio between sensor and reference resistor can be  
chosen to fulfill the upper relation and the range of sensor’s  
resistivity.  
Figure 47:  
External Linear Resistive Sensor (EXT1[1:0] = 00)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
Resistive type  
sensor - linear  
resistance  
SL900A  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 57  
E x t e r n a l S e n s o r Fr o n t - E n d ( S F E )  
An additional external reference resistor has to be used for  
processing external resistive sensor with AC excitating.  
Figure 48:  
External Resistive Sensor with AC Signal (EXT1[1:0] = 11)  
EXC  
R_SENS  
VREF  
REF.  
RES.  
EXT1  
EXT2  
VSS  
Res. No_DC  
sensor  
SL900A  
A resistive bridge has to be connected to both sensor inputs  
(Figure 49). The 2 input voltages are converted one after the  
other. In automatic logging, both external sensors have to be  
enabled. If the resistor bridge is also used with the GET SENSOR  
VALUE RFID command, this command has to be sent twice – first  
for external sensor 1, second for external sensor 2.  
Figure 49:  
Resistor Bridge Sensor (EXT1[1:0] = 01, EXT2 = 1)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
External bridge  
sensor  
SL900A  
SL900A – 58  
ams Datasheet: 2014-May-06 [v1-01]  
Ex ternal Sensor Front-End (SFE)  
External Sensor 2 Interface  
The external sensor 2 interface (EXT2 pin) can be used for  
measurements with linear conductive sensors, optical sensors  
(diode) and to measure the second point of a resistive bridge  
(with the first point connected to the EXT1 pad) (see Figure 49).  
The Figure ꢀ0 shows the connection diagram for a resistive  
sensor with linear conductance (like a pressure sensor).  
Figure 50:  
External Resistive Sensor - Linear Conductance (EXT2 = 0)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
Resistive type  
sensor - linear  
conductance  
SL900A  
The EXT2 pad can also be used for measurements with an  
optical sensor based on reverse polarized diode current  
(Figure ꢀ1).  
Figure 51:  
External Optical Sensor (EXT2 = 0)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
SL900A  
Opto sensor  
A voltage source output sensor can be connected to the EXT2  
pin. This can be used for integrated sensors with an analog  
output signal.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 59  
E x t e r n a l S e n s o r Fr o n t - E n d ( S F E )  
Figure 52:  
External Voltage Source Sensor (EXT2 = 1)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
Sensor -voltage  
source  
SL900A  
The EXT1 interface can also be used for external current source  
output sensors (Figure ꢀ3).  
Figure 53:  
External Current Source Sensor (EXT2 = 0)  
EXC  
VREF  
EXT1  
EXT2  
VSS  
Sensor - current  
source  
SL900A  
External Sensor Interface Settings  
The external sensor interface is set up either with the SPI  
interface or with RFID custom commands. The commands  
required for external sensor operation are: SET LOG MODE, SET  
SFE PARAMETERS, SET CALIBRATION DATA and INITIALIZE.  
The SET LOG MODE command is used to setup various  
parameters required for the automatic logging process. The  
command is described in “Set Log Mode” on page 30. If external  
sensors are used in the logging process, they have to be enabled  
with this command.  
The SET SFE PARAMETERS command (“Set SFE Parameters” on  
page 33) is used to set up the SFE functionality. The SFE can be  
used as an automatic range selection block, for sensors with a  
SL900A – 60  
ams Datasheet: 2014-May-06 [v1-01]  
Ex ternal Sensor Front-End (SFE)  
wide output range. It can also be used as a fixed gain  
preamplifier for sensors with a low output range. In this case,  
the user application has to preset the range and enable the  
preset values. The preset range has to be selected in case the  
internal limits are used with an external sensor.  
The EXT1 interface gain is preset with the “seti [4:0]” field. The  
EXT2 gain is preset with the “rang [4:0]” field. The preset values  
are enabled with the “Autorange Preset” flag.  
The external sensor type “EXT1[1:0]” and “EXT2” can be set with  
the SET SFE PARAMETERS command. This command is also used  
for selecting the sensor (“Verify Sensor ID”) that will be used  
with the limits in out of limits logging mode.  
The SET CALIBRATION DATA command is used to set up the  
supply switch for external sensors (“sw_ext_en”) and to setup  
the interrupt voltage level for external sensors (“irlev[1:0]”). The  
external sensors can be supplied with the battery voltage from  
the EXC pin only during the conversion time. This will save  
power compared to a system where the sensor is supplied  
directly from the battery. This is especially useful for a resistive  
bridge sensor.  
The INITIALIZE command is used to setup interrupt and timer  
logging modes in parallel (“IRQ + timer enable” flag). This  
special logging mode can be used for regular interval-based  
sensor sampling combined with the interrupt capability of the  
SFE.  
External Sensor Interrupt  
The external sensor interface can be used for sampling short  
events on the EXT1 and EXT2 pins. This can be used for shock  
sensors, acceleration sensors and other pulse response sensors.  
It is also useful for counting events on the external sensor pins.  
The sensors are pre-driven with a small current of 12ꢀnA and  
are constantly observed with a very low consumption  
comparator. The overall current consumption of the interrupt  
block is 0.ꢀꢁA at room temperature. In case the sensor voltage  
exceeds the specified threshold (“irlev[1:0]”), the SFE will  
generate and IRQ request. This will wake up the whole system  
and the sensor data, together with the real time information,  
will be logged to the memory.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 61  
E x t e r n a l S e n s o r Fr o n t - E n d ( S F E )  
The interrupt mode is selected with the SET LOG MODE  
command with the “Logging Mode[2:0]” field (“Logging  
Formats” on page 41). The implemented IRQ modes are:  
Figure 54:  
IRQ Logging Modes  
Bit 2  
Bit 1  
Bit 0  
Logging Form  
Description  
Interrupt triggered on the EXT1 external  
sensor input  
1
0
1
IRQ, EXT1  
Interrupt triggered on the EXT2 external  
sensor input  
1
1
1
1
0
1
IRQ, EXT2  
Interrupt triggered on the EXT1 and EXT2  
external sensor input  
IRQ, EXT1, EXT2  
Either of the 2 external sensor pads, or both of them, can be  
used for generating an interrupt. This function can also be used  
for button-triggered measurements, as the user can select  
which sensor will be logged during an interrupt event.  
The interrupt level can be selected by the application with the  
SET CALIBRATION DATA command (“irlev[1:0]”). The setting is  
valid for EXT1 and EXT2.  
Figure 55:  
Sensor Front End Setting Bits  
Irlev [1:0]  
IRQ level - % of  
supply voltage  
EXT1 resistive – [M] EXT2 resistive - [M]  
Bit 1  
Bit 0  
0
0
1
1
0
1
0
1
< 3  
< 1  
< 3  
< 1  
< 2ꢀ %  
< 8 %  
< 4.2  
< ꢀ.2  
< 4.2  
< ꢀ.2  
< 3ꢀ %  
< 43%  
The IRQ threshold varies from chip to chip for a maximum of  
2ꢀ% from its nominal specified value. The ratio between levels  
at different IRQ-level-CODE remains constant. The IRQ voltage  
levels are supply ratiometric.  
SL900A – 62  
ams Datasheet: 2014-May-06 [v1-01]  
Calibration Bits  
The SL900A chip is factory calibrated. The calibration settings  
can be modified by the application. Some values in the  
calibration data field should not be modified by the application  
as this could degrade the temperature performance and the  
communication stability. Those values are highlighted in the  
table as DO NOT MODIFY.  
Calibration Bits  
The individual bits in the calibration field are:  
Range  
Max  
Calibration  
Function  
Min  
Step  
AD lower voltage reference - fine – DO NOT  
MODIFY  
ad1[4:0]  
-10mV  
+10mV  
ꢀ10mV  
0.62ꢀmV  
AD lower voltage reference - coarse – can be  
used  
coars1[2:0]  
160mV  
ꢀ0mV  
AD higher voltage reference - fine – DO NOT  
MODIFY  
ad2[4:0]  
coars2[2:0]  
gnd_switch  
-10mV  
260mV  
0
+10mV  
610mV  
0.62ꢀmV  
ꢀ0mV  
AD higher voltage reference - coarse  
Switches the lower AD voltage reference to  
ground (default = 1)  
LH -1.04V  
HL -0.98V  
LH - 1.17V  
HL - 1.11V  
selp12[1:0]  
adf[4:0]  
POR voltage level for 1.ꢀV system  
Main reference voltage calibration – DO NOT  
MODIFY  
622mV  
800Hz  
648mV  
116ꢀHz  
0.86mV  
~1Hz  
(non linear)  
df[7:0]  
RTC oscillator calibration  
Controlled battery supply for external sensor –  
the battery voltage is connected to the EXC pin  
sw_ext_en  
selp22[1:0]  
LH - 1.9ꢀ V  
HL - 1.84V  
LH - 2.19V  
HL - 2.07V  
POR voltage level for 3V system  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 63  
S h e l f L i f e C a l c u l a t i o n  
Range  
Calibration  
Function  
Min  
Max  
Step  
43% of  
Voltage interrupt level for external sensor -  
ratiometric  
8%, 2ꢀ%,  
3ꢀ%, 43%  
8% of V  
irlev[1:0]  
ring_cal[4:0]  
off_int[6:0]  
reftc[3:0]  
BAT  
V
BAT  
Main system clock oscillator calibration – DO  
NOT MODIFY  
1ꢀ8ꢀkHz  
-32LSb  
4ꢀ0mV  
2ꢀ90kHz  
+32LSb  
472mV  
31kHz  
1LSb  
Temperature conversion offset calibration – DO  
NOT MODIFY  
Bangap voltage temperature coefficient  
calibration – DO NOT MODIFY  
~18ppm/C  
exc_res  
excitate for resistive sensors without DC  
RESERVED  
RFU[1:0]  
Note(s) and/or Footnote(s):  
1. LH – POR level rising supply  
2. HL – POR level falling supply  
The SL900A device has an integrated shelf life algorithm that  
can dynamically calculate the remaining shelf life of the  
product.  
Shelf Life Calculation  
It is a look-up table algorithm, where the look-up table is stored  
in the first 60 bytes of the User bank. The look-up table can be  
programmed with the standard EPC Write command, or  
through the SPI interface.  
Figure 56:  
Shelf Life Look-up Table  
Physical Address  
Bank  
Bank Name  
Logical Address  
Content  
0x064  
0x06ꢀ  
~
P[0] - lookup table start  
0x000  
P[1]  
~
~
~
3
USER  
~
~
0x09E  
0x09F  
P[ꢀ8]  
0x01D  
P[ꢀ9] - lookup table end  
The Shelf life algorithm can work with either the integrated  
temperature sensor or with an external sensor. The sensor that  
will be used with this algorithm can be selected with the SET  
SHELF LIFE command.  
SL900A – 64  
ams Datasheet: 2014-May-06 [v1-01]  
Shelf Life Calculatio n  
Shelf Life Sensor ID [1:0]  
Figure 57:  
Shelf Life Sensor ID  
B1  
0
B0  
0
Sensor Type  
Temperature sensor  
Ext. sensor 1  
0
1
1
0
Ext. sensor 2  
1
1
Battery voltage  
The Shelf life algorithm is enabled with the “Enable Shelf Life”  
flag in the SET SHELF LIFE command. The algorithm is activated  
with the START LOG command. With this command, the  
calibration data is loaded from EEPROM to the calibration  
registers, the initial shelf life is set and the shelf life parameters  
are set up.  
Figure 58:  
Shelf Life Memory Block  
Physical Address  
Content  
Block  
0x030  
0x031  
0x032  
0x033  
0x034  
0x03ꢀ  
0x036  
Tmax[7:0]  
Tmin[7:0]  
Tstd[7:0]  
Ea[7:0]  
Shelf Life block 0  
SLinit[1ꢀ:8]  
Slinit[7:0]  
Tinit[9:2]  
Tinit[1:0]  
Shelf Life block 1  
ShelfLife Sensor ID [1:0]  
Enable Negative ShelfLife  
Shelf life algorithm enable  
RFU [1:0]  
0x037  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 65  
S h e l f L i f e C a l c u l a t i o n  
The values in the Shelf life block 0 are not used in any  
calculations in the chip. They are intended as reference  
information purposes for the interrogator.  
Figure 59:  
Shelf Life Block 0  
Block  
Data Field  
Function  
Maximal temperature for the product  
Minimum temperature for the product  
Normal temperature  
Tmax[7:0]  
Tmin[7:0]  
Tstd[7:0]  
Ea[7:0]  
Shelf Life block 0  
Activation energy  
The Shelf life block 1 holds the information on the initial shelf  
life and the initial temperature. Both of those values are used  
in the shelf life algorithm.  
Figure 60:  
Shelf Life Block 1  
Block  
Data Field  
Function  
SLinit[1ꢀ:0]  
Tinit[9:0]  
Initial shelf life  
Initial temperature used in the shelf life calculation  
Sensor used for shelf life calculation (temperature,  
external 1 or external 2)  
ShelfLife Sensor ID [1:0]  
Shelf Life block 1  
Enable Negative Shelf life  
Shelf life algorithm enable  
RFU [1:0]  
Enables negative values for shelf life  
Enables the shelf life algorithm  
Reserved for future use  
SL900A – 66  
ams Datasheet: 2014-May-06 [v1-01]  
Shelf Life Calculatio n  
The remaining shelf life is a 24-bit word. The remaining shelf  
life, shelf life block 0&1 and the status flags can be read out with  
the GET LOG STATE command (“Get Log State” on page 3ꢀ).  
Figure 61:  
Status Flags  
Bit #  
Function  
Active (logging process)  
Measurement area full  
Measurement overwritten  
AD error  
7
6
4
3
2
1
0
Low battery  
Shelf life low error (SLerrlo)  
Shelf life high error (SLerrhi)  
Shelf life expired  
When the shelf life reaches 0, the chip can generate a signal on  
the EXC pin that can be used as an interrupt source  
The remaining shelf life can be read from the SPI interface with  
the 0x08 SPI command.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 67  
S h e l f L i f e C a l c u l a t i o n  
The following is a C language representation of the shelf life  
algorithm, implemented in SL900A.  
At startup of logging:  
SLcurr (22 bits, signed) = SLinit << 6; // multiply by 64  
SLerrlo = 0;  
SLerrhi = 0;  
At each temperature logging event:  
Tdiff (10 bits, unsigned) = Tmeas (10 bits, temperature  
value) – Tinit;  
Tindex (8 bits, unsigned) = Tdiff >> 2; // divide by 4  
if (Tdiff > 236) {SLerrhi++; Tindex = ꢀ9}  
if (Tinit > Tmeas) {SLerrlo ++; Tindex = 0}  
Counter (8 bits, unsigned) = 0;  
While (Counter <= Tindex)  
{
SLdec (8 bits, unsigned) = P[Counter];  
SLcurr = SLcurr – SLdec;  
Counter++;  
}
if (Tindex & (Tindex < ꢀ9)) // Interpolation process  
{
SLdec++; // compensate for truncation  
if (Tdiff & 0b00000010) {SLcurr = SLcurr – (SLdec  
>> 1)}  
if (Tdiff & 0b00000001) {SLcurr = SLcurr – (SLdec  
>> 2)}  
}
SL900A – 68  
ams Datasheet: 2014-May-06 [v1-01]  
Memor y M ap O ver view  
Memory Map Overview  
Figure 62:  
Memory Map Overview  
Physical  
Address  
Bank  
Name  
Logical  
Address  
Loc. #  
Bank  
Content  
Group  
System Password  
[31:24]  
1
2
3
0x000  
System Password - read  
protect  
System Password  
[23:16]  
0x001  
0x002  
System Password  
[1ꢀ:8]  
System Password -  
write protect  
4
6
7
8
0x003  
0x004  
0x00ꢀ  
0x006  
0x007  
System Password [7:0]  
User Password [31:24]  
User Password [23:16]  
User Password [1ꢀ:8]  
User Password [7:0]  
User Password - read  
protect  
User Password - write  
protect  
Measurement  
Password [31:24]  
9
0x008  
0x009  
0x00A  
0x00B  
MeasurementPassword  
- read protect  
Measurement  
Password [23:16]  
10  
11  
12  
X
SYSTEM  
Measurement  
Password [1ꢀ:8]  
MeasurementPassword  
- write protest  
Measurement  
Password [7:0]  
Year [ꢀ:0]  
13  
14  
0x00C  
0x00D  
Month [3:2]  
Month [1:0]  
Day [4:0]  
Hour [4]  
Start time  
Hour [3:0]  
Minute [ꢀ:2]  
Minute [1:0]  
Second [ꢀ:0]  
1ꢀ  
16  
0x00E  
0x00F  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 69  
M e m o r y M a p O v e r v i e w  
Physical  
Address  
Bank  
Name  
Logical  
Address  
Loc. #  
Bank  
Content  
Group  
ad1[4:0] - reference  
voltage 1 fine cal.  
17  
0x010  
0x011  
coars1[2:0] - reference  
voltage 1 coarse cal.  
ad2[4:0] - reference  
voltage 2 fine cal.  
18  
coars2[2:0] - reference  
voltage 2 coarse cal.  
gnd_switch  
selp12[1:0] - 1.ꢀV  
battery POR level  
19  
20  
0x012  
0x013  
adf[4:0] - 63ꢀmV  
reference voltage cal.  
df[7:0] - timer oscillator  
cal.  
sw_ext_en - switched  
battery supply for ext.  
sensor  
selp22[1:0] - 3V battery  
POR level  
X
SYSTEM  
Calibration  
21  
22  
0x014  
0x01ꢀ  
irlev[1:0]  
ring_cal[4:2] - 1.92MHz  
oscillator cal.  
ring_cal[1:0]  
off_int[6:1] -  
temperature offset  
calibration  
off_int[0]  
reftc[3] - band gap  
temperature  
coefficient cal.  
reftc[2:0] - band gap  
temperature  
23  
0x016  
coefficient cal.  
exc_res - excitate for  
resistive sensors  
without DC  
RFU[1:0]  
SL900A – 70  
ams Datasheet: 2014-May-06 [v1-01]  
Memor y M ap O ver view  
Physical  
Loc. #  
Bank  
Name  
Logical  
Address  
Bank  
Content  
Group  
Address  
rang[4:0] - ext. sensor 2  
range (feedback  
resistor)  
24  
0x017  
seti[4:2] - ext. sensor 1  
range (current source)  
seti[1:0] - ext. sensor 1  
range  
SFE parameters  
sext1[1:0] - external  
sensor 1 type  
2ꢀ  
0x018  
sext2 - external sensor  
2 type  
Auto range preset  
Verify sensor ID[1:0]  
Extreme lower limit  
[9:2]  
26  
27  
0x019  
0x01A  
Extreme lower limit  
[1:0]  
X
SYSTEM  
Lower limit [9:4]  
Lower limit [3:0]  
Upper limit [9:6]  
Upper limit [ꢀ:0]  
28  
29  
0x01B  
0x01C  
Limits  
Extreme upper limit  
[9:8]  
Extreme upper limit  
[7:0]  
30  
31  
32  
33  
34  
0x01D  
0x01E  
0x01F  
0x020  
0x021  
Ext. lower limits  
counter [7:0]  
Lower limits counter  
[7:0]  
Limits counter  
Higher limits counter  
[7:0]  
Ext. higher limits  
counter [7:0]  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 71  
M e m o r y M a p O v e r v i e w  
Physical  
Address  
Bank  
Name  
Logical  
Address  
Loc. #  
Bank  
Content  
Group  
Measurement address  
pointer [9:2]  
3ꢀ  
0x022  
Measurement address  
pointer [1:0]  
36  
0x023  
Number of memory  
replacements [ꢀ:0]  
System status  
Number of  
measurements [14:7]  
37  
38  
0x024  
0x02ꢀ  
Number of  
measurements [6:0]  
Active  
Logging form [2:0]  
Storage rule (0 -  
normal, 1 - rolling)  
Ext.1 sensor enable  
Ext.2 sensor enable  
Temp. sensor enable  
Battery check enable  
Log interval [14:7]  
Log interval [6:0]  
RFU  
39  
0x026  
Log mode  
Log interval  
Delay time  
X
SYSTEM  
40  
41  
42  
0x027  
0x028  
0x029  
Delay time [11:4]  
Delay time [3:0]  
Single use flag  
RFU  
43  
0x02A  
Delay mode (0 - timer  
or 1 - switch)  
IRQ+timer enable  
SL900A – 72  
ams Datasheet: 2014-May-06 [v1-01]  
Memor y M ap O ver view  
Physical  
Loc. #  
Bank  
Name  
Logical  
Address  
Bank  
Content  
Group  
Address  
Number of blocks for  
user data [8:1]  
44  
0x02B  
Number of blocks for  
user data [0]  
User data  
4ꢀ  
46  
47  
0x02C  
0x02D  
0x02E  
RFU [3:0]  
Broken word pointer  
[2:0]  
RFU[7:0]  
RFU  
Kill lock [1:0]  
Access lock [1:0]  
EPC [1:0]  
Lock bits, write ONLY  
with the 'Lock'  
command  
TID lock [1:0]  
USER lock [1:0]  
RFU [ꢀ:0]  
48  
0x02F  
49  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
0x030  
0x031  
0x032  
0x033  
0x034  
0x03ꢀ  
0x036  
X
SYSTEM  
Tmax[7:0]  
Tmin[7:0]  
Shelf Life block 0  
Tstd[7:0]  
Ea[7:0]  
SLinit[1ꢀ:8]  
Slinit[7:0]  
Tinit[9:2]  
Tinit[1:0]  
ShelfLife Sensor ID  
[1:0]  
Shelf Life block 1  
Enable Negative  
ShelfLife  
ꢀ6  
0x037  
Shelf life algorithm  
enable  
Skip log [1:0]  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 73  
M e m o r y M a p O v e r v i e w  
Physical  
Address  
Bank  
Name  
Logical  
Address  
Loc. #  
Bank  
Content  
Group  
Adjust bits for the T1  
timer (default value is  
“0111”  
T1_delay [3:0]  
FIRO_enable  
cl_sh_diss  
T2_diss  
Enable FIRO RNG  
ꢀ7  
0x038  
Disables the clock shop  
Disables the T2 timing  
Reserved for future use  
Reserved for future use  
KILL flag  
RFU  
RFU[6:0]  
X
SYSTEM  
ꢀ8  
0x039  
KILL  
ꢀ9  
60  
61  
62  
63  
64  
6ꢀ  
66  
67  
68  
0x03A  
0x03B  
0x03C  
0x03D  
0x03E  
0x03F  
0x040  
0x041  
0x042  
0x043  
RFU[7:0]  
RFU[7:0]  
RFU[7:0]  
RFU  
RFU[7:0]  
RFU[7:0]  
RFU[7:0]  
Kill Password [31:24]  
Kill Password [23:16]  
Kill Password [1ꢀ:8]  
Kill Password [7:0]  
0x00  
0x01  
Kill Password  
Access Password  
[31:24]  
0
RESERVED  
69  
70  
0x044  
0x04ꢀ  
0x02  
0x03  
0x00  
0x01  
Access Password  
[23:16]  
Access Password  
71  
72  
0x046  
0x047  
Access Password [1ꢀ:8]  
Access Password [7:0]  
RAM -  
0x00  
CRC-16 is stored in the  
RAM portion and is  
mapped to the EPC  
memory block  
RAM - 1  
RAM - 2  
CRC-16 [1ꢀ:8]  
CRC-16 [7:0]  
RAM -  
0x01  
1
EPC  
73  
74  
0x048  
0x049  
PC [1ꢀ:8]  
PC [7:0]  
PC  
SL900A – 74  
ams Datasheet: 2014-May-06 [v1-01]  
Memor y M ap O ver view  
Physical  
Loc. #  
Bank  
Name  
Logical  
Address  
Bank  
Content  
EPC [127:120]  
Group  
Address  
7ꢀ  
76  
77  
78  
79  
80  
81  
82  
83  
84  
8ꢀ  
86  
87  
88  
89  
90  
91  
92  
93  
94  
9ꢀ  
96  
97  
98  
99  
100  
0x04A  
0x04B  
0x04C  
0x04D  
0x04E  
0x04F  
0x0ꢀ0  
0x0ꢀ1  
0x0ꢀ2  
0x0ꢀ3  
0x0ꢀ4  
0x0ꢀꢀ  
0x0ꢀ6  
0x0ꢀ7  
0x0ꢀ8  
0x0ꢀ9  
0x0ꢀA  
0x0ꢀB  
0x0ꢀC  
0x0ꢀD  
0x0ꢀE  
0x0ꢀF  
0x060  
0x061  
0x062  
0x063  
0x02  
0x03  
0x04  
0x0ꢀ  
0x06  
0x07  
0x08  
0x09  
0x00  
0x01  
0x02  
0x03  
0x04  
EPC [119:112]  
EPC [111:104]  
EPC [103:96]  
EPC [9ꢀ:88]  
EPC [87:80]  
EPC [79:72]  
EPC [71:64]  
EPC [63:ꢀ6]  
EPC [ꢀꢀ:48]  
EPC [47:40]  
EPC [39:32]  
EPC [31:24]  
EPC [23:16]  
EPC [1ꢀ:8]  
1
EPC  
EPC  
EPC [7:0]  
TID [7:0] – 0xE0  
TID [1ꢀ:8] – 0x36  
TID [23:16]  
TID [31:24]  
TID [39:32]  
TID [47:40]  
TID [ꢀꢀ:48]  
TID [63:ꢀ6]  
Chip version [7:0]  
RFU [7:0]  
TID (same format as UID  
in ISO 1ꢀ693),  
READ ONLY  
2
TID  
Version, etc...  
READ ONLY  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 75  
M e m o r y M a p O v e r v i e w  
Physical  
Address  
Bank  
Name  
Logical  
Address  
Loc. #  
Bank  
Content  
Group  
USER memory start -  
UMI  
101  
0x064  
0x000  
102  
~
0x06ꢀ  
~
USER / MEASUREMENT  
memory – 10ꢀ2 bytes  
~
~
3
USER  
~
~
11ꢀ1  
11ꢀ2  
0x47E  
0x47F  
0x20D  
USER memory end  
SL900A – 76  
ams Datasheet: 2014-May-06 [v1-01]  
Applicatio ns  
Applications  
Battery-Assisted Transponder – Temperature  
Data Logger  
In the battery-assisted transponder application, only 4 pads are  
used – the antenna pads and the battery pads. This kind of  
circuit is suitable for a temperature data logger application.  
Figure 63:  
Battery-Assisted Transponder – Temperature Data Logger  
16  
15  
14  
13  
VPOS  
VSSA  
ANT  
12  
11  
10  
9
1
2
3
4
DOUT  
Battery  
1.5V or 3V  
DIN  
Dipole  
Antenna  
SL900A  
SCLK  
SEN  
DIGI_TEST  
5
6
7
8
Passive Transponder – Passive Temperature  
Sensor  
In the passive transponder, 2 pads are required for the antenna  
(ANT, V ). For extended read range an external capacitor  
SSA  
connected between the V  
and V pads is recommended.  
POS  
SS  
Figure 64:  
Passive Transponder – Passive Temperature Sensor  
16  
15  
14  
13  
VPOS  
VSSA  
ANT  
DOUT 12  
1
2
3
4
DIN 11  
Optional  
External  
Capacitor  
Dipole  
Antenna  
SL900A  
10  
SCLK  
DIGI_TEST  
5
SEN  
9
6
7
8
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 77  
Applications  
Battery-Assisted Transponder with External  
Microcontroller  
An external microcontroller can be connected to the SL900A  
device using the SPI interface. The microcontroller can read and  
write the EEPROM, start and stop logging, perform an AD  
conversion and data can be transmitted to the RFID reader. The  
microcontroller can be used to perform additional tasks to  
extend the functionality of the system.  
Figure 65:  
Battery-Assisted Transponder with External Microcontroller  
Battery  
1.5V or 3V  
16  
15  
14  
13  
VPOS  
VSSA  
ANT  
1
2
3
4
DOUT 12  
DIN  
DIN 11  
DOUT  
SCLK  
SEN  
Dipole  
Antenna  
μC  
SL900A  
10  
9
SCLK  
SEN  
DIGI_TEST  
5
6
7
8
Battery-Assisted Transponder with Pushbutton  
for Manual Delayed Log Start  
In the battery-assisted transponder application, ꢀ pads are used  
– the antenna pads, the battery pads and DIN for push button  
input. This kind of circuit is suitable for a temperature data  
logger application with manual logging start.  
Figure 66:  
Battery-Assisted Transponder with Pushbutton for Manual Delayed Log Start  
16  
15  
14  
13  
VPOS  
VSSA  
ANT  
DOUT 12  
1
2
3
4
DIN 11  
Dipole  
Antenna  
SL900A  
Battery  
1.5V or 3V  
10  
SCLK  
DIGI_TEST  
5
SEN  
9
6
7
8
SL900A – 78  
ams Datasheet: 2014-May-06 [v1-01]  
Applicatio ns  
Dense Mode Logging – First 8 Measurements  
This is a short representation of the Measurement memory, the  
address pointer and the measurement counter for dense  
logging mode with the integrated temperature sensor. Shown  
are only the first 8 measurements – all other measurements are  
stored in same manner.  
Temperature data is: 0x2AA, 0x3FF, 0x2AA, 0x3FF, …  
Figure 67:  
Dense Mode Logging – First 8 Measurements:  
No Measurement:  
0
1
2
3
4
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
Address pointer  
0
0
0
Measurement counter  
Broken Word Pointer  
Measurement 1:  
0
1
2
3
4
10101010  
10000000  
00000000  
00000000  
00000000  
00000000  
00000000  
Address pointer  
0
1
00000000  
00000000  
00000000  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
Measurement 2:  
0
1
2
3
4
10101010  
10111111  
00000000  
00000000  
00000000  
00000000  
00000000  
Address pointer  
1
2
2
11110000  
00000000  
00000000  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 79  
Applications  
Measurement 3:  
0
1
2
3
4
10101010  
10111111  
10101000  
00000000  
00000000  
00000000  
00000000  
Address pointer  
1
3
7
11111010  
00000000  
00000000  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
Measurement 4:  
0
1
2
3
4
10101010  
10111111  
10101011  
00000000  
00000000  
00000000  
00000000  
Address pointer  
2
4
4
11111010  
11111111  
00000000  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
Measurement 5:  
0
1
2
3
4
10101010  
10111111  
10101011  
10101010  
00000000  
00000000  
00000000  
Address pointer  
3
1
11111010  
11111111  
10000000  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
Measurement 6:  
0
1
2
3
4
10101010  
10111111  
10101011  
10101010  
11110000  
00000000  
00000000  
Address pointer  
3
6
6
11111010  
11111111  
10111111  
00000000  
00000000  
Measurement counter  
Broken Word Pointer  
SL900A – 80  
ams Datasheet: 2014-May-06 [v1-01]  
Applicatio ns  
Measurement 7:  
0
1
2
3
4
10101010  
10111111  
10101011  
10101010  
11111010  
00000000  
00000000  
Address pointer  
4
7
3
11111010  
11111111  
10111111  
10101000  
00000000  
Measurement counter  
Broken Word Pointer  
Measurement 8:  
0
1
2
3
4
10101010  
10111111  
10101011  
10101010  
11111010  
11111111  
00000000  
Address pointer  
8
0
11111010  
11111111  
10111111  
10101011  
00000000  
Measurement counter  
Broken Word Pointer  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 81  
P a c k a g e D r a w i n g s & M a r k i n g s  
Package Drawings & Markings  
Figure 68:  
Package Drawings  
SL900A  
Symbol  
Min  
Nom  
0.90  
Max  
A
A1  
b
0.80  
1.00  
0.203 REF  
0.40  
0.33  
0.47  
D
ꢀ.00 BSC  
ꢀ.00 BSC  
3.2ꢀ  
E
D1  
E1  
e
3.1ꢀ  
3.1ꢀ  
-
3.3ꢀ  
3.3ꢀ  
-
3.2ꢀ  
0.80 BSC  
0.3ꢀꢀ  
L
0.2ꢀꢀ  
0.4ꢀꢀ  
0.10  
L1  
P
4ꢀ5 BSC  
0.10  
aaa  
ccc  
0.10  
SL900A Package Drawings: The reflow peak soldering temperature (body temperature) is specified according  
IPC/JEDEC J-STD-020C “Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount  
Devices.  
Note(s) and/or Footnote(s):  
1. Dimensioning and tolerances conform to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Dimension b applies to metalized terminal and is measured between 0.2ꢀmm and 0.30mm from terminal tip. Dimension L1 represents  
terminal full back from package edge up to 0.1mm is acceptable.  
4. Co-planarity applies to the exposed heat slug as well as the terminal.  
ꢀ. Radius on terminal is optional.  
6. This drawing is subject to change without notice.  
SL900A – 82  
ams Datasheet: 2014-May-06 [v1-01]  
RoHS Compliant & ams Green Statement  
RoHS: The term RoHS compliant means that ams products fully  
comply with current RoHS directives. Our semiconductor  
products do not contain any chemicals for all 6 substance  
categories, including the requirement that lead not exceed  
0.1% by weight in homogeneous materials. Where designed to  
be soldered at high temperatures, RoHS compliant products are  
suitable for use in specified lead-free processes.  
RoHS Compliant & ams Green  
Statement  
ams Green (RoHS compliant and no Sb/Br): ams Green  
defines that in addition to RoHS compliance, our products are  
free of Bromine (Br) and Antimony (Sb) based flame retardants  
(Br or Sb do not exceed 0.1% by weight in homogeneous  
material).  
Important Information: The information provided in this  
statement represents ams knowledge and belief as of the date  
that it is provided. ams bases its knowledge and belief on  
information provided by third parties, and makes no  
representation or warranty as to the accuracy of such  
information. Efforts are underway to better integrate  
information from third parties. ams has taken and continues to  
take reasonable steps to provide representative and accurate  
information but may not have conducted destructive testing or  
chemical analysis on incoming materials and chemicals. ams  
and ams suppliers consider certain information to be  
proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 83  
O r d e r i n g & C o n t a c t I n f o r m a t i o n  
Ordering & Contact Information  
Figure 69:  
Ordering Information  
Operating  
Temperature  
Range  
Ordering  
Description  
Code  
Package  
Type  
Device  
Marking  
Shipping  
Form  
QFN 16  
(ꢀ x ꢀ mm)  
Tape & reel  
(1,000/reel)  
Smart active label IC with  
on-chip temperature  
sensor and 9k EEPROM  
SL900A-AQFT  
SL900A-ASWB  
-40°C to 12ꢀ°C  
-405C to 12ꢀ5C  
SL900A  
-
Tested wafers  
Ordering Information: Order quantities should be a multiple of shipping form.  
Buy our products or get free samples online at:  
www.ams.com/ICdirect  
Technical Support is available at:  
www.ams.com/Technical-Support  
For further information and requests, e-mail us at:  
ams_sales@ams.com  
For sales offices, distributors and representatives, please visit:  
www.ams.com/contact  
Headquarters  
ams AG  
Tobelbaderstrasse 30  
8141 Unterpremstaetten  
Austria, Europe  
Tel: +43 (0) 3136 ꢀ00 0  
Website: www.ams.com  
SL900A – 84  
ams Datasheet: 2014-May-06 [v1-01]  
Copyrights & Disclaimer  
Copyright ams AG, Tobelbader Strasse 30, 8141  
Copyrights & Disclaimer  
Unterpremstaetten, Austria-Europe. Trademarks Registered. All  
rights reserved. The material herein may not be reproduced,  
adapted, merged, translated, stored, or used without the prior  
written consent of the copyright owner.  
Devices sold by ams AG are covered by the warranty and patent  
indemnification provisions appearing in its Terms of Sale. ams  
AG makes no warranty, express, statutory, implied, or by  
description regarding the information set forth herein. ams AG  
reserves the right to change specifications and prices at any  
time and without notice. Therefore, prior to designing this  
product into a system, it is necessary to check with ams AG for  
current information. This product is intended for use in  
commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or  
high reliability applications, such as military, medical  
life-support or life-sustaining equipment are specifically not  
recommended without additional processing by ams AG for  
each application. This Product is provided by ams “AS IS” and  
any express or implied warranties, including, but not limited to  
the implied warranties of merchantability and fitness for a  
particular purpose are disclaimed.  
ams AG shall not be liable to recipient or any third party for any  
damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interruption of business or  
indirect, special, incidental or consequential damages, of any  
kind, in connection with or arising out of the furnishing,  
performance or use of the technical data herein. No obligation  
or liability to recipient or any third party shall arise or flow out  
of ams AG rendering of technical or other services.  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 85  
D o c u m e n t S t a t u s  
Document Status  
Document Status  
Product Status  
Definition  
Information in this datasheet is based on product ideas in  
the planning phase of development. All specifications are  
design goals without any warranty and are subject to  
change without notice  
Product Preview  
Pre-Development  
Information in this datasheet is based on products in the  
design, validation or qualification phase of development.  
The performance and parameters shown in this document  
are preliminary without any warranty and are subject to  
change without notice  
Preliminary Datasheet  
Datasheet  
Pre-Production  
Production  
Information in this datasheet is based on products in  
ramp-up to full production or full production which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade  
Information in this datasheet is based on products which  
conform to specifications in accordance with the terms of  
ams AG standard warranty as given in the General Terms of  
Trade, but these products have been superseded and  
should not be used for new designs  
Datasheet (discontinued)  
Discontinued  
SL900A – 86  
ams Datasheet: 2014-May-06 [v1-01]  
Revision I nformation  
Revision Information  
Changes from 1-00 (2013-Aug) to current revision 1-01 (2014-May-06)  
Page  
Removed “Confidential” from footer  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 87  
C o n t e n t G u i d e  
1
1
2
2
2
General Description  
Key Benefits & Features  
Package Options  
Applications  
Content Guide  
Block Diagram  
3
4
6
6
6
7
Pin Assignment  
Bare Die Pad Layout  
Absolute Maximum Ratings  
Electrical Discharge Sensitivity  
Operating Conditions  
Electrical Characteristics  
9
Short Description  
10 Supply Arrangement  
10 Analog Front End (AFE)  
10 Processing and Digital Control  
11 Serial Interface (SPI)  
11 Real-Time Clock (RTC)  
11 Temperature Sensor  
11 External Sensors  
11 Analog to Digital Converter  
11 External Sensor Interrupt  
12 Data Protection  
12 Shelf Life  
12 Memory arrangement  
13 System Description  
13 Initializing the Chip  
13 Power Modes  
13 Ready Mode  
13 Active Mode  
13 Logging Mode  
13 Interrupt Mode  
13 Stand-by Mode  
14 State Diagram  
1ꢀ Data Protection  
16 Data Log Functions  
17 Limits Counter  
18 Logging Timer  
18 Delay Time  
18 Analog to Digital Conversion  
21 Temperature Conversion  
21 Battery Voltage Conversion  
22 Commands  
2ꢀ Supported EPC Gen2 Commands  
2ꢀ QuerryREP - #01  
2ꢀ ACK - #02  
2ꢀ Query - #03  
2ꢀ QueryAdjust - #04  
2ꢀ Select - #0ꢀ  
2ꢀ NAK - #06  
2ꢀ Req_RN - #07  
SL900A – 88  
ams Datasheet: 2014-May-06 [v1-01]  
Content Guide  
2ꢀ Read - #08  
26 Write - #09  
26 Kill - #10  
26 Lock - #11  
26 Access - #12  
26 BlockWrite - #13  
26 BlockErase - #14  
27 Cool-Log Custom Commands  
27 Set Password - #1ꢀ  
27 Set Log Mode - #16  
27 Set Log Limits - #17  
27 Get Measurement Setup - #18  
27 Set SFE Parameters - #19  
27 Set Calibration Data - #20  
27 End Log - #21  
28 Start Log - #22  
28 Get Log State - #23  
28 Get Calibration Data - #24  
28 Get Battery Level - #2ꢀ  
28 Set Shelf Life - #26  
28 Initialize - #27  
28 Get Sensor Value - #28  
28 Open Area - #29  
28 Access FIFO - #30  
29 Custom Command Description  
30 Set Password  
30 Set Log Mode  
31 Set Log Limits  
31 Get Measurement Setup  
33 Set SFE Parameters  
33 Set Calibration Data  
34 End Log  
34 Start Log  
3ꢀ Get Log State  
36 Get Calibration Data  
36 Get Battery Level  
37 Set Shelf Life  
37 Initialize  
38 Get Sensor Value  
39 Open Area  
39 Access FIFO  
41 Logging Formats  
41 Dense Logging Form  
42 Out-of-Limits Logging Form  
43 Interrupt Logging Form  
43 Storage Capacity  
44 Storage Rule  
44 Normal storage rule  
44 Rolling storage rule  
45 SPI Interface  
ams Datasheet: 2014-May-06 [v1-01]  
SL900A – 89  
C o n t e n t G u i d e  
49 SPI Direct Commands  
ꢀ0 FIFO  
51 Alternate Pad Functions  
ꢀ1 Manual Log Start with Button  
ꢀ1 External Shelf Life Alarm Function  
53 External Sensor Front-End (SFE)  
ꢀ3 SFE Interface  
ꢀ4 SFE Interface  
ꢀ6 External Sensor 1 Interface  
ꢀ9 External Sensor 2 Interface  
60 External Sensor Interface Settings  
61 External Sensor Interrupt  
63 Calibration Bits  
64 Shelf Life Calculation  
6ꢀ Shelf Life Sensor ID [1:0]  
69 Memory Map Overview  
77 Applications  
77 Battery-Assisted Transponder – Temperature  
Data Logger  
77 Passive Transponder – Passive Temperature Sensor  
78 Battery-Assisted Transponder with  
External Microcontroller  
78 Battery-Assisted Transponder with Pushbutton for  
Manual Delayed Log Start  
79 Dense Mode Logging – First 8 Measurements  
82 Package Drawings and Markings  
83 RoHS Compliant & ams Green Statement  
84 Ordering & Contact Information  
85 Copyrights & Disclaimer  
SL900A – 90  
ams Datasheet: 2014-May-06 [v1-01]  

相关型号:

SL90N0

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90N1

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90N2

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90N3

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90N4

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90N5

Telecom and Datacom Connector, 90 Contact(s), Male, Solder Terminal
MOLEX

SL90P0

Telecom and Datacom Connector, 90 Contact(s), Male, Crimp Terminal
MOLEX

SL90P1

Telecom and Datacom Connector, 90 Contact(s), Male, Crimp Terminal
MOLEX

SL90P4

Telecom and Datacom Connector, 90 Contact(s), Male, Crimp Terminal
MOLEX

SL90P5

Telecom and Datacom Connector, 90 Contact(s), Male, Crimp Terminal
MOLEX

SL90S0

Telecom and Datacom Connector, 90 Contact(s), Female, Crimp Terminal
MOLEX

SL90S1

Telecom and Datacom Connector, 90 Contact(s), Female, Crimp Terminal
MOLEX